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PDE Traffic Observer Validated on Freeway Data
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Abstract—This article develops a boundary observer for the
estimation of congested freeway traffic states based on the
Aw-Rascle-Zhang (ARZ) partial differential equations (PDEs)
model. Traffic state estimation refers to the acquisition of traffic
state information from partially observed traffic data. This
problem is relevant for freeway due to its limited accessibility
to real-time traffic information. We propose a model-driven
approach in which the estimation of aggregated traffic states
in a freeway segment is obtained simply from the boundary
measurement of flow and velocity without knowledge of the
initial states. The macroscopic traffic dynamics is represented
by the ARZ model, a 2 x 2 coupled nonlinear hyperbolic PDEs
for traffic density and velocity. Using the PDE backstepping
method, we construct a boundary observer consisting of a copy
of the nonlinear plant with output injections from boundary
measurement errors. The exponential stability of the estimation
error system in the L?> norm and finite-time convergence to
zero is guaranteed. Numerical simulation and data validation
are conducted to validate the boundary observer design with
vehicle trajectory data.

Index Terms— Aw-Rascle-Zhang model, backstepping method,
boundary observer, data validation, traffic estimation.

I. INTRODUCTION

RAFFIC state estimation plays an important role in

traffic management. In order to mitigate freeway traffic
congestion, various control algorithms [5], [20], [26], [32],
[33], [37], [38] are developed for ramp metering or variable
speed limit. However, their performance heavily relies on
accurate measurement of traffic states on mainline freeways.
Due to financial and technical limitations, it is difficult to
measure traffic states on mainline freeways everywhere at all
times. Therefore, it is important to estimate traffic states at
places where detection is missing.

The topic of traffic state estimation refers to foreseeing
traffic states with partially observed traffic data and some
prior knowledge of traffic. Such a topic has been extensively
studied and attracted a lot of attention in recent decades.
According to the comprehensive review in [29], approaches on
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traffic estimation fall into the following three categories: model
driven, data driven, and streaming data driven. Among them,
the model-driven approach is the most popular one and has
been widely used to solve various traffic estimation problems.
Compared with the data-driven approach, the model-based
approach provides an accurate estimation with less input data
and is also easier to identify the reason even if the estimation
is inaccurate or the model is not the representative of the
traffic data. The model-based estimation can be integrated with
traffic control operations directly. The disadvantage of this
approach is that it requires careful selection and calibration
of the model. As a first step in the model-driven approach,
traffic flow models are often used to describe traffic dynamics
and are calibrated with historical data. Then, state estimates
are obtained based on the calibrated model and real-time data
inputs. Therefore, it is crucial for traffic estimation to have
an advanced physical model that describes freeway traffic
dynamics accurately. This motivates us to employ the state-of-
the-art second-order traffic partial differential equation (PDE)
model for traffic state estimation.

Freeway traffic dynamics in spatial and temporal domains
are usually described using macroscopic models with aggre-
gated variables of traffic density, velocity, and flux. These
aggregated variables average out small-scale noises of freeway
traffic and can be directly measured by stationary/point-based
sensors, such as loop detectors. Among the macroscopic mod-
els, the Lighthill-Whitham—Richards (LWR) model in [23]
and [28] is one of the most applied models. This model is
a first-order scalar hyperbolic PDE of density and can predict
the propagation and dissipation of traffic shockwaves and
represent the fundamental phenomena of free and congested
regime of traffic. Several studies in [6]-[8] and [22] have
used such a model for traffic states’ estimation due to its
simplicity and efficiency in model calibration and numerical
simulation. However, the LWR model fails to describe stop-
and-go traffic, which is the oscillatory behavior of congested
traffic. The main reason is because the static equilibrium
density—velocity relation of the LWR model is unable to
reproduce the nonequilibrium relation appearing in the stop-
and-go traffic.

In order to address this limitation, second-order models are
proposed to employ a nonlinear hyperbolic PDE for traffic
velocity, in addition to the density conservation equation.
Therefore, deviations from the equilibrium traffic relation are
allowed in the second-order model since the dynamics of the
velocity PDE is captured. The first well-known second-order
model is the Payne—Whitham (PW) model in [27] and [30].
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However, it predicts negative traffic velocity that is physi-
cally unrealistic. Later in [3] and [36], the Aw—Rascle-Zhang
(ARZ) model was proposed, which successfully addresses the
anisotropic behavior of traffic and corrects the PW model’s
prediction of traffic waves. For this reason, the ARZ model
has been studied intensively for the stop-and-go traffic over
the recent years [4], [16], [17], [21].

There have been many studies applying second-order traffic
models as physical models for state estimation, for example,
the second-order extended cell-transmission model in [25] and
the second-order PW model in [31]. Kalman filter extensions
and variations are used in [25] and [31] to estimate the
most probable state that allows observation to correct the
model’s prediction. The data assimilation approach based on
the Kalman filter extensions and variations allows observation
to correct the model’s prediction. The model and the measure-
ment are not regarded as perfect. Instead, the approach esti-
mates the most probable state. However, the noise may raise
the need for additional calibration, which generally requires
larger amounts of data. The observer model is developed for
the spatially discretized traffic flow model whose accuracy
depends on the discretization and the numerical schemes to
be used and may require more complicated model calibration.
However, to the best of our knowledge, the state-of-the-art
ARZ PDE model has never been used for state estimation.
In order to accurately estimate the nonequilibrium traffic states
for congested traffic, this article employs the second-order
ARZ PDE model. A boundary observer is designed for the
PDE model using the backstepping method and is validated
with traffic field data. Compared with the data assimilation
approach, the observer proposed in this article requires less
measurement information, easier model calibration, and works
directly with the original second-order PDE model instead of
the discretized one.

In dealing with the second-order coupled nonlinear hyper-
bolic system, PDE control of the ARZ model has been studied
through many recent efforts [4], [18], [20], [32], [33], and [37].
The previous work by Yu and Krstic [32], [33] first adopts
the PDE backstepping methodology for control of the ARZ
model. Boundary control and observer design using the PDE
backstepping method have been developed for 2 x 2 coupled
hyperbolic systems [11] and for the general heterodirectional
hyperbolic systems in [1], [12], and [24]. The applications of
the theoretical results include open-channel flow, oil drilling,
heat exchangers, and multiphase flow problems but have never
been considered in traffic problems.

In [32], an observer design is proposed for the linearized
ARZ model in an effort to construct an output feedback
controller. In [35], we generalize the previous observer design
to address the freeway traffic estimation problem from a
more practical perspective. In specific, the observer design
is implemented for the nonlinear ARZ model with certain
assumptions of boundary conditions being removed. The
observer design accepts a general functional form of the
equilibrium density—velocity relation rather than a basic choice
of Greenshield’s model so that the PDE model has a better data
fitting in calibration. Data validation results in this article are
obtained based on the theoretical result in [35].
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In validation of the observer, vehicle trajectory data are used
to obtain the aggregated values of traffic states. The ARZ
model is calibrated with the field data. The model parameters
are mostly obtained from the historical data. The rest is
determined from part of the data set. Then, the observer is
constructed using the model parameters and real-time sensing
of the data at boundaries. The performance of the PDE
boundary observer is then evaluated with the field data of the
temporal and spatial domains.

The contribution of this article is as follows. A systematic
model-driven approach is developed for traffic state estima-
tion. The PDE boundary observer based on the macroscopic
ARZ traffic model is designed and validated. The theoretical
observer design by a backstepping method is generalized
and adapted for the field-data validation. Vehicle trajectories
data [15] are used to construct and test the performance of the
observer design. This result paves the way for implementing
the PDE observer design in practice and gives rise to a
variety of opportunities to incorporate the PDE backstepping
techniques in solving a freeway traffic estimation problem.

The outline of this article is as follows. In Section II,
we first introduce the nonlinear ARZ model and analyze
the linearized ARZ model for distinguishing the free and
congested traffic. Section III designs the boundary observer for
the linearized ARZ model using the backstepping method and
the nonlinear boundary observer is developed using the output
injections obtained from the linearized model. In Section IV,
numerical simulation of the nonlinear ARZ PDE model and
state estimation by nonlinear implementation of the boundary
observer is conducted first from an ad hoc choice of model
parameters. In Section V, we calibrate the ARZ model with
some field data and test the observer’s performance. The
estimation errors are then analyzed.

II. PROBLEM STATEMENT

We consider the traffic estimation problem for a stretch of
freeway whose length is L. The macroscopic traffic dynamics
is described by the ARZ model. We study the linearized ARZ
model and discuss the characteristic speeds under free and
congested traffic regime.

A. Aw—Rascle—Zhang Model
The ARZ model for (x,t) € [0, L] x [0, +00) is given
Oip + 0x(pv) =0

Vip) —
aw+ (v — pp'(p))oww = #

(1)
)

The state variable p (x, t) denotes the traffic density and v (x, t)
denotes the traffic speed. The equilibrium velocity—density
relationship V (p) is a decreasing function of density. The
equilibrium flux function Q(p), also known as fundamental
diagram, is defined as

Q(p) = pV(p). 3)

For the ARZ model, the velocity functional form V (p) needs
to be chosen such that it is strictly decreasing V'(p) < 0 and
the flux function Q(p) is smooth, strictly concave Q(p)” < 0.
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The second-order ARZ model is valid when the hyperbolicity
is ensured for Q(p). One of the basic choice of V(p) is in
the form of Greenshield’s model

Y
Vo) :vf(l _ (i) ) )
P

where p,, is the maximum density and v, is the maximum
velocity. The observer design proposed in Section III is not
limited by this choice. Later on, a more realistic functional
form of V(p) is employed to obtain a better fitting with the
traffic field data.

The inhomogeneous ARZ model includes a relaxation term
on the right-hand side of the velocity PDE. The constant
parameter 7 is the relaxation time, which describes drivers’
driving behavior adapting to equilibrium density—velocity rela-
tion over time. Note that the homogeneous ARZ model without
the relaxation term cannot address this phenomenon and also
poses as an easier estimation problem.

The increasing function of density p(p) is defined as the
traffic pressure

p(p) = Cop’ ©)

where Cy,y € Ry, p'(p) > 0, and p(0) = O are assumed.
The pressure function p(p) is chosen to relate the equilibrium
velocity—density function V (p) by the following:

p(p) =V(O0) = V(p). (6)
Given V(p) in (4), we have density pressure as
2\’
p(p) = vf(—) : (M
Pm

Note that the abovementioned relations lead to a marginal
linear stability [32]. It can be physically interpreted as a very
slow damping effect of the stop-and-go traffic. The following
boundary observer design can be easily adapted if the relation
(6) does not hold.

B. Linearized ARZ Model in Traffic Flux and Velocity

The traffic density is defined as the number of vehicles per
unit length. The traffic flux represents the number of vehicles
per unit time crossing a fixed point on the road. The traffic
flow flux g is defined as

q = po. (3)

Traffic flux ¢ and velocity v are the most accessible phys-
ical variables to measure in freeway traffic. ¢ is commonly
measured by loop detectors and v can be obtained by GPS or
high-speed cameras. Therefore, we rewrite the ARZ model in
traffic flux ¢ and traffic velocity v as follows,

81q +00:q = %(v + %v/(%))axu
0(%) -
=t ©)
o+ (o+ v (2))ow = 22 (10
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There is no explicit solution to the abovementioned nonlinear
coupled hyperbolic system. To further understand the dynam-
ics of the ARZ traffic model in the (¢, v)-system, we linearize
the model around steady states (g*, v*) that are chosen as
spatial and temporal nominal values of state variables. Small
deviations from the nominal profile are defined as

(1)
(12)

Q(x’t) = C](.X,t) - C]*
b(x,1) =ov(x,1) — 0"

The steady density is given as p* = ¢g*/o*. The set
point density—velocity relation satisfies the equilibrium rela-
tion V(p)

v =V(p").

The linearized ARZ model in (§,d) around the reference
system (g*, v*) with boundary conditions is given by

8:G + 110:G = —%(D* n q—v’(%))axﬁ

13)

0*
(1)*)2 +q*v/(z_:) q*vr(z_:)
—q 6 7 (14
q ) o) g (14)
(D*)Z +q*V/(Z_:) V/(Z—:)
&b + A0yt = — SN i (15)
7(v*) T0*

where the two characteristic speeds of the abovementioned
linearized PDE model are

ﬂ.]ZD*

Ay = v*—i—q—*V’ C]_*
v* A

1) Free-Flow Regime (A1 > 0, Ay > 0):
In the free-flow regime, both the disturbances of traffic
flux and velocity travel downstream, at respective char-
acteristic speeds A; and A,. The linearized ARZ model
in a free regime is a homo-directional hyperbolic system.

2) Congested Regime (11 > 0, A, <0):
In the congested regime, the traffic density is greater
than the critical value p. that satisfies Q(p)'|,, =0 and
the second characteristic speed 4, becomes the negative
value. Therefore, the disturbances of the traffic speed
travel upstream with 1,, whereas the disturbances of the
traffic flow flux are carried downstream with the charac-
teristic speed A;. The hetero-directional propagations of
disturbances force vehicles into the stop-and-go driving.

(16)
A7)

In the free-flow regime, the linearized homodirectional
hyperbolic PDEs can be solved explicitly by the inlet boundary
values, and therefore, state estimates are obtained by solv-
ing the linearized hyperbolic PDEs directly. In this article,
we focus on the congested regime with two heterodirectional
hyperbolic PDEs. It is a more relevant and challenging prob-
lem for traffic states’ estimation.

III. BOUNDARY OBSERVER DESIGN

In this section, boundary sensing is employed for the
observer design. The state estimation of the nonlinear ARZ
model is achieved using the backstepping method. The output
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injection gains are designed for the linearized ARZ model and
then are added to a copy of the nonlinear plant.

Boundary values of state variations from the steady states
are defined as

Yoin(t) = §(0,1) (18)
Ygou(®) = G(L,1) (19)
Y, (1) = o(L, 1) (20)

where the values of (0, t), g(L,t), and #(L, t) are obtained
by subtracting set point values (¢*,v*) from the sensing of
incoming traffic flux ¢(0, t), outgoing flux ¢(L, ), and out-
going velocity v (L, t), according to (11) and (12). In practice,
sensing of the aggregated values of the traffic flux and velocity

yq(t) = q(0,1) (21)
Yout(t) = q(L, 1) (22)
() = ov(L,1) (23)

is usually obtained by high-speed cameras or induction loop
detectors. The induction loops are coils of wire embedded in
the surface of road to detect the changes of inductance caused
by passage of vehicles. The high-speed cameras record the
vehicle trajectories for a freeway segment.

A. Output Injection for the Linearized ARZ Model

We diagonalize the linearized equations and therefore write
(g, 0)-system in the Riemann coordinates. The Riemann vari-
ables are defined as

Pl
= 24
b=+ (24)
q°
= . 25
b= (25)
The inverse transformation is given by
=2
=" (26)
q
A
i=4-74 @7
1

The measurements are taken at boundaries, and we evaluate
(26) and (27) at boundaries, which leads to the following
boundary conditions:

A
&0,1) = féz(o, 1) + Y, in(t) (28)

*

q
A — 22

Therefore, the linearized ARZ model in the Riemann coordi-
nates is obtained

(L, n = Y, (). (29)

1
01+ s = ——& (30)
1
06 + 220, & = —;51 3D
A
&(0,1) = ffz(o, 1) + Y in(t) (32)
&L, 1) = &(L, 1), (33)
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In order to diagonalize the right-hand side to implement the
backstepping method, we introduce a scaled state as follows:

(34)
(35)

w(x,t) = exp( )51 (x,1)
o(x,t) = &H(x,t).

The (&1, &)-system is then transformed to a first-order 2 x 2
hyperbolic system

ow(x,t) + A1o,w(x,t) =0 (36)
0o (x, 1) + A0, (x, 1) = c(x)w(x,1) (37)
A
»(0,1) = —25(0, 0+ Yn()  (38)
o(L,t) = Y, (t 39
B(L.) = 7T, 0) (39)
where the spatially varying parameter c¢(x) is defined as
1 x
cx) = o P( ) (40)
Ti]

Parameter c(x) is a strictly increasing function and bounded by

1 1 L
——<cx) < o exp\ -
T Th

Then, we design a boundary observer for the linearized ARZ
model to estimate @(x,t) and ©(x,) by constructing the
following system:

(41)

O (x, 1)+ 410, (x, 1) = r(x)(@(L,t) — (L, 1))
G0(x, 1) + 1200 (x, 1) = c(x)D(x, 1)

+s(x)(@(L,t) —D(L, 1)) (43)

w(0,1) = &5(0, 1)+ Yyn(0), (44)

il — A
where ®(x,t) and 0(x,7) are the estimates of the state
variables w(x, t) and ©(x, t), respectively. The value @ (L, t)
is obtained from (24) and (34) evaluated at x = L. We have
(L, t) = (p™A2)/(A1 — A2)0(L,t) + g(L,t). Substituting
the measurements Y, (r) = 0(L,t) and Y, ou(t) = G(L,1),
we obtain the following measurement of @ (L, t):

L * A2
w(L,t) —exp( p» )(ilp—l

The terms r(x) and s(x) are output injection gains to be
designed. We denote estimation errors as

(42)

o(L,t) =

Y, (1) (45)

Yy (1) + 7, om(t)) (46)

w(x,t) = w(x,t) —d(x,1)
0(x, 1) = 0(x, 1) — D(x,1).

(47)
(48)

The error system is obtained by subtracting the estimates
(42)—(45) from (36)—(39)

O (x,t) + 410, (x,t) = r(x)w(L,t) (49)
O0(x, 1) + A20,0(x, 1) = c(x)w(x, 1)+ sx)w(L,t) (50)
w(0,1) = j—?ﬁ(O, 1) (51)
U(L,t) = 0. (52)
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The design of output injection gains r(x) and s(x) needs
to guarantee that the error system (w,v) decays to zero.
Using the backstepping transformation, we transform the error
system (49)—(52) into the following target system:

oo (x,t)+ Aioca(x,t) =0 (53)
O f(x, 1)+ Ao f(x, 1) =0 (54)
a(0,1) = %/)’(0, ) (55)

1
p(L,t) =0. (56)

The explicit solution to the target system (53)—(56) is easily

found
X
ox,t)=al0,t — —, — 57
(1) ( 11) [A1] G
L — L
ﬁ(x,r>=ﬁ(L,r+ "), t> = (58)
Ve [A2]
Thus, we have
a(x,t)y=px,1)=0 59)
after a finite time ¢t = ¢y, where
tr = L + L (60)
P70 Al

It is straightforward to prove that the (a, f)-system is expo-
nentially stable in the L? sense.

The backstepping transformation is given in the form of
spatial Volterra integral

L
a(x,t) = w(x,1) —/ K(L+x—-Ow(, ndé (61)

L
Pla,t) = B(x.1) — / M(hx — &b & 0dE (62)

where the kernel variables K (x) and M(x) map the error
system into the target system where the coupling term on
the right-hand side is eliminated by the output injections. The
kernel M (x) is defined as

M(x) = 1 X
V=T IR\ = L)

For boundary condition (55) to hold, the kernels K(x) and
M (x) satisfy the following relation:

(63)

K(L—¢&) = M((A2 — 41)Q). (64)
The kernel K is then obtained
1 —A2
K(X)__/h—/120(11—/12(14_)6))' (65)

According to the boundedness of c¢(x) in (41), the kernels are
bounded by

|K(x)] = 7 (66)

- AQ)T
and therefore, M(x) is bounded. The output injection gains
r(x) and s(x) are given by

Al y)
r(x) =41 Kx) = y —izc(_b 7 (L —x)) 67)
S()C) = —/11M(/11)C - /12L)

A Ao
= - L —
zl—zzc(’“ =72\ ’”)

(68)
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such that the transformed target system (53)—(56) converges
to zero. The backstepping transformation (61) and (62) is
invertible. Therefore, we obtain the stability of the error system
through the target system (53)—(56). We arrive at the following
theorem.

Theorem 1: Consider system (49)—(52) with initial condi-

tions g, ¥y € L*([0, L]). The equilibrium & = o = 0 is
exponentially stable in the L? sense. It holds that
llo(, 1) =, Dl - 0 (69)
15 1) = ¢, 1)l = 0 (70)

and the convergence to the equilibrium is reached in the finite
time ¢ = ¢, given in (60).

B. Nonlinear Implementation of the Observer Design

For nonlinear implementation of the observer design,
we construct the system by keeping the output injections that
are designed for the linearized ARZ model and then add them
to a copy of the original nonlinear ARZ model.

We summarize the transformation from the linearized ARZ
model in the (g, d)-system to (i, 0)-system

A
(x, 1) = CXP(T%) (if_ IR 18 r)) (71)

*

A=A
Also, the inverse transformation is given by

o(x,1) = 5 (x, 1). (72)

G(x. 1) =exp(——x )w(x,ﬂ—ﬁﬁ(x,r) (73)
Tﬂ.] j.]
Al — Ao

*

D(x, 1) = (&, 1). (74)
The same transformation holds between the estimates (@, 0)
of the transformed states (i, ) and the state estimates (g, 0)
of (g, 0)-system. Due to the equivalence between (@, 0, ©, 1)
and (g, 0, ¢, U)-system, we arrive at the following theorem for
the linearized ARZ model according to the stability property
(69) and (70) in Theorem 1. The estimation errors of the
linearized system are denoted by § =§ — ¢,0 =0 — 0.
Theorem 2: Consider the estimated system with initial con-
ditions do, 59 € L?([0, L]). The equilibrium ¢ = ¢ = 0 is
exponentially stable in the L? sense. It holds that

GG, 0 —qCnll =0
[o(, 1) =0, 0l = 0

(75)

(76)

and the convergence to zero is reached in the finite time t = #.

We denote the error injections designed for the linearized
ARZ model (42)—(45) as

E,(t) =r(x)(@(L,t) —D(L,1))

Ey(1) = s(x)(@(L, 1) = d(L,1)).

7
(78)

The output injection gains r(x) and s(x) are designed in
(67) and (68). According to (46), w(L,t) is obtained from
the real-time measurement of the traffic boundary data in
(18)—(20). Therefore, the values of output injections E,,(t)
and E,(t) are known.
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TABLE I
PARAMETER TABLE

Parameter Name

Value

Maximum traffic density py,

160 vehicles/km

Traffic pressure coefficient y

1

Maximum traffic velocity vy 40 m/s
Relaxation time 7 60 s

Reference density p* 120 vehicles/km
Reference velocity v* 10 m/s

Freeway segment length L 500 m

The nonlinear implementation of the observer for state
estimation of density and velocity (5 (x, 1), d(x, t)) is obtained
by combining the copy of the nonlinear ARZ model
(p,v) given by (1) and (2) and the abovementioned linear
injection errors in the original state variables density and
velocity

1 L
0P+ 0x(pd) = —*(CXP(——) E, — Ev) (79)
D T/Il
Vip)—o 1 —4
a0+ (o4 V' (p)as = YO0y e @0

where the linear injections on the right-hand side are obtained
from (73), (74), (77), and (78). The boundary conditions
are

A _ Yq(1)
p0,1) = 50.0 (81)
O(L, 1) = yu(t). (82)

The boundary measurement of the incoming traffic flux y, (¢)
and the outgoing velocity y,(7) is used in the abovementioned
boundary conditions of the proposed observer. The boundary
measurement of the outgoing traffic flux yo,(¢) and the outgo-
ing velocity y,(t) appears in the output error injection terms
(77) and (78) and, thus, in the observer equations (79) and
(80). The output injection terms drive the observer to converge
to the original nonlinear ARZ model. When the initial states
of the system is close to the equilibrium, the linearized part
dominates the nonlinear estimation error system. Therefore,
the L? exponential stability and the finite-time convergence
are achieved for the linearized ARZ model. In [11], the local
exponential stability in H? sense is obtained for a quasi-linear
hyperbolic PDE system with backstepping full-state feedback
controller. The nonlinear ARZ model belongs to the class
of the hyperbolic system discussed in [11]. The duality of
the proposed observer design in (79)—(82) to the stabilization
problem in [11] would yield a local H? stability result for
the estimation problem, following the Lyapunov proof of
Theorem 4.1 in [11]. Since we mainly focus on the practical
implementation of the observer, we do not pursue a theoretical
proof of the local analysis of the error system. Compared
with the linearized observer design, this observer yields a
better estimation result due to the fact that it induces less
errors brought in by the model linearization. In Sections IV
and V, the estimation result is first validated in numerical
simulation with an ad hoc choice of model parameters and
initial conditions and then validated with the traffic field data.
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IV. NUMERICAL SIMULATION

For simulation of the nonlinear ARZ PDE model,
we assume that the initial conditions are sinusoidal oscillations
around the steady states (p*,v*) that are in the congested
regime. The initial conditions are assumed to be

. [3mx\ N
p(x,0) = 0.1sin a P +p (83)

. (3nx
v(x,0) = —O.1sm(T)v*+v*. (84)

Model parameters of a one-lane traffic in the congested regime
is considered and chosen, as shown in Table I.

We consider a constant incoming flow and constant outgoing
density for boundary conditions

Gg0,0)=0 (85)
o(L,t) = %E](L,t). (86)

In Section V, we validate the observer design with the traffic
filed data. We do not prescribe any boundary conditions
beforehand but directly take measurement of the boundary
value.

We use the finite volume method, which is common in
traffic flow applications. The numerical approach divides the
freeway segment into cells and then approximates the cell
values considering the balance of fluxes through the bound-
aries of the adjacent cells. In order to obtain the numerical
fluxes, we write the ARZ model in the conservative variables
and then apply two-stage Lax—Wendroff scheme to discretize
the ARZ model in the spatiotemporal domain. The scheme
is second-order accurate in space and first order in time. The
spatial grid resolution is chosen to be smaller than the average
vehicle size so that the numerical errors are smaller than the
model errors. Therefore, the numerical simulation is valid for
this continuum model.

The inhomogeneous nonlinear ARZ model written in the
conservative form is given by

op + ox(pv) =0 (87)

oy +0.(y) = =2 (88)
where p and y are conservative variables and y is defined as

y=p—=V(p). (89)
The numerical fluxes are then obtained by

E, =y+pVip) (90)

Fy = %2 +yVi(p). oD

The Lax—Wendroff numerical scheme is performed through
two-stage update from (p7, y}) to (p;’“, y;‘“).

At the first stage, the update law of (p},y}) to

(P17 Vi) is given by
n+i 1 p ; At n n
Pt =504 = aae (B = (R)]) ©2
n+1 1 n n At n n
yjj_; = E(yj +yj+1) - m((F)’)j.H - (F\)])
At , .
=27 07+ 1) (93)
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Then, we calculate the numerical flux at the intermediate
points of state variables and the obtained the final stage as

At ntd n+1
ntl
pith=pf - E((Fp)ﬂ%z B (Fp)j—i) o9
At ntd n+i
ntl
Vit == o ((F-v)jé B (Fy)j_;)
At n+3 n+s
B Z(yH% +yj_%). -

For the numerical stability of the Lax—Wendroff scheme,
the spatial grid size Ax =4 m and time step Ar = 0.15 s is
chosen so that the Courant-Friedrichs-Lewy (CFL) condition
is satisfied

Ax
max |/11,2| < —.

At

We specify state values at both x = 0 and x = L boundaries
by implementing the boundary conditions in (85) and (86).
The ARZ model picks up some combination of p and v at

(96)
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\

each of the two boundaries, depending on the direction of
characteristics at the boundary cells.

The numerical simulation result of the nonlinear ARZ,
the nonlinear boundary observer estimation, and the estimation
errors are plotted in Figs. 1-3, respectively. Blue lines repre-
sent the initial conditions, whereas the red lines represent the
evolution of outlet state values in the temporal domain. The
simulation is performed for a 500-m length of freeway segment
and the evolution of traffic states density and velocity is plotted
for 4 min.

In Fig. 1, traffic density and velocity oscillations are slightly
damped. It takes the initial disturbance-generated vehicles 50 s
to leave the domain, but the oscillations sustain for more
than 4 min, which means that the incoming vehicles enter
the acceleration—deceleration cycles under the influence of
stop-and-go waves. The traffic states are in the congested
regime. The stop-and-go phenomenon is demonstrated in the
simulation.
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State estimation of traffic density and velocity by the non-
linear implementation of the observer is shown in Fig. 2. The
measurement is taken for the outgoing velocity and outgoing
flow. The incoming flow is assumed to be at the set point value
of the traffic flux and thus does not require measurement here.
Note that in Section V, this assumption of the incoming flow is
removed. The measurement of the incoming flux is used as the
boundary condition of the observer to reflect its influence on
the traffic state estimation of the considered segment. We do
not assume any prior knowledge of the initial conditions and
set the initial conditions to be at the set point density and
velocity. We can see that state estimates converge to the true
values after 75 s.

In Fig. 3, the evolution of estimation errors is shown. After
75 s, the state estimation errors for density and velocity
converge to the value below 1% of the set point value. There
are still relatively very small estimation errors remaining in
the domain for two reasons. Our result only guarantees the
convergence of estimates in the spatial L?> norm. In addition,
there could be nonlinearities of the error system not driven to
zero by the linear output injections of the nonlinear boundary
observer design.

V. DATA VALIDATION

In this section, we validate our boundary observer design
with Next Generation Simulation (NGSIM) traffic data [15],
which provides vehicle trajectories with substantial details
and accuracy. The NGSIM trajectory data set is collected
on April 13, 2005, by the Federal Highway Administration’s
project. The study area is a segment of Intestate 80 located at
Emeryville, CA, USA. The data set gathers the trajectories
of vehicles over a total of 45 minutes during rush hour:
4:00 P.M. to 4:15 p.M., 5:00 P.M. to 5:15 P.M., and 5:15 P.M.
to 5:30 P.M.

First, we calibrate the nonlinear ARZ model with part of the
NGSIM data to obtain the calibrated model parameters, includ-
ing the steady-state values, the equilibrium velocity—density
function V (p), and the relaxation time z. Then, the rest of
the data sets are used to test the observer design for the
calibrated ARZ model. The estimation results of traffic states
are compared with the NGSIM data. The boundary data are
extracted directly from the NGSIM data and traffic states are
estimated for the considered domain. The reconstructed traffic
data and boundary observer state estimates are compared.

A. Model Calibration With NGSIM Data

1) Reconstruction From Data: We aim to calibrate the ARZ
model that is a macroscopic model describing aggregated
values. However, the NGSIM data set consists of microscopic
measurements. The data were recorded with high-speed cam-
eras for every 0.1 s. We need to process the NGSIM trajectory
data into a macroscopic scale before we can use it to calibrate
the ARZ model.

The data were recorded on a 537-m-long freeway segment
with six lanes for a time period of 15 min. Due to insufficient
data collection at boundaries of the segment, onset and offset
of recording, the viable domain we choose to use in calibration
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and validation is 400 m during a time period around 10 min.
When calibrating the parameters of the ARZ model and the
fundamental diagram, we consider the freeway segment as a
macroscopic general one-lane problem. Having being said, all
six-lane state values need to be considered.

We will use Edie’s formula [10] to calculate the aggregated
traffic states p(x,?),v(x,t), and g(x,t) from the trajectory
data of vehicles x(¢#) with a resolution of 0.1 s. At each
time instance, positions of the multiple vehicles are collected.
Consider a time—space domain [0, T] x [0, L], we divide it
into N x M grids

liAf, i + 1)At] x [jAx, (G + 1)Ax]

where i € 1,2,...,N and j € 1,2,..., M. Within each cell,
we consider p; j,q; j, and v;; to be constant. We use the
following Edie’s formula to map a set of vehicles’ trajectories
to speed, flow, and density over the space—time grid. For each

cells, suppose that there are ;; vehicle traces passing through
the cell [i Az, (i + 1)At] x [jAx, (j+ 1)Ax]

N::
zkjl Iy
;o= k=l 97
Pij Ax At ©7)
N::
2 Xk
= k= 98
qi,; Ar Al (98)
S (99)
pi.j

After obtaining the cell values p; ;, g; j, and v, ;, they can be
later on compared with the observer estimates p; ;, §; j, and
0;,; with the same griding. The number of cells is chosen such
that in each cell, there is enough trajectory data. Otherwise,
there could be cells that no trajectory has crossed. On the
other hand, noises appear if a very fine discretization of
grids is chosen. The following simulation is performed in a
41 x 41 grid.

We reconstruct the aggregated traffic states from all the
three data sets. In Figs. 4 and 5, we show the surface
plot of the density and velocity states for the data set of
4:00 P.M.—4:15 P.M. and the data set of 5:00 P.M.-5:15 P.M.
The initial conditions are highlighted with the color red and the
boundary conditions at the outlet are highlighted with the color
blue. The congestion forms up as time goes by and propagates
from the downstream to upstream. The most congested traffic
appears at the inlet where the traffic density is relatively high
and velocity is low.

We are mostly interested in the congested traffic where
estimation of the traffic states becomes more relevant. The lin-
earized ARZ model around the uniform reference is analyzed
and employed for the observer design. By taking the average
of traffic aggregated values, we obtain the reference system p*,
v*, and g* of each data set. Therefore, the averaged values of
density, velocity, and flow in each time period are calculated
and shown in Table II. We observe that among the three
data set, the traffic is most congested during 5:15 P.M.—5:30
P.M. with the largest averaged density and smallest velocity
value. Whether the traffic states are in the congested or free
regime will be determined after we introduce the calibrated
fundamental diagram.
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Fig. 5. Density and velocity reconstructed from data of 5:00 P.M.-5:15 P.M.
TABLE II
AVERAGED AGGREGATE TRAFFIC DATA
Data Set Density Velocity Flow
(veh/km) (km/h) (veh/h)
4:00 - 4:15pm 267 28.27 7548
5:00 - 5:15pm 353 20.23 7141
5:15 - 5:30pm 375 19.35 7256

2) Calibration of Model Parameters: For the ARZ model

op + 0:(pv) =0
Vip)—vo
oo+ (0 +pV'(p))orw = ('.%

(100)
(101)

the model parameters to be calibrated from the data set is
the equilibrium density—velocity relation V (p) and relaxation
time 7. The fundamental diagram describing the equilibrium
density and flow rate relation

Q(p) =pV(p) (102)

is usually obtained by long-term measurements via loop
detectors. The loop-detector data set provides the macroscopic
density and flow rate data and its recording resolution is 30 s.
In Section IV, we use Greenshield’s model (4) for V(p) as a
simple choice for the boundary observer design. Greenshield’s
fundamental diagram Q(p) is given by

Y
0(p) = pvf(l - (i) )
Pm

(103)
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However, Greenshield’s model cannot accurately represent
the data for equilibrium density-flow relation. The critical
density p. satisfies Q'(p)|,, = O and segregates the free and
congested regimes. The critical density p. of Greenshield’s
model (y = 1) occurs at p. = 1/2p,,. However, the critical
density obtained from empirical traffic data usually shows up
at p. = 1/4p,,. Hence, we need to consider a more realistic
functional form for Q(p). Here, we employ a three-parameter
fundamental diagram proposed in [13].

In [13], the following three-parameter (4, p, ) fundamental
diagram is calibrated with the NGSIM detector data set of the
same freeway segment:

2
0(p) =« a—i—(b—a)i—\/l—i—iz(pi—p) (104)
where a and b are denoted by
a=/1+(p) (105)
b =,/14+ 00— p)>. (106)

The parameters (4, p, @) do not have physical meaning but
represent the shape of the functional form where A represents
the roundness, p tunes the critical density, and a determines
the maximum flow rate. The hyperbolicity Q"(p) < 0,
V'(p) < 0 is guaranteed. The three parameters (4, p, a)
are determined using least-square fitting with historical loop
detector data.
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Fig. 7. Density and velocity reconstructed from the data of 5:15 P.M.—5:30 P.M.

Due to the lack of data near the maximum density, the value
of p,, is prescribed according to the following equation:

number of lanes

Om (107)

- typical vehicle length x safety distance factor’

The freeway segment in the NGSIM data set consists of six
lanes, and we consider the typical vehicle length to be 5 m and
the safety distance factor is 50% of vehicle length. Therefore,
we have p,, for all lanes in our simulation

pm = 800 veh/km. (108)

The calibrated fundamental diagram is plotted in Fig. 6.
The traffic density and flow rate of the three data sets are
plotted on the calibrated fundamental diagram. We can see
that 4:00 p.M.—4:15 P.M. are in the transition region where the
data points are partially in the free regime and partially in the
congested regime. The traffic data of 5:00 p.M.—5:15 P.M. and
5:15 P.M.=5:30 P.M. are scattered in the congested regime of
the fundamental diagram.

With the calibrated fundamental diagram V (p), we choose
the relaxation time 7 from a range from 10 to 100 s and
calibrate it with the data set of 5:00 P.M.-5:15 P.M. The
optimal relaxation time is 7 = 30 s where the total error
between the calibrated model and the data is the lowest.
In the next step, we use the calibrated fundamental diagram
V(p) and the relaxation time 7 to construct the boundary
observer.

B. Simulation for the Nonlinear Implementation of the
Observer With the Calibrated Parameters

We use the data of 5:15 P.M.—5:30 P.M. to test the bound-
ary observer design. The reference system (p*,v*,q*) is
obtained from Table II. Along with the calibrated parameters
V(p) and 7, the nonlinear implementation of the observer is
constructed with a copy of the nonlinear ARZ model with
the output injection gains that drive the estimation errors
to zero. The numerical solution of the nonlinear PDEs is
approximated with the Lax—Wendroff method. The boundary
data are implemented with the ghost cell. The ARZ model
collects the boundary values based both on the flux of the
computational domain and the boundary data of the ghost
cells. Using the boundary measurements of the inlet and outlet
of the freeway segment, the state estimation (p(x, 1), 0 (x,t))
is generated without the knowledge of the initial condition.
In Fig. 7, (p(x, 1), v(x, t)) is obtained from the reconstruction
of the data set of 5:15 P.M.—5:30 P.M. In Fig. 8, it shows the
evolution of the state estimates (p(x, 1), d(x,?)). The initial
condition, highlighted with color blue, is assumed to be the
uniform reference system (p*, v*, ¢*), which represents the
averaged values of the data set. The boundary conditions at
the outlet are highlighted with red color, which gives the
output injections in the observer. We notice that when density
values are higher than 600 veh/km at inlet around 7 min,
the estimation result is not satisfying. This could be related to
the ARZ model’s inaccuracy in predicting traffic states near
maximum density since nonunique maximum densities exist
for the ARZ model, as pointed out in [14].
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For error analysis of the observer estimation, the estimation
errors are considered in the L2-norm, defined as

L PN 2
Ep(t): %‘/0 (p(x’t)p_*p(x’t)) dx

1 [Efox, )=o)\
L () e

where p* and v* are the averaged state values of the traffic
data. We choose the averaged space L>-norm of the estimation
errors. The local stability in the L?-sense for estimation errors
to converge to zero is guaranteed in Theorem 2. In addition,
the spatial averaged errors can remove the influence of noises
and outliers of the traffic data.

The temporal evolution of the space-averaged estimation
errors and validation errors of density and velocity in the
L?-sense is shown in Fig. 9. In the model validation result,
the initial condition is given by the traffic field data. As can be
seen in Fig. 9, the errors between the model-predicted state
values and the NGSIM data, plotted with the dashed lines,
are zeros at ¢+ = 0. The dashed lines show the evolution
of the validation errors between the model-predicted values
and the NGSIM data. The estimation result reveals that the
errors of the density and velocity estimates start at t+ = 0
between 30% and 40%, which are also shown with the blue

1/2
(109)

1/2

Ey(1) = (110)

lines highlighting the discrepancy between the initial condition
of the data in Fig. 7 and the initial condition of the estimation
states in Fig 8. The finite convergence time of the estimation
values to the model-predicted values is around t; = 3 min,
where the dashed lines and the solid lines coincide after the
convergence time.

We found out that the proposed observer accurately estimate
the traffic flow states that are predicted by the ARZ PDE
model. The estimation errors remaining after the convergence
time are due to the model-predicted errors that come from
the discrepancy between the NGSIM data and the calibrated
ARZ model. The data noises, the reconstruction errors, and
the numerical approximation errors could contribute to the
remaining spatial averaged errors between the model-predicted
values and the NGSIM traffic data.

VI. CONCLUSION

In conclusion, we develop a PDE boundary observer for the
second-order nonlinear ARZ model, estimating traffic states
of density and velocity, and then validate the design with the
NGSIM traffic data. Analysis of the linearized ARZ model
leads our main focus to the congested regime where the stop-
and-go traffic appears. Using the spatial transformation and
PDE backstepping method, we construct a boundary observer
with a copy of the nonlinear plant and output injections
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consisting of measurement errors. The exponential stability of
estimation errors in the L? norm and finite-time convergence
to zero is guaranteed. Numerical simulations are performed
for a freeway segment. The nonlinear implementation of the
observer is tested with a calibrated ARZ model obtained from
the NGSIM data.

For future work, an observer design may be considered
for a generalized ARZ model proposed in [14] to address
the nonunique maximum density associated with the ARZ
model. The estimation accuracy in predicting the heteroge-
neous behaviors of drivers and spread of data in the congested
regime could be improved. On the other hand, defining the
fundamental diagram requires calibration with historical data.
Using the historical data to determine the model parameters
could be invalid when traffic becomes unpredictable in case
of sudden accidents. The limitation of the PDE backstepping
observer proposed in this article is that it relies on the
accuracy of the calibrated PDE model as the observer estimates
the model-predicted values. It is practically preferable if the
model parameters could be estimated in real time. Therefore,
it is of authors’ interest to consider adaptive observer design
for this problem adapting the result in [34]. The robust-
ness of the observer to uncertainty and disturbance deserves
future study. The input-to-state stability to measurement errors
can be proved for the proposed observer using the results
in [2] and [19].
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