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Abstract

Real–time estimation of distributed parameters systems: Application to traffic monitoring

by

Daniel Benjamin Work

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

This dissertation is motivated by the practical problem of highway traffic estimation using
velocity measurements from GPS enabled mobile devices such as cell phones. In order to
simplify the estimation procedure, a velocity model for highway traffic is constructed, which
results in a dynamical system in which the observation operator is linear. It presents a
new scalar hyperbolic partial differential equation (PDE) model for traffic velocity evolution
on highways, based on the seminal Lighthill-Whitham-Richards (LWR) PDE for density.
Equivalence of the solution of the new velocity PDE and the solution of the LWR PDE is
shown for quadratic flux functions. Because this equivalence does not hold for general flux
functions, a discretized model of velocity evolution based on the Godunov scheme applied to
the LWR PDE is proposed. Using an explicit instantiation of the weak boundary conditions
of the PDE, the discrete velocity evolution model is generalized to a network, thus making the
model applicable to arbitrary highway networks. The resulting velocity model is a nonlinear
and nondifferentiable discrete time dynamical system with a linear observation operator, for
which a Monte Carlo based ensemble Kalman filtering data assimilation algorithm is applied.

The model and estimation technique is evaluated with experimental data obtained from
a large-scale field experiment known as Mobile Century. The velocity estimates using GPS
data from cellphones is compared to velocity estimates using inductive loop detector data
from the PeMS system. More than 900 estimation simulations are performed using various
volumes of GPS data and inductive loop detector data collected during the experiment,
which show travel times can be reconstructed to less than 10% error with sufficient GPS
data, loop data, or a combination of both. All data collected during the field experiment
and used in the simulations are available for download at http://traffic.berkeley.edu.
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Chapter 1

Introduction

1.1 Motivation

Distributed parameters systems (DPS) are a class of systems which arise naturally in
large-scale civil and environmental engineering problems. A distributed parameter system
one whose spatial variation of its infinite dimensional state (distributed parameters) plays
an important role in the evolution of the system in time. Thus, a distributed parameter
system can be used to model contaminants propagating in rivers and estuaries, air quality
and pollution dispersion in urban areas, the behavior of structures under wind or seismic
loads, and traffic congestion on roadways, to name a few examples. A common mathemat-
ical representation of a distributed parameter system is in the form of a partial differential
equation (PDE).

1.1.1 The forward problem

The first formulation to study distributed parameters systems, known as the direct or
forward problem, is illustrated in Figure 1.1. First, an abstraction of the physical world
must be constructed, typically in the form of a mathematical equation which describes the
system’s evolution. Second, the system’s initial condition, boundary conditions, and model
parameters must be defined. Finally, the model is solved or simulated forward in time, so
that the behavior of the system can be studied and analyzed.

In Figure 1.1, arrows show how information flows between the physical world, the dis-
tributed parameter system abstraction, and the computational model simulations. In par-
ticular, information from the physical world enters the model simulations only through the
mathematical model.

This process has two fundamental limitations which prevent a direct matching between
events occurring in the simulated environment and that which occurs in reality.

• The mathematical model is only an abstraction of reality in which the physical world
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Figure 1.1: The forward problem.

is approximated and simplified. Thus the model contains some error inherent to the
abstraction. This modeling error can be difficult to quantify, and therefore the accuracy
of the model may be hard to determine.

• Often, the initial condition, boundary conditions, and model parameters are only
known approximately, if at all, which adds to the uncertainty of the model.

1.1.2 The estimation problem

To address the limitations of the forward problem formulation described above, a related
estimation problem can also be studied. In the estimation problem, the mathematical model
is augmented with additional information from the physical world in the form of data from
sensors. This process is illustrated in Figure 1.2. Like the forward problem, the physical
world is again used to build the mathematical abstraction in the form of a partial differential
equation. Moreover, it is also used to generate observations from the physical world through
sensor data. The process of combining the model and the data is known as estimation. This
process is also referred to as parameter estimation or inverse modeling when the goal is
to estimate parameters in the system. When the objective is to estimate the state of the
system, it is called state estimation or data assimilation [54].

Estimation algorithms can be described according to how they incorporate new sensor
data into the estimate of the system. When the estimation problem is solved online, the
algorithm uses sensor data piece by piece as it becomes available, without the need for all of
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the data at once. On the other hand, an off-line or batch algorithm requires all measurements
at the same time. In practice, online algorithms may achieve estimates more quickly since
only a portion of the data is needed at any time, but perhaps at the cost of improved accuracy
achieved by batch algorithms.

Estimation algorithms can also be characterized according to the time constraints under
which they operate. A real–time algorithm has strict deadlines on the timing of the compe-
tition, while an algorithm which is not real–time does not. The timing deadline is often a
function of the rate at which the physical system evolves, so that information produced by
a real–time algorithm can be used to control the physical world before it becomes outdated
or obsolete. When this is achieved, the computation infrastructure and the physical world
become tightly coupled, creating a cyber–physical system.

Figure 1.2: The estimation problem, with a feedback loop to the physical world.

One of the fundamental challenges for estimation problems for distributed parameters
systems is the acquisition of sensor data, precisely because the system is distributed in
space. In the context of traffic monitoring for highways, data acquisition is typically achieved
through the placement of dedicated sensing infrastructure deployed in the pavement, such
as an inductive loop detector, or sensors adjacent to the infrastructure such as video, radar
or RFID. Due to the expense of installation and maintenance, it is difficult to achieve sensor
coverage at a global scale.
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1.1.3 Impact of the mobile Internet on distributed parameters
systems

The recent explosion of Internet connected mobile devices such as smartphones is having
a dramatic impact on data acquisition for distributed parameters systems. Their low cost,
portability, and computational capabilities make smartphones useful for numerous applica-
tions in which they act as sensors moving with humans, embedded in the built infrastructure.
Large scale applications include traffic flow estimation [77, 78], which is a rapidly expanding
field at the heart of mobile internet services.

These devices also act as a content gateway for real–time location based services, which
has significantly increased the need for accurate and timely information. In the case of traffic,
information which is accurate but not real–time, or real–time but inaccurate, can instantly
be detected by users receiving traffic information on Internet connected devices in their
vehicles. In contrast, earlier paradigms of traffic monitoring, where congestion estimates
were delivered to traffic websites or news stations and consumed by users before the trip
begins, makes determination of the estimate’s accuracy significantly harder.

Figure 1.3: Mobile phones act as a sensing and communication platform, bridging the phys-
ical world with the Internet.
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1.2 Problem: Velocity estimation from GPS-equipped

mobile devices

Motivated both by the availability of GPS data from mobile devices, and by the need
for increased accuracy demanded by mobile Internet services, the goal of this dissertation is
to develop a real-time estimation algorithm for monitoring traffic using velocity data from
mobile devices. This work constructs a model for the evolution of a velocity field v(x, t) on
a highway segment x ∈ [0, L], which is a distributed parameter system. Vehicles labeled by
i ∈ N travel along the highway with trajectories xi(t), and measure the velocity v(xi(t), t)
along their trajectories.

These discrete measurements are then combined with the velocity evolution model, and
together they are used to reconstruct or estimate the function v(x, t), in real–time, using an
online Ensemble Kalman filtering framework. Fig. 1.4 illustrates the process: the evolution
of the velocity field v(x, t) can be depicted as a surface, which is to be reconstructed. A
subset of the vehicles is sampled along their trajectories. For illustration purposes in the
figure, four vehicles are sampled at time t = tm, which produces four points on the v(x, t)
surface which can be used by the algorithm to reconstruct the surface.

When the surface v(x, tm) is estimated using measurements up to time t1 = tm, v(x, tm)
is known as a filtered estimate, which is the focus of this dissertation. Two related problems
include prediction and smoothing. If the surface v(x, tm) is estimated using measurements
up to time t2 < tm, the resulting estimate is known as a prediction. Finally, when the
surface v(x, tm) is estimated using measurements up to time t3 > tm, the result is known as
a smoothed estimate.

To address one important issue in sensing with mobile devices, we consider velocity
measurements which are obtained through a privacy-aware architecture introduced by Nokia,
called virtual trip lines (VTLs) [38]. VTLs are virtual geographic markers which act as
triggers for mobile sensing, and therefore can be viewed as a spatial sampling strategy. The
main constraint VTLs place on traffic estimation is that it is not possible to track vehicles
(full vehicle trajectories are never disclosed), or identify measurements as belonging to the
same vehicle [38].

1.3 Related work

1.3.1 Traffic flow theory

The origins of traffic flow theory dates back to the 1950’s with the pioneering works of
Lighthill and Whitham [55], and independently Richards [64], who proposed a macroscopic
model of traffic based on conservation of vehicles. The model, now known as the Lighthill–
Whitham–Richards (LWR) PDE, is a nonlinear hyperbolic conservation law. The main
mathematical challenge to the LWR PDE, and more generally systems of conservation laws, is
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Figure 1.4: Illustration of the distributed velocity field v(x, t) to be reconstructed from GPS
samples. Four samples vi(xi(t), t) are shown at t = tm, from vehicles i transmitting their
data (indicated by up-arrows above the vehicles).

the development of discontinuities (shocks), which can occur in finite time even from smooth
initial conditions. The existence and uniqueness of the Cauchy problem (i.e. an initial value
problem) for conservation laws on infinite domain are achieved through a suitable entropy
condition introduced in the seminal works of Oleinik [61] and Kruzkov [49] (See also the
existence result of Glimm [31]).

The introduction of a boundary condition for systems of conservation laws was first
treated by Bardos, Leroux, and Nedelec [7]. The well-posedness of a scalar initial bound-
ary value problem for a conservation law with a convex flux function was addressed by Le
Floch [27] and recently by Frankowska [28]. The recent work of Strub and Bayen [70] instan-
tiates the well-posedness of the initial boundary value problem for the LWR PDE explicitly.

Soon after the introduction of the scalar LWR PDE, higher–order traffic models were
introduced in an attempt to reconcile some of the deficiencies of first-order models. These
models augment the mass conservation equation with a momentum equation, the most no-
table being the model of Payne [63]. However this model had several deficiencies, includ-
ing characteristics moving faster than the average velocity of traffic, and vehicles moving
backward, as pointed out by del Castillo [23], and in particular Daganzo’s “Requiem for
second-order fluid approximations of traffic flow” [22]. These problems were addressed and
the models were “resurrected” independently by Aw and Rascle [5] and Zhang [84], leading
to the class of Aw–Rascle–Zhang (ARZ) models.

A class of phase transition models was introduced by Colombo [15], which combines a
scalar conservation law in free flow with a 2 × 2 system of conservation laws in congestion.
The global well posedness of phase transition models such as [15] was given by [16]. This
model was later extended by Blandin et. al. [9] to simplify the phase transition analysis.
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In the discrete domain, the Cell Transmission Model was introduced by Daganzo [20,
21] as a mass conserving traffic model consistent with the LWR PDE using a Godunov
discretization [32, 51]. Papageorgiou [62] introduced a discrete model which is a modified
version of the discretized Payne model.

1.3.2 Traffic estimation

The process of recursively estimating traffic conditions using a traffic flow model and
experimental data begins with the 1970’s with the early work of Szeto and Gazis [72]. Using
a mass conservation equation with flow measurements at the segment edges, they applied an
extended Kalman filter (EKF) to estimate the traffic density in the Lincoln Tunnel in New
York City. The extended Kalman filter is a widely used extension of the recursive minimal
variance estimator known as the Kalman filter [46]. For state estimation on nonlinear sys-
tems, the model equation and observation equation are linearized to fit the framework of
Kalman filtering, resulting in a suboptimal filter.

In the early 1980s, a modified version of Payne model was used for a variety of es-
timation and control problems, in particular through the work of Papageorgiou and his
collaborators[17, 62, 75, 76]. In [17], Cremer and Papageorgiou introduced the parameter
estimation problem with experimental data on this model, and in [62], extended Kalman
filtering is applied to this model for state estimation. The work of Wang et al [75] details the
simultaneous solution of the state and parameter estimation problem, again with extended
Kalman filtering. The article [75] also provides a concise review of related estimation prob-
lems appearing in traffic. The interested reader should also see [76], which provides some
results of EKF on the modified Payne model as implemented an experimental testbed known
as the Renaissance system.

A key ingredient of these works [17, 62, 75, 76] is the differentiability of the numerical
scheme employed for the second order model of traffic used, which is a feature the first-order
CTM does not possess. The early work of Szeto and Gazis [72], and later Gazis and Liu [30]
circumvent this issue for first-order models by directly observing the flows at ends of the
road segments, which enables the application of extended Kalman filtering.

Sun, Munoz, and Horowitz [71] treat the nonlinearity of the CTM by recognizing it can
be transformed into a switching state space model, which enables the use of a set of linear
equations to describe the state evolution for the distinct flow regimes on the highway (e.g.
highway is in free-flow or congestion). The density state estimation problem is then solved
with a mixture Kalman filter for the purpose of ramp metering. In [34, 35], specific modes of
the dynamics presented in [71] are used to incorporate Lagrangian velocity trajectories into
an extension of the CTM, called the Switched Mode Model (SMM), using mixture Kalman
filtering.

Recently, the cell transmission model has been used in state estimation problems through
increasingly advanced nonlinear filters, including unscented Kalman filtering (UKF) [43]
in the work of Mihaylova, Boel, Hegyi [58], particle filtering by Mihaylova and Boel [57],
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Mihaylova, Boel, Hegyi [58], and Sau et al [65]. In [58], the particle filter is shown to perform
better than UKF, but has a higher computational cost. Implementation of particle filtering
techniques on high dimensional systems (several thousand states or more), remains an open
challenge due to inherent scalability challenges for particle filters [69]. Other treatments of
traffic estimation include adjoint–based control and data assimilation in [41, 42].

1.4 Contributions and organization of the dissertation

1.4.1 Contributions

This dissertation contains several new contributions to the problem of estimating traffic
conditions from GPS velocity data.

• A velocity evolution equation consistent with hydrodynamic theory [79, 80].
This dissertation presents two models for velocity evolution on roadways.

– The first model, known as the Lighthill-Whitham-Richards for velocity (LWR–
v), is a velocity–based partial differential equation with weak solutions consistent
with the classical LWR PDE for the Greenshields flux function. For general flux
functions, we prove that this equivalence does not hold, which is a negative result.

– The second model, known as the Cell Transmission Model for velocity (CTM–v),
is a discrete evolution equation derived from a Godunov discretization scheme
applied to an integral form of the LWR PDE. Its consistency with the Godunov
discretization scheme for the LWR PDE, also known as the Cell Transmission
Model, is ensured by equivalence of the Riemann solvers used in the numerical
scheme.

– We extend the CTM-v model to networks, using a generalized Riemann solver at
vertices in the network which is consistent with the density Riemann solvers of
Coclite, Garavello, and Piccoli [14] and Daganzo [21] by construction.

• Solution of the velocity estimation problem using ensemble Kalman filter-
ing [79, 81]

– Using the CTM–v, we pose the state estimation problem as a non-linear nondif-
ferentiable dynamical system with a linear observation operator. By using the
velocity as the state instead of density (as would be the case for the CTM), we
avoid the need to linearize a nonlinear observation operator. The recursive ve-
locity state estimation problem is then solved using ensemble Kalman filtering
(EnKF).

– We prove the non-differentiability of LWR PDE with a Godunov discretization
(also the CTM), around model states which generate a standing shock wave.
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This fact prevents direct application of the widely popular nonlinear extension of
Kalman filtering, known as extended Kalman filtering, to these models.

• Experimental implementation and assessment [36, 79]

– The velocity estimation results of the ensemble Kalman filtering estimation ap-
proach applied to the CTM–v velocity evolution model are presented using data
collected from the Mobile Century field experiment, which ran a prototype version
of the algorithm (online and in real–time).

– We compare travel times computed from the CTM–v EnKF velocity estimation
algorithm using different volumes of data collected from probe vehicles only, in-
ductive loop detectors only, and probe vehicles and inductive loop detectors with
travel times collected from high resolution video data during the Mobile Century
experiment. At low volumes of probe data, the addition of data from inductive
loops significantly reduces the estimation error. On the Mobile Century site,
travel time estimates using only data from probe vehicles are as good as or better
than estimates using only data from inductive loop detectors, provided a sufficient
number of probe measurements are collected.

1.4.2 Organization

This dissertation is organized as follows. We begin with a derivation and review of the
LWR PDE and its important mathematical properties in Chapter 2. The LWR PDE serves
as the basis for the velocity evolution equations derived in Chapter 3.

In particular, in Chapter 3 we establish the equivalence of the proposed LWR–v model in
the velocity domain and the LWR model in the density domain for a quadratic flux function
(called the Greenshields model), and prove that this equivalence does not hold for general
flux functions, which is a negative result. For general flux functions, we derive a discrete
velocity evolution equation, the CTM–v, which is consistent with an integral form of the
LWR PDE, and extend this model to networks through selection of a suitable Riemann
solver at network vertices.

In Chapter 4, we pose the estimation problem in state space form, yielding a discrete space
discrete time nonlinear nondifferentiable velocity evolution equation with a linear observation
operator, and solve it with ensemble Kalman filtering. The Mobile Century experiment and
privacy aware sampling of GPS enabled smart phones, and present experimental results of
the CTM–v EnKF velocity estimation algorithm on this data.

In Chapter 5, we address experimentally the accuracy trade-offs between estimates using
data from inductive loops compared to estimates using data from probe vehicles, by analyzing
travel times computed from the velocity field estimated using the ensemble Kalman filtering
algorithm. We present conclusions and discuss future in Chapter 6.
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Chapter 2

LWR PDE

2.1 Introduction

The main objective of this chapter is to describe a mathematical model of traffic evo-
lution which expresses conservation of vehicles, known as the Lighthill-Whitham-Richards
(LWR) partial differential equation (PDE) [55, 64], and review the important mathematical
attributes of this model. The new contributions in this chapter are as follows.

• Strong boundary conditions. By transforming the classical statement of weak
boundary conditions for scalar conservation laws applicable to the LWR PDE into
mutually exclusive conditions, we derive an explicit statement for boundary conditions
for the LWR PDE on a finite domain to be applied in the strong sense.

• Non-differentiability of the discretized LWR PDE around arbitrary model
states. We prove that the LWR PDE is not differentiable around model states resulting
in a standing shock wave. This result is the main motivation for developing filtering
techniques which do not suffer from the same shortcomings as the extended Kalman
filter, in particular the ensemble Kalman filter.

The chapter is organized as follows. In Section 2.2 we recall the derivation of the LWR
PDE as an integral equation expressing conservation of vehicles on a stretch of roadway, and
note that when the density is smooth, it yields the well-known LWR PDE. We also show
non-smooth solutions satisfy the integral form of the equation when the Rankine-Hugoniot
jump condition is satisfied. In Section 2.3, we treat non-smooth solutions to the PDE by
considering a weak formulation of the partial differential equation, and a suitable entropy
condition to guarantee uniqueness of solutions. Proper formulation of the weak boundary
conditions and the derivation of the strong boundary conditions are given. In Section 2.4,
we introduce the Riemann problem and its solutions to provide further clarity on the results
in Section 2.3. Numerical discretization of the LWR PDE using a Godunov scheme and



CHAPTER 2. LWR PDE 11

its relation to the Riemann problem is presented in Section 2.5.1. We also show that this
discretization yields a discrete time discrete space evolution equation for density, which
cannot be linearized around states resulting in a standing shock wave.

2.2 Derivation of a mass conservation law for traffic

In this section, we derive the well-known Lighthill–Whitham–Richards partial differential
equation [55, 64]. Let ρ(x, t) be the vehicle density (the number of vehicles per unit length)
at the point x in space and t in time, and let Q(·) be the flux (number of vehicles per unit
time) as a function of the density. The flux function Q(·) is defined in an interval [0, ρmax],
where ρmax is the maximal density, sometimes referred to as “jam density”. The total number
of vehicles on a segment between two points x1 and x2 is given by

∫ x2
x1
ρ(x, t)dx. Assuming

vehicles do not appear or disappear within the segment, we have:

d

dt

∫ x2

x1

ρ(x, t)dx = Q(ρ(x1, t))−Q(ρ(x2, t)) (2.1)

= −Q(ρ(x, t))|x2x1

= −
∫ x2

x1

∂

∂x
Q(ρ(x, t))dx (2.2)

Equation (2.1) can be understood in the following way. Consider a segment of roadway
shown in Figure 2.1, with vehicles entering from the left and exiting to the right. The change
in the number of vehicles in the segment over time is just the difference between the number
vehicles which entered at x1, given by Q(ρ(x1, t)) and the number that leave at x2, given by
Q(ρ(x2, t)).

When ρ(x, t) is smooth1, (2.2) can be rewritten as∫ x2

x1

(
∂ρ(x, t)

∂t
+
∂Q(ρ(x, t))

∂x

)
dx = 0 (2.3)

Since (2.3) holds for any x1 and x2, we obtain the seminal LWR PDE model [55, 64]:

∂ρ(x, t)

∂t
+
∂Q(ρ(x, t))

∂x
= 0 (x, t) ∈ (−∞,+∞)× (0, T ) (2.4)

ρ(x, 0) = ρ0(x) x ∈ (−∞,+∞) (2.5)

which is the macroscopic traffic flow model expressing conservation of vehicles along and
infinite stretch of roadway from time t = 0 through t = T , augmented with the initial
condition ρ0.

1This turns out to be a critical assumption, since often the density profile contains discontinuities such
as shocks.
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Figure 2.1: The LWR PDE describes the evolution of density on the roadway.

For traffic applications, the flux function Q(·) is generally assumed to be concave and
piecewise C1. This function may be approximated by strictly concave C2 flux functions with
superlinear growth to fit the framework of [8] and [27], which is used to define existence
and uniqueness properties of scalar conservation laws (such as the LWR PDE) on a finite
domain. In the transportation engineering community, the flux function Q(·) is also known
as the fundamental diagram.

The fundamental assumption of the LWR PDE is that the average vehicle velocity can
be defined in terms of the density alone. With this assumption, we introduce the velocity
function V (·) of the density in [0, ρmax]. Then the flux function reads:

Q (ρ) = ρ V (ρ) (2.6)

Solutions to the LWR PDE can be constructed through the method of characteristics.
For this, one needs to transform the partial differential equation into a system of ordinary
differential equations along curves (x(z), t(z)). We seek solutions on the curves of the form

dρ (x(z), t(z))

dz
= F (x(z), t(z), ρ (x(z), t(z))) (2.7)

where F (·, ·, ·) is a function to be determined. Applying the chain rule to the left side of
equation (2.7) yields

dρ (x(z), t(z))

dz
=
∂ρ

∂x

dx

dz
+
∂ρ

∂t

dt

dz
(2.8)

Note that for smooth functions Q(·), the LWR PDE can be written in quasi-linear form:
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∂ρ(x, t)

∂t
+Q′(ρ(x, t))

∂ρ(x, t)

∂x
= 0 (2.9)

If we let dx
dz

= Q′(ρ (x(z), t(z))) and dt
dz

= 1, and substitute into equation (2.8) we have

dρ (x(z), t(z))

dz
=
∂ρ (x(z), t(z))

∂x
Q′(ρ (x(z), t(z))) +

∂ρ (x(z), t(z))

∂t
= 0 (2.10)

where the second equality is given by equation (2.9). This means the solution ρ (x(z), t(z)) is
constant on the characteristics. Moreover, solving dt

dz
= 1, with the initial condition t(0) = 0

yields t = s. Therefore dx
dz

= dx
dt

= Q′ (ρ (x(z), t(z))). Thus, we obtain three well-known and
important properties of the LWR PDE:

• The density is constant along characteristic curves.

• The speed of the characteristics is given by the slope of the flux function Q(·).

• Because the density is constant along the characteristic curves, the speed of each
characteristic curve is a constant.

More details about the method of characteristics can be found in [24]. With these three
properties, we can now point out the crux of all mathematical difficulties which arise when
solving the LWR PDE. Even from smooth initial conditions, shocks may develop in finite
time, and classical (smooth) solutions to the PDE may not exist.

For the purpose of illustration, we consider the flux function given by Q(ρ) = ρ − ρ2

where ρ ∈ [0, 1]. The speed of the characteristic curves is positive for ρ ∈
[
0, 1

2

)
, and

negative for ρ ∈
(

1
2
, 1
]
. If the initial condition is specified such that upstream characteristic

curves have positive velocity, and downstream characteristic curves have negative velocity,
the characteristic curves may intersect, yielding a point where the solution is discontinuous.

Moreover, discontinuous solutions satisfy the integral form of the conservation law [53],
as we will now show. First, apply the integral form of the conservation law (2.1) over a small
interval x ∈ [x1, x1 + ∆x] in space and t ∈ [t1, t1 + ∆t] in time:

∫ x1+∆x

x1

ρ(x, t1 + ∆t)dx−
∫ x1+∆x

x1

ρ(x, t1)dx

=

∫ t1+∆t

t1

Q(ρ(x1, t))dt−
∫ t1+∆t

t1

Q(ρ(x1 + ∆x, t))dt

Then let s denote the speed of a shock which exists over the full interval, which connects
the two states ρ− and ρ+ on the left and right sides of the shock, respectively (Figure 2.2)
and choose (∆x,∆t) sufficiently small so that ρ−, ρ+, and s can be viewed as a constant.
Then we have
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Figure 2.2: A shock traveling at speed s connects the states ρ− and ρ+ over a small interval
x ∈ [x1, x1 + ∆x] in space and t ∈ [t1, t1 + ∆t] in time.

∆xρ− −∆xρ+ = ∆tQ(ρ−)−∆tQ(ρ+) +O(∆t2) (2.11)

where O(∆t2) accounts for the small variation in the fluxes at the boundaries. Since the
shock speed over this small interval is given as s = ∆x

∆t
, we can substitute ∆x = s∆t in (2.11),

divide by ∆t, and take the limit as ∆t→ 0, yielding

s(ρ− − ρ+) = Q(ρ−)−Q(ρ+)

After rearranging terms, this leads to the Rankine–Hugoniot jump condition for the speed
of the shock:

s =
Q(ρ+)−Q(ρ−)

ρ+ − ρ−
(2.12)

The important result is that if (2.12) is satisfied, then the discontinuity satisfies the integral
form of the LWR PDE (2.1).

To reconcile the fact that discontinuous solutions to the LWR PDE (2.4) can arise in
finite time, even from smooth initial data, and that discontinuous solutions satisfying the
Rankine–Hugoniot jump condition (2.12) also satisfy the integral form of the conservation
law (2.1), we must consider a more general class of solutions to the LWR PDE known as
weak solutions. We describe this next.

2.3 Weak solutions and the entropy condition

We begin by assuming temporarily that ρ(x, t) is smooth, and satisfies the LWR PDE (2.4)
and (2.5). Then we introduce a smooth test function with compact support ϕ(x, t) ∈
C1
c ((−∞,∞)× [0, T )). Since the LWR PDE is satisfied, we have∫ ∞

−∞

∫ T

0

(
∂ρ(x, t)

∂t
+
∂Q(ρ(x, t))

∂x

)
ϕ(x, t)dtdx = 0 (2.13)
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Now by applying integration of parts, we can rewrite (2.13) so that the derivatives appear
only on the smooth test function:

∫ ∞
−∞

∫ T

0

(
∂ϕ(x, t)

∂t
ρ(x, t) +

∂ϕ(x, t)

∂x
Q(ρ(x, t))

)
dtdx = −

∫ ∞
−∞

ρ0(x)ϕ(x, 0)dx (2.14)

Note that only the initial condition appears, due to the compact support of ϕ, and that
(2.14) no longer requires a smooth density profile. A solution satisfying (2.14) is known as
a weak solution to the LWR PDE, and can be shown to be equivalent to the integral form
(2.1).

An unfortunate result of the weak formulation is that, due to the possibility of discon-
tinuities, the solution is no longer unique (as will be discussed further in Example 4 in
Section 2.4).

One approach to isolate a unique solution is to consider an entropy function of the density,
with the property that the entropy is conserved when the density profile is smooth, and that
the entropy either increases or decreases due to discontinuities in the density profile. Thus
the entropy acts as an indicator of discontinuities, and can be used to isolate a unique
solution. This approach leads to the following definition.

Definition 1 (Weak entropy solution [10, 49]). A weak entropy solution ρ(·, ·) of (2.4)
and (2.5) is defined as follows:∫ ∞

−∞

∫ T

0

(
|ρ(x, t)− k| ∂

∂t
ϕ(x, t) + sgn(ρ(x, t)− k) (Q(ρ(x, t))−Q(k))

∂

∂x
ϕ(x, t)

)
dxdt

+

∫ ∞
−∞
|ρ0(x)− k|ϕ(x, 0)dx ≥ 0 ∀ϕ ∈ C2

c ([−∞,∞]× [0, T );R+) ,∀k ∈ R

where sgn(x) = 1 for x > 0, sgn(x) = −1 for x < 0, and sgn(x) = 0 for x = 0.

In practice, it is often easier to use an equivalent entropy condition which explicitly
defines admissible shocks. For a smooth concave flux function Q(·) a discontinuous solution
connecting two states ρ− and ρ+ propagating at speed s satisfies the Lax entropy condition
if:

Q′(ρ+) ≤ s ≤ Q′(ρ−) (2.15)

When the LWR PDE is specified on a finite domain:

∂ρ(x, t)

∂t
+
∂Q(ρ(x, t))

∂x
= 0 (x, t) ∈ (0, L)× (0, T ) (2.16)

special consideration must be made at the boundaries to ensure well posed problem, as given
by the next two definitions.



CHAPTER 2. LWR PDE 16

Definition 2 (Left weak boundary condition - concave flux function [8, 70]). For a general
flux function Q(·), the proper weak description of the left boundary condition for (2.16) in
terms of the trace of the solution ρ(0, t) and the left boundary data ρl(t) is as follows:

sup
k∈D(ρ(0,t),ρl(t))

(sgn (ρ(0, t)− ρl(t)) (Q(ρ(0, t))−Q(k))) = 0 for a.e. t > 0 (2.17)

where D(x, y) = [inf (x, y) , sup (x, y)].

Definition 3 (Right weak boundary condition - concave flux function [8, 70]). For a general
flux function Q(·), the proper weak description of the right boundary condition for (2.16) in
terms of the trace of the solution ρ(L, t) and the right boundary condition ρr(t) is as follows:

inf
k∈D(ρ(L,t),ρr(t))

(sgn (ρ(L, t)− ρr(t)) (Q(ρ(L, t))−Q(k))) = 0 for a.e. t > 0 (2.18)

where D(x, y) = [inf (x, y) , sup (x, y)].

It was proposed in [27] to write boundary conditions in such a way that the entropy
solution to equation (2.16) exists and is unique, for in domain bounded on the left snd
unbounded on the right. For a strictly convex continuously differentiable flux function under
sufficient regularity of the boundary data ρl(·) and ρr(·), an equivalent formulation of (2.17)
and (2.18) can be obtained. In [28], it is shown that continuity of the boundary data is
sufficient for an equivalent formulation. In our case, this formulation reads for the left
boundary:

for a.e. t > 0,
ρ(0, t) = ρl(t)

xor Q′(ρ(0, t)) ≤ 0 and Q′(ρl(t)) ≤ 0 and ρ(0, t) 6= ρl(t)

xor Q′(ρ(0, t)) ≤ 0 and Q′(ρl(t)) > 0 and Q(ρ(0, t)) ≤ Q(ρl(t))

(2.19)

and for the right boundary:

for a.e. t > 0,
ρ(L, t) = ρr(t)

xor Q′(ρ(L, t)) ≥ 0 and Q′(ρr(t)) ≥ 0 and ρ(L, t) 6= ρr(t)

xor Q′(ρ(L, t)) ≥ 0 and Q′(ρr(t)) < 0 and Q(ρ(L, t)) ≤ Q(ρr(t))

(2.20)

where ρl(·) and ρr(·) are functions of C0(0, T ).
The preceding equations (2.19) and (2.20) is a description of cases for which (2.17)

and (2.17) is satisfied. Note the description is slightly different from [70] in that the sets
defined on each line of (2.19) and (2.20) are mutually exclusive. For example, first line of
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(2.19) corresponds to the case when the trace of the solution ρ(0, t) takes the value of the
boundary data ρl(t), which is analogous to a prescription of the boundary condition in the
strong sense. The second line and third lines correspond to cases which satisfy (2.17), but
where the value of the trace does not take the value prescribed at the boundary.

We now expand on the first line of equations (2.19)– (2.20) in order to state explicitly
the set of the boundary data, trace pairs for which the boundary data is prescribed in the
strong sense.

Lemma 1 (Strong boundary conditions - concave flux). For a strictly concave flux function
Q(·), the cases for strong boundary conditions read as follows: for a.e. t > 0,

ρ(0, t) = ρl(t) iff
Q′(ρ(0, t)) ≥ 0 and Q′(ρl(t)) ≥ 0

xor Q′(ρ(0, t)) ≤ 0 and Q′(ρl(t)) ≤ 0 and ρ (0, t) = ρl (t)

xor Q′(ρ(0, t)) ≤ 0 and Q′(ρl(t)) > 0 and Q (ρ (0, t)) > Q(ρl (t))

(2.21)

and for a.e. t ≥ 0,

ρ (L, t) = ρr (t) iff
Q′(ρ(L, t)) ≤ 0 and Q′(ρr(t)) ≤ 0

xor Q′(ρ(L, t)) ≥ 0 and Q′(ρr(t)) ≥ 0 and ρ (L, t) = ρr (t)

xor Q′(ρ(L, t)) ≥ 0 and Q′(ρr(t)) < 0 and Q (ρ (L, t)) > Q(ρr (t))

(2.22)

Proof. We prove the case of the left boundary condition for a concave flux and note a similar
argument holds for the right boundary and in the case of convex flux functions. Beginning
with the statement of weak boundary conditions, (2.19) we can write: for a.e. t > 0,

ρ(0, t) 6= ρl(t) iff{
Q′(ρ(0, t)) ≤ 0 and Q′(ρl(t)) ≤ 0 and ρ(0, t) 6= ρl(t)

xor Q′(ρ(0, t)) ≤ 0 and Q′(ρl(t)) > 0 and Q(ρ(0, t)) ≤ Q(ρl(t))

If we are not in one of these two cases, then by taking their complement, we must have either
Q′(ρ(0, t)) ≥ 0 and Q′(ρl(t)) ≥ 0

xor Q′(ρ(0, t)) ≤ 0 and Q′(ρl(t)) ≤ 0 and ρ (0, t) = ρl (t)
xor Q′(ρ(0, t)) ≤ 0 and Q′(ρl(t)) > 0 and Q (ρ (0, t)) > Q(ρl (t))
xor Q′(ρ(0, t)) > 0 and Q′(ρl(t)) < 0

(2.23)

For the fourth line in (2.23), for a.e. t > 0 we will have Q′(ρ(0, t)) = 0, so it is removed and
the conditions for strong left boundary conditions are obtained.
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2.4 The Riemann problem

In order to provide clarity on the weak entropy solution to the LWR PDE on a bounded
domain, will now introduce the Riemann problem, which is the Cauchy problem equa-
tion (2.4) with a Heaviside initial condition. By tracking the evolution of the characteristic
curves on this problem, we can easily recover the weak boundary conditions (2.19) and (2.20).
Later, it will be used again for numerical discretization of the PDE, and for its extension to
networks.

The proof of a global solution to (2.4)–(2.5) by successive local solutions of Riemann
problems is due to [18]. We now proceed to explain case-by-case all of the behaviors of the
LWR PDE which can arise from the Riemann problem.

Let the initial data for equation (2.4) be given by (Figure 2.3a):

ρ0(x) =

{
ρ− if x < 0

ρ+ if x > 0
(2.24)

and let us again consider a flux function of the form Q(ρ) = ρ− ρ2 (Figure 2.3b). Note that
the flux function is increasing for all ρ ∈ [0, ρc), and decreasing for all ρ ∈ (ρc, ρmax], where
ρc = 1

2
is the critical density and ρmax = 1 is the maximal density.

(a) (b)

Figure 2.3: (a) Initial data for the Riemann problem; (b) quadratic flux function.

2.4.1 Riemann solver

The weak entropy Riemann solver for the Riemann problem (2.4) and (2.24) is given by

• If ρ+ > ρ−,
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ρ(x, t) =

{
ρ− if x

t
< s

ρ+ if x
t
> s

(2.25)

where s = Q(ρ+)−Q(ρ−)
ρ+−ρ− .

• If ρ+ < ρ−,

ρ(x, t) =


ρ− if x

t
< Q′(ρ−)

(Q′)−1(x
t
) if Q′(ρ−) < x

t
< Q′(ρ+)

ρ+ if x
t
> Q′(ρ+)

(2.26)

We now proceed case-by-case through the solutions of the Riemann problem.

Example 1 (Small shock moving forward). Let the initial data be defined such that ρ− ≤
ρ+ ≤ ρc (Figure 2.4a). Then the speeds of the characteristics are ordered by Q′(ρ−) ≥
Q′(ρ+) ≥ 0. Since the characteristics on the left move faster than the characteristics on the
right, they intersect and a small shock wave is formed (Figure 2.4b). The speed of the shock

is given by the Rankine-Hugoniot relation s = Q(ρ+)−Q(ρ−)
ρ+−ρ− ≥ 0, and so the shock travels

forward. Moreover, since Q′(ρ−) ≥ s ≥ Q′(ρ+), the shock is entropy admissible.

(a) (b)

Figure 2.4: Riemann problem solved by a small shock wave moving forward. (a) initial data;
(b) evolution of the characteristic curves.

Example 2 (Rarefaction wave moving forward). Let the initial data be defined such that
ρ+ ≤ ρ− ≤ ρc (Figure 2.5a). Then the speeds of the characteristics are ordered by Q′(ρ+) ≥
Q′(ρ−) ≥ 0. Now the characteristics on the right move faster than the characteristics on the
left, and an envelope appears (solid gray area in Figure 2.5b) through which no characteristic
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curves emanating from the initial condition pass through. Because the weak form of the
LWR PDE allows for discontinuities, a forward-moving shock is a weak admissible solution
(Figure 2.5c). Moreover, a self-similar solution in the form of a rarefaction wave moving
forward (2.26) is also a solution (Figure 2.5d), which does not require a discontinuity. Note,
however, that only the rarefaction wave satisfies the entropy condition, since for the shock
we have Q′(ρ−) 6≥ s 6≥ Q′(ρ+).

(a) (b)

(c) (d)

Figure 2.5: Riemann problem solved by a rarefaction wave moving forward. (a) initial data;
(b) an envelope appears which is not determined by characteristic curves emanating from the
initial data; (c) a weak (but not entropy admissible) evolution of the characteristic curves;
(d) entropy admissible evolution of the characteristic curves.

Example 3 (Small shock moving back). Let the initial data be defined such that ρc ≤ ρ− ≤
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ρ+ (Figure 2.6a). Then the speeds of the characteristics are ordered by 0 ≥ Q′(ρ−) ≥ Q′(ρ+).
Since the characteristics on the left move slower than the characteristics on the right, they
intersect and a small shock wave is formed (Figure 2.6b). The speed of the shock is given by

the Rankine-Hugoniot relation s = Q(ρ+)−Q(ρ−)
ρ+−ρ− ≤ 0, and so the shock travels back. Moreover,

since Q′(ρ−) ≥ s ≥ Q′(ρ+), the shock is entropy admissible.

(a) (b)

Figure 2.6: Riemann problem solved by a small shock wave moving back. (a) initial data;
(b) evolution of the characteristic curves.

Example 4 (Rarefaction wave moving back). Let the initial data be defined such that
ρc ≤ ρ+ ≤ ρ− (Figure 2.7a). Then the speeds of the characteristics are ordered by 0 ≥
Q′(ρ+) ≥ Q′(ρ−). Now the characteristics on the left move faster than the characteristics on
the right, and again an envelope appears through which no characteristic curves emanating
from the initial condition pass through (Similar to Example 2). Since the entropy condition
prevents the formation of the shock, a rarefaction wave is formed (Figure 2.7b).

Example 5 (Rarefaction wave moving forward and back). Let the initial data be defined
such that ρ+ ≤ ρc ≤ ρ− (Figure 2.8a). Then the speeds of the characteristics are ordered by
Q′(ρ+) ≥ 0 ≥ Q′(ρ−). Now the characteristics on the left move left, and the characteristics
on the right side move right, so again and envelope appears through which no characteris-
tic curves emanating from the initial condition pass through. Since the entropy condition
prevents the formation of the shock, a rarefaction wave is formed (Figure 2.8b).

Example 6 (Big shock wave moving back). Let the initial data be defined such that
ρ− ≤ ρc ≤ ρ+, and additionally Q(ρ+) < Q(ρ−) (Figure 2.9a). Then the speeds of the
characteristics are ordered by Q′(ρ−) ≥ Q′(ρ+) ≥ 0. Since the characteristics on the left
move right, and the characteristics on the right move left, they intersect and a big shock
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(a) (b)

Figure 2.7: Riemann problem solved by a rarefaction wave moving back. (a) initial data;
(b) evolution of the characteristic curves.

(a) (b)

Figure 2.8: Riemann problem solved by a rarefaction wave moving back and forward. (a) ini-
tial data; (b) evolution of the characteristic curves.

wave is formed (Figure 2.9b). The speed of the shock is given by the Rankine-Hugoniot

relation s = Q(ρ+)−Q(ρ−)
ρ+−ρ− ≥ 0, and since the numerator is negative and the denominator is

positive, the shock travels back. Moreover, since Q′(ρ−) ≥ s ≥ Q′(ρ+), the shock is entropy
admissible.

Example 7 (Big shock wave moving forward). Let the initial data be defined such that
ρ− ≤ ρc ≤ ρ+, and additionally Q(ρ+) > Q(ρ−) (Figure 2.10a). Then the speeds of the
characteristics are ordered by Q′(ρ−) ≥ Q′(ρ+) ≥ 0. Since the characteristics on the left
move right, and the characteristics on the right move left, they intersect and a big shock wave
is formed (Figure 2.10b. The speed of the shock is given by the Rankine-Hugoniot relation
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(a) (b)

Figure 2.9: Riemann problem solved by a big shock moving back. (a) initial data; (b) evo-
lution of the characteristic curves.

s = Q(ρ+)−Q(ρ−)
ρ+−ρ− ≥ 0, and since now both the numerator and denominator are positive, the

shock travels forward. Moreover, since Q′(ρ−) ≥ s ≥ Q′(ρ+), the shock is entropy admissible.

(a) (b)

Figure 2.10: Riemann problem solved by a big shock moving forward. (a) initial data;
(b) evolution of the characteristic curves.

Example 8 (Big stationary shock wave). Let the initial data be defined such that ρ− ≤ ρc ≤
ρ+, and additionally Q(ρ+) = Q(ρ−) (Figure 2.11a). Then the speeds of the characteristics
are ordered by Q′(ρ−) ≥ Q′(ρ+) ≥ 0. Since the characteristics on the left move right, and
the characteristics on the right move left, they intersect and a big shock wave is formed



CHAPTER 2. LWR PDE 24

(Figure 2.11b). The speed of the shock is given by the Rankine-Hugoniot relation s =
Q(ρ+)−Q(ρ−)

ρ+−ρ− ≥ 0. Because the numerator is zero, the shock wave is stationary. Moreover,

since Q′(ρ−) ≥ s ≥ Q′(ρ+), the shock is entropy admissible.

(a) (b)

Figure 2.11: Riemann problem solved by a big stationary shock. (a) initial data; (b) evolution
of the characteristic curves.

It is easy to verify that the previous examples are exhaustive on the set of initial conditions
for the Riemann problem. The solutions are shown graphically in Figure 2.12. Note that
the entropy condition only allows shocks above the line Q′(ρ+) = Q′(ρ−), and so solutions
below the line form rarefaction waves. The curve corresponding to the big stationary shock
is defined by Q(ρ+) = Q(ρ−), and its shape depends on the exact flux function used.

2.4.2 Weak boundary conditions revisited

With the solution to the Riemann problem now defined, it is possible to verify the
statement of weak boundary conditions given by (2.19) and (2.20), through an interpretation
of the Riemann solver. We now proceed to show this for the left boundary condition.
Consider the Riemann problem (2.4) with the following initial data defined by (2.4):

ρ0(x) =

{
ρl(0) if x < 0

ρ(0, 0) if x > 0
(2.27)

where ρl(0) is the left boundary condition we would like to apply (but which may not
hold) and ρ(0, 0) is the trace of the solution approaching the left boundary. In order to
determine if the boundary data applies on the domain, we only need to solve the Riemann
problem and identify if the characteristic curves associated with ρl(0) cross the boundary
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Figure 2.12: Summary of the various Riemann problem solutions as a function of the speed
of the characteristics of the initial data.

x = 0 for t > 0. If so, then the boundary data will carry into the domain, and the boundary
condition will hold in the strong sense. Looking back at the previous Riemann problem, it is
clear this is true when the solution to the Riemann problem is a forward moving rarefaction
wave or a forward moving shock wave. This corresponds to the first line of the left weak
boundary condition (2.19).

On the other hand, if the Riemann problem results in a rarefaction wave moving back or
a shock wave moving back, then the boundary condition will not hold unless the boundary
data and the trace have the same value (the initial condition for the Riemann problem is a
single constant value). In the context of a boundary control problem, in this pathological
case one must choose the boundary control to be the unique value dictated by the trace, and
any perturbation in the boundary control value would cause the solution to be implemented
in the weak sense again.

When the solution to the Riemann problem yields a big shock wave moving backward, it
is covered by the third line of (2.19), while a small shock wave or a rarefaction wave moving
backward corresponds to the second line of (2.19). Finally, the solution to the Riemann
problem resulting in a rarefaction wave with characteristics pointing both forward and back
corresponds to the second line of (2.19), since for t > 0, Q′(ρ(0, t)) = 0.
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2.5 Numerical discretization

2.5.1 Godunov Scheme

We now describe the Godunov discretization scheme used to numerically approximate
weak entropy solutions to the LWR PDE. We discretize the time and space domains by
introducing a discrete time step ∆T , indexed by n ∈ {0, · · · , nmax} and a discrete space step
∆x, indexed by i ∈ {0, · · · , imax}. Let us integrate equation (2.1) over a single timestep,
yielding:

∫ xi+1/2

xi−1/2

ρ(x, tn+1)dx−
∫ xi+1/2

xi−1/2

ρ(x, tn)dx

=

∫ tn+1

tn

Q(ρ(xi−1/2, t))dt−
∫ tn+1

tn

Q(ρ(xi+1/2, t))dt

(2.28)

We introduce the variables ρni and Qn
i as follows:

ρni ≈
1

∆x

∫ xi+1/2

xi−1/2

ρ(x, tn)dx (2.29)

Qn
i ≈

1

∆T

∫ tn+1

tn

Q(ρ(xi, t))dt (2.30)

where ρni approximates the average density in the ith cell at time tn and Qn
i approximates

the average flux at xi over the time interval [tn, tn+1]. Then after substituting into (2.28)
and rearranging terms, we obtain

ρn+1
i = ρni −

∆T

∆x

(
Qn
i+1/2 −Qn

i−1/2

)
(2.31)

which is the basis of the Godunov discretization scheme.
In particular, the Godunov discretization scheme is as follows.

1. Approximate the function ρ(x, t) with a piecewise constant function ρ̄(x, t), where
ρ̄(x, t) is constant in each cell. Then

ρni =
1

∆x

∫ xi+1/2

xi−1/2

ρ̄(x, tn)dx

= ρ̄(xi, tn)

2. Solve the Riemann problems at the cell boundaries xi+1/2 and xi−1/2. Let G(ρni , ρ
n
i+1)

denote the flux at xi+1/2 when the Riemann problem is solved between the two states
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ρni and ρni+1. Because ρ̄(x, t) is piecewise constant, the Riemann problem can be solved
exactly, and the flux G (ρ1, ρ2) is given as (Figure 2.13):

G (ρ1, ρ2) =


Q(ρ2) if ρc ≤ ρ2 ≤ ρ1

Q(ρc) if ρ2 ≤ ρc ≤ ρ1

Q(ρ1) if ρ2 ≤ ρ1 ≤ ρc

min (Q(ρ1), Q(ρ2)) if ρ1 ≤ ρ2

(2.32)

Figure 2.13: Graphical representation of the numerical flux function equation (2.32) as a
function of ρ1 and ρ2. Note that the line connecting (ρc, ρc) and (0, ρmax) may have different
shapes depending on the flux function Q(·).

This yields

Qn
i+1/2 =

1

∆T

∫ tn+1

tn

Q(ρ̄(xi+1/2, t))dt

= G(ρni , ρ
n
i+1)

3. Compute the density at the next timestep according to (2.31).

In practice, the scheme is implemented as the nonlinear discrete evolution equation:

ρn+1
i = ρni −

∆T

∆x

(
G
(
ρni , ρ

n
i+1

)
−G

(
ρni−1, ρ

n
i

))
(2.33)
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In order to ensure numerical stability, the time and space steps are coupled by the CFL
condition [53]: |αmax|∆t ≤ ∆x where αmax denotes the maximal characteristic speed. This
restriction guarantees that the solution of the Riemann problem at each cell boundary is
independent of the Riemann problems at adjacent boundaries.

This discrete model is derived independently by Daganzo [20, 21] as a macroscopic traffic
model consistent with the LWR PDE, commonly referred to as the Cell Transmission Model
in the transportation engineering community.

2.5.2 A note on linearization

Later in this dissertation we discuss the traffic velocity estimation problem using a velocity
evolution equation consistent with the discretized LWR PDE. Because of the nonlinearity of
the hyperbolic conservation law for density, standard linear estimation techniques such as the
Kalman filter cannot be used. Moreover, we now show that the LWR PDE discretized with
the Godunov discretization scheme cannot be linearized around an arbitrary model state.
This unfortunate fact prevents the use of extended Kalman filtering for traffic estimation
when using this model (the Cell Transmission Model). The set of states under which the
model cannot be linearized corresponds to the case when the Riemann problem is solved
with a stationary shock.

Theorem 1. Let Q(ρ) be a smooth C1 concave flux function with ρ ∈ [0, ρmax], with a
maximum obtained at ρc. Let ρn =

[
ρn0 , · · · , ρnimax

]
denote the vector of states at time n.

The LWR PDE is discretized according to the Godunov scheme (2.32) and (2.33). The
discrete model can be linearized if and only if no standing shockwaves are formed.

Proof. It is easy to see from (2.33) that the model can be linearized if and only if the
function G(·, ·) is differentiable. We determine the differentiability of (2.32) by an exhaustive
computation of the partial derivatives G(·, ·) with respect to each of the inputs. Note that
G(·, ·) is continuous for all (ρ1, ρ2) ∈ [0, ρmax]× [0, ρmax], so it remains to check if the partial
derivatives exist and are continuous.

We begin by computing ∂G(ρ1,ρ2)
∂ρ1

.

• For ρ1, ρ2 > ρc, we have ∂G(ρ1,ρ2)
∂ρ1

= 0. This corresponds to either a small shock or a

rarefaction wave moving backward, and G(ρ1, ρ2) depends only on ρ2.

• For ρ1 > ρc > ρ2, we have ∂G(ρ1,ρ2)
∂ρ1

= 0. This corresponds to a rarefaction wave with

characteristics moving forward and backward, and G(ρ1, ρ2) is a constant.

• For ρ1 > ρ2 = ρc, G(ρ1, ρ2) is again independent of ρ1, and so ∂G(ρ1,ρ2)
∂ρ1

= 0.

• For ρ1, ρ2 < ρc, we have ∂G(ρ1,ρ2)
∂ρ1

= Q′(ρ1), which corresponds to either a small shock
or a rarefaction wave moving forward.
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• For ρ2 < ρ1 = ρc, we have limρ1→ρ+c
∂G(ρ1,ρ2)

∂ρ1
= 0, and limρ1→ρ−c

∂G(ρ1,ρ2)
∂ρ1

= limρ1→ρ−c Q
′(ρ1)

= 0, since Q(·) is maximized at ρc, so the partial derivative is continuous.

• The case when ρ1 < ρc < ρ2 corresponds to a big shock, so we must further specify
the ordering of the flux. Let Q(ρ2) > Q(ρ1), so the shock moves forward. In this case,
∂G(ρ1,ρ2)

∂ρ1
= Q′(ρ1).

• When ρ1 < ρ2 = ρc and Q(ρ2) > Q(ρ1), we have ∂G(ρ1,ρ2)
∂ρ1

= Q′(ρ1) and the solution is
again a forward moving shock.

• When ρ1 < ρc < ρ2 and Q(ρ2) < Q(ρ1), we have ∂G(ρ1,ρ2)
∂ρ1

= 0 since G(ρ1, ρ2) depends
only on ρ2. The solution is a big shock moving back.

• When ρ1 = ρc < ρ2 and Q(ρ2) < Q(ρ1), we have ∂G(ρ1,ρ2)
∂ρ1

= 0 in the solution is again
a shock moving back.

• The last case is when ρ1 < ρc < ρ2 and Q(ρ2) = Q(ρ1). For a given ρ2, let ρ∗ be

defined such that ρ∗ < ρc < ρ2 and Q(ρ∗) = Q(ρ2)}. Then limρ1→ρ∗+
∂G(ρ1,ρ2)

∂ρ1
= 0, and

limρ1→ρ∗−
∂G(ρ1,ρ2)

∂ρ1
= Q′(ρ1) > 0 from the concavity of the flux function. Thus, solution

is not differentiable around this point, which corresponds to a standing shock wave.

The proof for ∂G(ρ1,ρ2)
∂ρ2

= 0 proceeds similarly, and is also differentiable everywhere except
around states corresponding to a standing shock wave. The computation of the partial
derivatives are summarized in Figure 2.14.

Direct application of extended Kalman filtering [74], or implicit switching between lin-
earized regimes [73] will not be applicable around these points. Fortunately, in practical
traffic estimation problems, the state around which the model is linearized will rarely result
in a stationary shock; the numerical values of the flux almost always cause the shock to move
slightly forward or back. Nevertheless, this still creates a theoretical challenge which has not
yet been addressed in a traffic estimation literature.
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(a) (b)

Figure 2.14: Summary of the computation of (a) ∂G(ρ1,ρ2)
∂ρ1

; (b) ∂G(ρ1,ρ2)
∂ρ2

. Note that the line

connecting (ρc, ρc) and (0, ρmax) may have different shapes depending on the flux function
Q(·), and represents the set for which G(·, ·) is not differentiable.
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Chapter 3

Derivation of a velocity evolution
equation

3.1 Introduction

Motivated by the problem of estimating traffic conditions using only velocity measure-
ments from mobile phones, this chapter focuses on the development of a mathematical model
for velocity evolution consistent with the LWR PDE. The contributions in this chapter are
as follows.

• Derivation of a velocity partial differential equation. When the relationship
between velocity and density is affine (as is the case for the Greenshields flux function),
we derive a new velocity conservation law consistent with the weak form of the LWR
PDE, called the LWR–v PDE.

• Limitation of the velocity partial differential equation. For general invertible
velocity functions which are not affine, we show that there is no equivalent velocity
conservation law. This is a negative result.

• Derivation of a discrete velocity evolution equation. For general, nonlinear
invertible velocity functions, we derive a numerical approximation to the integral form
of the LWR PDE (2.1), which describes velocity evolution on a discrete domain and
overcomes the above limitation. We call this model the Cell Transmission Model for
velocity (CTM–v), due to similarities with the CTM model.

• Extension to networks. We discuss how to extend the velocity evolution equation
to networks of roads by using a generalized Riemann solver consistent with [14, 21].

The chapter begins with an introduction of several velocity functions which have been
historically used in the LWR PDE, in Section 3.2. In Section 3.3, a conservation law for
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velocity consistent with the LWR PDE is derived for the Greenshields velocity function. We
prove for general invertible velocity functions that this equivalence cannot be achieved. In
Section 3.4 we circumvent this issue by developing a discrete time discrete space velocity
evolution equation consistent with the discretized LWR PDE. The model is extended to
networks in Section 3.5.

3.2 Velocity functions

In order to obtain a velocity of local evolution equation consistent with density, we require
the velocity function used in the LWR PDE (2.6) to be invertible. The algebraic expression of
the velocity function is a modeling choice, and it is typically constructed to fit experimental
data.

Introduced in 1935, one of the earliest velocity functions considered is the Greenshields [33]
affine velocity function:

v = VG (ρ) = vmax (1− ρ/ρmax)

where vmax is the maximum (freeflow) velocity, and ρmax is the maximum (jam) density.
This model remains a useful mathematical model because of its algebraic simplicity, despite
disagreements with observed traffic data. Since it expresses a linear relationship between
speed and density, it is clearly invertible as:

ρ = V −1
G (v) = ρmax (1− v/vmax) (3.1)

The widely used Daganzo–Newell velocity function assumes a constant velocity in free-
flow and a hyperbolic velocity in congestion:

v = VDN(ρ) =

{
vmax if ρ ≤ ρc

−wf
(

1− ρmax

ρ

)
otherwise

where vmax, ρmax, ρc and wf are respectively the maximum velocity, maximum density,
critical density at which the flow transitions from free-flow to congested, and the backwards
propagating wave speed, respectively. Because the Daganzo-Newell velocity function is not
strictly monotonic in freeflow, it cannot be inverted.

In order to use the Daganzo-Newell model in a velocity setting, we approximate it by
the Smulders velocity function [68], with a linear expression in free-flow and a hyperbolic
expression in congestion:

v = VS(ρ) =

vmax

(
1− ρ

ρmax

)
if ρ ≤ ρc

−wf
(

1− ρmax

ρ

)
otherwise
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Figure 3.1: Fundamental diagrams (top row) and velocity functions (bottom row) for Green-
shields (left), Daganzo-Newell (center), and Smulders (right).

For continuity of the flux at the critical density ρc, the additional relation ρc
ρmax

=
wf

vmax
must

be satisfied.
The Smulders velocity function can be inverted to obtain the velocity as a function of

density:

ρ = V −1
S (v) =


ρmax

(
1− v

vmax

)
if v ≥ vc

ρmax

(
1

1+ v
wf

)
otherwise

(3.2)

where vc is the critical velocity: vc = V (ρc). This Smulders velocity function yields a
quadratic-linear flux function as illustrated in Figure 3.1.

Unless noted otherwise, we assume that the velocity function is invertible throughout the
remainder of this dissertation.

3.3 Derivation of a velocity PDE in conservative form

for the Greenshields flux function

In this section, we derive a velocity PDE in conservative form for the Greenshields flux
and we show that for other C1 velocity functions, there is no velocity transport equation
equivalent to the LWR equation. The important result shown here is that unless the velocity
function is affine (i.e., the Greenshields case), there will not be equivalence between weak
solutions to the derived velocity PDE and the weak solutions of the density PDE written in
terms of the velocity.

First, we introduce the notion of a weak velocity solution to the LWR PDE. Assuming
that the velocity function is invertible with inverse V −1(·), the PDE (2.16) in weak form for
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ρ(·, ·) is equivalent to the following formulation for v(·, ·):∫ L

0

∫ T

0

(
V −1(v(x, t))

∂ϕ

∂t
(x, t) +Q(V −1(v(x, t)))

∂ϕ

∂x
(x, t)

)
dxdt

+

∫ L

0

V −1(v0(x))ϕ(x, 0)dx = 0 ∀ϕ ∈ C2
c ([0, L]× [0, T )) (3.3)

In order to use existing numerical analysis schemes for the PDE we want to obtain, we
would like to transform the weak formulation (3.3) into the following conservation law for
velocity with initial condition v0(·):{

∂
∂t
v(x, t) + ∂

∂x
R (v(x, t)) = 0

v(x, 0) = v0(x)
(3.4)

By analogy with the classical LWR equation, the velocity PDE (3.4) is called LWR-v PDE.
Because the flux function R(v) in the velocity conservation law (3.4) is convex, the weak
boundary conditions are given as follows:

Definition 4 (Weak boundary conditions - convex flux function [8, 27]). For a convex flux
function R(·), the weak formulation of boundary conditions reads:

for a.e. t > 0,
v(0, t) = vl(t)

xor R′(v(0, t)) ≤ 0 and R′(vl(t)) ≤ 0 and v(0, t) 6= vl(t)

xor R′(v(0, t)) ≤ 0 and R′(vl(t)) > 0 and R(v(0, t)) ≥ R(vl(t))

and
for a.e. t > 0,

v(L, t) = vr(t)

xor R′(v(L, t)) ≥ 0 and R′(vr(t)) ≥ 0 and v(L, t) 6= vr(t)

xor R′(v(L, t)) ≥ 0 and R′(vr(t)) < 0 and R(v(L, t)) ≥ R(vr(t))

where vl(·), vr(·) are functions of C0(0, T ). The functions vl(·) and vr(·) are the strong
boundary conditions one wants to apply at the left and the right boundaries.

We can now state the main result of this section, which defines the velocity functions for
which a velocity evolution PDE in conservative form can be constructed.

Theorem 2. For a velocity function piecewise analytic in [0, ρmax], the velocity PDE in
weak form (3.3) is equivalent to system (3.4) if and only if the velocity function is affine
(Greenshields case).
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Proof. The proof proceeds in two steps. Beginning with equation (3.3) instantiated for the
Greenshields velocity function VG(·) defined by (3.1), we show that the conservation equation
obtained is the one from system (3.4). Substitution of the explicit expression of V −1

G in (3.3)
yields:∫ L

0

∫ T

0

ρmax
∂

∂t
ϕ(x, t)dxdt−

∫ L

0

∫ T

0

ρmax

vmax

v(x, t)
∂

∂t
ϕ(x, t)dxdt

+

∫ L

0

∫ T

0

QG

(
ρmax −

ρmax

vmax

v(x, t)

)
∂

∂x
ϕ(x, t)dxdt

−
∫ L

0

ρmax

vmax

v0(x)ϕ(x, 0)dx+

∫ L

0

ρmax ϕ(x, 0)dx = 0

where QG(ρ) = ρ VG(ρ). Since ϕ ∈ C2
c ([0, L]×[0, T )) the first term equals−

∫ L
0
ρmax ϕ(x, 0)dx

and cancels with the last term. Multiplication by − vmax

ρmax
gives:

∫ L

0

∫ T

0

v(x, t)
∂

∂t
ϕ(x, t)dxdt+

∫ L

0

v0(x)ϕ(x, 0)dx

−
∫ L

0

∫ T

0

vmax

ρmax

QG

(
ρmax −

ρmax

vmax

v(x, t)

)
∂

∂x
ϕ(x, t)dxdt = 0

which means that v is a weak solution of the PDE:

∂

∂t
v(x, t) +

∂

∂x
(RG(v(x, t))) = 0

with the initial condition v(x, 0) = v0(x), and the velocity flux function

RG(v) = −vmax

ρmax

QG(V −1
G (v)) = v2 − vmax v

This completes the first part of the proof.
Now, we show that the Rankine-Hugoniot jump condition [24, 53] is not conserved in the

transformation from (2.16) to (3.4) for the general case, which means that the equivalence
is not obtained for general flux functions.

First, note that a necessary condition to have equivalence between the LWR PDE (2.16)
and the LWR-v PDE (3.4) is to have the same characteristic speeds for a state ρ in (2.16)
and for the state V (ρ) in (3.4). This yields Q′(V −1(v)) = R′(v). Integrating this relation
between any states (ρ1, v1) and (ρ2, v2) we obtain:∫ v2

v1

Q′(V −1(v))dv =

∫ v2

v1

R′(v)dv
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Using the variable change v = V (ρ), we obtain:∫ ρ2

ρ1

Q′(ρ)V ′(ρ)dρ =

∫ v2

v1

R′(v)dv (3.5)

Next, at a discontinuity, the Rankine-Hugoniot jump condition [24, 53] reads:

Q(ρ2)−Q(ρ1)

ρ2 − ρ1

=
R(v2)−R(v1)

v2 − v1

(3.6)

which we can rewrite as: ∫ v2

v1

R′(v)dv =
v2 − v1

ρ2 − ρ1

∫ ρ2

ρ1

Q′(ρ)dρ (3.7)

If we substitute equality (3.5) into equation (3.7) we obtain:∫ ρ2

ρ1

Q′(ρ)V ′(ρ)dρ =
V (ρ2)− V (ρ1)

ρ2 − ρ1

∫ ρ2

ρ1

Q′(ρ)dρ

which translates to:∫ ρ2

ρ1

V ′(ρ) (V (ρ) + ρ V ′(ρ))dρ =

(
1

ρ2 − ρ1

∫ ρ2

ρ1

V ′(ρ)dρ

) (∫ ρ2

ρ1

(V (ρ) + ρ V ′(ρ))dρ

)
(3.8)

If we define the function Gρ1 in [ρ1, ρi] by Gρ1(ρ2) = 1
ρ2−ρ1

∫ ρ2
ρ1
V ′(ρ)dρ, on intervals on which

V is smooth, we can write:

V ′(ρ2) (V (ρ2)+ρ2 V
′(ρ2)) = G′ρ1(ρ2) (ρ2 V (ρ2)−ρ1 V (ρ1))+Gρ1(ρ2) (V (ρ2)+ρ2 V

′(ρ2)) (3.9)

Given the expression of Gρ1 , if we differentiate (ρ2− ρ1)Gρ1(ρ2) w.r.t ρ2 we obtain for all ρ2

in [ρ1, ρi]:

((ρ2 − ρ1)Gρ1(ρ2))′ = Gρ1(ρ2) + (ρ2 − ρ1)G′ρ1(ρ2) = V ′(ρ2)

Thus if we factor V (ρ2) + ρ2 V
′(ρ2) in the first and last term of (3.9) and if we replace

Gρ1(ρ2)− V ′(ρ2) by −(ρ2 − ρ1)G′ρ1(ρ2) we obtain:

G′ρ1(ρ2) ((ρ2 V (ρ2)− ρ1 V (ρ1))− (ρ2 − ρ1) (V (ρ2) + ρ2 V
′(ρ2))) = 0 (3.10)

The second term in the product can be written as Z(ρ1, ρ2) = Q(ρ2)−Q(ρ1)−(ρ2−ρ1)Q′(ρ2).
So either Q(·) is affine and Z(ρ1, ρ2) is zero, either Q is strictly concave or strictly convex
and Z(ρ1, ρ2) is different from zero, and the first term of (3.10) must be zero. If the first
term in (3.10) is zero, it means that V is of the form V (ρ) = a ρ + b. If the second term is
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zero, it means that V is of the form V (ρ) = a
ρ

+ b. So we obtain a necessary condition that
V must be piecewise affine or hyperbolic.
If there exists a point ρi ∈ [0, ρmax] s.t. V has a different algebraic expression for ρ > ρi
and ρ < ρi, simple algebra shows that the equality of the Rankine-Hugoniot speeds (3.6)
does not hold in general. Therefore V is either of the form a ρ + b in [0, ρmax], or a

ρ
+ b in

[0, ρmax]. The second possibility is excluded by assumption on V (unbounded speed as ρ goes
to zero).

Thus for more realistic traffic models with nonlinear velocity functions, it is not possible
to derive a PDE model for velocity in conservation form (3.4).

3.4 Numerical approximation of the velocity evolution

equation

Since a partial differential equation for velocity consistent with the LWR PDE does not
exist for arbitrary invertible velocity functions, we instead return to the integral form of the
LWR PDE (2.1) to perform the variable change. Then we will derive a Godunov scheme for
velocity to approximate the solution.

Following the same procedure as in Section 2.5.1, we discretize the time and space do-
mains by introducing a discrete time step ∆T , indexed by n ∈ {0, · · · , nmax} and a discrete
space step ∆x, indexed by i ∈ {0, · · · , imax}. Let us integrate equation (2.1) over a single
timestep, and apply the variable change ρ(x, t) = V −1(v(x, t)):

∫ xi+1/2

xi−1/2

V −1(v(x, tn+1))dx−
∫ xi+1/2

xi−1/2

V −1(v(x, tn))dx

=

∫ tn+1

tn

Q(V −1(v(xi−1/2, t)))dt−
∫ tn+1

tn

Q(V −1(v(xi+1/2, t)))dt

(3.11)

Define the piecewise constant function v̄(x, t) := V −1(ρ̄(x, t)) where ρ̄(x, t), is a piecewise
constant approximation of ρ(x, t) and ρ̄(x, t) is a constant in each cell. We introduce the
variable vni and recall the definition of Qn

i as follows:

vni =
1

∆x

∫ xi+1/2

xi−1/2

v̄(x, tn)dx (3.12)

Qn
i ≈

1

∆T

∫ tn+1

tn

Q(V −1(v(xi, t)))dt (3.13)

where vni approximates the average velocity in the ith cell at time tn and Qn
i approximates the

average flux at xi over the time interval [tn, tn+1]. Substituting into (3.11) and rearranging,
we obtain
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V −1(vn+1
i ) = V −1(vni )− ∆T

∆x

(
Qn
i+1/2 −Qn

i−1/2

)
(3.14)

which is the basis of the Godunov discretization scheme for velocity evolution. The full
algorithm is as follows.

1. Approximate the function v(x, t) with a piecewise constant function v̄(x, t), where
v̄(x, t) is constant in each cell.

2. Solve the Riemann problems at the cell boundaries xi+1/2 and xi−1/2. Let G̃(vni , v
n
i+1)

denote the flux at xi+1/2 when the Riemann problem is solved between the two states

vni and vni+1. For consistency with the density evolution, we require G̃(vni , v
n
i+1) =

G(V −1(vni ), V −1(vni+1)) where G(ρ1, ρ2)) is given by (2.32), and solves the Riemann

problem exactly. Moreover, let us define Q̃(v) := Q(V −1(v)), so by substitution
into (2.32), we obtain

G̃ (v1, v2) =


Q̃ (v2) if V −1(ρc) ≤ V −1(v2) ≤ V −1(v1)

Q̃ (vc) if V −1(v2) ≤ V −1(vc) ≤ V −1(v1)

Q̃ (v1) if V −1(v2) ≤ V −1(v1) ≤ V −1(vc)

min
(
Q̃ (v1) , Q̃ (v2))

)
if V −1(v1) ≤ V −1(v2)

(3.15)

Note that if ρ1 ≤ ρ2, with v1 = V (ρ1) and v2 = V (ρ2), then v1 ≥ v2 when V (·) is
monotonically decreasing (which is typically the case for traffic applications). Then
G̃(vni , v

n
i+1) is given by:

G̃ (v1, v2) =


Q̃ (v2) if vc ≥ v2 ≥ v1

Q̃ (vc) if v2 ≥ vc ≥ v1

Q̃ (v1) if v2 ≥ v1 ≥ vc

min
(
Q̃ (v1) , Q̃ (v2)

)
if v1 ≥ v2

(3.16)

This yields

Qn
i+1/2 =

1

∆T

∫ tn+1

tn

Q(V −1(v̄(xi+1/2, t)))dt

= G̃(vni , v
n
i+1)

3. Compute the density at the next timestep according to (3.14).
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In practice, the scheme is implemented as the nonlinear discrete evolution equation:

vn+1
i = V

(
V −1 (vni )− ∆T

∆x

(
G̃
(
vni , v

n
i+1

)
− G̃

(
vni−1, v

n
i

)))
(3.17)

which we call the Cell Transmission Model for velocity CTM-v.

Example 9 (Smulders model). After evaluation of the function (3.2), equation (3.16) reduces
to:

G̃ (v1, v2) =



v2ρmax

(
1

1+
v2
wf

)
if vc ≥ v2 ≥ v1

vcρmax

(
1− vc

vmax

)
if v2 ≥ vc ≥ v1

v1ρmax

(
1− v1

vmax

)
if v2 ≥ v1 ≥ vc

min
(
V −1

S (v1) v1, V
−1

S (v2) v2

)
if v1 ≥ v2

(3.18)

We choose not to simplify the last line in (3.18) due to the piecewise analytical expression
of function V −1

S (·).

We note that the evolution of the velocity field at each discrete point on an edge except
at the boundary points vn0 and vnimax

is well defined by (3.17) and (3.18). At these boundaries,
the equations

vn+1
0 = V

(
V −1 (vn0 )− ∆T

∆x

(
G̃ (vn0 , v

n
1 )− G̃

(
vn−1, v

n
0

)))
(3.19)

vn+1
imax

= V

(
V −1

(
vnimax

)
− ∆T

∆x

(
G̃
(
vnimax

, vnimax+1

)
− G̃

(
vnimax−1, v

n
imax

)))
(3.20)

contain references to the ghost sells vn−1 and vnimax+1, which are points which do not lie in
the physical domain. The values of vn−1 and vnimax+1 are given by the prescribed boundary
conditions to be imposed on the left and right side of the domain respectively. Note that
these boundary values do not always affect the physical domain because of the nonlinear
operator (3.18), which causes the boundary conditions to be implemented in the weak sense
(See Section 2.4.2).

3.5 Extension of the model to networks

3.5.1 Network model and edge boundary conditions at junctions

We now describe the extension of the velocity evolution equation to networks. On each
edge, the velocity field evolves according to (3.17), with an important modification in the
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computation of the points at the boundary. Instead of implementing ghost points, it is
natural to require the left and right boundary conditions to be a function of upstream and
downstream edges, so that the velocity field can be evolved across the network.

We model the highway transportation network as a directed graph consisting of vertices
ν ∈ V and edges e ∈ E . Let Le be the length of edge e. The spatial and temporal variables
are x ∈ [0, Le], and t ∈ [0,+∞) respectively. In order to model traffic flow across the
network, we define a junction j ∈ J as a tuple (νj, Ij, Oj) ⊆ V × E × E , consisting of a
single vertex νj ∈ V , a set of incoming edges indexed by ein ∈ Ij, and a set of outgoing edges
indexed by eout ∈ Oj.

In general, extending the velocity model to handle these networks is challenging because
one must prescribe a unique solution to the velocity Riemann problem on junctions, where
multiple road segments merge or diverge. In general, even with mass conservation and a
natural extension of the entropy condition, a unique solution to the Riemann problem in the
density domain is not guaranteed, and therefore a unique solution in the velocity domain is
not guaranteed either.

To illustrate the problem, let us consider the density Riemann problem for a junction with
one incoming edge (I = {1}) and to outgoing edges (O = {2, 3}), with initial conditions
given by ρ1(x, 0) = ρmax and ρ2(x, 0) = ρ3(x, 0) = 0, shown in Figure 3.2a. Let us also
assume that the flux functions on each edge are the same.

An infinite number of solutions exist which satisfy the LWR PDE on each edge. For
example, Figure 3.2b shows one such solution, where no vehicles pass through the vertex.
The solution is given by ρ1(x, 0) = ρmax and ρ2(x, 0) = ρ3(x, 0) = 0. Because the data is
piecewise constant on each edge, of the LWR PDE is trivially satisfied.

Other solutions can be constructed with vehicles passing through the vertex, shown in
Figure 3.2c and 3.2d. In Figure 3.2c, the maximal number of vehicles that can be sent from
the incoming edge are sent, but all vehicles are received by edge two, and none are received
by edge three. In this case, the solution satisfying the LWR PDE on each edge is given by

ρ1(x, t) =

{
ρmax if x < (Q′)−1(ρmax)t,

(Q′)−1(x
t
) otherwise

ρ2(x, t) =

{
(Q′)−1(x

t
) if x < (Q′)−1(0)t,

0 otherwise

ρ3(x, t) = 0

Figure 3.2d shows the opposite scenario, where all vehicles are sent to edge three, and none
are sent to edge two (the solutions of ρ2(x, t) and ρ3(x, t) are interchanged).

To resolve this nonuniqueness, several Riemann solvers in the density domain have been
proposed in the literature. The first solver is due to Holden and Risebro [40], which maximizes
a strictly convex function of the individual edge fluxes into and out of the junction, subject to
mass conservation. Because the mass conservation constraints are linear, and the objective
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(a) (b)

(c) (d)

Figure 3.2: Riemann problem for a diverge (a) initial condition; (b) a solution with no
vehicles crossing the junction; (c) a solution with all vehicles received by edge 2; (d) a
solution with all vehicles received by edge 3.

function is strictly convex, the solution to the Riemann problem is unique. In the context
of the discretized LWR PDE (cell transmission model), Daganzo [21] provides a unique
evolution of density where the total flux is maximized across the junction, subject to flow
allocation parameters which encode the proportion of flow from an incoming edge associated
to an outgoing edge. For diverge problems, a unique solution is constructed with the aid
of additional priority parameters which specify preference for flows from upstream edges
when a downstream link comes congested. Coclite, Garavello, and Piccoli [14] formalize this
Riemann solver in the continuous domain and show existence of a global solution using wave
front tracking [10]. A Riemann solver with internal state dynamics was also proposed by
Labacque [52], and a multilane solver was introduced by Herty and Klar in [37] to better
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model traffic flow through intersections. The incremental transfer principle introduced by
Daganzo [19] is a also Riemann solver which can be used to model exit and high occupancy
vehicle lanes, yielding more realistic flow dynamics at intersections. The interested reader
is referred to the recent book [29] for a detailed mathematical treatment of traffic flows on
networks.

In what follows, we summarize the Riemann solver [14, 21], which will be the basis of
our velocity model extension to networks.

We look for unique description of the evolution of the velocity dynamics at the junctions.
Following the conditions for uniqueness of [29], we present three physically motivated restric-
tions on the dynamics, namely (i) conservation of vehicles across the junction, (ii) vehicles
follow a set route across the junction, which define how the traffic flux from edges into the
junction are routed to the outgoing edges (iii) traffic flow across the junction is maximized.
Conditions (i) and (ii) imply that for the edge boundaries at the junction, boundary condi-
tions must hold in the strong sense. This creates an upper bound on the flows on each edge
into and out of the junction, which can be computed. By transforming these conditions into
the velocity domain, the velocity evolution at the junctions can be determined by solving a
linear programming problem.

Physical constraints

Consider a junction j with |Ij| incoming edges and |Oj| outgoing edges. First, we assume
that the junction has no storage capacity, so all vehicles which enter the junction must also
exit the junction. Conservation of the number of vehicles across the junction gives rise to the
constraint that the total flux into the junction must equal the total flux out of the junction:∑

ein∈Ij

Q̃ein (vein (Lein , t)) =
∑

eout∈Oj

Q̃eout (veout (0, t)) (3.21)

Next, we assume that the total volume of traffic entering from an incoming edge is
distributed amongst the outgoing edges according to an allocation parameter αj,ein,eout (t) ≥
0. The allocation matrix Aj∈ [0, 1]|Oj |×|Ij |, where Aj(eout, ein ) = αj,eout,ein , encodes the
aggregate routing information of the traffic across the junction. That is, for all vehicles
entering the junction j on edge ein , αj,eout,ein denotes the proportion of vehicles which will
exit the junction through edge eout. This proportion can be determined empirically using
historical origin-destination tables, or by analyzing the volumes of data collected near the
junction (See Figure 3.3a). Because the vertex has no storage capacity, the sum of allocated
flows from a fixed incoming link across all outgoing flows must be equal to one:∑

eout∈Oj

αeout,ein = 1 (3.22)

Note that constraints (i) and (ii) combined imply AjQ̃ein = Q̃eout . If we view the ex-
iting flows from the incoming edges of the junction as a boundary condition for an out-
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(a)

Figure 3.3: (a) Vehicle flows for the I80 – I580 diverge near Berkeley, California, obtained
from the PeMS system; (b) filtered time-varying allocation parameter for flow to I80.

going edge, then the physical constraint
∑

ein∈Ij
αeout,einQ̃ein = Q̃eout for each eout can be

interpreted as a requirement that strong boundary conditions must be imposed on eout.
But strong boundary conditions (i.e. equality) cannot always be imposed for an arbitrary

pair
(∑

ein∈Ij
αeout,einQ̃ein , Q̃eout

)
, so the statement of strong boundary conditions ((2.21)

and (2.22) for a concave flux) provides upper bounds on the admissible incoming and ad-
missible outgoing fluxes over which the flow is maximized (constraint (iii)). The maximum
incoming admissible flux into the junction from edge ein given a desired velocity vein to be
prescribed in the strong sense is denoted by γmax

ein
(vein) (resp. δmax

ein
(ρein) for a given density).

Similarly, the maximum outgoing admissible flux out of the junction from edge eout given
a desired velocity veout to be prescribed in the strong sense is denoted by γmax

eout (veout) (resp.
δmax
ein

(ρein) for a given density).
Thus the three conditions give rise to the following linear program for the fluxes (denoted

by the vector dummy variable ξ ∈ R|I|) on the incoming edges ein for junction j:

maximize 1T ξ
subject to Ajξ ≤ γmax

Oj

0 ≤ ξ ≤ γmax
Ij

(3.23)

where γmax
Ij :=

(
γmax
ein,1

, · · · , γmax
e
in,|Ij|

)
, γmax
Oj

:=

(
γmax
eout,1

, · · · , γmax
e
out,|Oj|

)
are the upper bounds

on the fluxes on the edges entering and exiting the junction, to be computed subsequently.
With the optimal solution to (3.23), denoted by ξ∗ein , the terms G̃ein

(
vnimax

, vnimax+1

)
and

G̃eout

(
vn−1, v

n
0

)
in the CTM-v (3.19) and (3.20) are given by:
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G̃ein

(
vnimax

, vnimax+1

)
= ξ∗ein (3.24)

G̃eout

(
vn−1, v

n
0

)
=
∑
ein∈Ij

αeout,einξ
∗
ein

(3.25)

We note that the solution to this linear program is not always unique. In fact, for
some instantiations of Aj, the gradient of the objective function may be normal to a facet
of the constraint set polytope, in which case all feasible points on the facet will obtain
the same objective value. This can be resolved with a technical condition on the coefficients
Aj [14, 29], to explicitly prevent this nonuniqueness. However, when multiple links merge into
a single link, additional priority constraints (detailed in [14, 21]) must be added to resolve
the nonuniqueness, in which case the optimization problem becomes an integer program.
Regardless, these optimization problems are small (typically only a few variables and less
than 10 contstraints) and can be solved quickly, even by brute force.

Computation of the maximum admissible flux

First we introduce a function τ(·), used to describe the domain for which we obtain
admissible fluxes Q(·). For a continuous strictly concave C0 flux function with Q(0) =
Q(ρmax), the mapping from flux Q(ρ) to ρ is double valued, with one value above and one
value below the critical value ρc. For a given ρ, τ(ρ) is the map which produces the alternate
ρ for the same flux. The function is expressed as follows:

Q(τ(ρ)) = Q(ρ) ∀ ρ ∈ [0, ρmax]

τ(ρ) 6= ρ ∀ρ ∈ [0, ρmax]\{ρc}

Given that Q(·) is in C0 ([0, ρmax]), strictly increasing in [0, ρc) and strictly decreasing in
(ρc, ρmax] the following holds:

0 ≤ ρ ≤ ρc ⇔ ρc ≤ τ(ρ) ≤ ρmax

We now define the upper bounds on the flux entering the junction from each incoming
edge, and the flux leaving the junction on each outgoing edge. More precisely, for each
incoming and outgoing link, we seek to find the upper bound on the admissible flux entering
(resp. leaving) the link such that strong boundary conditions are imposed on the boundaries
for all edges at the vertex. First we derive these admissible fluxes δeout(·) (resp. δein (·)) in
terms of the trace of the density ρeout(0, t) (resp. ρein(L, t)), then apply the velocity inversion
to arrive at admissible fluxes γeout (·) (resp. γein (·)) in terms of the trace of the velocity
veout(0, t) (resp. vein(L, t)).

For a strictly concave flux Q(·) with a maximum obtained at the critical value ρc we
categorize the values of ρ(0, ·) and ρl(·) for which (2.21) holds:
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for a.e. t > 0, ρ(0, t) = ρl(t) iff{
ρ(0, t) ∈ [0, ρc] and ρl(t) ∈ [0, ρc]

xor ρ(0, t) ∈ (ρc, ρmax] and ρl(t) ∈ [0, τ(ρ(0, t))) ∩ {ρ(0, t)}
(3.26)

Recalling that incoming admissible fluxes are the set of fluxes corresponding to boundary
data for the outgoing links which can be imposed in the strong sense, we can define the set
of incoming admissible fluxes on an outgoing edge as:

• For ρeout(0, t) ∈ [0, ρc,eout ]:

δeout (ρeout(0, t)) ∈ Πe out (ρeout(0, t)) :=
{
Q̂ : ∃ρ̂ ∈ [0, ρc,eout ] ; Q̂ = Q (ρ̂)

}
(3.27)

where ρc,eout is the critical density on the edge eout.

• For ρeout(0, t) ∈ [ρc,eout , ρmax,eout ]:

δeout (ρeout(0, t)) ∈ Πe out (ρeout(0, t)) :={
Q̂ : ∃ρ̂ ∈ {ρeout(0, t)} ∪ [0, τ (ρeout(0, t))) ; Q̂ = Q (ρ̂)

}
(3.28)

Similarly, (2.22) can be rewritten in terms of outgoing admissible fluxes for incoming
edges as:

• For ρein(Lein , t) ∈ [0, ρc,ein ]:

δein (ρein(Lein , t)) ∈ Πein (ρein(Lein , t)) :={
Q̂ : ∃ρ̂ ∈ {ρein(Lein , t)} ∪ (τ(ρein(Lein , t), ρmax,ein ] ; Q̂ = Q (ρ̂)

}
(3.29)

where ρmax,ein is the maximum density on the edge ein.

• For ρein(Lein , t) ∈ [ρc,ein , ρmax,ein ]:

δein (ρein(Lein , t)) ∈ Πein (ρein(Lein , t)) :={
Q̂ : ∃ρ̂ ∈ [ρc,ein , ρmax,ein ] ; Q̂ = Q(ρ̂)

}
(3.30)

If the admissible flux is maximized, and written in terms of velocity, we obtain:

γmax
eout (veout(0, t)) =

{
Q̃(vc,eout) if veout(0, t) ∈ [vc,eout , vmax,eout ]

Q̃ (veout(0, t)) if veout(0, t) ∈ [0, vc,eout ]

and
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γmax
ein

(vein(Lein , t)) =

{
Q̃ (vein(Lein , t)) if vein(Lein , t) ∈ [vc,ein , vmax,ein ]

Q̃ (vc,ein) if vein(Lein , t) ∈ [0, vc,ein ]

which are the upper bounds used in (3.23).

Example 10 (Maximum admissible flux - Smulders model). The maximum outgoing ad-
missible flux is given as:

γmax
eout (veout(0, t)) =



ρmax

(
1− vc,eout

vmax

)
vc,eout

if veout(0, t) ∈ [vc,eout , vmax,eout ]

ρmax

(
1

1+
veout (0,t)

wf

)
veout(0, t)

if veout(0, t) ∈ [0, vc,eout ]

(3.31)

and the maximum incoming admissible flux is given as:

γmax
ein

(vein(Lein , t)) =



ρmax

(
1− vein (Lein ,t)

vmax

)
vein(Lein , t)

if vein(Lein , t) ∈ [vc,ein , vmax,ein ]

ρmax

(
1

1+
vc,ein
wf

)
vc,ein

if vein(Lein , t) ∈ [0, vc,ein ]

(3.32)

3.5.2 Discrete CTM-v network algorithm

The CTM-v network algorithm is obtained by sequentially applying the CTM-v scheme
on each link of the network and solving the junction conditions as presented in the previous
section, which includes solving the LP (3.23) posed earlier. The algorithm as illustrated in
Figure 3.4.

The network is thus marched in time and consists in a large scale discrete dynamical
system which can be used for data assimilation and inverse modeling. Given the velocity
field at each discrete point i ∈ {0, · · · , imax} on all edges of the network

vn :=
[
vn0,e0 , · · · , v

n
imax,e0

, · · · , vn0,e|E| , · · · , v
n
imax,e|E|

]
the velocity at time tn+1∆T is given by:

vn+1 =M(vn, θn) (3.33)

where θn represents the parameters of the velocity function on each link (vmax, vc, wf ), flow
allocation and priority parameters at the junctions, and boundary data at the network
boundaries, and M(·, ·) denotes the following update algorithm:
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Figure 3.4: The discrete network velocity evolution equation proceeds into steps. First, the
Riemann problem at each vertex is solved to determine the strong boundary conditions for
each edge. Then, for each edge the velocity is evolved according to (3.17).

1. For all junctions j ∈ J :

(a) Compute γnimax,ein

(
vnimax,ein

)
∀ein ∈ Ij, and γn0,eout

(
vn0,eout

)
∀eout ∈ Oj us-

ing (3.31) and (3.32).

(b) Solve the LP (3.23) for ξ∗, and update G̃ein

(
vnimax

, vnimax+1

)
and G̃eout

(
vn−1, v

n
0

)
through (3.24) and (3.25).

2. For all edges e ∈ E : Compute vn+1
i,e ∀i ∈ {1, · · · , imax,e} according to the CTM-

v (3.17), (3.19), and (3.20).
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Chapter 4

Velocity estimation

4.1 Introduction

The goal of this chapter is to build an estimator to reconstruct the evolution of the
velocity field on the highway, given the velocity measurements from GPS devices such as
mobile phones, and test its performance on experimental data obtained from a large one-day
field experiment known as Mobile Century. The new contributions in this chapter are as
follows.

• State space formulation. We pose the velocity estimation problem in state space
form. The resulting system has a nonlinear and nondifferentiable evolution equation,
but contains a linear observation equation. This is an improvement over a nonlinear
nondifferentiable evolution equation with a nonlinear observation equation when the
discretized LWR PDE is used directly as an evolution equation.

• Solution with ensemble Kalman filtering. The resulting state estimation problem
is solved using ensemble Kalman filtering, representing the first application of the
technique for traffic monitoring.

• Assessment on experimental data. We assess the performance of the estimation
algorithm on experimental data collected from the Mobile Century experiment. A
prototype version of the velocity estimation algorithm ran live during the experiment,
broadcasting results in real–time to monitors of the experiment.

The chapter is organized as follows. In Section 4.2 we pose the estimation problem in
state space form, we describe the ensemble Kalman filtering technique and we compare it to
extended Kalman filtering. We describe a mechanism for sampling GPS data from mobile
phones in a privacy aware environment using virtual trip lines in Section 4.3, and describe a
100 vehicle field experiment known as Mobile Century. Finally, we conclude the chapter with
experimental velocity estimation results from the Mobile Century experiment in Section 4.4.
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4.2 Development of a recursive velocity estimation al-

gorithm

4.2.1 State–space model

Before we begin with the estimation problem using the CTM–v model derived in Chap-
ter 3, let us consider a traffic estimation problem in a more general form, in order to charac-
terize the errors in the CTM–v model. We start by introducing a true state vector z̃n, with
dimension two times the number of vehicles in the transportation network at time n. In
this vector, half of the elements correspond to the true positions of the individual vehicles,
while the other half of the elements correspond to the velocities of the vehicles. This vector
evolves according to

z̃n+1 = M̃
(
z̃n, θ̃n, η̃n

)
(4.1)

where M̃(·, ·, ·) represents a function which maps the true previous position and velocity of
all vehicles z̃n to their true position and velocity at the next timestep z̃n+1, with the help of
parameters such as driver behavior, vehicle performance characteristics, road geometry, etc.
represented by θ̃n, and some stochastic input given by η̃n. If the model of the true evolution
M̃(·, ·, ·), the parameters θ̃n, and the stochastic input η̃n were known, we could completely
characterize the traffic evolution throughout the network for all time by evolving (4.1) for-
ward. Unfortunately, each of the preceding components are unknown in practice. Thus,
M̃(·, ·, ·) is an abstraction which represents the true, error-free model of traffic evolution,
but which we cannot instantiate due to its unknown form and inputs.

The true state vector representing all vehicle positions and velocities is related to the
average traffic velocity vector in each discrete segment on the network vn, which is the
vector we are interested in estimating, by:

vn+1 = P (z̃n+1)

where P (·) is an averaging operator which computes the average traffic velocity in each
discrete segment from the individual vehicles’ velocities in each discrete segment. Note then
that the average velocity can be computed according to

vn+1 = P
(
M̃
(
z̃n, θ̃n, η̃n

))
Unfortunately, since M̃(·, ·, ·) and its inputs are unknown, we need another evolution

equation which is known to approximate this model. We will use the network velocity evolu-
tion algorithmM(·, ·), given in Section 3.5.2. This algorithm consists of the following steps.
For each vertex in the network, a linear program is solved such that strong boundary con-
ditions are imposed on the incoming and outgoing edges of the junction. Next, the velocity



CHAPTER 4. VELOCITY ESTIMATION 50

field is updated according to the numerical scheme outlined earlier (which is nonlinear and
non-differentiable). Then our approximate model is derived as follows:

vn+1 = P
(
M̃
(
z̃n, θ̃n, η̃n

))
=
[
P
(
M̃
(
z̃n, θ̃n, η̃n

))
−M (P (z̃n), θn)

]
+M (P (z̃n), θn)

=M (P (z̃n), θn) + η̂n

=M (vn, θn) + η̂n (4.2)

The term θn represents the model parameters, and η̂n represents the error due to the
use of the approximate model in place of the unknown true model. Interestingly, M (·, ·) is
derived from a conservation law, and the principle of conservation of vehicles has no error.
Instead, η̂n appears through (i) the fundamental assumption of the LWR PDE, which is that
velocity can be described as a function of density only, (ii) the nonuniqueness of solutions
to conservation laws, and the choice of an entropy condition to isolate a unique solution,
and (iii) the nonuniqueness of generalized Riemann solvers at junctions. It is not caused by
uncertain boundary data or model parameters, which we treat next.

In practice, boundary data and model parameters θn are uncertain. If we choose to
replace the true θn with an estimate θ̄n, then (4.2) is modified by:

vn+1 =M (vn, θn) + η̂n

=
[
M (vn, θn) + η̂n −M

(
vn, θ̄n

)]
+M

(
vn, θ̄n

)
=M

(
vn, θ̄n

)
+ ηn (4.3)

Now the term ηn in (4.3) represents both the errors in the approximate model, and the errors
caused by the incorrect model parameters θ̄. Unfortunately the preceding derivation of (4.3)
shows that the true modelM(·, ·, ·) is needed to compute the statistics of these errors. This
problem can be addressed in part through the aid of a more accurate but computationally
more intensive model, see for example [44, 45], or by estimating the errors, for example
by ηn ∼ (0,Qn), a zero–mean, white state noise with covariance Qn. The latter is the
approach we will use for estimation of velocity fields from mobile phone data. The zero
mean assumption and white noise assumption are introduced to simplify the presentation of
various Kalman filtering algorithms, and can be relaxed with suitable adjustments made to
the Kalman filtering algorithm and state space formulation [3, 26, 66].

We address the process by which velocity measurements are obtained from GPS equipped
vehicles similarly. Let H̃n be a linear operator which maps the velocity of vehicles which
send measurements to the GPS velocity value measured by the vehicle at time n, and let
yn denote the GPS measurements which are received at time n. The network observation
model is given by

yn = H̃nz̃n + χ̃n (4.4)
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where χ̃n is the measurement error of the GPS device in each vehicle.
Several comments can be made about (4.4). First, note that H̃n is in fact a linear oper-

ator, since it simply indicates the subset of vehicles from which measurements are obtained.
Second, in order for H̃n to be defined, vehicles must report a unique ID along with the veloc-
ity measurement, so that each measurement may be correctly mapped to the correct vehicle.
If the identifiers are withheld from the measurements, for example for privacy reasons, then
H̃n is unknown and a data association problem must be solved to determine H̃n. The use of
GPS position information may help solve the data association problem but does not replace
a known H̃n. Finally, note that the GPS error χ̃n may be correlated in time and across
vehicles [59].

Because we are working with an aggregate state vn, we derive an equivalent form of (4.4)
as follows:

yn =
[
H̃nz̃n + χ̃n −HnP (z̃n)

]
+ HnP (z̃n)

= HnP (z̃n) + χn

= Hvn + χn (4.5)

The linear observation matrix Hn ∈ {0, 1}pn×κ encodes the pn discrete cells on the high-
way for which the velocity is observed during discrete time step n and κ =

∑
e∈E(imax,e+1) is

the corresponding (total) number of cells in the network. The term χn now includes both the
GPS error and the sampling error introduced when the sample vehicle’s velocity is different
from the average velocity of all vehicles in the discrete road segment from which the measure-
ment is obtained. Note also that determination of the error statistics χn requires knowledge
of the true state z̃n, although approximate statistics could be computed through the use
of microscopic simulation models and enhanced error modeling techniques [44, 45]. In this
work, we approximate the statistics with a white, zero-mean observation noise χn ∼ (0,Rn),
although again these assumptions can also be relaxed [3].

Interestingly, the term Hn itself may contain error, even in the macroscopic setting.
This is because the GPS position of the vehicle is used to determine the location of the
measurement, and therefore it determines the corresponding state vector associated to the
measurement (which is stored in Hn). The amount of error in Hn is determined by the
amount of error in the GPS position, the size of the discretized road segments, and the
proximity of the measurement to be discretized road segment boundaries. For example, if a
measurement is received exactly at the boundary between to discrete road segments, then it
is not clear to which element of the state vector the measurement should be mapped. This
difficulty is circumvented in our application through the use of a spatial sampling technique
known as a virtual trip line [38], which is a virtual marker in the form of a line segment
encoded by two latitudes longitude coordinates, which triggers a measurement from a mobile
phone when it is crossed. By careful placement of the virtual trip lines, and by employing
virtual trip line specific filters, the amount of error in Hn can be made negligible, at the cost
of perhaps fewer measurements. We describe virtual trip lines in more detail in Section 4.3.
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We briefly describe an alternate formulation for estimating velocities, using the discretized
LWR PDE directly, to compare against (4.3) and (4.5). Using a similar approach to the
velocity derivation, the density ρn evolves according to

ρn+1 =Mρ

(
ρn, θ̄nρ

)
+ ηnρ (4.6)

yn = HnV (ρn) + χnρ (4.7)

where Mρ(·, ·) is the discretized LWR PDE, θ̄nρ are the model parameters and boundary
data, and ηnρ is the error in the conservation law associated with the approximation of
velocity as a function of density v = V (ρ) only, the nonuniqueness of entropy solutions to
the LWR PDE, and the nonuniqueness of the Riemann problems at junctions. The term
yn is again the vector of GPS velocity measurements, Hn is the same linear operator which
maps the measurements to the corresponding elements in the state vector, and χnρ is the
error associated with the GPS error, the sampling error, and errors in the velocity function
approximation v = V (ρ).

When comparing the velocity formulation (4.3) and (4.5) to the density formulation
(4.6) and (4.7), several observations can be made.

• Both the evolution equation for velocity (4.3) and the evolution equation for den-
sity (4.6) are in general nonlinear and nondifferentiable, due to the min operator in
the Godunov discretization schemes (2.32) and (3.16), and in particular the existence
of standing shockwaves as solutions to the LWR PDE (see Section 2.5.2 for the proof
that the model is not differentiable the around this state). This comes in addition
to the potential nondifferentiability of the flux function itself, for example like in the
Newell–Daganzo flux function. Moreover, the generalized Riemann solver at junctions
takes the form of an optimization problem (often a linear program), which also is not
differentiable in general.

• Both models make the same fundamental assumption that the velocity can be repre-
sented as a function of density only. The velocity evolution equation places a further
restriction on the velocity function, requiring that the velocity function the invertible.
Note, however, when the velocity function is not invertible, the observation equation
(4.7) makes estimating the density from velocity measurements more ill posed.

• By construction, both models use the same entropy solution and the same Riemann
solver at junctions.

• While the observation model for the velocity state (4.5) is linear, the observation
model for the density state (4.7) is linear only when the velocity function is linear (i.e.
Greenshields). For nonlinear velocity functions, the observation equation would have
to be linearized to fit a standard Kalman filtering framework.
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• The observation model for the density state (4.7) relies on the velocity function V (·),
as does the density evolution equation (4.6). Thus, in this formulation the model error
ηnρ in the observation error χnρ are correlated. This is not the case in the velocity
formulation, where the errors ηn and χn are independent.

In the remainder of this chapter, we elect to use the velocity evolution equation (4.3) and
observation equation (4.5) due to the linearity of (4.5). As a possible extension of this work,
it would be interesting to compare how the different formulations perform in practice.

4.2.2 Extended Kalman filtering for nonlinear systems

If equation (3.17) was differentiable in vn, so would be the operator M(·, ·) in (4.3), in
which case the estimate for the state vn could be obtained using the following traditional
extended Kalman filtering equations:

• Forecast step (Time-update):

vnf =M
(
vn−1
a , θ̄n−1

)
Pn
f =Mn−1

L Pn−1
a

(
Mn−1

L

)T
+ Qn−1 (4.8)

where vnf (resp. vna ) is the forecast (analyzed) state estimate at time n, andML is the
Jacobian matrix of mapping M (also known as the tangent linear model) defined as

Mn
L =

∂M(vna , θ̄
n)

∂vna
(4.9)

• Analysis step (Measurement-update):

vna = vnf + Gn
(
yn −Hnvnf

)
(4.10)

Pn
a = Pn

f −GnHnPn
f (4.11)

Gn = Pn
f (Hn)T

(
HnPn

f (Hn)T + Rn
)−1

(4.12)

where Pn
f (resp. Pn

a) is the error covariance of the forecast (analyzed) state at time n.

The initial conditions for the recursion are given by v0
a = v0 and P0

a = P0.

4.2.3 Ensemble Kalman filter

The ensemble Kalman filter was introduced by Evensen in [26] as an alternative to
EKF to overcome specific difficulties with nonlinear state evolution models, including non-
differentiability of the model and closure problems. Closure problems refer to the fact that
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Figure 4.1: Illustration of the difference between extended Kalman filtering and ensemble
Kalman filtering, and the iterative process predict–update.

in EKF, it is assumed that discarding the higher order moments from the evolution of the
error covariance in (4.8) yields a good approximation. In cases in which this linearization
approximation is invalid, it can cause an unbounded error variance growth [26]. To tackle
this issue EnKF uses Monte Carlo (or ensemble integrations). By propagating the ensemble
of model states forward in time, it is possible to calculate the mean and the covariances
of the error needed at the analysis (measurement-update) step [11] and avoid the closure
problem. Furthermore, a strength of EnKF is that it uses the standard update equations of
EKF, except that the gain is computed from the error covariances provided by the ensemble
of model states. Figure 4.1 illustrates the difference.

EnKF also comes with a relatively low computational cost. Namely, usually a rather
limited number of ensemble members is needed to achieve a reasonable statistical convergence
[11].

In traditional Kalman filtering, the error covariance matrices are defined in terms of
the true state as Pf = E[(vf − vt)(vf − vt)T ] and Pa = E[(va − vt)(va − vt)T ] where E[·]
denotes the average over the ensemble, v is the model state vector at particular time, and the
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subscripts f , a, and t represent the forecast, analyzed, and true state, respectively. Because
the true state is not known, ensemble covariances for EnKF have to be considered. These
covariance matrices are evaluated around the ensemble mean v̄, yielding Pf ≈ Pens,f =
E[(vf − v̄f )(vf − v̄f ))T ] and Pa ≈ Pens,a = E[(va − v̄a)(va − v̄a)T ] where the subscript ens
refers to the ensemble approximation. In [11], it is shown that if the ensemble mean is used
as the best estimate, the ensemble covariance can consistently be interpreted as the error
covariance of the best estimate. For complete details of derivation of the EnKF algorithm,
the reader is referred to [26].

The ensemble Kalman filter algorithm can be summarized as follows [11, 26]:

1. Initialization: Draw K ensemble realizations v0
a(k) (with k ∈ {1, · · · , K}) from a

process with a mean speed v̄0
a and covariance P0

a.

2. Forecast : Update each of the K ensemble members according to the CTM-v for-
ward simulation algorithm in Section 3.5.2. Then update the ensemble mean and
covariance according to:

vnf (k) =M
(
vn−1
a (k), θ̄n−1

)
+ ηn(k) (4.13)

v̄nf =
1

K

K∑
k=1

vnf (k) (4.14)

Pn
ens,f =

1

K − 1

K∑
k=1

(
vnf (k)− v̄nf

) (
vnf (k)− v̄nf

)T
(4.15)

3. Analysis : Obtain measurements, compute the Kalman gain, and update the net-
work forecast:

Gn
ens = Pn

ens,f (Hn)T
(
HnPn

ens,f (Hn)T + Rn
)−1

(4.16)

vna (k) = vnf (k) + Gn
ens

(
yn(k)−Hnvnf (k) + χn(k)

)
(4.17)

4. Return to 2.

In (4.17), an important step is that at measurement times, the measurement vector yn

is represented by an ensemble indexed by k. This ensemble has the actual measurement
as the mean and the variance of the ensemble is used to represent the measurement errors.
This is done by adding perturbations χn(k) to the measurements drawn from a distribution
with zero mean and covariance equal to the measurement error covariance matrix Rn. This
ensures that the updated ensemble has the correct analyzed covariance [11].
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4.2.4 Large scale real–time implementation

The ensemble Kalman filter algorithm presented in the previous section is in a frame-
work in which all of the unknown state variables on each edge in the network are updated
simultaneously. This introduces the following problems. First, because the state covariance
is represented through a limited number of ensemble members, non-physical correlations
may arise. This means that the correlation matrix may incorrectly show correlation between
distant parts of the highway network which do not correlate in practice. Secondly, the frame-
work described previously requires the forecast error covariance in (4.15) to be computed for
the entire highway network, for use in computing the Kalman gain in (4.16). When operating
on large scale networks such as the San Francisco Bay Area, CA, the loading the covariance
matrix into memory can easily require more than 2 GB of space, creating computational
limitations for implementation.

To circumvent the above mentioned problems for practical implementations, we employ
a covariance localization method. This approach limits the correlation between the velocity
states on all edges in the network. For a given edge e, only nearby links (upstream and
downstream in the network) can exhibit correlation, thereby removing correlation across
distant parts of the network. These techniques have also been implemented for oceanography
data assimilation problems (see e.g. [60]).

For the large scale traffic network estimation problem, localization also provides a com-
putationally efficient way to update the state variables at the measurement update time
in (4.16)–(4.17). Namely, due to the localization, the computation of the covariance matrix
in (4.15) is transformed into a computation of numerous small localized covariance matri-
ces for each edge in the network. These small scale covariance matrices are computed for
each edge given its neighboring edges on which the correlation is assumed to be physically
meaningful. Finally, this allows for the distributed solving of the update equations.

For the localization, we introduce a localization operator Le for each edge e, which is
constructed at the initialization stage. This operator indicates which velocity states on the
other edges of the network are allowed to have correlation with the velocity state on the eth
edge. The implementation of the EnKF algorithm described previously can be modified for
localization by replacing the measurement update equations (4.15)-(4.17) with the following
sub-algorithm:
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For each edge e ∈ E :

1. Using the localization operator Le, compute the localized forecast error covariance:

Pn
ens,f,e =

1

K − 1

K∑
k=1

Le
(
vnf (k)− v̄nf

)
×(

Le(vnf (k)− v̄nf )
)T

(4.18)

2. Analysis : Obtain measurements ynmeas,e from edges that are indicated in Le, com-
pute the Kalman gain, and update the the local forecast:

Gn
ens,e = Pn

ens,f,e (Hn
e )T ×(

Hn
eP

n
ens,f,e (Hn

e )T + Rn
e

)−1

(4.19)

vna,e(k) = Le
(
vnf (k)

)
+

Gn
ens,e

(
ynmeas,e −Hn

e v
n
f (k) + χne (k)

)
(4.20)

3. Return to 1.

It is worth noting that in practice, the operator Le does not need to be constructed as
a matrix in the computer memory and subsequently be used to do the relatively demanding
matrix multiplications. In other words, the eth edge has references to the forecasts and mea-
surements of its neighboring edges needed to construct the localized forecast error covariance
matrix.

A second performance optimization is achieved by avoiding construction of the covariance
matrices directly. When the number of ensemble members is small with respect to the total
state space, the covariance matrix Pn

ens,f is low rank, and therefore significant computational
savings can be achieved by working with a Cholesky decomposition of the covariance matrix.
Algorithmic optimizations to the ensemble Kalman filter are explained in detail in the tutorial
article [25], complete with pseudocode. For implementation in the Mobile Millennium system
at UC Berkeley [85], we follow the implementation optimizations of [25].

4.3 Experimental setup

In this section, we describe how GPS velocity data can be obtained from mobile phones,
using a technique known as virtual trip lines. This technique is implemented on a one-
day field experiment, known as Mobile Century, which provides experimental data to assess
the velocity estimation algorithm using ensemble Kalman filtering and the discrete velocity
evolution equation.
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4.3.1 The Mobile Century field experiment (February 8, 2008)

Nicknamed the Mobile Century experiment, a prototype privacy-aware data collection
system was launched on February 8, 2008 and used to estimate traffic conditions for a day
on I-880 near Hayward, CA (see Figure 4.2) With the help of 165 UC Berkeley students,
100 vehicles carrying Nokia N95 phones drove repeated loops of 6 to 10 miles in length
continuously for 8 hours. This section of highway was selected specifically for its complex
traffic properties, which include alternating periods of free-flowing, uncongested traffic, and
slower moving traffic during periods of heavy congestion. These vehicles represented approx-
imately 2% to 5% of the total volume of traffic on the main line of the highway during the
experiment.

Figure 4.2: Mobile Century experiment site in the San Francisco Bay Area. Vehicles drove
a subset of an 11.4 mile stretch of I880.

During the experiment, the 100 vehicles were divided into three groups, and each group
covered a different subset of the stretch of freeway for experimental reasons. For example,
one third of the vehicles drove north starting at Stevenson Blvd. to W. Tennyson Rd., before
exiting, turning around, and driving south from W. Tennyson Rd. to Stevenson Blvd. A
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second group of vehicles drove in loops covering the freeway between Mowry Ave. and CA
92 / San Mateo Br., while the third group covered the stretch between Thorton Ave. and
Winton Ave. In the afternoon, the three groups drove a shorter stretch of roadway to main-
tain a penetration rate between 2-5% as the traffic volume increased. When the experiment
was concluded, it was identified that 77 of the cell phones running the experimental soft-
ware were able to properly record the probe vehicles’ positions and velocities. In addition to
sending virtual trip line measurements, a local log on each device stored the position, time,
and estimated speed at 3 second intervals for experiment analysis purposes. Thus, the GPS
data recorded from these 77 vehicles is available for input to compute velocity estimates.
The data obtained from these vehicles on the northbound stretch of roadway is shown in
Figure 4.3a.

Because of privacy constraints, the full trajectories of the vehicles are never sent to
the traffic estimation system. Instead, measurements are obtained from the mobile devices
using virtual trip lines (VTLs) [38], which are virtual geographic line segments placed on
the roadway. When a vehicle trajectory intersects a VTL, the phone reports its velocity to
the system.

The section is also monitored with 17 inductive loop detectors, which are processed by
the PeMS system to produce speed estimates every five minutes [1]. To construct a velocity
contour (Figure 4.3b), the roadway is discretized into 17 links centered around the detectors.
A complete description of the experiment and comparison of the VTL data and PeMS data
can be found in [36]. The data collected during the experiment is downloadable from the
project website [85].

During the experiment at approximately 10:30 am, a multiple car accident created signif-
icant unanticipated congestion for northbound traffic south of CA-92 (see Figure 4.3a). The
California Highway Patrol reported an incident located at postmile 26.64 at 10:27 am, lasting
34 minutes [1], although GPS readings in Figure 4.3a show slowdowns in the area as early
as 10:10 am. An earlier version of the EnKF CTM-v algorithm, running in real-time during
the experiment, detected the accident’s resulting bottleneck and corresponding shockwave
[80], and broadcast the results to the web.

4.3.2 Sampling and data collection

A variety of sampling techniques can be used to collect data from GPS enabled mobile
devices. In the case of the Nokia N95, the embedded GPS chip-set is capable of producing
a geo-position (latitude, longitude, altitude) every three seconds. From this position data,
an estimate of the velocity is produced in software at the same frequency. Over time, this
vehicle trajectory and velocity information produces a rich history of the dynamics of the
vehicle and the velocity field through which it evolves.

While this level of detail is particularly useful for traffic estimation, it can be extremely
privacy invasive, since the device is ultimately carried by a single user. Even if personally
identifiable information from the data is replaced with a randomly chosen ID through a
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(a) (b)

Figure 4.3: I-880N experiment data. (a) Vehicle GPS logs stored locally on the phone.
(b) PeMS velocity contour plot. Color denotes speed in mph. x-axis: time of day. y-axis:
postmile.

process known as pseudo-anonymization, it is still possible to reidentify individuals from
the trajectory data. For example, these pseudo-anonymous trajectories have been combined
with free, publicly available data sets to determine the addresses of participants’ homes [39].

The transmission of high frequency data without regard to location also wastes resources
throughout the system, which can pose scalability problems. In addition disclosing sensitive
information, the trajectory information on small roadways near users homes are of lower
value to the general commuting public than major thoroughfares such as interstates. Thus,
collection of low utility and highly sensitive data should be avoided when sampling using
mobile devices.

A variety of methods can be used to address these problems. To manage privacy concerns,
in addition to pseudo-anonomization of the trajectory data, the data can be further degraded
until a sufficient level of privacy is attained. Common degradation approaches include (i)
spatial obfuscation (ie blocking data collection from particular regions, such as home), (ii)
increasing uncertainty in the data through noise addition, and (iii) location discretization
approaches, which round the measurement to the nearest discrete grid point. The tradeoffs
between the measurement utility and privacy under these degradation approaches have been
analyzed with experimental data [48] and can be cast as a sampling strategy optimization
problem [47].

The alternative sampling strategy which is implemented in this work is based on VTLs [38],
which act as spatial triggers for phones to collect measurements and send updates. Each
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VTL is composed of two GPS coordinates which make a virtual line drawn across a road-
way of interest. Instead of periodic sampling in time, VTLs control disclosure of speed and
location updates by sampling in space, creating updates at predefined geographic locations
on roadways of interest.

In this sampling strategy, mobile devices monitor their speed and location using GPS
and use the locally stored VTLs to determine when a VTL crossing occurs. When the phone
intersects a VTL, the device can probabilistically send an update to a back end server with
anonymized position, speed and direction information. The device may also probabilistically
send the travel time observed between two consecutive trip lines.

A unique feature of this sampling strategy is that data points are only identified through
the ID of the VTL, and not that of the mobile device which generated the update, so
no privacy-invasive extended trajectories are collected. Through careful placement of trip
lines, the system better suited to manage data quality and privacy than through a uniform
temporal sampling interval.

4.3.3 System architecture

A prototype system architecture was implemented to test a VTL based sampling strategy
(shown in Figure 4.4). The system consists of four layers: GPS-enabled smartphones in
vehicles (driving public), a cellular network operator (network operator), cellular phone
data aggregation and traffic estimation (Nokia/Berkeley), and information dissemination
(Info Consumers). On each participating mobile device (or client), an application is executed
which is responsible for the following functions: downloading and caching trip lines from the
VTL server, detecting trip line traversal, and filtering measurements before transmissions to
the service provider. To determine trip line traversals, the device checks if the line between
the current GPS position and the previous GPS position intersects with any of the trip lines
in its cache. Upon traversal, the mobile device creates an encrypted VTL update. The
update comprises of a speed reading, timestamp, the trip line ID, and the of the direction
trip line crossing. These VTL updates are transmitted to the ID proxy server over a secure
channel.

Note that all data packets transmitted from the mobile device, regardless of the applica-
tion (traffic, email, etc), must contain the mobile device identification information for billing
by the network provider. Thus, in the Mobile Century system, an ID proxy server is used
to first authenticate each client to prevent unauthorized updates, then remove the mobile
device identification information from the data packets. It then forwards the anonymized
updates to the VTL server. Since the VTL update is encrypted with the VTL server’s public
key (RSA encryption), the ID proxy server cannot access the VTL update content. It only
has knowledge of which phone transmitted a VTL update, but no knowledge of the phone’s
position or speed information. Thus we prevent any single entity from observing both the
identification data required by the network operator, and the sensing data. See [38] for a
more detailed description of privacy protection in VTL based traffic monitoring.
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Figure 4.4: Mobile Century system architecture overview. The system consists of vehicles
equipped with GPS-enabled smartphones, a cellular network provider, data collection in-
frastructure and traffic estimation, and information display. A live tracking infrastructure
(shown in dashed green) was also required for the safety of the UC Berkeley student drivers
during this experiment, but it is not part of the core system (shown in solid black).

The VTL server stores all trip lines in a VTL database and distributes trip lines within a
given region to a mobile device upon receiving a VTL download request for that region. The
VTL server also aggregates updates from a large number of probe vehicles in VTL update
database and pushes the data to UC Berkeley algorithms for data assimilation (including the
CTM–v EnKF algorithm), which run on a traffic estimation server. An estimate manager
in the traffic estimation server monitors the performance of the various algorithms and
transmits the resulting traffic estimates with highest confidence to the traffic report server.

The traffic report server then sends data to information consumers through a mapping
interface on a web site. During the Mobile Century experiment, large displays were used
on the experiment site to show the live traffic estimate. In a later version of the system
developed for the Mobile Millennium project, the traffic information is also be accessible
from the mobile devices running a traffic data collection client [85].
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Figure 4.5: Road geometry of I-880N between Decoto Rd. (postmile 20.9) to the south
and Winton Ave. (postmile 27.7) to the north. Arrows represent ramp entrance and exit
locations, numbers represent the number of lanes on each of the 13 links.

The current VTL implementation generates approximately 1KB of update data for every
two minutes per client while driving on a major road. Assuming an average two hours of
driving per day on a major road, we expect the total data transfer is 60KB per day. The
database servers can easily scale to large number of client updates since the bandwidth and
the total data storage demands are rather small by current information industry standards.

4.4 Experimental Results

4.4.1 Numerical implementation

The network implemented for the results presented in this article is a 6.8 mile stretch
of I-880N from the Decoto Rd. entrance ramp at postmile 20.9, to the Winton Ave. exit
ramp at postmile 27.7. The network model consists of 13 edges and 14 junctions (six exit
ramps, seven entrance ramps, and one lane drop), shown in Figure 4.5. The following link
parameters are selected for this experiment: ρmax = 200 vehicles per lane per mile, vmax =
70 mph, and wf= 13 mph. Each link is discretized into equal maximal length cells such
that ∆x ≤ 0.11 miles and a time step ∆t = 5 seconds is used to ensure numerical stability.
The mainline boundary conditions are assumed to be free flowing at 67 mph with standard
deviation of 2 mph, and the ramps are set at 30 mph with a standard deviation of 2 mph. The
boundary conditions are implemented in the weak sense, and thus are not always imposed on
the computational domain. The state noise covariance matrix Qn is assumed to be diagonal
with standard deviation 2 mph, and the measurement error covariance Rn is assumed to
be diagonal with standard deviation 4 mph. Parameter estimation and characterization of
the error covariance structures is the subject of ongoing work. An initial ensemble with 100
members with mean 67 mph is drawn from P0

a, which is assumed diagonal with standard
deviation 4 mph. In one scenario, measurements are collected from ten evenly spaced VTLs,
while a second scenario considers measurements collected from 40 evenly spaced VTLs. The
estimation algorithm is implemented in Matlab and run on a dual core Intel i5 M540 2.53GHz
machine with 4 GB RAM. The estimation algorithm on this experiment site runs just over 14
times faster than real time. For example, a six–hour simulation takes just under 25 minutes.
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4.4.2 Comparison with inductive loop detectors

We present a comparison of the velocity estimate from the EnKF CTM-v algorithm using
measurements from 10 and 40 VTLs (Figure 4.6a–4.6b) with the velocity estimate obtained
from the PeMS system [1]. In order to compare the velocity contours, the EnKF CTM-v
estimates are projected onto the coarse discretization induced by the location of the PeMS
inductive loop detectors and their corresponding update frequency, then averaged. Because
the inductive loops used in the PeMS system are also subject to errors, the resulting velocity
contour should not be taken as the ground truth velocity contour.

The results of the EnKF CTM-v with 10 VTLs (Figure 4.6c) and 40 VTLs (Figure 4.6d)
show good agreement with the PeMS velocity estimate (Figure 4.3b). Both VTL and PeMS
estimates capture important features of the congestion pattern, including the extent of the
queue resulting from the accident, which propagates upstream to postmile 23.25 just after
11:00, before it begins to clear (see Figs. 4.6 and 4.3b). The effects of bottlenecks created
by capacity decreases at postmiles 25.8 and 24.7 are also well described, and differ by less
than 10 mph throughout most of the experiment when 40 VTLs are used (Figure 4.7b).

Features of the velocity model are also evident in Figure 4.6c-4.6d. In freeflow, infor-
mation propagates downstream along characteristics, while in congestion information prop-
agates upstream. Also, the discontinuities in the solution joining free flowing upstream
sections with congested downstream sections are resolved with high granularity (see in par-
ticular the discontinuity caused by the morning accident, Figure 4.6c-4.6d). On the other
hand, the PeMS estimates in the same region transition from freeflow speeds in excess of 65
mph to congested speeds around 20 mph over a period of 15 min.

One area where the model appears to underestimate the congestion appears between
postmiles 24.7 and 25.1, in Figure 4.6c. Both the upstream and downstream sections are five
lanes, while the intermediate section has only four lanes. The lane drop at postmile 24.7 acts
as a bottleneck, and vehicle speeds increase after entering the four lane link. While speeds
increase in both the raw GPS logs (Figure 4.3a) and the PeMS estimates (Figure 4.3b), the
resulting velocity estimated from 10 VTLs is approximately 15 mph faster than the PeMS
estimate (Figure 4.7a). The difference decreases with additional VTLs (Figure 4.7b).

The congestion resulting from the morning accident also highlights some of the differences
between the EnKF CTM-v estimates created with 10 VTLs and 40 VTLs. Because the
model does not predict accidents, measurements are needed to drive the ensemble states
into congestion. Because the congestion is recorded on VTLs earlier and more frequently
than with the coarser VTL spacing, the ensembles converge to the slower state more quickly.
Additionally, because the congested state is slower, the difference in fluxes surrounding the
discontinuity is increased, which in turn causes the shockwave speed to increase. Particularly
around postmile 25, the decrease in velocity from the shockwave causes the difference between
PeMS and EnKF CTM-v velocity measurements to increase with additional VTLs (Figure
4.7a–4.7b).

At postmile 26.3, the EnKF CTM-v and PeMS estimates differ by almost 20 mph through-
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(c) (d)

Figure 4.6: VTL measurements with (a) 10 VTLs and (b) 40 VTLs, and EnKF CTM-v
velocity contour plots with (c) 10 VTLs and (d) with 40 VTLs. Color denotes speed in mph.
x-axis: time of day. y-axis: postmile.
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(a) (b)

Figure 4.7: PeMS and EnKF CTM-v comparison. Color denotes speed difference between
PeMS and EnKF CTM-v with (a) 10 VTLs and (b) 40 VTLs, in mph. Color denotes speed
in mph. x-axis: time of day. y-axis: postmile.

out the day (Figure 4.7a–4.7b). However, there is good agreement on the downstream cell
centered at postmile 26.0 which is congested, and the upstream cell centered at postmile
26.5, which is freeflow, so disagreement comes from the transition between the two states.
Another area of disagreement occurs in the afternoon rush hour between postmiles 20.9 and
23.6. The EnKF CTM-v estimates show several distinct shockwaves followed by faster traf-
fic. These features are missed in the average speeds reported by PeMS in the region, which
leads to high disagreement in this area.
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Chapter 5

Travel time estimation

5.1 Introduction

The goal of this chapter is to assess to what degree GPS probe data act as a substitute for
conventional traffic monitoring technologies such as inductive loop detectors. In particular, it
addresses the trade-offs between between (i) velocity data collected from GPS smartphones
in probe vehicles, and (ii), velocity data obtained from inductive loop detectors, for the
purpose of computing travel times on a stretch of roadway. It is a case study using inductive
loop detector data and probe data collected during the Mobile Century experiment. The
new contributions in this section are as follows.

• Assessment of travel time estimates using inductive loop detector data.
We show dynamic travel times can be estimated to within 6–13% with an average
inductive loop detector spacing of 0.83 mi/sensor, with marginal improvement with
increased sensor density.

• Assessment of travel time estimates using virtual trip line-based probe data
We show dynamic travel times can be estimated to within 7% with 137.5 probe vehicles
sending measurements on triplines spaced at 2.54 VTL/mi.

This chapter is organized as follows. In Section 5.2, we give an overview of the methodol-
ogy used in this case study. The processing algorithm used for velocity estimation is given in
Section 5.3, and the methods for computing travel times from the velocity field are described.
In Section 5.4, the techniques for generating scenarios with various amounts of input data
from probe vehicles and inductive loops are presented. In Section 5.5, the results of nearly
917 different scenarios using various amounts of inductive loop detector data and probe data
for travel time estimation is presented and summarized.
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5.2 Methodology overview

5.2.1 Description of the case study

We address the trade-offs between inductive loop detectors and probe data through a case
study which uses experimental data collected during the Mobile Century experiment [36]
described earlier. As introduced previously in Section 4.3, the data set collected during this
experiment and used in this chapter is unique because of the large number of GPS equipped
probe vehicles representing 2-5% of the traffic flow, the dense coverage of working inductive
loop detectors on the experiment site, and the availability of travel time data obtained from
video license plate re-identification. Thus, although the results presented in this chapter
are still limited in geographic scope and in time, they are based on the most comprehensive
publically available data set to date.

In order to assess the trade-offs between velocity data collected from GPS smartphones
and velocity data obtained from inductive loop detectors, it is necessary to define the process
by which the data is transformed into an estimate of travel time. In this chapter, we rely on
the CTM–v EnKF velocity estimation algorithm developed in Chapter 4 and implemented as
as part of the Mobile Millennium project [85] to produce a estimate of the velocity field, from
which the travel time is computed. The resulting travel time computed from this process
is then compared to the travel times recorded from the license plate re-identification video
data.

With the data processing algorithm determined, we create a number of scenarios in
which the volume of probe data and number of inductive loop detectors made available to
the processing algorithm are adjusted. For example, this allows us to compare the accuracy
of computing travel times when all of the probe data is made available, to travel times
which are computed when only some of the probe data is available, to travel times when
some probe data is available and some inductive loop detector data is available. In this way,
we can quantify the trade-offs of various amounts of data from probes and inductive loop
detector data in terms of increased or decreased accuracy of the computed travel times.

In order to describe and quantify the probe data made available to the travel time process-
ing algorithm, we introduce two metrics of importance to probe data, namely the penetration
rate and the sampling strategy. The penetration rate is defined as the percentage of cars on
the roadway reporting probe data compared to the overall traffic flow, including the vehicles
which do not send data. In addition to increasing the number of measurements, as the pen-
etration rate increases, the sample of vehicles which generate measurements are more likely
to be representative of the total traffic flow.

The sampling strategy refers to how data is collected from the probe vehicles, and can
be used to increase or decrease the number of measurements made available for estimating
travel times. The sampling strategy used in this chapter collects data from probe vehicles at
fixed points in space using the spatial sampling technique of VTLs [38] (see Section 4.3.2).
By decreasing spacing between the VTLs, the probe vehicles will send more measurements,
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with smaller spacing between measurements.
In order to modify the amount of data obtained from inductive loop detectors, the number

of inductive loop detectors which are made available to the processing algorithm is adjusted.
Because this chapter is a case study of a real highway, it is not possible to modify the location
of the inductive loop detectors. Instead, given a fixed number of inductive loop detectors to
include for a given scenario, we select the specific loop detectors such that they achieve as
uniform of a spacing along the highway as is possible.

5.2.2 Related studies

Several studies have been conducted to assess the applicability of cell phone-based mea-
surements for traffic monitoring [2, 4, 6, 12, 56, 67, 82, 83], including data generated from
cell phone towers, which is less accurate than GPS. Bar-Gera [6] compared several months
of network data from cellphones to inductive loop detector data on a 14 km freeway segment
in Israel, and found them to be in good agreement. Liu et al. [56] evaluated a different
network-based cell phone system in Minnesota, and compared travel times to license plate
reidentification, and found the system generated results with varying accuracies. A summary
of the major network-based cell phone experiments to date can be found in Liu et al. [56].

Several studies have also been conducted to assess the trade-offs between inductive loop
detector data and data collected from GPS equipped probe vehicles. In Kwon et al. [50], it
is shown that annual estimates of total delay, average duration of congestion, and average
spatial extent of congestion can be made with less than 10% error by using either inductive
loop detectors placed with half-mile spacing, or by using probe vehicle runs at a rate of
about three vehicles an hour. Approximately four to six days of data is needed for reliable
estimates from either data source.

The work of Herrera et al. [35] compares a nudging algorithm and a mixture Kalman
filtering algorithm to examine how the addition of probe vehicle measurements sampled at a
fixed time interval can decrease errors in estimating traffic velocity. On a 0.4 mile stretch of
roadway, sampling 5% the traffic at 150 second intervals with inductive loops at both ends
of the domain lead to a 16% improvement over the inductive loop detector data alone. The
article also uses the Mobile Century experiment data to compare three scenarios of time-
based sampling of probe vehicles, finding that probe data outperforms inductive loop detector
data for estimating traffic velocity if a sufficient number of measurements can be obtained
from probe vehicles. This chapter uses the same data set from Mobile Century as [35], but
we now consider nearly one thousand scenarios to compare probe data to inductive loop
detector data, beyond the three presented in [35].
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5.3 Algorithm for estimating travel times

Given the velocity data obtained from inductive loop detectors and GPS equipped probe
vehicles, a processing algorithm is needed to convert the velocity data into an estimate of
travel time. The processing algorithm used in this chapter is the CTM–v EnKF algorithm
developed in Chapters 3 and 4 and implemented in the Mobile Millennium system. The
algorithm of takes velocity data from inductive loop detectors and probe vehicles as input,
combines the data with a physical model of traffic evolution, and produces an improved
estimate of the velocity along the full stretch of roadway. Using this improved estimate of
velocity, an estimated travel time is computed using (i) an instantaneous method and (ii) a
dynamic method, to compare against the travel times recorded from video data.

5.3.1 Mobile Millennium velocity estimation algorithm

We first present a few remarks on the performance of the CTM–v EnKF estimation
algorithm.

First, it is noted that the algorithm was designed as part of the Mobile Millennium
system, where it is not possible to track probe vehicles for privacy reasons. In other words,
it assumed that the probe vehicles send measurements to the system only from pre-selected
locations on the highway and, thus, no continuous GPS records from probes are available for
the estimation algorithm. Hence, in this study, we also make the assumption that tracking of
the vehicles is prohibited. In practice, it is expected that the performance of the estimation
algorithm could be improved when tracking of individual probe vehicles is allowed.

Second, the Mobile Millennium algorithm does not directly estimate travel times. In-
stead, travel times are computed from the estimated velocity field, assuming a vehicle travels
at the mean speed reported in each cell. Again, it is expected that the performance of the
estimation algorithm could be further improved by directly estimating the travel times in
addition to estimating the velocity field. Regardless of the potential for further improvement,
preliminary studies of the processsing algorithm to compute travel times on the Mobile Cen-
tury experimental data suggest the approach used in this report works well in practice.

Third, it should be noted that the flow model uses some historical flow information to
help calibrate the model boundary conditions. In this chapter, historical inductive loop
detector data from PeMS was used to estimate a constant (in time) average flow value
for the Dumbarton (CA-84) and San Mateo bridge (CA-92) on-ramps feeding traffic to
the experiment site. Similarly, loop detectors outside of the actual experiment site were
used to estimate a constant flow value for the north end and south end of the experiment
site. The use of coarsely approximated constant boundary values is by choice. Although
time varying parameters could be used, leading to further improvements in the estimates,
extremely precise calibration of a flow model is not generally possible in areas without
existing sensing infrastructure. For this reason, we elect to use a sub optimal constant
boundary value.
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Next, the methods for computing the instantaneous and dynamic travel times from an
estimated velocity field are described.

5.3.2 Methods for computing travel times

The instantaneous method of computing an estimate of the travel time along a stretch of
roadway is as follows. At the time when the instantaneous travel time estimate is produced,
the current estimate of the velocity field is recorded. The travel time of a vehicle is simu-
lated, assuming the vehicle travels at the velocity estimated in each cell. The velocity field
is assumed to remain constant in time, as the simulated vehicle travels through the velocity
field. Thus, the method is an approximation of the true travel time a vehicle would experi-
ence, because in practice the velocity field would change as the simulated vehicle completes
the trip. The main advantage of the instantaneous travel time is that it does not require a
prediction of the evolution of the velocity field, and it should produce accurate travel times
when the velocity does not change significantly during the computation.

The dynamic method of computing an estimate of the travel time is obtained similarly,
with one important modification. Unlike the instantaneous method which assumes the veloc-
ity field does not change during the computation, in the dynamic method, the velocity field
is updated during the computation. Thus, the traffic conditions are allowed to evolve while
the vehicle travels along the roadway. In practice, the computation of a dynamic travel time
has be done a posteriori, since the method requires knowledge of the speed evolution from
the future time steps. Yet, under rapidly changing traffic conditions, the dynamic method
will result in more accurate estimates for the travel times actually experienced by the drivers
compared to instantaneous travel times.

It is worth noting that the dynamic travel time for individual vehicles is measurable via
the license plate recognition performed on the video data collected during the experiment.
The differences in accuracy between the two travel time computation methods are further
discussed in Section 5.5.

5.4 Data selection

The core topic of this study is to assess the trade offs between different amounts of
probe data and inductive loop detector data for the purpose of estimating travel times. To
achieve this, we algorithmically select different subsets of the inductive loop detector data
and GPS probe data from the Mobile Century experiment, and use these subsets as inputs
to the data processing algorithm described in the previous section. This section describes
the various scenarios which modify the type and amount of the data which is made available
for estimation, and the selection criteria which are used to generate the scenarios.
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5.4.1 Application to the Mobile Century experiment data

Recall from Section 5.4.1 the Mobile Century site is covered with 17 inductive loop de-
tector (ILD) stations which feed measurements into the PeMS system [1]. The inductive
loop detectors record the sensor occupancy and vehicle counts every 30 seconds, which is
processed by a Mobile Millennium filtering algorithm implemented as an extension of [13] in
order to obtain the 30 second average velocity at the sensor. The locations of the inductive
loop detector stations are shown in Figure 5.1a.
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Figure 5.1: (a) Location of the northbound inductive loop detector stations on the area were
travel times are to be estimated; (b) Northbound travel times divided into four time bins from
left to right: morning accident (10:00am-11:50am), free flow (11:50am-1:20pm), congestion
building (1:20pm-3:20pm), and full congestion (3:20pm-). The travel times obtained from
the license plate reidentification video recordings are marked with crosses.

Also, as part of the experiment, high definition video cameras were temporarily installed
on bridges to record license plates of northbound traffic. The locations of the video cameras
are shown in Figure 5.2. The travel times recorded from the re-identified vehicles traveling
northbound between Decoto Rd. to the south and Winton Ave. to the north is shown in
Figure 5.1b. During the morning, a 5 car accident caused significant delay, and some drivers
experienced travel times in excess of 20 minutes around 10:48 Am. Between 11:50 AM and
1:20 PM, vehicles experience travel times between 8 and 10 minutes on the same stretch of
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roadway, which steadily increased from 1:20 PM to 3:20 PM. By 3:20 PM, most re-identified
drivers experienced heavy evening congestion with travel times increasing to 15–20 minutes.

Figure 5.2: Location of video cameras used during the Mobile Century experiment for license
plate reidentification to compute travel times on northbound I880.

5.4.2 Description of scenarios to be considered

The variables for modifying the amount of the input data for computing travel times
considered in this report are as follows.

• Number of inductive loop detectors. We modify the number of inductive loop
detectors which send data into the data processing algorithm.

• Number of probe data measurements. The amount of probe data can be modified
in two ways.

– Penetration rate. We modify the number of measurements by increasing or
decreasing the penetration rate of the probe vehicles. This is achieved indirectly
by changing the number of vehicles from which measurements are collected.

– Number of measurements per vehicle. The second method of modifying the
amount of probe data is to change the number of measurements made available
from each vehicle. For space-based sampling, this is achieved by changing the
number of locations where vehicles report measurements, which is encoded by the
number of virtual trip lines.
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By modifying the type and amount of inductive loop detector data and probe data
through the techniques described above, various scenarios are created to test the impact of
the data on computing travel times. In total, the number of scenarios run in this case study
is 917. They are generated by creating combinations of the following input data:

• Nine different sets of inductive loop detector data, ranging from scenarios with 0 in-
ductive loop detectors to 16 inductive loop detectors, increasing by increments of two
detectors.

• 11 different penetration rates, ranging from scenarios when none of the 1,100 probe
vehicle trajectories of Mobile Century are used, to scenarios when 100% of the probe
vehicle trajectories are used, increasing by increments of 10%. This corresponds to an
average rate of probe vehicles between 13.75 veh/hr and 137.5 veh/hr.

• 10 different sets of locations to collect space-based measurements, encoded by scenarios
with nine evenly spaced virtual trip lines covering the experiment site (about 8.68
VTL/mi), to scenarios with 99 virtual trip lines (about 0.79 VTL/mi), increasing by
increments of 10 virtual trip lines.

Thus the 917 scenarios are created by instantiating scenarios with all combinations of the 9
sets of inductive loop detector data sets, 11 probe penetration rates, and 10 sets of VTLs.
The scenarios tested are summarized in Figure 5.1. In the remainder of this section, we
describe the specific algorithms which select the data for each scenario.

5.4.3 Algorithms for data selection

Selection of inductive loop detector data

In order to modify the number of inductive loop detector stations which are made avail-
able for computing travel times, a simple selection selection criterion is developed for de-
termining the sensors which are made available for estimation. Specifically, given a fixed
number of inductive loop detectors to include, the inductive loop detector stations are se-
lected in order to minimize the variance of the distance between consecutive sensors. This
allows us to pick the sensors such that they are as uniformly distributed across the exper-
iment site as is possible, given the fixed locations of the candidate inductive loop detector
stations. We describe this criterion in detail in this section.

We consider a stretch of highway of length L, starting at x = 0 and ending at x = L,
with n inductive loop detector stations located at x1, x2, · · · , xn, as shown in Figure 5.3.

Let Si denote the spacing between sensor i and i + 1. In order to treat the boundaries
without explicit knowledge of sensors outside the domain x ∈ [0, L], it is assumed only half
of the first inter-station spacing S0 and the last inter-station spacing Sn is in the domain of
interest. The weighted average spacing between the sensors is given by:
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Table 5.1: A subset of runs used in the study.

Run ILD stations Probe type Probe rate (veh/hr) VTL/mi Sampling interval (s)
1 1 No Probe - - -
2 2 No Probe - - -
3 3 No Probe - - -
...

...
...

...
...

...
101 0 Space 13.75 0.79 -
102 0 Space 13.75 1.67 -
103 0 Space 13.75 2.54 -
104 0 Space 13.75 3.42 -

...
...

...
...

...
...

478 6 Space 110 6.93 -
479 6 Space 110 7.81 -
480 6 Space 110 8.68 -
481 6 Space 123.75 0.79 -
482 6 Space 123.75 1.67 -

...
...

...
...

...
...

915 16 Space 27.5 6.93 -
916 16 Space 27.5 7.81 -
917 16 Space 27.5 8.68 -
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½S 0 S1 S2 S3 S4 Sn-1 ½Sn

x1 x2 x3 x4 x5 xn-1 xnx=0 x=L

Figure 5.3: Highway segment of length L, with n inductive loop detector stations located at
xi.

S̄ =
1
2
S0 + S1 + S2 · · ·+ Sn−1 + 1

2
Sn

n
=
L

n
(5.1)

where the first and last spacings have a weight 1
2
, since only half of these spacings actually

lie within the [0, L] domain. Note that the average spacing is independent of the specific
locations of the sensors xi, and consequently cannot be used as a selection criterion.

Instead, we use a selection criterion which explicitly takes the uniformity of the inter-
sensor distances Si into account. This is achieved by minimizing the variance σ2 of the
inter-station spacings Sk, 0 ≤ k ≤ n, given by:

σ2 =
1

2n
(S0 − S̄)2 +

1

n

∑
1≤i≤n

(Si − S̄)2 +
1

2n
(Sn − S̄)2 (5.2)

Again, the first and last spacings have a weight 1
2
, since only half of these spacings actually

lie within the [0, L] domain.
In practice, rather than minimizing the variance σ2, it is convenient to minimize an

equivalent loop detector placement criterion denoted S̃:

S̃(x1, x2, · · · , xn) = 2

√√√√x2
1

2n
+

(L− xn)2

2n
+
∑

1≤k<n

(xk+1−xk
2

)2

n
(5.3)

which is equal to σ2 plus a constant offset. The best set of k inductive loop detector stations
is then given by:

U∗(k) = argmin{S̃(U) | U ⊂ {x1, x2, ..., xn} and |U | = k} (5.4)

where |U | represents the number of elements in the set U . The resulting selections for the
inductive loop detector stations are shown in Table 5.2.

For the case in which the chosen inductive loop detector stations are uniformly spaced
within the section of interest, the criterion S̃ is equal to the average spacing spacing S̄.
Because S̄ serves as a lower bound for S̃, the difference between S̃ and S̄ indicates the degree
of non uniformity of the sensor spacings caused by the fixed set from which the sensors are
selected. Figure 5.4 shows the difference between the inductive loop detector placement
criterion S̃(U∗(k)) and its lower bound, the average inductive loop detector spacing S̄(k), is
small, indicating that the sensors are uniformly spaced.
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Table 5.2: Inductive loop detector selection results. Given a number k, the selection al-
gorithm returns the set U∗(k) of k inductive loop detector stations which minimizes the
inductive loop detector placement index S̃(U∗(k)). the labels in U∗(k) correspond to the
labels of the inductive loop detectors in Figure 5.1a.

k S̃(U∗(k)) (mi) U∗(k)
0 ∞ ∅
1 6.51 { 8 }
2 3.25 { 4, 11 }
3 2.17 { 3, 8, 14 }
4 1.63 { 2, 6, 9, 15 }
5 1.33 { 2, 6, 8, 11, 16 }
6 1.11 { 1, 3, 6, 8, 11, 16 }
7 0.95 { 1, 3, 6, 8, 10, 13, 16 }
8 0.83 { 1, 3, 6, 7, 9, 11, 14, 16 }
9 0.73 { 1, 2, 4, 6, 7, 9, 11, 14, 16 }
10 0.66 { 1, 2, 4, 6, 7, 8, 10, 11, 14, 16 }
11 0.60 { 1, 2, 3, 5, 6, 7, 8, 10, 11, 14, 16 }
12 0.55 { 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 15, 16 }
13 0.51 { 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16 }
14 0.48 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16 }
15 0.46 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17 }
16 0.43 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17 }
17 0.41 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 }
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Figure 5.4: Change in the spacing between inductive loop detector stations, as a function of
the number of loop detector stations used in the inductive loop detector selection algorithm.

Penetration rate for probe data

During the Mobile Century experiment, the GPS data obtained from 77 GPS equipped
probe vehicles generated a total of 1,100 vehicle trajectories on I880 in the northbound
direction. Each vehicle trajectory consists of the estimated vehicle position and velocity
recorded at three second intervals. The trajectory data is filtered to guarantee physically
meaningful acceleration and velocity data based on assumed vehicle dynamics. Less than
0.01% of the data were identified as outliers, which were replaced by an interpolated value.

Throughout the day, these 1,100 vehicle trajectories represent a 5 minute penetration
rate which ranges between approximately 0% and 5%, depending on the time and location
at which the penetration rate is estimated [36]. Figure 5.5 shows the 20 minute penetration
rate estimated at the center of the Mobile Century experiment site (near inductive loop
detector station 9 in Figure 5.1a), which varies between 1.5% and 3%.

Before criteria to modify the penetration rate are discussed, a few limitations of the
penetration metric must be highlighted. In general, the penetration rate is difficult to deter-
mine for probe vehicles specifically because it depends on (i) the number of equipped probe
vehicles, (ii) the total traffic flow, and (iii) the evolution of the traffic flow in space and
time. Typically, only the total number of equipped probe vehicles is known to probe data
providers. Similarly, the total traffic flow can only be estimated from counts recorded by
inductive loop detectors at predefined locations. Finally, because the evolution of the traffic
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Figure 5.5: 20-minute average penetration rate in the center of the Mobile Century experi-
ment site on I-880 NB.

flow is not under the control of the probe vehicles, it is nearly impossible to a priori specify
a penetration rate which is both uniform in space, and uniform in time.

Because of the inherent difficulty in specifying the penetration rate a priori, we instead
elect to directly modify the number of equipped probe vehicles as a proxy for modifying the
penetration rate. The number of equipped probe vehicles in this study varies from 0% of the
1,100 vehicle trajectories, to 100% of the 1,100 vehicle trajectories, increasing by increments
of 10%. Over the eight hour experiment, this corresponds to an average rate of probe vehicles
between 0 veh/hr and 137.5 veh/hr. When a subset of the vehicle trajectories is required,
the subset is determined by selecting the trajectories at random. For example, 50% of the
collected probe data corresponds to exactly 550 vehicle trajectories (68.75 veh/hr), which
are selected at random before the simulation. The corresponding 20 minute penetration rate
at the center of the experiment site would then be half of the penetration rate shown in
Figure 5.5, but only in the expected sense, since the trajectories are selected at random.

Space–based sampling

In order to modify the number of measurements used from each probe vehicle trajectory
under spatial sampling, the number of locations where measurements are collected are mod-
ified. The locations where measurements are obtained are encoded through the placement
of VTLs, which can be viewed as virtual geographic markers which trigger vehicles to send
measurements when the vehicle trajectory intersects the VTL. A complete description of the
VTL sampling strategy is described in detail in Hoh et al [38] and higlighted in Section 4.3.2.

Because the VTLs are not physical infrastructure, it is possible to place them anywhere
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on the experiment site. The determination of optimal VTL placement is complex, so instead
we elect to place the VTLs uniformly across the experiment site. The number of VTLs,
nVTL tested in our scenarios varies from nine VTLs to 99 VTLs, increasing by increments
of 10 VTLs. This corresponds to an average spacing between 0.72 to 7.1 VTL/mi. Note
the number of VTLs used on the experiment site is significantly higher than the number
of inductive loop detector stations. This is possible because unlike inductive loop detector
stations, the marginal cost of virtual trip lines is small.

5.5 Results and discussion

In this section, we present the results of 917 runs with varying amounts of probe and
inductive loop detector data. We also vary the type of travel time computed (instantaneous
or dynamic). The quantification of error is described in Section 5.5.1, and the computational
results are shown in Section 5.5.2.

5.5.1 Error quantification

Since validation data is available for dynamic travel times (see Section 5.3.2), an error
metric is used to compare the velocity estimation algorithm output that has been converted
to travel times with the travel time measured from video recordings. By using the travel
time error as a performance metric, estimation algorithm results can be compared with the
results obtained when using different types and quantities of the input data.

Since the license plate reidentification data provides a distribution of individual vehicle
travel times (see Figure 5.1b), we define the true travel time as a one minute moving average
of the recorded travel times. Figure 5.1b also shows the division of the experiment into
four time periods that represent the different phases of the traffic during the experiment.
These periods are (i) the morning accident, were travel times are decreasing as an incident
clears, (ii) a free flow period during the middle of the day when travel times are low, (iii) a
congestion building period before the evening rush hours, and (iv) and full congestion during
the evening rush hours. Because of the different traffic conditions present in these time
intervals, in addition to computing the error across the full day, the error is also computed
for each time interval.

The error is quantified as follows. Let n be the number of estimates given in a period for
which the error is to be computed, with each estimate indexed by i. The travel time error is
computed as follows. Let Tv(i) be the mean travel time from the video data at time i, Tinst(i)
be the estimated mean travel time computed with the instantaneous method at time i, and
Tdyn(i) be the estimated mean travel time computed with the dynamic method at time i, as
in Sections 5.3.2 and 5.3.2, respectively. The mean absolute percent error (MAPE) for the
travel time computed with the instantaneous method is:
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εinst,MAPE =
1

n

n∑
i=1

∣∣∣∣Tv(i)− Tinst(i)

Tv(i)

∣∣∣∣ (5.5)

while the MAPE for the travel time computed with the dynamic method is:

εdyn,MAPE =
1

n

n∑
i=1

∣∣∣∣Tv(i)− Tdyn(i)

Tv(i)

∣∣∣∣ (5.6)

The MAPE is used in this study to aggregate the error in the model estimates over a
given time period in order to produce a single value for the error with given input data and
time period. Similarly a non-aggregated error would result in a representation of the error
that is dependent on the time dimension of the results. Also, note that the spatial dimension
of the error vanishes when the travel times are produced from the model estimated mean
speed fields.

5.5.2 Computational results

Implementation

The estimates were computed using the existing Mobile Millennium highway model, im-
plemented in Java. The model was run 917 times with various data inputs. Given the
computationally intensive nature of the algorithms utilized, each run (an eight-hour simula-
tion) took approximately 20 minutes to complete. Each run consisted in the computation of
the mean speed field evolution and computation of both instantaneous and dynamic travel
time every 30 seconds, from 10 am to 6 pm on the day of the experiment.

The runs took 315 CPU-hours, and were distributed on 8 servers equipped with 2.2 GHz
dual core AMD Opteron CPUs and 8 GB RAM, which reduced the computation time to
39 hours. The travel time data was then extracted manually from the servers. Finally, this
data was analyzed in Matlab.

To give an idea of the input data variability between the runs, a representative subset
of the input data combinations is shown in Table 5.1. The table shows the travel time
type, number of inductive loop detector stations, average rate of probe vehicles, and number
of VTLs per mile. These parameters are presented as a function of the run number. The
number of probe vehicle measurements used in each simulation is shown in Figure 5.6.

Using only inductive loop detector data in the model

The first analysis of the traffic estimates is based on the results obtained when using
inductive loop detector loop detector data as the only input to the model. These results
give us a baseline for the comparison between probe and loop detector data. A total number
of 17 runs were conducted based only on the inductive loop detector data, by varying the
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Figure 5.6: Number of probe vehicle measurements used in the simulations when using VTL
data. See also Table A.1

number of sensors according to the selection algorithm in Section 5.4.3. Both instantaneous
and dynamic travel times were computed. The labels of the inductive loop detector stations
used in the estimation are presented in Table 5.2 as a function of the number of stations
selected (see also Figure 5.1a).

The results of these runs are shown Figure 5.7. The subfigures show the estimation error
broken down by time of the day, as defined in Figure 5.1b. During the morning accident
(Figure 5.7a), the dynamic travel times converge to estimates with 7% error, while the in-
stantaneous estimates remain above 20% error. The instantaneous and dynamic estimates
have between 6% and 7% error during the free flow and congestion building periods (Fig-
ure 5.7b and 5.7c), and 13% error during the full congestion period (Figure 5.7d), with the
instantaneous and dynamic estimates performing similarly.

The number of inductive loop detector stations used tends to have a positive impact on
the quality of the estimate when less than eight inductive loop detector stations are used.
Note that the curve is not monotonic decreasing. This is because when only a few sensors are
deployed, the error becomes highly dependent on the placement of the sensors. It is expected
that an optimal sensor placement algorithm would reduce the error. The threshold of eight
inductive loop detector stations corresponds to the inductive loop detector placement index
S̃(U∗(8)) = 0.83 mi (Table 5.2). However, using data from more than eight inductive loop
detector stations does not improve the quality of the estimates. If fewer than three inductive
loop detectors are used, the estimation error is unacceptably high, at some points reaching
as high as 100% error.
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(a) (b)

(c) (d)

Figure 5.7: MAPE computed using inductive loop detector data only, no probe data. Travel
time is computed using the dynamic method (green dash) and instantaneous method (solid
blue). x-axis: number of inductive loop detector sensors, y-axis: MAPE (a) morning incident;
(b) free flow; (c) afternoon as congestion increases; (d) evening congestion.
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Using only VTL data in the model

The second part of the analysis consists of the travel time estimates obtained when
using VTL data only. The changing parameters of the input data are the number of VTLs
deployed on the experiment site and the rate of the probe vehicles used to produce speed
measurements at the locations of VTLs, see Table 5.1. The estimation errors of the travel
times obtained with the dynamic method are shown in Figure 5.8.

In each of the time periods, estimates of the travel time can be achieved with less than 6%
MAPE, with sufficient probe vehicles and virtual trip lines. However, when more than 68.75
veh/hr are used with more than 2.54 VTL/mi, only small improvements in the accuracy of the
estimates can be achieved. When compared with inductive loop detectors, using 68.75 veh/hr
and 2.54 VTL/mi performs as well as the estimates using more than eight inductive loop
detector stations during the morning accident, free flow, and congestion building periods,
but has less than half the error of inductive loops during the full congestion period. When
68.75 veh/hr are used, the overall probe penetration rate as a percentage of the total number
of vehicles is one half the values shown in Figure 5.5.

Mixing VTL and loop detector data

The dynamic travel time estimation errors using both VTL and loop detector data si-
multaneously is assessed in Figure 5.9, where the change in the dynamic travel time MAPE
due to the addition of data from six inductive loop detectors is computed. The results shown
are a representative subset of all the runs performed when mixing the two data types.

At low probe data rates during the morning accident, free flow, and congestion building
periods, adding inductive loop detector data increases the accuracy of the dynamic travel
time estimates. For example, during the morning accident (Figure 5.9a), with a probe rate
of 13.75 veh/hr and a VTL spacing of 0.79 VTL/mi, adding inductive loop detector data
reduced the error from 29% to 8%. During the full congestion period, the dynamic travel
time estimate accuracy decreased when inductive loop detector data was added at low probe
rates (13.75 veh/hr). This is likely due to the fact that the estimates based on virtual trip
line data only were unusually accurate, even performing better than simulations with more
probe vehicles.

At higher penetration rates (above 68.75 veh/hr) adding data from the six inductive loops
has negligible effect, increasing or decreasing the accuracy only slightly. The exception is
during the free flow period, when the MAPE increased (between 0.05 and 0.08) even at high
probe rates, when 0.79 VTL/mi were used. The errors in the free flow period are magnified
due to the small base travel time, which is under 10 minutes, and it is in fact not constant
during the period (see Figure 5.1b). Moreover, it is clear from Figure 4.3 that there is an area
of heavy congestion around postmile 26 even during the free flow period, which is difficult
to capture correctly with sparse sampling.
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Figure 5.8: MAPE contours computed using VTL data only, no inductive loop detector
sensors. Travel time is computed using the dynamic method. x-axis: number of VTLs,
y-axis: average probe data rate (a) morning accident; (b) free flow; (c) congestion building;
(d) full congestion. Color scale limited to 0.25. See also Table A.2–A.5.
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Figure 5.9: Change in MAPE contours when adding six inductive loop detectors to VTL
data. x-axis: number of VTLs, y-axis: average probe data rate (a) morning accident; (b)
free flow; (c) congestion building; (d) full congestion. Color scale limited to ±0.1. See also
Table A.6–A.9.
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Using instantaneous travel time as an estimate for dynamic travel time

Figure 5.10 shows a comparison of the estimation errors when using instantaneous and
dynamic travel times for the morning accident period. Instantaneous travel times can be
determined at any time on any route using the speed estimates, and used as a proxy for
dynamic travel times. As was shown for the inductive loop detector data in Figure 5.7b
and 5.7d, instantaneous and dynamic travel time estimates are very similar when traffic
conditions change sufficiently slowly. The same holds when estimating travel times from
probe data.

By looking at the instantaneous travel time errors in Figure 5.10a, an interesting result
can be seen. The results suggest that adding more probe data results in an increased travel
time estimation error. However, this result is expected, and can be explained by focusing
on the scenarios (in Figure 5.10a) in which the penetration rate of the probe vehicles is low
and no loop detectors are used. Here, the instantaneous travel time estimate performs well,
and may seem like a valid estimate of the true travel time during the incident. However,
this gives a misleading indication of the quality of these travel time estimates. The good
performance of the instantaneous estimate is caused by the fact that the current state of
the traffic (speed field) is very poorly captured in the underlying scenario and the speed
of the traffic is heavily overestimated. This causes the instantaneous travel time estimate
to perform as a good predictor of the future traffic conditions, namely, as a predictor of
the clearing incident. When the number of probe measurements increases, the speed field
estimate is captured more accurately, and the increased error in the travel time estimate is
caused by the instantaneous approximation.

5.5.3 Summary of key results

The following is a summary of the key results found in this study:

1. Achieving 10% error for dynamic travel times. In this study, it was found that
the dynamic travel time estimates can be achieved with less than 10% error when
using a flow model with data assimilation, by using either inductive loop detector
data, probe data, or a mixture of both inductive loop detector data in probe data.
Moreover, the estimates from virtual trip line-based probe can achieve a higher degree
of accuracy when all available probe data is used compared to estimates from inductive
loop detectors when all inductive loops on the experiment site are used, although in
general the performance is similar.

2. Minimum loop detector spacing for travel time estimation. In this study, using
data from more than eight inductive loop detector stations (average spacing 0.83 miles)
did not give extra benefit in the travel time estimation. The error remains constant
between 6–13% depending on the time of day, regardless of the added loop detector
stations.
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(a) (b)

Figure 5.10: MAPE contours computed for the morning accident using VTL data and in-
ductive loop detector sensors. x-axis: number of VTLs, y-axis: average probe data rate (a)
0 inductive loop detector sensors, instantaneous travel time; (b) 0 inductive loop detector
sensors, dynamic travel time. Color scale limited to 0.25. See also Table A.10–A.11.

3. Diminishing travel time accuracy improvement. When sampling probe vehicles
at a rate of 68.75 veh/hr with more than 2.54 VTL/mi, increasing the number of probe
measurements by adding more probe vehicles or additional trip lines causes only small
improvement on the travel time accuracy.

4. A mixture of probe and loop detector data in travel time estimation. It was
found that when complementing loop detector data with probe vehicle data, better es-
timates for travel times are obtained, especially at low penetration rates. For example,
if using loop detectors spaced more than 2.11 miles apart, probe data can give over
50% increase in the travel time accuracy. These results hold generally, independent of
the sampling strategy of the probe vehicles.
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Chapter 6

Conclusions and future work

The main contributions in this thesis are briefly outlined below

• Review of weak entropy solutions to the LWR PDE. In Chapter 2, we summa-
rized the basic mathematical tools of the LWR PDE, which laid the groundwork for the
development of a velocity evolution equation consistent with this model. We showed
that significant mathematical challenges are introduced by the formation of shocks in
the density profile, at which point classical solutions to the LWR PDE no longer exist.
The introduction of more general weak solutions allows for shocks, but the uniqueness
of solutions can only be guaranteed in presence of an additional entropy condition.

• Development of two new velocity evolution equations consistent with hy-
drodynamic theory. In Chapter 3, we introduced the continuous velocity evolution
equation called the LWR–v, and a discrete velocity model, the CTM–v, as transfor-
mations of the LWR PDE and its discretization into the velocity domain. Again, due
to the presence of shocks in the density domain, we showed that the LWR–v model
only exists as a special case when the velocity function is affine. The CTM–v model
was derived directly from the integral form of the LWR PDE to circumvent this issue
for arbitrary invertible velocity functions. Using the Riemann solver in the density do-
main proposed by Daganzo [21] and Coclite, Garavello, and Piccoli [14], we developed
a Riemann solver in the velocity domain to extend the CTM–v model to networks.

• Velocity estimation with ensemble Kalman filtering. In Chapter 4, we propose
to solve the velocity estimation problem with the CTM–v model and velocity measure-
ments obtained from GPS smartphones sampled with virtual trip lines using ensemble
Kalman filtering, which is a highly scalable estimation algorithm. Moreover, ensemble
Kalman filtering does not require the model to be linearizable, which is a feature not
possessed by the CTM or the CTM–v due to standing shockwaves. The algorithm was
run live during the Mobile Century field experiment, and showed that velocity field
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estimates from mobile phone data and the EnKF CTM–v algorithm are of comparable
quality to estimates produced from inductive loops.

• Travel time estimation comparison between probe data and inductive loop
data. In Chapter 5, travel time data collected during the mobile century experiment
from license plate reidentification was used to assess the accuracy of travel times com-
puted by the CTM–v EnKF algorithm using various amounts of probe data collected
through VTLs, and inductive loop detector data. For this experiment, it was shown
that estimates obtained with VTL probe data performed as well as or better than
estimates using inductive loop detector data. While this result may vary at different
locations, or with different estimation algorithms, is a strong indicator of the possibil-
ity for probe data to augment or replace inductive loop detector data for the purpose
of estimating travel times.

Several other important findings have been uncovered through this work, which may be
the focus of future research efforts.

• Flow measurements from mobile devices. One of the major challenges for esti-
mating traffic conditions with probe data is in the quantity which is measured. Unlike
inductive loop detectors, which count the number of vehicles crossing a point in time
yielding the basic unit (vehicles) which are conserved, GPS smartphones do not directly
measure vehicle flows. As the number of GPS equipped mobile devices continues to
rapidly expand, it may be possible to model the proportion of equipped vehicles, and
derive approximate flows to integrate into the estimation algorithm. This would be
beneficial in areas which do not have dedicated sensing of the structure already de-
ployed.

• Heterogeneous sensor data fusion. A likely future scenario faced by state depart-
ments of transportation is one in which low-cost probe data can be acquired in many
areas. To improve the estimates of various transportation network performance met-
rics, this information may be combined with more expensive, but dedicated sensors
such as radar, inductive loops, and video detection. Estimation of traffic conditions
using all available data is challenging due to the various measured quantities (point
velocities, flows, travel times, etc), and the spatial and temporal extent of the mea-
surements, and will require the development of new models and estimation algorithms.

• Traffic prediction algorithms One of the important insights learned through the
Mobile Century and Mobile Millennium projects is that traffic estimation will become
an important subcomponent of other consumer focused location based services. A now
often used example is one in which a traffic service is linked to a routing engine and
a personal calendar, which could trigger warnings for events based on the user’s cur-
rent location and the expected time to reach the next appointment based on traffic
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conditions. Future services like this will rely not only on the ability to estimate cur-
rent conditions accurately, but also accurate prediction. Even short-term travel time
prediction could be enhanced by a velocity forecasting algorithm, as was shown in
Chapter 5. Statistical inverse problems theory and machine learning theory offer tools
to tackle this problem.
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Appendix A

Supplementary tables
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Table A.1: Number of probe vehicle measurements used in the simulations when using VTL
data. See also Figure 5.5.2.

measurements/hr/mi
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 7977 15589 23363 31265 38559 46154 54615 62568 69802 77073
123.75 7147 13960 20923 27998 34529 41330 48902 56035 62496 69012
110.00 6383 12469 18685 25005 30836 36907 43671 50035 55809 61622
96.25 5588 10911 16356 21886 26996 32301 38218 43792 48847 53942
82.50 4811 9393 14076 18838 23239 27801 32892 37692 42032 46429
68.75 4012 7842 11749 15733 19410 23214 27465 31473 35102 38775
55.00 3237 6334 9489 12708 15681 18750 22185 25425 28358 31326
41.25 2435 4773 7149 9579 11821 14126 16712 19159 21367 23606
27.50 1631 3195 4784 6408 7908 9451 11187 12822 14297 15792
13.75 817 1587 2377 3185 3930 4698 5555 6373 7104 7848

Table A.2: Travel time MAPE (in %) using VTL probe data and 0 loop detector sensors.
Travel time is computed using the dynamic method. See also Figure 5.8a.

Morning accident MAPE, 0 loops, dynamic tt
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 11.34 5.67 5.92 5.18 5.30 5.11 5.27 5.03 4.52 5.05
123.75 10.81 6.12 6.35 5.88 5.13 5.00 5.11 5.00 4.60 4.76
110.00 11.67 6.06 6.34 5.87 5.22 5.32 5.74 5.19 4.60 4.69
96.25 11.73 6.71 6.03 6.29 5.70 5.11 5.52 5.33 4.80 5.11
82.50 12.72 6.39 5.98 5.41 5.73 5.29 5.46 5.37 5.03 4.73
68.75 11.98 6.75 6.41 5.78 6.13 5.23 5.46 5.70 5.36 5.36
55.00 13.28 6.74 6.19 6.46 6.10 5.47 6.49 6.18 5.32 5.79
41.25 14.30 10.21 8.42 7.77 7.41 7.10 6.30 6.35 6.46 6.51
27.50 16.09 10.50 9.30 8.26 7.86 6.99 6.90 6.60 7.09 7.29
13.75 28.90 16.88 15.37 11.34 11.81 11.23 9.91 10.30 10.30 10.06
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Table A.3: Travel time MAPE (in %) using VTL probe data and 0 loop detector sensors.
Travel time is computed using the dynamic method. See also Figure 5.8b.

Free flow MAPE, 0 loops, dynamic tt
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 8.28 6.03 5.91 6.26 5.84 5.79 5.87 5.88 5.79 6.13
123.75 8.53 6.30 5.98 5.80 5.75 5.69 5.96 5.94 5.83 6.03
110.00 8.72 6.25 6.00 5.38 5.51 5.42 5.94 5.59 5.62 5.97
96.25 9.79 6.53 5.95 5.88 5.82 5.81 5.75 5.82 5.65 5.89
82.50 8.94 6.56 6.57 6.39 5.97 6.16 5.90 6.06 5.92 6.09
68.75 12.22 7.28 6.71 6.18 6.31 5.95 6.14 6.11 5.94 6.14
55.00 13.77 7.25 7.21 7.16 6.91 6.65 6.67 6.80 6.39 6.40
41.25 15.43 9.17 8.15 7.16 7.17 7.22 6.89 6.84 7.19 6.80
27.50 16.37 14.48 11.21 9.38 9.10 9.32 8.68 8.31 9.11 8.75
13.75 16.89 16.51 14.02 12.82 11.51 10.54 9.93 9.22 10.06 9.74

Table A.4: Travel time MAPE (in %) using VTL probe data and 0 loop detector sensors.
Travel time is computed using the dynamic method. See also Figure 5.8c.

Congestion building MAPE, 0 loops, dynamic tt
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 6.10 7.42 4.56 3.56 3.74 3.94 3.67 3.42 3.43 3.76
123.75 6.69 6.93 4.66 3.50 4.06 4.00 3.76 3.39 3.45 3.85
110.00 6.66 6.94 4.59 3.49 4.28 4.02 3.33 3.34 3.37 3.70
96.25 6.67 7.41 5.25 3.85 4.52 4.38 3.51 3.37 3.74 3.86
82.50 7.04 8.25 4.84 3.65 4.71 4.26 3.58 3.40 3.75 3.89
68.75 7.36 8.55 5.40 4.26 4.85 4.68 3.81 3.67 4.05 4.08
55.00 8.35 9.01 5.60 4.86 5.70 5.42 4.14 4.05 4.37 4.18
41.25 10.16 10.57 6.80 5.89 7.57 6.66 5.15 5.01 5.59 5.18
27.50 16.38 14.07 10.34 8.79 9.99 8.70 7.40 6.40 6.95 7.80
13.75 30.18 21.70 16.30 15.05 15.98 13.41 12.34 11.38 11.47 12.47
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Table A.5: Travel time MAPE (in %) using VTL probe data and 0 loop detector sensors.
Travel time is computed using the dynamic method. See also Figure 5.8d.

Full congestion MAPE, 0 loops, dynamic tt
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 5.50 4.97 4.58 5.25 4.21 3.99 4.77 4.54 4.18 4.21
123.75 4.97 5.39 4.36 5.18 4.62 4.15 5.09 4.67 4.31 4.39
110.00 5.18 5.13 4.68 5.59 4.36 4.56 5.20 5.16 4.59 4.79
96.25 5.47 4.74 5.25 6.01 4.31 5.06 5.59 5.52 5.23 4.80
82.50 6.31 5.27 5.27 6.30 4.29 4.92 5.44 5.86 5.08 4.88
68.75 6.24 5.63 5.48 6.35 4.01 4.90 5.54 6.13 5.23 5.20
55.00 7.61 5.82 5.78 7.52 6.11 6.38 6.65 7.68 6.21 7.02
41.25 8.82 7.17 6.45 8.64 7.34 6.98 7.44 7.73 6.80 7.09
27.50 9.51 7.53 6.71 7.42 6.69 6.57 7.02 7.65 6.67 6.54
13.75 14.42 10.90 5.18 7.54 4.35 4.58 4.82 6.50 5.22 4.34

Table A.6: Travel time MAPE (in %) change when 6 loop detector sensors are used. Travel
time is computed using the dynamic method. See also Figure 5.9a.

Morning accident change in MAPE, adding 6 loops, dynamic tt
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 -2.44 0.22 -1.08 0.72 -0.08 -0.18 -0.11 0.25 -0.22 -0.71
123.75 -2.63 0.13 -1.15 -0.07 -0.14 -0.21 0.14 -0.08 -0.34 0.01
110.00 -3.45 0.62 -1.38 0.12 -0.41 -0.20 -0.46 0.29 -0.09 -0.13
96.25 -3.59 -0.46 -1.13 -0.71 -0.29 -0.32 -0.30 0.27 -0.49 -0.41
82.50 -3.47 0.35 -0.51 0.66 0.46 0.10 -0.37 0.34 -0.45 -0.01
68.75 -3.65 -0.22 -1.22 -0.62 0.33 0.31 0.28 0.42 -0.64 -0.22
55.00 -4.88 -2.11 -0.71 -1.17 -1.28 0.26 -0.85 0.15 -0.29 -0.29
41.25 -4.87 -5.34 -3.08 -3.02 -2.32 -1.83 0.09 -0.97 -1.83 -0.70
27.50 -7.93 -4.75 -3.04 -1.81 -2.31 -0.69 -1.72 0.19 -1.54 -0.87
13.75 -20.84 -10.62 -7.86 -5.22 -5.47 -3.86 -3.28 -3.18 -4.35 -2.67
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Table A.7: Travel time MAPE (in %) change when 6 loop detector sensors are used. Travel
time is computed using the dynamic method. See also Figure 5.9b.

Free flow change in MAPE, adding 6 loops, dynamic tt
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 8.19 0.44 0.27 -0.24 0.63 0.32 0.70 0.59 0.38 0.15
123.75 6.32 0.04 0.53 0.40 0.71 0.20 0.23 0.54 0.15 0.27
110.00 6.79 0.17 0.39 0.92 0.79 0.61 0.34 0.61 0.47 0.26
96.25 5.90 0.19 0.75 0.45 0.75 0.36 0.55 0.89 0.55 0.24
82.50 8.82 0.52 0.14 0.04 0.53 -0.02 0.69 0.47 0.47 0.13
68.75 5.82 -0.20 0.13 0.43 0.47 0.60 0.24 0.29 0.10 0.29
55.00 5.16 -0.31 -0.15 -0.79 -0.45 -0.07 -0.53 -0.08 0.03 0.24
41.25 3.08 -1.99 -1.02 -0.79 -0.48 -0.62 -0.23 -0.25 -0.78 -0.08
27.50 1.05 -6.99 -3.64 -2.85 -1.89 -1.94 -1.24 -1.59 -2.71 -1.96
13.75 1.94 -8.70 -5.85 -5.60 -4.09 -3.10 -3.17 -2.10 -3.10 -2.78

Table A.8: Travel time MAPE (in %) change when 6 loop detector sensors are used. Travel
time is computed using the dynamic method. See also Figure 5.9c.

Congestion building change in MAPE, adding 6 loops, dynamic tt
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 1.56 0.58 1.40 0.64 1.30 1.07 0.04 0.66 1.02 -0.09
123.75 1.02 0.73 1.71 0.96 1.05 1.09 0.15 0.70 1.16 -0.11
110.00 1.78 0.48 1.64 0.66 1.15 0.98 0.70 0.65 1.34 0.50
96.25 0.78 0.06 0.99 0.46 0.57 0.76 0.73 0.78 1.13 0.41
82.50 1.38 -0.83 0.89 0.93 0.46 0.68 0.63 0.97 1.01 0.45
68.75 0.88 -0.72 0.44 0.22 1.36 0.70 0.91 0.46 1.08 0.63
55.00 0.21 -1.46 1.00 0.75 0.47 0.36 1.32 1.17 1.53 1.22
41.25 -0.84 -2.88 -0.21 0.37 -1.04 -0.83 0.44 0.55 0.52 0.41
27.50 -7.37 -6.70 -3.63 -2.40 -3.19 -2.58 -1.46 -0.47 -0.61 -1.30
13.75 -21.00 -13.57 -9.24 -7.96 -9.02 -6.66 -5.58 -5.03 -4.64 -5.74
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Table A.9: Travel time MAPE (in %) change when 6 loop detector sensors are used. Travel
time is computed using the dynamic method. See also Figure 5.9d.

Full congestion change in MAPE, adding 6 loops, dynamic tt
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 1.33 2.02 0.53 -0.78 1.30 1.05 -0.34 -0.52 0.37 0.44
123.75 1.69 2.46 0.53 -0.70 0.82 1.10 -0.49 -0.54 0.20 0.28
110.00 1.96 2.39 0.34 -0.98 1.28 0.22 -0.47 -0.87 -0.30 -0.19
96.25 1.97 2.95 -0.36 -1.23 1.09 0.08 -0.68 -1.23 -0.49 -0.13
82.50 1.90 3.87 0.04 -1.34 1.44 0.47 -0.45 -0.89 -0.05 0.13
68.75 2.56 3.19 -0.43 -1.13 2.90 0.65 -0.20 -1.18 -0.39 0.02
55.00 1.95 3.49 0.09 -1.59 1.43 -0.60 -1.24 -2.34 -0.23 -2.02
41.25 3.37 4.51 -0.59 -2.31 0.37 -0.42 -1.60 -2.05 -0.53 -1.59
27.50 2.17 4.21 -0.27 -0.49 0.30 -0.10 -0.53 -1.48 -0.31 0.33
13.75 -1.96 2.02 4.93 3.03 7.04 3.77 4.20 1.33 3.35 5.42

Table A.10: Travel time MAPE (in %) using VTL probe data and 0 loop detector sensors.
Travel time is computed using the instantaneous method. See also Figure 5.10a.

Morning accident MAPE, 0 loops, instantaneous tt
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 9.34 12.77 8.29 14.04 12.43 12.17 13.34 13.69 12.83 12.54
123.75 9.20 11.51 8.33 13.97 12.37 11.55 13.61 13.69 12.52 12.44
110.00 10.99 10.25 8.09 13.67 12.27 10.80 13.57 13.39 12.15 12.30
96.25 10.49 9.03 8.06 12.86 12.59 11.31 12.70 13.73 12.52 12.74
82.50 10.52 9.78 9.35 12.73 13.60 10.95 13.62 13.52 12.32 12.68
68.75 9.39 10.33 7.17 13.30 13.49 11.95 12.97 15.15 13.03 13.49
55.00 15.69 10.12 9.17 14.29 13.08 12.28 15.52 14.21 13.05 14.01
41.25 17.95 15.48 11.51 14.83 14.29 12.30 14.39 13.50 12.46 13.72
27.50 19.11 13.90 13.53 17.01 17.37 14.73 15.10 15.60 15.11 15.23
13.75 28.37 21.72 16.57 19.68 18.25 15.67 17.51 17.11 15.70 17.49
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Table A.11: Travel time MAPE (in %) using VTL probe data and 0 loop detector sensors.
Travel time is computed using the dynamic method. See also Figure 5.10b.

Morning accident MAPE, 0 loops, dynamic tt
probe rate VTL/mi

veh/hr 0.79 1.67 2.54 3.42 4.30 5.18 6.05 6.93 7.81 8.68
137.50 11.34 5.67 5.92 5.18 5.30 5.11 5.27 5.03 4.52 5.05
123.75 10.81 6.12 6.35 5.88 5.13 5.00 5.11 5.00 4.60 4.76
110.00 11.67 6.06 6.34 5.87 5.22 5.32 5.74 5.19 4.60 4.69
96.25 11.73 6.71 6.03 6.29 5.70 5.11 5.52 5.33 4.80 5.11
82.50 12.72 6.39 5.98 5.41 5.73 5.29 5.46 5.37 5.03 4.73
68.75 11.98 6.75 6.41 5.78 6.13 5.23 5.46 5.70 5.36 5.36
55.00 13.28 6.74 6.19 6.46 6.10 5.47 6.49 6.18 5.32 5.79
41.25 14.30 10.21 8.42 7.77 7.41 7.10 6.30 6.35 6.46 6.51
27.50 16.09 10.50 9.30 8.26 7.86 6.99 6.90 6.60 7.09 7.29
13.75 28.90 16.88 15.37 11.34 11.81 11.23 9.91 10.30 10.30 10.06
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