
Applied Estimation of Mobile Environments

Kevin Weekly
Alexandre Bayen, Ed.
Kristofer Pister, Ed.
Costas J. Spanos, Ed.
Steven Glaser, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-32

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-32.html

April 28, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Applied Estimation of Mobile Environments

by

Kevin Pu Weekly

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Alexandre M. Bayen, Chair
Professor Kristofer S. J. Pister

Professor Costas J. Spanos
Professor Steven D. Glaser

Spring 2014

Applied Estimation of Mobile Environments

Copyright 2014
by

Kevin Pu Weekly

1

Abstract

Applied Estimation of Mobile Environments

by

Kevin Pu Weekly

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Alexandre M. Bayen, Chair

For many research problems, controlling and estimating the position of the mobile elements
within an environment is desired. Realistic mobile environments are unstructured, but share
a set of common features, such as position, speed, and constraints on mobility. To estimate
within these real-world environments requires careful selection of the best-suited estimation
tools and software and hardware technologies. This dissertation discusses the design and
implementation of applied estimation infrastructures which overcome the challenges of real-
world deployments.

Estimating the mobility of water within rivers and estuaries is a significant area of study
considering the need for fresh water all over the world. The Floating Sensor Network is
designed to enable Lagrangian measurements, from devices called drifters, in these areas
which was previously infeasible to collect. Two new types of drifters are developed: a low-
cost Android smartphone based drifter and a motorized active drifter. The Android drifter
is economical, allowing dense sensor deployments at low cost. Since drifter studies in rivers
are often beset by drifters becoming pushed onto the banks, the active drifter is able to
avoid these obstacles by using a Hamilton-Jacobi safety control algorithm. Multiple field
operational tests validate that the active drifters successfully avoid becoming trapped in
difficult terrain. Field tests also validate the operation of the estimation solution as a whole,
measuring the water flow via drifters and producing flow fields of the river.

The mobile environment of occupants within an office building is also studied extensively.
This dissertation introduces the environmental sensing platform for indoor occupant stud-
ies. The platform includes a design of a battery-powered environmental sensor device and
the communication architecture needed to collect data into a central repository. The sensor
devices themselves communicate via WiFi technology and have a rich suite of sensors, includ-
ing passive infrared, temperature, humidity, light level and acceleration. Electrical current
consumption measurements from the sensors show that they can operate for over 5 years
on a single battery. Discussed is how these sensors can be used for occupant tracking and
occupant estimation, either via the on-board instruments, or instruments which are added
to the devices via an expansion port.

2

A unified particle filter is proposed which can both estimate occupancy and track occu-
pants within a building. This dissertation presents several prerequisite studies to motivate
this direction: Two studies are performed to understand how occupancy and occupant ac-
tivity affects measurable variables: particulate matter and CO2. These variables are chosen
as they are otherwise important for monitoring indoor air quality. Experimental studies
show that there are indeed correlations between occupant activity and these variables. Fur-
thermore, an estimator can be built which estimates the occupancy of a conference room,
given CO2 measurements. Our third study accomplishes occupant tracking using a particle
filtering framework and signal strength measurements from a radio-based indoor positioning
system. The implementation forms a basis from which to build the unified particle filter.

i

To Donna Lai Weekly:

my peer, teacher, student, friend, and life partner

towards our eternal study of the meaning of life.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Position of the research. 1
1.2 Components of mobile environments . 2
1.3 Estimation problems and frameworks . 3
1.4 Challenges of applied estimation . 4
1.5 Organization . 4

2 Mobile Floating Sensors 6
2.1 Introduction . 6
2.2 Passive sensors using Android mobile phones. 9
2.3 Actuated Generation 3 drifter design . 17
2.4 Architecture for mobile floating sensor data collection and assimilation. 26
2.5 Conclusions. 30

3 Hamilton-Jacobi safety control for underactuated sensors 33
3.1 Introduction . 33
3.2 Hamilton-Jacobi control methodology. 35
3.3 Implementation and simulation . 38
3.4 Field operational tests . 44
3.5 Conclusions. 47

4 Indoor Environmental Sensors for Mobile Sensing 50
4.1 Introduction . 50
4.2 System architecture. 52
4.3 Recordstore data format . 54
4.4 Communications protocol . 58
4.5 Environmental sensor devices . 65

iii

4.6 Evaluation . 79
4.7 Conclusions and Future Work . 84

5 Models of indoor occupancy 86
5.1 Introduction . 86
5.2 Correlation of occupant activity to coarse particulate matter 87
5.3 Effect of occupant on room-level CO2 concentrations . 99
5.4 Conclusions. 118

6 Filtering Algorithms for Occupant Tracking 120
6.1 Introduction . 120
6.2 Indoor positioning using SIR . 122
6.3 System architecture. 130
6.4 Field operational test . 133
6.5 Future directions and extensions . 142
6.6 Conclusions. 152

7 Conclusions and Future Work 154
7.1 Contributions and status of the work . 154
7.2 Future applications . 155

Bibliography 157

iv

List of Figures

2.1 Photo of drifter fleet prior to May 9, 2012 deployment . 8
2.2 Passive sensor COM and COB locations. 11
2.3 Android drifter assembly diagram . 12
2.4 Android software UML diagram . 14
2.5 CDF of the angle recorded by the Android drifter while upright 16
2.6 Android drifter usage photographs . 17
2.7 Photograph of active drifter and breakdown illustration . 20
2.8 Active drifter hardware components . 21
2.9 Python modules running during typical experiment . 23
2.10 FSN communications architecture . 27
2.11 Assimilation results from May 9, 2014 experiment . 31

3.1 Controller implementation diagram . 38
3.2 Constraint set definitions . 40
3.3 Time-to-reach results . 40
3.4 Optimal bearing output . 41
3.5 Constraint sets for lane-splitting . 42
3.6 On-board hybrid automaton diagram . 43
3.7 Simulated obstacle avoidance trajectories. 45
3.8 Simulated lane splitting trajectories . 45
3.9 Photographs of active drifters actuating . 46
3.10 Real obstacle avoidance trajectories . 48
3.11 Real lane splitting trajectories . 49

4.1 Environmental sensor network diagram . 53
4.2 Screen capture of the website frontend. 55
4.3 Diagram of recordstore data structure . 57
4.4 Typical exchange between sensor and server . 59
4.5 Environmental Sensor system diagram. 68
4.6 Pin configuration of expansion port . 72
4.7 State machine diagram of firmware . 73
4.8 Battery life contour plot . 77

v

4.9 Breakdown of average current consumed . 77
4.10 K-30 CO2 sensor photographs . 79
4.11 Plot of noise added by CO2 sensor . 80
4.12 Door opening detector circuit schematic . 81
4.13 Current measurement circuit schematic . 82
4.14 Current consumption trace while sampling . 82
4.15 Current consumption trace while reporting. 83

5.1 Particulate matter sensor and data . 88
5.2 Diagram of low-cost PM sensor. 90
5.3 Photograph of corridor prior to PM experiments . 91
5.4 Physical configuration of PM sensors and visual landmarks. 92
5.5 Implementation of experimental configuration . 92
5.6 Example images from visual detection technique. 93
5.7 Timeseries of PM data correlated with camera detection events 94
5.8 Scatter plot of PM sensor output against OPC reference meter 95
5.9 Scatter plot of PM sensor output against camera activity signal 97
5.10 Photograph of conference room studied. 101
5.11 The CO2 data-logging sensor used . 102
5.12 CO2 concentrations during Experiment I . 103
5.13 Locations of CO2 sensors during Experiment I . 104
5.14 CO2 concentrations during Experiment II . 105
5.15 Geometrical representation of CO2 model . 108
5.16 Simulated concentration of CO2 at the air return . 110
5.17 Input V to the model for Experiment I . 110
5.18 Simulated concentration of CO2 at the air return for Experiment II 111
5.19 Input V to the model for Experiment II . 111
5.20 Estimation results of room CO2 concentrations for Experiment I 113
5.21 Estimation results of generated CO2 for Experiment I . 113
5.22 Estimation results of room CO2 concentrations for Experiment II 114
5.23 Estimation results of generated CO2 for Experiment II . 114
5.24 Identification results for Experiment I . 116
5.25 Identification results for Experiment II . 117

6.1 Obstacle map of the indoor domain . 126
6.2 Illustration of state transition sampling approach. 127
6.3 Example of learned probability distributions . 129
6.4 Active RFID tags and sensors . 130
6.5 Network diagram of RFID-based IPS . 131
6.6 Process of the IPS software flow. 132
6.7 Ground truth trajectory diagram. 135
6.8 Intermediate steps of the SIR program . 136

vi

6.9 Histogram of positioning error magnitudes . 137
6.10 Example estimated trajectory . 138
6.11 Plot of actual and estimated coordinates for VER experiment. 139
6.12 Plot of actual and estimated coordinates for GT experiment . 140
6.13 Plot of resources used as a function of n . 141
6.14 Plot of resources used as a function of C . 141
6.15 Plot of resources used as a function of δt . 142
6.16 Plot of execution time as a function of worker threads . 143
6.17 Transition distribution strategies given occupant velocity . 144
6.18 Occupant-carried environmental sensor watch. 147
6.19 Environmental features measured by the smart watch in different scenarios 148
6.20 Cooling effect induced by walking . 149

vii

List of Tables

2.1 Android drifter bill of materials . 13
2.2 Generation 3 Drifter Platform Capabilities . 19

4.1 Iterations of Environmental Sensor. 65
4.2 Features of existing environmental sensors . 67
4.3 Schedule of tasks executed . 75
4.4 Power consumption worksheet . 76

5.1 Sensor models tested . 90
5.2 Pearson’s correlation coefficient for PM sensor outputs . 95
5.3 MSE of calibrated PM sensor outputs against OPC reference meter 96
5.4 Parameters of the CO2 model for Experiment I . 109
5.5 Parameters of the CO2 model for Experiment II . 109

6.1 List of parameters tuned . 134

viii

Acknowledgments

I find myself taking a step back to appreciate how fortunate I have been throughout my
graduate career, to have met so many brilliant, friendly, and encouraging people who have
guided my progress, tested my ideas, and developed my principles in conducting science and
engineering.

Alex Bayen is the kind of advisor who brings his experience to the table, but feels more like
a partner than a boss. I attribute so much of my success in navigating academia and research
to his candid advice. He finds the unique strengths in every one of his students and treats his
research group like a family. Although Alex’s students worked on two different projects: the
Floating Sensor Network and the Connected Corridors project, everybody was quick to pick
up a box of drifters to help the family. Therefore, I want to thank Andrew, Carlos, Chiheng,
Christian, Jad, Jack, Jean-Baptiste, Jean-Bonoît, Jon, Leah, Mohammad, Nikos, Nolan,
Olli-Pekka, Pierre-Henri, Qingfang, Samitha, Saurabh, and Timothy, for their contributions
to the success of the Floating Sensor Network, their guidance, and their friendship.

I met Kris Pister at the end of my first semester at Berkeley and immediately identified
with his down-to-earth attitude about engineering, stripping away politics and prejudices.
Kris is also extremely sharp, and will immediately correct and/or extend the ideas of his
students. Kris holds weekly group meetings (home of the famous “burrito list”), where I
brought my ideas to be truly tested by Kris and his students, and where my creative juices
were invigorated. A special thanks to Ankur, Fabien, Travis, Mike, Thomas, and Xavi for
keeping me sharp as I grew in the EECS program.

I started working with Costas Spanos while he was chair of the EECS department and
I was president of EEGSA. I was fortunate to work with him again, in a research capacity,
as part of the SinBerBEST project. In both instances, Costas and I have worked together
towards significant accomplishments. He has a keen sense of the big picture, and at the same
time, letting each student know how important their individual contributions are towards
accomplishing it. I have enjoyed working with my teammates from both the Berkeley and
Singapore side of the project, Chris, Han, Ioannis, Jimmy, Komang, Krish, Ming, Shayaan,
Yuxun, and Zhaoyi. It has been very rewarding watching them grow and develop their own
scientific minds and careers.

I cannot list everybody in the Berkeley EECS department, but nonetheless, every student
has done their part contributing towards the EECS culture which is decidedly laid-back and
supportive. Many students, faculty, and staff have helped me and others throughout the
program as my friends and advisers. As EEGSA president, I want to thank Bobby, my
co-president for taking on the challenge with me, and Matt and Gireeja for their guidance,
as well as all of the officers.

I am eternally thankful to my loving family. My wife Donna, truly completes me and
led me to discover myself, celebrating and sympathizing with me, supporting me every step
along my journey (even when I decide to get married and graduate in the same month).
Finally, I would not be the person I am without my mom, Sheila, dad, Roger, and sister,
Sara’s, upbringing, their encouragement and guiding principles.

1

Chapter 1

Introduction

1.1 Position of the research

From predicting the weather by tracking campfire smoke, to tracking enemy movements to
guess their intention, humanity has always placed great importance in tracking the motion
of objects and people in their environment. These problems deal with estimating mobile
elements of an intrinsically mobile environment. Nowadays, we augment our senses, and
our reasoning abilities, with electronic sensors and mathematical frameworks, allowing us to
understand these environments at a denser and deeper level. These sensors and techniques
can be seen as tools which are selected, combined, interpreted and synthesized; it is novel ap-
plication of these tools towards real-world environments which advances the field of applied
estimation. This dissertation is an investigation, discussion, and inspiration for future re-
search into mobile environments, achieved by finding appropriate and powerful mathematical
estimation tools, collecting rich sets of experimental data, and solving the implementation
challenges that arise in applying the tools to the data. The product of the studies conducted
are realizable and informative (i.e. the output is immediately meaningful) architectures for
sensing mobile environments.

Our research takes place in two settings. The first setting is comprised of rivers and
estuaries, where we would like to understand the movement of water through these con-
duits. The sensing instrument we use is a mobile floating sensor, or drifter, which is device
purposefully placed into the river and intended to match the water’s movement. Since our
estimation algorithms benefit from increased visibility of the environment, we leverage the
ubiquity of low-cost Android smartphones to build numerous passive drifter units. However,
river and estuarial environments present mobility challenges that have traditionally beset
drifter research. Therefore, we also design a motorized active drifter for the purpose of navi-
gating these regions while still functioning as a drifter. This requires the use of an advanced
control method based on the Hamilton-Jacobi framework, a mathematical tool for which cer-
tain implementation challenges were overcome to be applied successfully. The passive and
active drifters are both components of a realized architecture which collects and processes

CHAPTER 1. INTRODUCTION 2

the measurements from the sensors. This architecture produces informative outputs in the
form of flow fields, that is, the river speed and direction at each point on a 2-dimensional
grid within the experimental region.

Our second research setting is comprised of indoor office spaces where occupants work
and spend much of their daily routine. Whereas the mobile elements were designed by us
in the drifter work, in this setting, the mobile elements are the occupants themselves. The
motion and position of these occupants is important knowledge to the greater smart building
community, notably to regulate energy usage and to satisfy indoor air quality requirements.
We apply the strengths of both technological and mathematical advancements towards this
estimation challenge. Technologically, we introduce a sensing device and a supporting ar-
chitecture which enables wirelessly recording environmental variables needed as inputs to
the mathematical tools. This sensing system is low cost, easily deployed and maintained,
and in having a long battery lifetime, is suitable to be deployed permanently in areas which
are valuable to be measured. Mathematically, we apply advanced estimation techniques to
achieve an informative result, such as the position of an occupant, or the amount of occu-
pant activity in an area. We also provide a thorough discussion of the future direction of
the work conducted in the office setting: to provide a unified algorithm which incorporates
information from heterogeneous data sources spread throughout the building. The fact that
the algorithm can digest and leverage different types of data leads to an important practical
advantage: our method can be applied to sensors which are already deployed, such as CO2

and passive infrared (PIR) sensors.
We position the research presented in this dissertation as a description of the challenges

overcome in applying estimation techniques towards these mobile environments. Our goal is
twofold: first to advance the understanding of mobility in the river and office environments
through our experimental and modelling work. Our second is to archive and pass on our
experiences to other researchers who, like us, are building sensing architectures and studying
mobile environments.

1.2 Components of mobile environments

In some communities, the term mobile environment indicates a troublesome scenario where
the mobility of elements is undesired, but must somehow be accounted for. For example, in
the wireless networking community, the mobility of participants in the network can wreck
havoc as nodes enter and leave each others’ transmission range [1]. Even wireless positioning
techniques, which are intrinsically interested in the mobile element, experience a degradation
of performance when mobility is introduced [2]. Nevertheless, mobile environments are
realities of our world and studying them has a large potential for societal improvement, with
applications including reducing energy consumption and managing fresh water resources.

Characteristic of mobile environments is the concept of position, i.e. the location of ob-
jects or physical phenomena referenced to points within another environment. We define
a stationary environment as representing an “assumed” reference frame. In some fields of

CHAPTER 1. INTRODUCTION 3

science, such as astronomy, the definition of the stationary environment is more ambiguous
since the earth can be seen as moving within the solar system or galaxy. For this disser-
tation however, the stationary environment is assumed to be comprised of all objects and
phenomena whose positions are fixed to the earth, such as buildings and terrain. The mobile
elements are those which change their position (either intentionally or passively) over time,
relative to the earth. Together, the stationary environment and the mobile elements within
that environment comprise the mobile environment.

Since mobile elements change their position over time, there is also the concept of velocity,
which is the first derivative of position with respect to time. As well, there is a concept of
acceleration, which is the second derivative of position with respect to time. Both velocity
and acceleration are vector-valued quantities which can be decomposed into scalar parts.
Velocity is commonly decomposed into speed and direction, and acceleration is commonly
decomposed into its 3-dimensional components X,Y, and Z (since acceleration sensors can
measure these quantities).

In real mobile environments, there are constraints on the mobility of the mobile elements.
There are two constraints commonly encountered: obstacles are positions which the mobile
element cannot occupy or cross, such as a solid wall. The other constraint is limited control
authority: bounds on the amount a mobile element can change in its position, speed, or
velocity. In some cases, these constraints are problems that must be overcome, such as a
swimming robot that is too weak to swim upstream. In other cases, we leverage the imposed
constraints to add information to the problem, such as a tracking problem where knowledge
of obstacles can indicate which positions do not need to be considered.

1.3 Estimation problems and frameworks

One research problem in mobile environments is to estimate the position of the mobile ele-
ments. Directly tracking the object involves creating a model such that the state of the model
includes the object’s position. Then we use mathematical techniques to estimate the value of
the model’s state. However, sometimes the application calls for other metrics, such has how
many of the mobile objects are in a certain area. In this case, the estimation technique may
not directly track the mobile elements’ positions, rather it estimates an aggregate variable
which is a function of their positions. An example is the occupancy estimation problem,
where the goal is to count the number of occupants in each room of a building.

There are many well-developed estimation frameworks in use, and their success mainly
depends on their applicability to the problem and how well they are applied and imple-
mented. In this dissertation, we demonstrate the use of several of these frameworks, in-
cluding Ensemble Kalman Filtering [3], observers of partial differential equations [4], and
particle filtering [5]. In general, the estimators we consider are those which rely on a model,
constructed such that the state contains a variable that we want to estimate the value of.
These estimators rely on an iterative or continuous process of making predictions, using the
model, and then correcting those predictions via observations collected by real-world sensors.

CHAPTER 1. INTRODUCTION 4

Another school of study which we do not consider, but is a promising avenue for esti-
mation problems, is machine learning and data mining [6]. Some of these techniques do not
require a model or understanding of the underlying physics. In general, a machine learning
algorithm attempts to learn the “correct” answer for a given set of inputs, using a training
set of pairs of known correct answers and inputs. For example, a machine learning algorithm
could learn how to do multiplication by being given a large table of products and their fac-
tors. These algorithms are particularly powerful when a massive amount of training data is
available. Therefore, we believe machine learning could prove most effective after a sensing
infrastructure has been installed for a long time, collecting a large data set from which to
learn. In applying the estimation algorithms mentioned by this dissertation, we design and
construct sensing architectures along the way, which we hope can also speed development
and use of alternative estimation techniques, such as machine learning.

1.4 Challenges of applied estimation

The challenge of applying model-based estimators to real-world deployments is to design the
model so that it is efficiently computable, produces accurate and informative outputs, and
takes input measurements that can actually be obtained. Therefore, we aim to use algorithms
which execute at real-time speed or better, even for large environments, since time is not a
controlled variable in a real-world deployment. We must also either use commercial off-the-
shelf sensors which collect the desired environmental variables, or design custom sensors to
gather the required variables.

As well as overcoming the previous challenges, we also have the goal of demonstrating
a practical implementation. Therefore, we design architectures which are low-cost, robust,
and mostly automated. This design philosophy is embodied in the designs of the Floating
Sensor Network and the indoor environmental sensing platform. These practical constraints
indicate limitations on the choice of sensing infrastructure. Clearly the cost of the hardware
and mechanical components will have a large role in how valuable the contribution of the
design is to society, since the infrastructure must actually be bought and used to convey
its benefits. Along the same lines, if the design is prone to failure, or requires human
intervention, it will incur a large maintenance and operations cost, rendering it impractical.
Therefore, we include a number of solutions to the practical side of the applied estimation
problem, where careful and novel design is shown to significantly reduce construction and
operating costs. One example is the design of the passive floating sensor which uses an
Android smartphone to significantly reduce construction costs.

1.5 Organization

The dissertation is organized as follows: Chapters 2 and 3 operate within the setting of
rivers and estuaries, describing our solution to estimating the motion of water through the

CHAPTER 1. INTRODUCTION 5

environment. In Chapter 2, we introduce the floating sensor network, a fleet of autonomous
Lagrangian drifters, both motorized (active) and non-motorized (passive). Since a primary
contribution of the active drifter design is its ability to avoid obstacles, we extend the dis-
cussion of the Hamilton-Jacobi safety control technique in Chapter 3.

The Chapters 4–6 operate within the setting of an office building, where the mobile
elements are occupants rather than drifters, and the goal is to estimate the mobility of
these occupants. As in the previous river setting, a sensing architecture must be built for
collecting the measurements to support practical and permanent estimation. We present the
environmental sensing platform in Chapter 4 as a reference design for such an architecture.
A valuable direction for study in the smart building setting is occupancy estimation. In
Chapter 5, we describe studies in relating occupancy and occupant activity to environmental
variables (CO2 and particulate matter concentration) both of which are measured for indoor
air quality. Our final investigation, described by Chapter 6, covers occupant tracking, i.e.
estimating the position of occupant(s) over time. We describe a method which tracks an
indoor occupant and provide results using a radio-based positioning system as the input
to the algorithm. We illustrate how sensor data from the environmental sensor platform
can be used, motivated by experiments with an environmental sensing smart watch. This
chapter also discusses a unified occupancy estimation and occupant tracking framework to
fuse heterogeneous sources of data from building sensors using particle filters.

Finally, we conclude the dissertation in Chapter 7, discussing the contributions of the
work towards applied estimation and we motivate future directions into these mobile envi-
ronments.

6

Chapter 2

Mobile Floating Sensors

2.1 Introduction

A complex mobile environment of high societal importance are the natural aqueducts of
our freshwater supplies, that is rivers, lakes, streams, and estuaries. Throughout history,
the movement, storage, consumption and contamination of water resources have formed and
torn human communities together and apart. Freshwater is especially responsible for the
flourishing of California’s population and rich agriculture. Natural and man-made systems
of channels, dams and aqueducts deliver and store the freshwater, supplying the agricultural,
industrial, and consumer needs of the state. These are essential for the state’s survival, and
are sometimes tested to its limits, such as the drought of early 2014, when the California
Department of Water Resources (DWR), for the first time ever, prepared to cut all water
deliveries to the State Water Project’s (SWP) agricultural customers. During this time,
many urban areas had to rely on their local groundwater storage for drinking water [7].

The Floating Sensor Network (FSN) project at the University of California Berkeley [8]
hopes to improve the understanding of estuarial environments in California. We attempt to
estimate the mobility of the environment by inventing novel sensor systems and algorithms
which can tell us where water moves within the environment. Most of our studies have
occurred in the Sacramento-San Joaquin River Delta region in which water is stored and
transported from melted snow in the Sierra mountains to the SWP and Central Valley
Project (CVP) which supplies over 23 million Californians. The delta also connects to the
ocean and freshwater outflow is required prevent saltwater from intruding into the delta and
threatening the local ecosystem, as well as contaminating the freshwater supply. Therefore,
if too much water is drawn from the delta, allowing salt water to flow in from the ocean,
it could have disastrous consequences for all of California. In some cases, water must be
released from reservoirs for expressly this purpose [9]. Thus, understanding the way water
is moving and how it reacts to policy decisions will be extremely valuable in efficiently and
safely using this water system. We believe that the invention and demonstration of our
sensor network is large step towards this understanding.

CHAPTER 2. MOBILE FLOATING SENSORS 7

Existing infrastructure is in place to monitor mass-flows of water entering and leaving
the water system via fixed sensor stations distributed at various water-transfer junctions in
the delta. These stations provide insight into how much water is entering and exiting the
system. However, when faced with the question of where a particular “piece” of water moves
within the system, hydrodynamic models must be used to estimate missing information that
is not directly sensed. This process introduces significant modelling errors when determining
where the pieces of water are moving. The Lagrangian sensing techniques developed by
the FSN enable measuring the motion directly by embedding sensors in the environment
which match the movement of the water mass. This has applications in tracking salt water
intrusion into sensitive zones, or tracking the spread of contaminants after a chemical spill.
For example, a fleet of drifters could be deployed at a recent spill site and their positions
would be a proxy for the spread of the contaminant.

We have built an architecture to autonomously collect, store, and analyze measurements
from our custom-built drifter instruments, which are designed to float along with the river
water. We build a fleet of 100 drifters in two configurations: an active, motorized configu-
ration which can avoid obstacles, and a passive, non-motorized and low-cost configuration
which is based on an Android mobile phone. Measurements are collected wirelessly and in
real-time over the mobile phone network and received by a server which stores the measure-
ments and also sends them to be processed by a supercomputing cluster where the estimation
is performed. The end results come in the form of flow field estimates of the region, where
the water velocity of the river at each point (on a 2 dimensional grid) is estimated.

This chapter is primarily a description of the design and capabilities of the FSN fleet.
The culmination of this work and proof of applicability of the system was demonstrated
on May 9, 2012, when the FSN team deployed 28 motorized, active drifters and 68 passive
drifters in the Sacramento River near its junction with the Georgiana Slough, near the town
of Walnut Grove, California. The operation demonstrated the communication, obstacle
avoidance, navigation, and data-gathering capabilities of the FSN fleet, and gathered flow
data for use in demonstrations of an online Ensemble Kalman Filter based assimilation using
a high-performance computing cluster.

Drifting Lagrangian sensors

In situ sensing refers to sensing techniques where a device is in direct contact with the
environmental phenomena it measures. In contrast, remote sensing refers to techniques
like satellite imagery, in which measurements are taken from afar. In situ sensing in fluid
environments is classified into Eulerian and Lagrangian techniques, using the terminology for
the different reference frames in hydrodynamics. Eulerian sensors are fixed to the external
reference frame, e.g., the river bank, and take measurements from the water as it moves by.
Lagrangian sensors float freely in the fluid itself, and gather measurements about the water
as it moves through the environment.

Lagrangian sensors are a proven technology for oceanographic environments, where Eu-
lerian sensor stations are impractical to deploy. For different reasons, Lagrangian sensing is

CHAPTER 2. MOBILE FLOATING SENSORS 8

Figure 2.1: Drifter fleet on the Walnut Grove Public Dock on May 9, 2012 prior to deploy-
ment. Photo credit: Jérôme Thai

important to near-shore environments such as rivers and bay, as they better monitor the flow
of freshwater and transport of constituents than Eulerian techniques. Example applications
include assessing chemical spill or infrastructure failure vulnerabilities, planning reservoir
release and gate control policies to mitigate saltwater intrusion, and monitor the effect of
agriculture on freshwater supply. In contrast, Eulerian sensors are effective for directly mea-
suring mass flow of water across certain points in the network, but must be integrated into
a hydrodynamic model in order to track the transport of constituents.

Some Lagrangian sensors measure physical characteristics of the water in which they are
immersed (e.g. dissolved constituents or temperature), while for others, the primary data
gathered is its position over time. A well designed Lagrangian sensor should act like an
“ideal particle” in the water flow, thus the time series of its position allows direct estimation
of the velocity of the water which it traveled through. In the hydrodynamics literature,
such sensor devices are called drifters. Drifter design has always been constrained by the
positioning and communications technologies available. Modern oceanography began using
drifters based on underwater acoustic communication in the 1950s [10]. Acoustic technology
dominated until 1978, when the Argus satellite service gave oceanographic researchers a

CHAPTER 2. MOBILE FLOATING SENSORS 9

global location and data uplink system [11]. Power, cost, and size constraints meant that
Argos-based drifters [12, 13, 14] were better suited to oceanography than inland environments
like rivers and estuaries. In general, Lagrangian sensing has proven to be challenging in these
environments due to shallow areas and relatively narrow water passageways which can trap
drifters.

Global Positioning System (GPS) positioning and local radio frequency (RF) communica-
tion have enabled inland drifter studies, by allowing smaller units which can traverse shallow
and obstacle-rich areas in a river system. GPS-carrying river drifters have been the focus
of development by the FSN project [15] and other groups [16, 17]. Studies in regions with
well-developed civilian infrastructure, like the continental United States, can take advantage
of the mobile phone network for communications. The drifter design in this article is to our
knowledge the first design to use commercial mobile phones not only as the communication
system, but as the positioning and computation system as well.

2.2 Passive sensors using Android mobile phones

Motivation

Most of the drifters in our Floating Sensor fleet are our Android drifters [18], named as
they are based on the Android platform [19], whereas all of our previous drifter designs
relied heavily on custom, microcontroller-based designs. These custom designs required
many months of development and debugging hardware components, and often required that
features be removed from the final product due to cost or time constraints. Thus, the
proliferation of Android smartphones offered us a relatively low-cost package offering the
following features:

• All of the electronic functionalities required for a Lagrangian drifter– Positioning (via
internal GPS), long-range Internet communication (via the mobile connection), and
user interface (via the touch screen).

• A high-level programming interface (JAVA) and API for accessing the needed func-
tionalities.

• Industry-tested hardware and software libraries, significantly improving reliability.

• High-volume pricing, due to the proliferation of smartphones in the consumer space.

In exchange for these features, the choice of the Android platform over a custom solution
has the following drawbacks:

• Interfacing external sensors is difficult, requiring an unsupported and unreliable use
of the Universal Serial Bus (USB) connection and a complex interfacing board. This
has since been address by official support via the Android Accessory Development

CHAPTER 2. MOBILE FLOATING SENSORS 10

Kit (ADK), however, the solution is still more complex than interfacing sensors to a
microcontroller.

• The power usage is significantly increased due to a high-powered processor and in-
creased processing needed to execute JAVA code as well as the rest of the miscella-
neous operating system tasks and applications which are concurrently running. Thus,
we need to add an external battery to achieve multi-day lifetimes (fortunately, a battery
satisfies a dual-purpose as a ballast weight).

• We have significantly less control of the processor due to running in user-space in
an operating system. Our application could be delayed or even stopped from other
concurrent processes running on the phone. The primary effect is increased latency
and lack of real-time assurances, which hinder using the phone for real-time control
purposes (if the drifter were motorized), and possibly less reliability if our process was
unexpectedly terminated, although we have never encountered this happening.

Ultimately, we recognized that many of our drifter studies could benefit from high num-
bers of floating sensors, which, due to cost, could not be met with custom hardware drifters.
Thus, these Android drifters were designed to provide numerous sensors for studies in non-
hostile environments, where obstacles posed less of a risk. Our smaller fleet of motorized
drifters, using custom hardware, were used for those environments that proved too opera-
tionally difficult for these Android drifters to be used in.

Physical form of the Android drifter

A real-time Lagrangian drifter has two basic intelligence requirements: it can sense its own
position and it report it to a central location. Since these are both satisfied by consumer
Android mobile phones, we design an enclosure to hold one of these phones. Similar to our
work with the active sensors, we identified three considerations when designing the form
factor: First, as a Lagrangian flow sensor, it must suitably match the river’s local velocity.
Secondly, the mass must be distributed such that the phone is oriented vertically (to ensure
the best GPS and communications reception). Finally, the phone should be nominally above
the water line to ensure sufficient reception.

In the active drifter work, we found that a large, symmetric drag profile indicates good
Lagrangian tracking performance, thus, the design is again a vertically oriented cylinder
based on a water filter housing. In addition to the weight of the battery, an additional
aluminum ballast weight was necessary to ensure a large separation between the center
of mass (COM), at approximately 94 mm from the base, and center of buoyancy (COB), at
approximately 126 mm from the base, while keeping the enclosure 90% submerged. Figure 2.2
shows how the COM and COB are distributed in the design.

The hull is primarily an ultraviolet (UV) stabilized polyvinyl chloride (PVC) water filter
housing manufactured by Pentec. The bottom receiving cap of the water filter housing is
machined from Delrin, which is known for its durability and ease of machining by computer

CHAPTER 2. MOBILE FLOATING SENSORS 11

Figure 2.2: Sensor dimensions and COM and COB locations.

numeric controlled (CNC) equipment. Also, since it absorbs just 0.2% of its volume in water
(24 hour submersion), it undergoes minimal changes in dimensional tolerances, which could
be a source of leaks in other materials. The Delrin cap is given male threads which mate to
the water filter housing. A silicone O-ring forms a watertight seal between the water filter
housing and the Delrin cap and the two are tightened with two wrenches also manufactured
by Pentek. The Delrin cap has notches which receive the special wrench. Internally, the
Delrin cap has an impression for the ballast weight to reside in. Additionally there is a
machined PVC tube which holds the phone in the desired position. Slots are machined
into the PVC tube to hold the phone as well as to not impede airflow to help ventilate the
phone. The overall assembly cost and diagram of components is displayed in Table 2.1 and
Figure 2.3.

Our choice of battery was primarily driven by the typical residence time of water in the
Sacramento-San Joaquin River Delta, approximately 48 hours. Thus we chose a battery
which allowed 48 hours of continuous usage of the GPS, accelerometer, and Global System

CHAPTER 2. MOBILE FLOATING SENSORS 12

Figure 2.3: Android drifter assembly with part numbers.

for Mobile (GSM) systems on the phone. We found that this provides sufficient time for a
lost drifter to be located and retrieved before the battery expires. We chose to use a high
energy-density Li-Ion, 115 Watt-hour (at 1 Amp current draw) battery pack, providing, via
an embedded circuit board, regulated 5 Volts to a micro Universal Serial Bus (USB) cable
which plugs into the charging port of the phone.

Android software

Overview

The software for the Android Drifter was written in Java, following the model of the Android
platform’s Application Programming Interface (API). The Android platform distinguishes
two types of programs: activities and services. Activities are intended to be user-interactive,
thus having a high execution priority, but can be terminated by the operating system if
they lose focus in order to regain their resources. Examples of activities are web browsers or
games. Services, on the other hand, are typically given less priority, but are the last to be
terminated when the operating system is low on memory. Services run in the background
and interaction with them must be through an activity. Examples of services are music
players, battery monitors, or email notification applications.

For our application we implemented the following three programs:

• AndroidDrifterService: Encompasses the main functionality of the Android Drifter,
periodically transmitting and logging the last GPS position along with the valid flag

CHAPTER 2. MOBILE FLOATING SENSORS 13

Item Price Quantity

1 Duct tape handle $1 1

2 Upper PVC hull $25 1

3 Motorola DEFY $175 1

4 Rubber bands $1 2

5 PVC phone holster $15 1

6 Foam disk $1 1

7 LiPo battery $250 1

8 If-found placard $1 1

9 Aluminum disk $10 1

10 Delrin base $50 1

Total $530 11

Table 2.1: Android drifter bill of materials

indicating if the unit is upright.

• AndroidDrifterActivity: Provides the user buttons to start and stop the service and
status indicators to determine if data is being delivered properly.

• ConfigureActivity: Allows the user to configure the parameters (server address, port,
update rate, etc.) of the service.

A simplified Unified Modeling Language (UML) diagram is provided in Figure 2.4. In
the rest of this section, we describe the functionalities of the AndroidDrifterService in more
detail:

GPS location collection

To collect the GPS location of the device, we used the LocationManager API class and
related libraries. We call the API by requesting location change updates to a custom callback
method and ask for minimum interval to receive updates. Thus, our callback method is called
about every second with a new location object. The latitude and longitude coordinates are
converted to UTM coordinates and store temporarily into the last_loc variable.

CHAPTER 2. MOBILE FLOATING SENSORS 14

AndroidDrifterService

- last_loc : UTMCoordinates

- TCP_os : OutputStream

- SDCard_os : OutputStream

- valid : boolean

#onSensorChanged(SensorEvent)

#onLocationChanged(Location)

#tryConnect()

#sendUpdate()

#loadPreferences()

Responsibilities

-- Collect latest GPS location

-- Calculate valid flag

-- Send location and valid flag

 periodically

-- Reconnect to remote server if

 disconnected

AndroidDrifterActivity/

ConfigureActivity

#updateUI()

#onClickListener()

#savePreferences()

Responsibilities:

-- Update UI when notified

 of changes

-- Start and stop service

 when requested by user

-- Configure preferences

Notifies status changed

Reads status information

Starts/stops service

SharedPreferences

#setString(...),setInt(...), etc.

#getString(...),getInt(...),etc.

Writes Preferences
Reads Preferences

Figure 2.4: Simplified UML diagram showing interactions between software components of
the Android drifter.

Valid flag calculation

The Android Drifter monitors its orientation to determine if its GPS position is valid, or
drifting free in the water, or invalid, such as when it is being stored or transported. The
Android phone inside the Android Drifter has a fixed orientation, therefore, the phone’s
orientation moves along with the orientation of the drifter as a whole. Given that the units
are typically stored on their sides in containers and are upright when floating, we can use
the phone’s built in accelerometer to determine when the drifter is in either of these two
states. The x-axis of the accelerometer points to the right side of the phone’s screen, the
y-axis points to the top of the phone, and the z-axis points out of the screen of the phone.

To collect the accelerometer readings from the phone we used the SensorManager API
class and related libraries. Similar to the LocationManager class, we configured a callback to
be provided updates at the fastest possible rate. On the incoming readings (rawx, rawy, rawz)
we implement a variant of the exponential moving average:

ax ← (1− αdt) · rawx + αdt · ax

ay ← (1− αdt) · rawy + αdt · ay

az ← (1− αdt) · rawz + αdt · az

where dt is the time since the last sample and α is the degree of weighting decrease. Unlike
the standard exponential moving average, samples are also scaled by the sampling interval
because the Android operating system does not provide samples at a consistent rate. The
weighting factor α = 0.001 was chosen as a tradeoff between responsiveness in detecting

CHAPTER 2. MOBILE FLOATING SENSORS 15

placement in water and storage and effectiveness in filtering out bumps and shakes. We then
compute the valid flag representing these two states as:

valid←






1 if ay > |ax| and ay > |az|
0 otherwise.

(2.1)

Therefore, if the phone’s longest dimension is aligned with the gravity vector and upright,
valid becomes 1, whereas if the phone is on one of its other sides, valid is 0.

Without the filter, we find that there are many false-negatives, i.e. the drifter reports
valid = 0 when it should report valid = 1. The errors are caused by noisy accelerometer
signals which can be attributed to wave action buffeting the drifter as well as normal noise
from the sensor. We ran a study to determine the effect of the filter described above on the
false-negative rate. For this test, the drifter was moored floating upright for 14 hours while
logging accelerometer samples. Sampling intervals during this study had a mean of 203 mS
and a standard deviation of 17 mS. We then calculate the raw and filtered pitch angles φraw

and φ using the following formulae:

φraw = tan−1
(

rawy√
raw2

x+raw2
z

)

φ = tan−1
(

ay√
a2

x+a2
z

)

We evaluate the arctangent function tan−1
(

y

x

)

using the two-argument function atan2(y, x)
common to many computer languages in order to place the angle in the correct quadrant.

The cumulative distribution functions of these two signals are plotted in Figure 2.5, along
with the 45◦ threshold implied by Equation (2.1). From this, we calculate that the probability
of false-negatives for the unfiltered data and filtered data is 10.6% and 0.583%, respectively.
Thus, we conclude that the filtering is necessary to practically use the accelerometer as a
tilt detector for determining whether the drifter is floating in the water or stored in its box.

Data transmission and Logging

The Timer API class is used to schedule a callback function periodically at a user-defined in-
terval (typically 5s). In this callback, sendUpdate(), a type-value (TV) string is constructed,
delimited by the forward slash character. An example of such a string is:

id/A78/ts/1334251708/x/630062.63/y/4233832.13/zn/10/valid/0/<LF>

where <LF> is the line feed character 0x0A. Here, the unit with ID A78 is reporting that
on April 12, 2012 at 17:28:28 Greenwich Mean Time (1334251708 seconds since January 1,
1970), it was at UTM Coordinates 10N 630062.63 4233832.13, and that the data is invalid.
Since this is about 10:30AM Pacific Standard Time, this corresponds to a time when the
unit was still in storage in a container, waiting to be deployed.

CHAPTER 2. MOBILE FLOATING SENSORS 16

The phone attempts to both write this string to a file on the phone’s external memory
card and send the string to a remote server over a transmission control protocol (TCP)
connection. If either method is disrupted, the phone attempts to reestablish the file-handle
or socket connection, respectively. When the phone does not have a GPS lock, it will still
write data to the file and TCP connection at the defined interval, reusing the last GPS
sample sent (or populate the fields with 0 if a lock was never achieved since the service
was started). This assists later analysis as we can determine when GPS functionality was
compromised and distinguish problems with the GPS from other parts of the program.

Applications

The Android drifters continue to be used for missions in the Sacramento-San Joaquin River
Delta. For example, the FSN and Stanford University’s Environmental Fluid Mechanics
and Hydrology Department have each managed two missions independently. We have also
provided the drifters to the University of California Davis and the United States Geographical
Survey for extended periods to support their missions in the delta. This is a testament to
the ease of use of the drifter platform: Only two Android drifters have been lost, thanks to

0 15 30 45 60 75 90
0

0.2

0.4

0.6

0.8

1

10.6%

0.583%

Angle (degrees)

P
ro

b
ab

il
it
y

Unfiltered

Filtered

Threshold

Figure 2.5: CDF of the angle calculated from the unfiltered (red circles) and filtered (blue
pluses) accelerometer signal recorded by the Android phone. Unit was floating upright for
the entirety of the 14 hour test. Black line shows the threshold value on which the software
decides if the GPS position is valid.

CHAPTER 2. MOBILE FLOATING SENSORS 17

Figure 2.6: Android drifter usage.

the real-time tracking feature. This is also evidence for the durability of the drifters: No
drifter has leaked in over 1300 hours of operation, and. In one instance, a drifter was lost
for 320 days and later found and returned by a local boat operator. The drifter itself was
very scratched but showed no signs of water leakage and the electronics were still operational
after charging the battery.

Figure 2.6 shows pictures from a deployment of 70 Android drifters on May 9, 2012.
The deployment lasted for 8 hours and spanned over 3.5 of the Sacramento River and the
Georgiana Slough near Walnut Grove, California. The drifters travelled from the Walnut
Grove dock, where they were deployed by hand, then down either the Sacramento River or
Georgiana Slough, after which they were retrieved by boat teams armed with pole nets.

2.3 Actuated Generation 3 drifter design

The need for actuated drifters

Android drifters have proven to be useful tools for measuring the river environment, however,
without supervision, the are likely to be rendered useless when they are stuck on obstacles and
thus no longer track the river velocity. Thus, fixed, Eulerian infrastructure is traditionally

CHAPTER 2. MOBILE FLOATING SENSORS 18

used in the river environment. However, the vision of the FSN is long term operation of
the drifters, thus, some mechanism is needed to avoid obstacles such as debris or the river
shore. Thus, a motorized floating sensor is developed which has the ability to avoid these
hazards, while being low-cost and manufacturable. In fact, the FSN is the first to design
and produce a fleet of 40 such motorized drifters and demonstrate their effectiveness in a
field experiment.

Our design included the electrical and mechanical requirements for an advanced safety
control technique presented in Chapter 3. This safety control technique allows us to not only
have the motorized drifters avoid obstacles that threaten their operation, but also specify a
particular part of the river to proceed along. We demonstrated this ability near the river
junction of the Sacramento river and the Georgiana Slough near Walnut Grove, CA [20].

Hardware

We designed the Generation 3 drifter to be modular with respect to functionality, with the
main division being between hard real-time tasks, such as the drive signals sent to the motor
pods, and soft real-time tasks, such as servicing messages from the GPS and communication
modules. A picture of the drifter as well as a module-level view is shown in Figure 2.7. We
have provided a summary of the important hardware capabilities of the drifter in Table 2.2.
The central processing unit (CPU) is a Gumstix Overo microprocessor and communicates,
via a FT4232H USB-to-serial chip, to the other modules on the board. The CPU also uses
some general-purpose input/output ports to control the power to each module as well as
various control lines.

The drifter electronics hardware is comprised of six circular circuit boards separated by
function. A major constraint driving the multitude of separate boards was shape of the
vessel [21], designed to be cylindrical. Shown in Figure 2.8 is a breakdown of how the circuit
boards are arranged in the drifter unit. From top to bottom, we describe the responsibilities
and components of each board:

A: The Top Board is a 3.1 inch 2-layer circular PCB. It contains the GPS module, compass
module, XBee-compatible pin headers, and an ATxmega128A3 microcontroller which
reads the compass and can intercept communications to or from the GPS or XBee
modules. The microcontroller is given control of the power domains of the drifter and
can thus extend battery life by turning off the high-consumption subsystems such as
the main CPU.

B: The Overo Board is a 3.1 inch 4-layer circular PCB. The board connects to the top
board via two 14 pin board-to-board headers and communicates to the bottom board
stack through an additional 14 pin ribbon cable. It also receives power by a 4-conductor
large-gauge cable. This board houses the GSM cell-phone modem, the Overo CPU,
and indicator LEDs. A FT4232H USB-to-serial chip provides the Overo CPU with
four serial ports with which to communicate with the drifter’s various modules.

CHAPTER 2. MOBILE FLOATING SENSORS 19

Table 2.2: Generation 3 Drifter Platform Capabilities

Master CPU

Gumstix Overo Water single-board computer
720MHz OMAP3530 ARM Cortex-A8
256MB RAM, 256MB Flash
OpenEmbedded Linux Distribution

Experimental Data
Memory

1GB or 2GB micro-SD card

Real-time processors
2 ATxmega128A3 processors
32MHz 8-bit AVR
8KB RAM, 128KB Flash

Short-Range
Communication

XBee-PRO S2 radio module
IEEE802.15.4 / ZigBee compliant
+17dBm output

Long-Range
Communication

Motorola G24 modem
GSM compliant using GPRS data service
+33dBm output

Position Sensing
MT3329 GPS Module
66 Channels, 10Hz update rate
-165dBm sensitivity, <3m accuracy

Orientation Sensing
HMC6352 2-axis digital compass
20Hz update rate
Automatic calibration

Propulsion
11.1V Brushed DC Motors in differential drive
Hobby-grade electronics speed controllers
Plastic Propellers

11.1V
Lithium-Ion Batteries

Motor: 10.4Ah(6.5h lifetime)
Electronics: 4.2Ah(48h lifetime)

CHAPTER 2. MOBILE FLOATING SENSORS 20

Figure 2.7: Left: motorized sensor unit. Right: modular breakdown of drifter.

C: The ESC Board is a rectangular PCB placed vertically in the tube supporting the upper
electronics stack. It contains two commercial electronic speed controllers (ESCs) and
the level-shifting circuitry to operate them. A 14 pin ribbon cable connects this to the
power board (which also provides a connection to the control board) and a two pin
battery connector provides power.

D: The Power Board is a triangular PCB responsible for converting the 11.1V battery
voltage to 3.7V to run the electronics and measuring the power consumption via a
MAX4173F chip. The voltage conversion is facilitated by a buck converter circuit
controlled by a TPS5430 chip.

E: The Control Board board contains another ATxmega128A3 microcontroller responsible
for controlling the direction of the drifter and reading measurements from the water
quality sensors below. Originally the compass was to be placed on this board, but we
found that between the battery and motors there was too much magnetic distortion
for the digital compass to function.

CHAPTER 2. MOBILE FLOATING SENSORS 21

A: Top board

B: Overo board

C: ESC board

D: Motor pod

E: Power board
F: Control board

G: Battery

Figure 2.8: Generation 3 Drifter Hardware Components.

CHAPTER 2. MOBILE FLOATING SENSORS 22

Software

With the power and flexibility of the Gumstix Overo running Linux, we designed our soft-
ware to be primarily written in the Python language. This choice of language offered some
important advantages over previous generations which were written in C. Most notably, since
Python is a scripting language, it does not require cross-compilation targeting the Overo.
Thus, we were able to have rapid design cycles, as each code change required only upload-
ing the new code to the drifter. Additionally, the scripts could be edited on the drifters
themselves.

An additional decision to aid in development and robustness was to separate the code
into modules which would run in independent processes. The most immediate advantage
of this strategy is that, if one module experiences errors and crashes, it can be restarted
without affecting the rest of the system. We chose to use UNIX IPC sockets for inter-
process communications (IPC) which enabled a straightforward implementation of a SIL
simulator. To serialize and decode messages, we use Google Protocol Buffers[22].

The modules are separated according to function, as shown in Figure 2.9 which lists the
set of modules used in a typical experiment. Each module hosts a UNIX IPC server and a
corresponding library of functions for other processes to call, making the appropriate UNIX
IPC client connections and messages.

A feature of this modular design choice is that we can write virtual modules which emulate
the functionality of physical systems. For example, when testing the control algorithm
presented in this article, we wrote a virtual GPS module providing coordinates from the
dynamics simulator described in Section 3.3. The dynamics simulator includes a simulated
heading-hold controller which exports a virtual motor interface and takes motor commands
via this service.

The intent is that the same production code which runs on the actual drifter hardware
can be connected to a simulated drifter. This enables running certain experiments without
the overhead of a field operation. Part of the motivation for future field tests is to tune
simulator parameters to produce the same trajectories as what we observe in the physical
world.

An Internet server hosted at UC Berkeley runs a set of modules based on the same
codebase as the embedded Python modules running on the drifters. The Internet server
runs Ubuntu Linux, providing a similar environment for the code to be developed and run
in. In the remainder of this section, we describe the various Python modules (processes)
running on the drifter and Internet server.

Device Drivers

• G24 : The G24 device is configured and operated with a set of AT serial commands.
The corresponding device driver is a state machine responsible for creating a TCP/IP
connection to our remote Internet server and forwarding messages from other processes.

CHAPTER 2. MOBILE FLOATING SENSORS 23

Figure 2.9: Set of Python modules (processes) running during a typical experiment.

• GPS : This device driver is capable of reading position readings from the MT3329
module in both NMEA and binary formats. The driver then sends the GPS updates
to one or more client processes at a configurable interval.

• GPIO : This driver services the 27 GPIO control lines, through the sysfs interface in
linux, or via the ATxmega driver, depending on which chip the GPIO line is connected
to. It is responsible for translating logical pin names to physical port and pin indexes
and initializing all pins to the correct direction and values on startup.

• XBee : This driver provides functionality similar to the G24, but for operating the
XBee short-range radio modem instead, using the “API mode” of the device. Other
responsibilities are fragmenting and reassembling messages to/from 84 byte packets,
retrying transmissions, and translating the logical IDs of devices to and from their
64-bit network address.

• ATXmega : This driver communicates to the firmware on the two ATXmegas using
a Command-Length-Value protocol which reads and writes to virtual registers (e.g.
motor_mode or heading_reading). The driver services requests from other processes
to read/write registers and sends the request to the top or bottom microcontroller as
required.

Utility Processes

• Executive : This process is the entry point for the rest of the scripts as it is responsible
for starting all of the other processes and re-starting a process if it crashes. The module
also captures the output of each module, time-stamping it, and writing it to a unified
log file. There is also an IPC interface and command-line tool provided to start, stop,
and restart any of the gen3 processes.

CHAPTER 2. MOBILE FLOATING SENSORS 24

• Config : This process parses key-value pairs from a master configuration file which,
in-turn, imports other subfiles. Key-value pairs are categorized by the modules they
belong to, although any module can access any other module’s configuration. An IPC
server allows other modules to retrieve their configuration values.

• Sys Interface : This process uses the XBee and G24 modules to implement a remote
control for field debugging. Commands can be sent over the Internet or over the ZigBee
network to the drifter to start and stop processes, read status, or drive the drifter’s
motor.

Experiment Processes

• Mission : This process is responsible for the main experimental purpose of the drifters–
to measure and report their position. The mission module supports reading the GPS
position and attempting to communicate over both G24 and XBee modules, depending
on the communications infrastructure in-place. It also supports configurable report
intervals.

• Centerline : This process implements the obstacle avoidance and path selection algo-
rithm detailed in this article. Configuration options include choosing the thresholds for
the target and unsafe regions, choosing which policy files are used as well as automate
switching of policy files over the course of a 24-hour day to account for tidal cycles.

• State Log : This process periodically logs debugging and post-analysis data such as
position, number of satellites used, motor speed and desired bearing. The collected
values are stored in a sqlite3 database to be downloaded and analyzed at the end of a
mission.

Server Processes

• Executive and Config : These are the same modules as described above.

• Gateway : During normal operation, all drifters and other devices such as field laptops
connect to the remote server via a TCP/IP server socket which this process opens.
Additionally, other server processes such as the drifter proxy can connect. Each device
or processes which connects to the gateway process provides an ID and a list of message
types to subscribe to. A device or process can then send (to one destination), publish
(to all subscribers), or broadcast (to all clients) a message. All destination devices or
processes are addressed by the IDs they provided.

• Drifter Proxy : This process is responsible for communicating drifter locations to
a data assimilation server residing on the National Energy Research Scientific Com-
puting Center (NERSC), which in turn integrates this into a large-scale model of the

CHAPTER 2. MOBILE FLOATING SENSORS 25

river system. Here, the line protocol is a stream of measurements separated by car-
riage returns and each measurement is a list of key-value pairs, with fields such as id,
timestamp, utm_x, utm_y.

Heading-hold Control

Control of the drifter’s propulsion facilities is divided into the high-level centerline module
implementing the algorithm described in Chapter 3, and low-level heading-hold control im-
plemented on the lower ATXmega micro-controller. The goal of the heading-hold controller
is to drive the drifter forward along a bearing (angle relative to magnetic north). The con-
troller generates pulse width modulated (PWM) signals for the ESCs which is ratiometric
to the power delivered to the motors. The controller’s feedback comes from the HMC6352
compass as tenths of degrees from magnetic north.

We chose to use a proportional-integral-derivative (PID) controller[23] to accomplish the
control task. Given a desired bearing, θdesired, from the centerline module, and θactual from
the compass, the control law of the heading-hold controller can be expressed as:

θerror(t) = θactual(t)− θdesired(t)

udiff(t) = kdθ̇error(t) + kpθerror(t) + ki

∫ t

0
θerror(τ)dτ

uleft(t) = umid + udiff(t)

uright(t) = umid − udiff(t)

where uleft and uright are the inputs to the PWM generator for the left and right motors and
kd, kp, ki and umid are tuneable constants. The values for the PID constants were determined
experimentally by setting a constant desired bearing and using classic PID tuning techniques
so that the drifter would travel in a straight line with minimal oscillations. We also ensured
that, when giving the drifter a new bearing command, that the step response of the system
was stable, a challenge particularly because of the nonlinearity at 0◦ = 360◦. In practice,
we found that using the integral error term was only necessary and useful when θerror was
small, so we set a configurable threshold on the error, outside of which, the integrator’s
state is set to zero. Without this modification, the step response of the system was usually
unstable.

Simulator

A highly-parameterized and extensible SIL simulator was developed to assist in debugging
code before it was deployed onto the drifters. SIL means that unmodified drifter code can
be run in a simulation environment, versus a separate behavioral model being constructed.
The primary advantages are reducing code duplication and that the simulator can be used
to check for bugs in production code.

CHAPTER 2. MOBILE FLOATING SENSORS 26

A simulation definition file is given to the simulator, specifying one or more simulator
modules to be loaded and how to connect their interfaces. The difference between the
simulator modules and the drifters’ modules is that a single simulator module process can
be responsible for each unit in the entire fleet versus a drifter module process must be
started for each unit in the fleet. The simulator acts as a sort of switchboard by connecting
the interfaces of both the simulator and drifter modules, according to the simulation file.

The simulator modules are Python objects having a number of exported and imported
interfaces, where exported interfaces are methods which can be called by other simulator
modules, and imported interfaces are those which must be set to another simulator module’s
exported method. For example, the drifter_heading_hold_PID exports a motor_control
method returning the left and right motor inputs. This is connected to the drifter_dynamics
module’s imported interface also called motor_control. In addition to these code interfaces,
the simulator modules additionally open UNIX sockets to accept connections from drifter
modules being tested.

To verify an entire fleet, the simulator can simulate multiple units by dynamically gen-
erating configuration files and running multiple copies of the modules under test. It ensures
that there are no conflicts in UNIX socket names. We can configure groups of drifters and
set specific parameters for those groups, for example, to configure a part of the fleet to go
down a different fork of river.

This allows us to run a wide variety of studies including

• Obstacle avoidance and path selection studies with a fleet of motorized drifters, veri-
fying they stay in the river and go down the correct path, respectively.

• Data delivery studies, exercising the mission code for errors and ensuring data is de-
livered to the Internet server.

• Wireless networking experiments where we can simulation communication between the
short-range radios of the devices.

For example, figure 3.8 shows an example of a simulated fleet of drifters performing path
selection.

2.4 Architecture for mobile floating sensor data

collection and assimilation

Communications architecture

Figure 2.10 shows the communication links between various elements of the system. Data
collected by the active and passive drifters is communicated back to the database server
using the General Packet Radio Service (GPRS) of GSM. The Android smartphone on board
each passive sensor provides the necessary GPRS functionality. Our original design for the

CHAPTER 2. MOBILE FLOATING SENSORS 27

RF

Internet

Actuated Drifters

GSM

802.15.4

GSMField Team
Android Drifters

Android
Relay

GSM/GPRS backbone

Base Transceiver Station Base Transceiver Station

Database
Server

Visualization
Client

USGS
Database

Cal DWR
Database

State Estimation Servers

NERSC
Cluster

Amazon
EC2

Figure 2.10: Communication architecture, showing the flow of data from drifters in the field
to the database server and computation servers via the GSM service.

active drifters included two communication modules: a Motorola G24 OEM GSM module
for direct communication with the server, and a Digi XBee-PRO 802.15.4 module for short-
range communication with other drifters and the field team. Reliability issues prevented us
from using the G24 GSM module, however, and so the active drifters communicate solely
through the XBee module.

The XBee-PRO module conforms to the IEEE 802.15.4–2006 draft standard for low-power
mesh networking. Our experience in outdoor environments shows that point-to-point links
of 100 m are reliable, and we have seen connectivity at distances of 1 km. In order to bridge
between the 802.15.4 short-range networking and the database servers, we built 10 specialized
Android drifters carrying a XBee-PRO module as well as an Android smartphone. These
devices, called “Relays”, were put in static locations around the experimental environment.
They did not gather data themselves, but simply collected the data from the active drifters
and transmitted it to the database server via GSM.

Field teams carried laptop computers with GSM modules and XBee-PRO modules. The
active drifters can be sent commands via their XBee modules for diagnosis and troubleshoot-
ing. Capabilities include enabling and disabling the motors, running or terminating processes
on the Gumstix, and querying various values like mission state or sensor readings. These

CHAPTER 2. MOBILE FLOATING SENSORS 28

commands can be sent directly over the XBee link, or can be sent indirectly over GSM
through the database server and the Android relays. This command capability is for devel-
opment and debugging purposes. During the April 12 and May 9 experiments, no commands
were sent to the active drifters; they operated autonomously.

The database server acts as a central repository for gathered data and assimilation results.
In addition to the Lagrangian data collected by the drifters, relevant data from USGS and
California Department of Water Resources (DWR) sensor stations is collected and stored.
The sensor data is sent to the computational cluster, which can be either a collection of
Amazon Elastic Computing Cloud (EC2) processors or the NSERC computational cluster.
Results from the assimilation process are stored on the same database server, and queried
by the visualization application, which can be accessed on the Web by any browser.

Assembly and testing

The construction and debugging of this kind of autonomous system is made especially chal-
lenging due to the quantity of units we built. In this section we describe our experience in
building the fleet, possibly offering ideas to others who wish to undertake a similar effort.
We prototyped the drifters in several stages. The first drifter was built by hand assembling
the electronics boards and drifter body. Subsequent drifters had the electronics and hull
produced by outside companies, although all of the pieces still needed to be attached to-
gether. We created detailed documentation with pictures so that we could employ outside
help such as interns to assemble them. Our first batch of drifters was a quantity of 10,
which we dubbed Generation 3.0. These electronics of the units had several problems, in
particular, they were expensive, used unreliable connectors, and were difficult to service.
The second batch of 10 was dubbed Generation 3.1 and was redesigned to address these
problems. Finally, we produced 20 more Generation 3.1 drifters, bring our total fleet size to
40.

From our experience with the Generation 2 drifters, we made it a specific goal in designing
Generation 3 for them to be quick to set-up for experiments as well as update their software.
Features of the drifters include a screw-top lid and battery connections that can be pulled
out to be charged. A serial port is easily accessible which provides console access to the
Linux computer. Since it proved time-consuming to update software or download logs from
each drifter individually, a custom piece of software was written to automate the process by
autonomously entering in console commands and interpreting the results. Combined with
a 20-port serial cable and a bootloader program residing on the drifter, we can update the
software on all of the devices in less than an hour.

For keeping track of the fleet status, we found it invaluable to maintain a spreadsheet,
shared amongst the group, listing drifter IDs and the status of their systems. Drifter IDs are
assigned chronologically based on when they were built, from 0 to 39. We divide the fleet
into four groups: Drifters which are beyond repair, drifters which are not field ready but
could be repaired, drifters which perform sub-optimally, but can be deployed in the field, and
drifters which perform well. Tests to classify the drifters were carried out at a neighborhood

CHAPTER 2. MOBILE FLOATING SENSORS 29

swimming pool to see if the drifters could drive in a straight line. By far, the most common
failure was the compass module not being properly calibrated.

Several days prior to an experiment, we charge the batteries of the drifters, in batches of
10 drifters, two batteries each. If a software update is needed, we also use the 20-port cable
to do this as well. The day before the experiment, drifters and equipment are packed into
plastic tubs.

On the day of the experiment, we take the tubs to the experiment site, unpack the drifters,
turn them on and verify communication to the server. Over most of the day, we perform
several cycles of dropping off the drifters upstream and picking them up downstream. At
the end of the day, drifters are retrieved, turned off, and repacked.

After the experiment, we connect the 20-port cable to download the drifter logs which
can be analyzed later if a failure has occurred. The fleet status spreadsheet is also updated
to reflect if any failures were encountered in the field.

Data assimilation and the Ensemble Kalman Filter

The database server performs the data assimilation algorithms to obtain flow field estimates
from the Lagrangian measurements. We use an adapted data assimilation method based on
the Ensemble Kalman Filter (EnKF) which is computationally efficient enough to be run
in real-time [3]. At a high-level, like other Kalman Filter derived techniques, this technique
relies on a model of the state of the system (such as water velocity and stage), and data with
which to check the model output (Lagrangian measurements). A Kalman Filter essentially
alternates between a Prediction step and Update step, where the Prediction step refers to
propagating the model state forward in time, and the Update step refers to evaluating the
state estimate using the physical measurements. Since our system physically has an infinite
number of states (velocity and stage at every point), the EnKF technique does not track the
entire state of the system, but evaluates a representative set of states, called the ensemble.

There are two main difficulties in using Lagrangian data that we have experienced:
Firstly, Lagrangian motion is heavily affected by local flow perturbations and thus may
not reflect the larger picture of water velocity. Secondly, Eulerian and Lagrangian behaviors
are not simply related to each other. Thus, as long-term collection of continuous Lagrangian
measurements is not yet developed, this motivates designing the ability to rapidly deploy a
dense fleet of Lagrangian drifters. Furthermore, we design the sensing-modelling system to
predict regional flows and transport, in real-time, without dependence on historical data.

The EnKF [3] and variants are the main data assimilation technique in atmospheric and
oceanic sciences. The main differences between variants of the technique is how the analysis
ensemble is generated and also how model/measurement noise is handled. One family of
schemes relies on perturbed observations [24, 25, 26, 27, 28], whereas the other schemes,
the Kalman square-root filters, attempt to reduce the size of the ensemble in a different
way. The Kalman square-root techniques only analyse the ensemble once, obtaining both
the mean analysis and the analysis error covariance matrix. Our application relies on a

CHAPTER 2. MOBILE FLOATING SENSORS 30

system Bayesian approach [29, 30, 31] to recover from modelling errors. This approximating
approach [32] approximates the modeling error with additive Gaussian noise processes.

We chose to use the REALM flow model developed by Lawrence Berkeley National Lab
(LBNL). Every time step, new data is received from the drifters, and a shallow water model
generates a representative set of states by evolving the processed inputs. The EnKF routine
then compares the real data to gathered output estimates in order to give the best estimation
of the flow.

For the May 9, 2012 experiment, 2 hours of field data was collected and run in the as-
similation experiment (shown in Figure 2.11). A variety of ensemble members and inflation
factors were tested, as well as different data configurations and model setups. Since there
were no USGS Eulerian measurements available in the experimental domain, the data rec-
onciliation method developed by [33] was used to get estimates of the discharge, and pose
it to be the first guess of the data assimilation process. This data has also been used to
verify an experimental model and estimation technique using hyberbolic partial differential
equations subject to periodic forcing [34].

2.5 Conclusions

The Floating Sensor Network (FSN) has enabled new types of experimental work in rivers
and estuaries via two novel drifter designs: First, the low-cost, manufacturable, and easy-
to-use Android drifter enables economical and high-density collection of Lagrangian data in
real-time. We have shown that the capabilities provided by Android smartphones satisfy
most of the features required by a surface drifter. The Android phone also enables real-time
reporting and orientation detection by the GSM communications link and accelerometer
sensor, respectively.

The second technological contribution is the active motorized drifter which demonstrated
the feasibility of motorized Lagrangian sensors and proven that they can indeed avoid ob-
stacles, thus significantly extending the particle lifetime of a Lagrangian sensor. We have
developed a high-level Hamilton-Jacobi Safety controller, described in the next chapter, as
well as the low-level heading-hold controller which successfully regulates the direction of the
motorized drifter under actuation.

These two developments have implications for future drifter studies where previously im-
practical areas of water systems can be monitored. Furthermore, the Lagrangian data which
is collected by the FSN has unique advantages over the traditional method of collecting fixed
Eulerian data, particularly when the mobility of the water is primarily important. In our
many experiments carried out with the fleet of drifters, we have observed interesting phenom-
ena such as jets (when fast moving water such as from a river, enters a stationary body, such
as a lake) and tidal inversions (when water enters a river system from the ocean). In these
cases, Lagrangian data is crucial to determining how the water is mixed and distributed, as
the drifters themselves will be proxies for the water mass.

CHAPTER 2. MOBILE FLOATING SENSORS 31

−1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Relative Easting (m)

R
e

la
ti
v
e

 N
o

rt
h

in
g

 (
m

)

May 9 2012 12:30 PM PDT

Reference: 1 m/s

−1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Relative Easting (m)

R
e

la
ti
v
e

 N
o

rt
h

in
g

 (
m

)

May 9 2012 1:00 PM PDT

Reference: 1 m/s

−1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Relative Easting (m)

R
e

la
ti
v
e

 N
o

rt
h

in
g

 (
m

)

May 9 2012 1:30 PM PDT

Reference: 1 m/s

−1800 −1600 −1400 −1200 −1000 −800 −600 −400 −200 0

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

Relative Easting (m)

R
e

la
ti
v
e

 N
o

rt
h

in
g

 (
m

)

May 9 2012 2:00 PM PDT

Reference: 1 m/s

Figure 2.11: Quiver plots of assimilation results for flow fields during May 9 experiment.

CHAPTER 2. MOBILE FLOATING SENSORS 32

As well, we hope that our successes within the FSN are not constrained to drifter studies,
but find applications in mobile environments, such as monitoring airborne pollutants, or fluid
flow in internal medicine. For instance, in the next chapter, we elaborate on the Hamilton-
Jacobi Safety control method developed for the drifters which can be easily adapted to the
aforementioned applications by changing the model.

33

Chapter 3

Hamilton-Jacobi safety control for
underactuated sensors

3.1 Introduction

As we have demonstrated in the previous chapter, the estimation of water mobility within
rivers and estuaries requires Lagrangian sensing. In this scenario, the drifter’s own mobility
is essentially the sensing technique. Therefore, when this mobility is impeded, such as by
obstacles, it directly precludes the drifter from accomplishing its sensing task.

In Section 2.3, we described the Generation 3 drifter platform of the Floating Sensor
Network, which is designed to expand the operational capability of our river studies by ven-
turing into obstacle-laden environments. We find that, in many of the river environments in
the Sacramento–San Joaquin delta, drifter studies using non-motorized sensors are infeasible.
Even when continuously monitored using boat teams, the drifters become stuck on obsta-
cles such as the river banks or vegetation. It is simply impossible to retrieve and re-deploy
the drifters fast enough to keep them simultaneously unimpeded. Thus, we developed the
Generation 3 motorized drifters and a navigation technique to allow unattended studies in
these challenging environments.

In this chapter, we address the problem of obstacle avoidance and path selection in a
mobile environment by applying the solutions of Hamilton-Jacobi-Bellman-Isaacs (HJBI)
equations. The obstacle avoidance task is the ability of the drifters to avoid becoming stuck
on hazards. To comprehensively understand water conditions, it is also necessary for a drifter
fleet to distribute itself among multiple paths throughout the water system, which we refer
to as the path selection task. Although we have developed this technique specifically for
the drifter application, these techniques could be applied to any other mobile environment
where we have some control over the mobile elements’ states, and these states must be held
within some constraints. Examples include Unmanned Aerial Vehicles (UAV), Autonomous
Underwater Vehicles (AUV), and nano-surgical implanted robots.

Controlling in the presence of obstacles is linked to path planning problems [35, 36],

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 34

which sometimes rely on the same theory as this article [37]. Two features of our problem
distinguish it from the traditional path-planning problem:

• The drifter is an underactuated system. That is, the unit is in the presence of a river
current which is more powerful than the propulsion of the unit. Thus, a successful
algorithm must account for the river current and act preemptively to avoid being
pushed into an obstacle.

• Our goal is not to reach a single target way-point, rather, the goal of the drifter is to
not run into obstacles.

Several approaches can be used to solve these types of problems. Viability-based ap-
proaches compute regions of the state-space such as “all points guaranteed to be safe” [38,
39]. Another approach is to use the level and sublevel sets of solutions to HJBI equations
[40, 41, 42, 43, 44]. We chose to use the HJBI framework, which can be used to compute
the same sets, in order to use an existing mathematical toolbox [45] to solve these equations
numerically.

Generally, the HJBI method provides a way to evaluate the danger of areas in the river by
the time to reach obstacles, as opposed to the distance to reach obstacles. It incorporates the
dynamics and movement of the drifter due to its own actuation, in addition to the movement
that the surrounding water current imparts on it. The HJBI method is a formulaic method
of calculating these areas from intuitive inputs. It applies to many parts of a river system:
either large bodies of water, or small tributaries.

We show that the solution to a HJBI equation can be used to construct a minimum-time-
to-reach (MTTR) function to a given target region. Two such MTTR functions, Vcenter and
Vshore, are used to determine the transitions of the on-off controller. With the proper
MTTR function, it is also possible to find the optimal control policy, i.e. the direction in
which to travel in order to reach a target the quickest. It is well known that because the
HJBI equation is derived by application of Dynamic Programming (DP) techniques [42],
synthesizing these MTTR functions suffers the same curse of dimensionality as other DP
methods [46]. Fortunately, for low-dimensional systems, such as described in this article, the
problem is tractable.

The drifter unit’s measured velocity matches the local water velocity only while the drifter
is not under actuation. Thus, we seek to maximize the amount of time the motors are turned
completely off. On-off control is therefore a natural choice, since it specifies using maximum
actuation or none at all. It then remains to determine the on-state policy and thresholds of
the on-off controller.

In this chapter, we extend upon the results of [20] and go more into depth describing the
work, particularly with respect to simulation.

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 35

3.2 Hamilton-Jacobi control methodology

Model and problem statement

We model the system dynamics of a single drifter as a 2-dimensional single-integrator:

ẋ = f(x, a, b) = w(x) + a(t) + b(t), (3.1)

‖a(t)‖2 ≤ ā,

‖b(t)‖2 ≤ b̄,

where x ∈ R
2 is a two-dimensional state vector representing the position of the drifter

in meters, a(t) is the control input, and b(t) is the disturbance input. Note the absence of
a yaw state variable, which is intentionally omitted to reduce the computational burden.
We believe the term to be largely irrelevant for longer time scales as the vehicle is highly
maneuverable around its vertical axis, owing to the differential drive configuration.

An estimate of the river current, w(x), is given by a forward simulation of the region
without integration of drifter-collected data. Note that, although the purpose of the FSN
project, as a whole, is to provide more accurate estimates of the river currents using the
drifters, nevertheless, a less-accurate simulation can be used for the purposes of control. As
the river current estimates improve by integrating the drifter-collected data, then the control
will also benefit for future experiments by having a more accurately specified w(x).

We also define the following sets of functions and parameters, ā and b̄:

A , {a(·) : ‖a(t)‖2 ≤ ā ∀t} ,

B ,
{

b(·) : ‖b(t)‖2 ≤ b̄ ∀t
}

,

and parametrize the trajectory of the system in terms of time, initial condition, and the a(·)
and b(·) inputs,

x = x(t; x0, a(·), b(·)).

With these functions we will set up a differential game [47, 41] in which the inputs a(·)
and b(·) work against each other to either satisfy or attempt to violate a safety condition,
respectively. As we will see later, b(·) will always act in the opposite direction of a(·) with
magnitude b̄. Therefore, in this case running this differential game with input constraints
(ā, b̄) is equivalent to running a single-player game with input constraints (ā− b̄, 0), although
this is not true for general differential games [47].

To set-up this game, we are given a set of undesirable positions, Tshore ⊂ R
2 correspond-

ing to collisions with obstacles. Conversely, the complement of this set, S , T C

shore, gives
the positions for which the system is safe.

Our goal is to find a control input a(·) such that

∀t > 0, ∀x0 ∈ S, ∀b(·) ∈ B, x(t; x0, a(·), b(·)) ∈ S. (3.2)

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 36

Ideally, a(·) also minimizes the time of actuation,

tact =
∫ ∞

0
aon(t)dt,

aon(t) =







1 a(t) 6= 0

0 otherwise

however, the proposed algorithm does not necessarily produce an optimal a(·) in this respect.

Mathematical solutions

In this section we describe the meaning of a MTTR in the context of HJBI equations. In
the next section, we describe several MTTR functions used in an algorithm to satisfy (3.2).
We begin with a target set, T ⊂ R

n, giving a set of states we are trying to reach. Consider
the construction of a static cost function, V (x0):

V (x0) =

inf
a(·)∈A

sup
b(·)∈B

{

∫ t⋆

0
l (x(t; x0, a(·), b(·)), a(·), b(·)) dt

}

, (3.3)

t⋆(x0, a(·), b(·)) = inf {t : x(t; x0, a(·), b(·)) ∈ T } , (3.4)

where l(·, ·, ·) (Rn,Rni) 7→ R is a Lagrangian cost functional associating a cost for the system
to be in a certain state and taking a certain action.

Thus, the interpretation of (3.4) is that it designates the first time the trajectory,

x(·; a(·), b(·)),

enters T .
Suppose we take l(·, ·, ·) ≡ 1, representing a constant accrual of cost until the target set

is reached. Substituting into (3.3),

V (x0) = inf
a(·)∈A

sup
b(·)∈B

{

∫ t⋆

0
1 · dt

}

(3.5)

= inf
a(·)∈A

sup
b(·)∈B

t⋆(x0, a(·), b(·)),

or, more concisely

V (x0) = t⋆ (x0, a⋆(·), b⋆(·)) , (3.6)

a⋆(·) = arg inf
a(·)∈A

t⋆, (3.7)

b⋆(·) = arg sup
b(·)∈B

t⋆,

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 37

where a⋆(·) is called the optimal control for this particular cost function as it minimizes the
accrued cost, and b⋆(·) is the worst case disturbance.

In this case, (3.6) simply gives the minimum time to reach the target set T from x0, so
we call V a MTTR function for this system. Note that V (x0) = +∞ in the case in which
the target set is not reachable from the initial condition x0.

We are interested in finding the optimal control, or disturbance, which satisfies (3.7) and
achieves a minimum-time trajectory to, or from, T . Both can be computed explicitly as a
function of the gradient of the MTTR function by the following relations:

a⋆(x) = −ā
∇V (x)
‖∇V (x)‖2

, b⋆(x) = b̄
∇V (x)
‖∇V (x)‖2

. (3.8)

In general, V is difficult to compute especially for systems such as (3.1) which have an
arbitrary forcing term, w, and an arbitrary target set, T . We elect to extend the technique
found in [45] for finding the MTTR function of a holonomic system: a time-dependent HJBI
equation, for which there are known methods to solve [48], is constructed as follows:

0 = φt + min
[

0, Ḡ(x,∇φ)
]

, 0 < t < h, (3.9)

Ḡ(x, p) , max
‖a‖2≤ā

min
‖b‖2≤b̄

{

pT · f(x, a, b)
}

.

φ(x, 0) =







−1 x ∈ T
1 otherwise

, (3.10)

noting that, although φ is, by definition, discontinuous at t = 0, that by using the Lax-
Friedrichs numerical method, this discontinuity is be dissipated and the solution is stable
[49, 45].

As shown in [41], T can be reached in h time or less from the set of points

G(h) = {x : φ(x, h) ≤ 0} .

The frontier of this set of points as it evolves through time is also the set of points from
which T can be reached in exactly h time. The set is related to V by

∂G(h) = {x : φ(x, h) = 0} .

Consider a contour, {x : V (x) = h} of the MTTR function, describing a set of points
reachable in exactly h time units. Comparing this contour with ∂G(h), we find that, for a
given x, V (x) is given by the first temporal zero crossing of φ(x, t). If such a zero crossing
does not exist, this means the system cannot navigate from x to T , therefore, V (x) = +∞.
This zero crossing can be calculated numerically as in [45].

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 38

Level-Set
HJBI Solver

Flow Field
Estimate

Target Definition

Policy File

On-Board
Controller

GPS

SIL
Simulator

Plant

Motors

Compass

Heading-hold
controller

file
loaded
offline

bearing &
power

(on/off)

 simulator
switch

position

Figure 3.1: Controller Implementation Diagram – Orange box indicates online operations;
Blue box indicates offline processes.

3.3 Implementation and simulation

The block-level diagram of the obstacle avoidance and path selection system is shown by
Figure 3.1. In this section, we describe the flow field estimate, HJBI solver, and on-board
controller components. Additionally, we show results from some of the many SIL simulations
we have run to verify the drifter’s behavior.

Flow field modeling

We use flow field estimates from REALM, a forward simulation model of the Sacramento–
San Joaquin Delta [50], for the values of w(x) required for computation. Due to the tidal
nature of the flows in the area, multiple flow field estimates are taken, corresponding to
different times of day. The on-board controller will automatically cycle through the policies
throughout the course of the day to account for varying water currents.

For simulation purposes, we implement a simple kinematic model of the drifter under
the effects of viscous friction and random forces. A REALM flow field is integrated into the
environment, and all other physical parameters of the model are designed to most closely
resemble the behavior of the physical prototypes we built.

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 39

Computation of control feedback

The on-board controller requires three two-dimensional arrays to be computed offline and
loaded before the experiment:

1. The MTTR function, shown on the left of Figure 3.3, towards the shore of the river
is designated Vshore. The Vshore MTTR satisfies (3.5), where ā > 0 is the maximum
current speed which could push the drifter to the shore, no other force disturbs the
drift (b̄ = 0), and T = Tshore, the left binary image from Figure 3.2. The function
therefore describes how much time the vehicle would move, pushed at speed ā, before
crashing on the shore.

2. The MTTR function, shown on right of Figure 3.3, towards the center of the river is
designated as Vcenter. This function also satisfies (3.5), with ā > 0 is the maximal
propulsion of the drifter, b̄ is the maximal disturbance, and T = Tcenter, the right
binary image from Figure 3.2.

3. The optimal bearing towards the center of the river, denoted by ∠⋆(x), is the angle
component of the optimal control given (3.8), where V in this relation is Vcenter. This
function is shown in Figure 3.4.

These three arrays are combined into a policy file which is loaded onto the drifter prior
to the experiment. If we repeat this process for different values of w or T , we could generate
several such policy files. The drifter is able to select with policy file is used in the on-board
controller. For example, the on-board controller could automatically change the policy file
over the course of the day to account for periodic tidal flows.

Path selection

To accomplish path selection, we calculated two policy files for the region shown in Figure 3.5,
which also illustrates the sets {R1, . . . , R6}. The first policy file is loaded on drifters which
should go down the west path and is generated with the inputs

Tshore ← R1 ∪R4 ∪R5

Tcenter ← R6 ∪R3

and the second policy file is loaded on drifters which should go down the east path and
generated with the inputs

Tshore ← R1 ∪R2 ∪R3

Tcenter ← R6 ∪R5

For each case, we are treating the unselected path as an obstacle and the selected path
as the only viable option for the drifter to be directed.

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 40

Figure 3.2: Left: Tshore, the constraint set which we want the drifter to avoid. Right:
Tcenter, target set which the drifter needs to reach after touching the unsafe set.

Figure 3.3: Time-to-reach the targets defined by Figure 3.2. Left: Vshore function. Right:
Vcenter function.

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 41

∠⋆ (by color)

Figure 3.4: The optimal bearing to center of the river, ∠⋆(x).

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 42

San Francisco

Sacramento

c©OpenStreetMap CC BY-SA

R1

R2

R3

R4

R5

R6

Figure 3.5: Source files for lane-splitting algorithm superimposed and color-coded and map
showing geographic location. Each color represents a set of points and is labeled for reference.

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 43

qdrift

ẋ(t) = w(x)
ṫ = 1

qactuate

ẋ(t) = w(x) + a⋆(x)
ṫ = 1

x ∈ D x ∈ L

Figure 3.6: On-board controller hybrid automaton diagram.

On-board controller

Within this framework, our on-board on-off control system can be encoded by a hybrid
automaton H = (Q, X, R, f , Σ,U) [51, 52]. Q is the set of the two modes {qdrift, qactuate},
which the drifter alternates between during its mission. X is the domain of the drifter’s
location, R2. Σ is the set of discrete events which can trigger a transition between modes,
and in our case Σ = {x ∈ L, x ∈ D}. R : (Q, Σ, X) 7→ (Q, X) is the transition function,
encoded by Figure 3.6. fq : X 7→ X are the dynamics experienced while in each mode,
also shown in Figure 3.6. Finally, U is the set of inputs afforded to the drifter U = A =
{a(·) : ∀t ‖a(t)‖2 ≤ ā}.

The target region L and unsafe region D are defined as the following:

L , {x : Vcenter(x) ≤ 8 seconds} ∩ C
D ,

{

x : Vshore(x) ≤ 300 seconds
}

\ L

Thus, when the position of the drifter is in danger, i.e. x ∈ D, the controller turns on
the motors and seeks the optimal trajectory back to safety. When the drifter reaches safety,
i.e. x ∈ L, the controller turns off the motors and resumes passive drifting. Throughout the
experiment, we record the state of the controller alongside the GPS measurements in order
to later discard measurements taken while the drifter was actuating. This ensures that only
data corresponding to passive drifting is used for later estimation (assuming, as in our case,
that the estimator does not need a continuous trajectory, only point velocity measurements).

Simulated results

Obstacle avoidance

For the following two simulations, we introduced a viscous force on the drifter towards the
east. This could, for example, be due to wind. This was necessary to force the drifter into
dangerous regions and cause our control to be activated.

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 44

Figure 3.7 illustrates two trajectories of the simulated drifter. The left is the ideal situa-
tion in which REALM provides a reasonably accurate flow field estimate. In the event that
we know REALM will be inaccurate for a region, a compromise is to not use any flow field.
This case is shown on the right, where the river flow is set to 0 at all points. As apparent from
the results shown here, our algorithm was found to be robust against potential inaccuracies
in MTTR calculations when desired actuation is nearly orthogonal to external input.

Path selection

Figure 3.8 shows the result of a simulation experiment to test the functionality of the path
selection algorithm. In this simulation, 20 drifters were deployed, with 10 of them configured
to proceed down the eastern path of the river and the other 10 configured to proceed down
the south path. A previously generated flow estimate was used along with a some random
Gaussian uncertainty to provide the simulated flows. The uncertainty was generated by
generating a 50m grid of random vectors whose components are sampled from N (0, 0.022).
The standard deviation was chosen to be one-tenth of the maximum disturbance we expect
to see in the field. The uncertainty at any arbitrary location is then a bilinear interpolation
from this grid.

The results show that the fleet of drifters correctly separate into two groups and proceed
down the two branches of the river. Since the two groups are using a particular adaptation
of the obstacle avoidance technique, they also act to avoid crashing into the shoreline. This
activity explains the abrupt changes in direction as the drifters drive back to the center of
their assigned path when they approach the shore too closely.

3.4 Field operational tests

Ultimately, the Generation 3 drifter design, as well as the proposed navigation methods,
were proved through real data-collecting deployments in the Sacramento - San Joaquin River
Delta. Figure 3.9 shows pictures of the drifter units undergoing a field operation. In this
section, we present the results of two such experiments demonstrating the obstacle avoidance
and path selection tasks.

Obstacle avoidance

A field operational test was carried out targeting the Sacramento - San Joaquin River Delta
in California (approximately Latitude 38.03 N, Longitude 121.58 W. The controller described
by Section 3.3 was tested for approximately five hours in the river. Two boat teams were
responsible for monitoring the drifters and retrieving trapped units if necessary. Retrieved
drifters were placed back in the river at safe locations to continue their mission. One goal
of the experiment was to determine if the controller presented in this article effectively
prevented the drifters from heading into dangerous areas, therefore reducing the number of
necessary retrievals.

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 45

Figure 3.7: Simulated Trajectories with presence or absence of REALM flow field estimate.
Left: known estimate. Right: no estimate incorporated.

Deployment Area

Direction of
Water Flow

100m

Figure 3.8: Trajectories of 20 simulated drifters performing path selection in Walnut Grove,
CA. Drifters were deployed in a 20m diameter circle.

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 46

Figure 3.9: Left: drifter under motor power. Right: several drifters participating in experi-
ment.

Figure 3.10 shows data from the field deployment that was gathered by one of the units.
The trajectory of the unit has been reconstructed from GPS positions recorded on-board
and plotted by the solid magenta and dotted blue lines, where the magenta lines and dotted
blue lines indicate when the controller was in qactuate and qdrift, respectively.

This result demonstrates behavior similar to that predicted by previously simulated re-
sults. During deployment, an easterly wind threatened to beach the drifters. Here, this
drifter floats north with the river current, but is also being pushed towards the eastern
shoreline. Upon crossing the Vshore threshold (red contour), it begins to maneuver back to
safety. Once it reaches the Vcenter threshold (green contour), it transitions back to drifting
without actuation. The current implementation appears to be sufficient for preventing colli-
sions with the shoreline, but more advanced obstacle avoidance has yet to be proven in the
field.

Path selection

In our second experiment, we operated at an interesting fork in the Sacramento river near
Walnut Grove, California USA (approximately Latitude 38.24 N, Longitude 121.52 W. See
Figure 3.5). Here, the Georgiana Slough meets the Sacramento river and diverts some
quantity of water from it to be used in the delta. The large majority of the water, however,
continues down the Sacramento river, taking any non-actuated drifters with it. Hence, our
actuated drifters are needed to ensure some part of the fleet ends up traveling down the
Georgiana Slough to measure that environment.

The primary goal of this experiment was to divert 10 out of 30 actuated drifters down
the Georgiana slough, with the remaining 20 actively remaining in the Sacramento. By
designing the proper obstacle map, Tshore, we formed two parallel lanes for the drifters to
split and stay within, before the actual split happened. This caused the group of drifters to
clearly split into two groups and allows us to retrieve any malfunctioning units before they

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 47

are in danger. In practice, the algorithm does not require that these lanes are drawn, only
that an obstacle be drawn across unselected paths.

Figure 3.11 is a plot of the trajectories of two drifters, one from each group. The data
represents a GPS location taken every two seconds by each drifter and passed through a two
element moving average filter to remove sensor noise from the GPS system. Note that, unlike
Figure 3.10, the drifters clearly enter the unsafe region, however, this does not indicate a
failure to satisfy (3.2), since the drifter remained within C. The figure demonstrates that
the drifters have successfully actuated in a manner placing them in the correct lane and
simultaneously avoiding obstacles.

3.5 Conclusions

The Floating Sensor Network has addressed the practical problem of mobile sensing in
obstacle-laden rivers by building a fleet of motorized floating sensors. In this chapter, we
described a successful technique for controlling our autonomous floating sensor platforms so
that they avoid obstacles and the shoreline during a mission. We demonstrated, through
simulation and field testing, the efficacy of the algorithm for the scenarios in which the unit
must actively avoid running against the bank of a river, and in which the unit must drive
itself down a particular fork of the river.

At the conclusion of this study, we achieved our primary goal which was to prevent
obstacle collisions in the presence of a water current which was stronger than the control
authority of the drifter itself. In fact, the primary reasons for failure of the drifters to
avoid obstacles were hardware failure (e.g. a compass losing calibration or a motor failure),
and unmodelled hindrances, such as seaweed. The amount of failures could be significantly
reduced by redesign of the hardware and more detailed mapping of the region prior to an
experiment. However, the results we have achieved clearly demonstrate that the technique is
feasible. The Hamilton-Jacobi safety control techniques prove to be a powerful and effective
tool in mobile environments where control authority is limited, as it can predict dangerous
positions and act accordingly and optimally.

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 48

Unsafe Region (D)

Safe Region (DC)

Target Region (L)

Actuated Trajectories

200 m

Figure 3.10: Drifter GPS Trajectory during northward tidal flow. The red line is a contour
of Vshore and denotes the edge of the unsafe region. The green line is a contour of Vcenter
and define the target region. Along the drifter trajectory, dotted lines indicate unactuated
motion.

CHAPTER 3. HAMILTON-JACOBI SAFETY CONTROL FOR UNDERACTUATED

SENSORS 49

unsafe region (D)

target region (L)

Direction of Flow

Sacramento River

Georgiana Slough

Drifter 1

Drifter 2

Figure 3.11: GPS Trajectories of two drifters performing the path-selection algorithm during
a field test in Walnut Grove, CA. One of the drifters, shown by the blue trace, is tasked with
proceeding down the Sacramento River, while the other drifter, in magenta, is tasked with
proceeding down the Georgiana Slough. Along the trajectory, the faded segments indicate
passive motion where the motors are off.

50

Chapter 4

Indoor Environmental Sensors for
Mobile Sensing

4.1 Introduction

Mobile elements, particularly occupants, of indoor spaces play an important role in the op-
eration of a building. The main purpose of an office building is to ensure the safety and
comfort of its occupants, and recently, the goal is to accomplish this while consuming the
least energy possible. Tailoring services such as Heating, Ventilation, and Air Condition-
ing (HVAC), lighting, and electrical power, has the potential to save a significant amount
of energy consumed. HVAC and lighting respectively comprise 48% and 22% of the total
energy use of buildings in the USA [53]. To illustrate the impact of occupant-awareness in
controlling these services, occupant-aware control schemes have been shown to save between
10-15% [54], 8.3-28.3% [55], or even 42% [56], depending on factors such as outdoor climate
and control strategy. Having a more detailed view of occupancy, by knowing where specific
occupants are located, i.e. tracking, can enable control strategies on a person-by-person ba-
sis, and opens the door to more energy savings as well as building services which are tailored
to specific occupants.

It is clear that, treated as individuals, or as a mass quantity, occupants are an import
mobile element to be observed in a building. Therefore, we seek to answer how many occu-
pants are in a space (i.e. occupancy estimation, Chapter 5) and where individual occupants
are located (i.e. occupant tracking, Chapter 6). In the next three chapters, we will discuss
the technological and theoretical developments which answer these questions. The latter
two chapters discuss the estimation frameworks and techniques. As in the river current es-
timation problem, special tools were developed in order to sucessfully apply the estimation
problem to the real-world. In this chapter, we introduce one of these tools, an environmen-
tal sensor platform which collects measurements needed for the occupancy estimation and
tracking frameworks.

We have invented indoor sensors to support continuous and long-term estimation of

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 51

occupancy and occupants. The sensor is a low-cost, battery-powered sensor which is small
and light enough to be unobtrusively installed in an office space. The sensor can optionally
be outfitted with CO2 or particulate matter sensors, which are inputs to the estimation of
occupancy level (See Chapter 5). The sensor could also be a “tag” which is carried in an
occupant’s pocket, providing information about that occupant’s position. This information
could be combined with other information via the sensor fusion capabilities of the particle
filter (See Chapter 6).

Paramount to the adoption of an indoor sensing platform is battery lifetime, as it is
costly to replace the batteries of a sensor, especially if the sensor is installed in a difficult to
access location. For sensors which operate for less than a year, this cost can be unacceptable
to a business and the platform will not be installed. We use a combination of strategies to
reduce the power consumption of the battery-powered elements in our platform. First, we
select peripheral components with very low standby current consumption (e.g. < 10 µA)
and relatively low active current consumption (e.g. < 250 mA). Second, the components
are heavily duty-cycled, leaving them in their standby state for long periods of time. For
example, the component with the greatest power consumption, the radio, is used for about
5 seconds out of every hour. We also implement an efficient binary communications protocol
which includes rudimentary data compression. Our stated goal is to achieve a battery lifetime
of over 5 years, however we achieve a theoretical lifetime of over 6 years, calculated from
current measurements taken from the device.

Our estimation framework benefits greatly from having frequent and regular measure-
ments of environmental variables. Therefore, we stress the importance of reliable and high-
volume communications between the sensor and server. We chose a WiFi-compatible radio
transceiver which supports data rates over 200 times higher than IEEE 802.15.4 technology.
Additionally, we chose the TCP/IP protocol stack to leverage its built-in retry mechanism
for reliability. However, this choice necessitates a radio which consumes much more active
power than traditional sensor nodes which use low-power IEEE 802.15.4 technology. The
energy cost per bit can be reduced by storing a large amount of data and transmitting rela-
tively infrequently (e.g. once per hour), thus, our sensor node sacrifices latency of receiving
real-time measurements.

Many sensor network implementations are custom-tailored to the application, however
there have been efforts to standardize architectures amongst the various efforts, such as
the ZigBee Alliance [57], WirelessHART which have sucessfully achieved multi-vendor and
multi-national interoperability between devices. We also recognize academic projects such
as OpenWSN [58] and TinyOS [59] which incorporate the latest advancements in protocol
design. Our resulting sensor architecture is differentiated from these other implementations
primarily by this use of WiFi versus IEEE 802.15.4 technology. Additionally, these architec-
tures usually provide for the transport of bytes from the sensor to the server, but provide
only a small amount of guidance as far as what those bytes should signify (i.e. they do
not specify the application layer). Therefore, we document the application protocol of our
sensing architecture, which was designed to efficiently accomplish the sensing goal, while still
flexible enough to incorporate additional types of lightweight sensors and actuators.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 52

4.2 System architecture

Overview

There are three main agents involved in measuring, communicating, and storing the envi-
ronmental readings: the environmental sensor devices, the local server, and the Internet
server. Figure 4.1 illustrates how these agents are connected, as well as the relevant internal
components of the local and Internet servers.

The Environmental Sensor Devices, described in detail in Section 4.5, connect to the Local
Area Network (LAN) through an access point (the type depends on the wireless technology
used). For our demonstration deployment, which uses WiFi technology, we chose the Ubiquiti
Network’s UAP-LR platform, which can deploy multiple APs managed by software on the
Local Server.

The Local Server hosts the AP management software and a Dynamic Host Configuration
Protocol (DHCP) server which assigns local IP addresses to the environmental sensors once
they associate with the network. In our example deployment, we use a computer based
on a Shuttle DS61 book-size PC which is physically small, yet powerful enough to process
information from many remote sensors. Messages are both interpreted (via the “Protocol
Interpreter”) and forwarded to the Internet Server (via the “message splitter”). Measure-
ments are stored on an on-board PostgreSQL server which also contains metadata about
the incoming measurements. Therefore, the Local Server can act independently from the
Internet Server, such as when deployed in a location without Internet access. A custom web
frontend provides visualization of data as well as the ability to configure the remote sensors.

The Internet Server is similar in structure to the Local Server, however, instead of Post-
greSQL, it uses an sMAP [60] database to store the collected readings, since it is more
well-suited to the volume of measurements being collected. Additionally, the sMAP project
provides a web frontend to allow quick visualization of the received data.

Local server

The purpose of developing a self-sufficient local server is to support the idea of a “building in
a suitcase” sensor suite, where a sensor network can be rapidly deployed and begin long-term
monitoring, without the need for external infrastructure. Our solution is a custom-built PC
using a Shuttle DS61 motherboard and enclosure which neatly contains the features needed
for our application:

• The small physical size (190×165×43 mm) and weight (1.3 kg) makes it easily carried
in a handheld container to be brought onto the site in question.

• A metal chassis with dedicated mounting holes were originally designed as VESA-
compatible in order to mount the computer on the back of a LCD monitor, however,
we can use these holes to mount the computer inside a container, or on a wall or server
rack.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 53

Figure 4.1: Network diagram showing the connections made during normal operation. The
TCP connection from the sensor to the local server is only active while the sensor is trans-
mitting a report.

• Two Ethernet Network Interface Cards (NIC) are included: one connects to the Access
Point, and the other connects to the outside Internet.

• The low power consumption (maximum 100 W at the plug) of the computer allows
the feasibility of solar or wind generation to power the computer if used in a remote
environment where electrical power is unavailable.

• Additionally, we installed: An Intel Core i3-3220 (3.3GHz dual-core) CPU, a 1 TB
hybrid hard drive (including 8 GB of FLASH memory), and 8 GB of system memory.

We rely heavily on open-source software to perform the needed functions and attempt to
reduce the amount of custom-code to as little as necessary to perform application-specific
functions. Notable software packages installed on the computer are:

Operating System: Ubuntu 13.10, a widely-used Linux distribution with many sup-
ported software packages.

DHCP Server: Dnsmasq, a lightweight DHCP, DNS, and TFTP server for routers.

Persistent Storage: PostgreSQL, a high-performance SQL Database.

Process Monitor: Supervisor, a process control system to start, stop, and log the output
of processes. It is also capable of restarting processes when they crash.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 54

Our custom code is written in Python and uses SQLAlchemy as a Object Relational
Mapper (ORM) to map Python objects to rows in the PostgreSQL database. One piece of
custom code, the “Protocol Interpreter” receives and interprets the messages from the sensor
devices and inserts the decoded measurements into the database. It also uses the database
to retrieve metadata about the devices, for example, which timeseries IDs are associated
with a given WiFi MAC address.

Another piece of custom code, the “Website Frontend” is built on Flask, a light weight
web application framework. Figure 4.2 shows some screen captures of the web application.
Client-side scripting (such as plotting and animating timeseries) is written in Javascript
and extensively uses the JQuery and Flot libraries. The frontend allows a person managing
the network to view, at a glance, the sensor devices associated with the network and when the
last report was received. There is also an interface to create configuration tuples consisting
of Name, Fields-to-Report, Sample Interval, and Report Interval (See Configure
Sensor Command in Section 4.4). This is useful, for instance, to easily switch between
a “development” configuration (where nodes report in frequently at the cost of energy),
and a “deployment” configuration (where nodes report in long intervals to reduce power
consumption).

Internet Server

Like the Local Server, the Internet Server also runs an Ubuntu installation. However, the
Internet Server is actually a virtual machine hosted by the Berkeley Information Services
and Technology (IST) Cloud Computing services. This reduces the maintenance, setup effort
and costs associated with provisioning a new server platform, as well as being more reliable,
since generator-backed power and redundant storage is provided.

Unlike the Local Server, the measurement storage and website interface features are
provided by the sMAP [60] project. The database used by sMAP, ReadingDB [61], is a
database designed to efficiently store large amounts of timeseries signals, unlike a database
such as PostgreSQL which is designed to store relational data. ReadingDB compresses and
indexes the timeseries data which reduces the storage requirements, yet maintains quick
insertion and retrieval of the data and minimizes corruption by using write-ahead logging.

Our custom software manages receiving messages forwarded from one or more Local
Servers, interpreting the messages, and inserting any parsed data into the sMAP database.
We use a PostgreSQL database installed on the Internet Server to store necessary metadata
about the device, such as mapping WiFi MAC Addresses to sMAP stream identifiers.

4.3 Recordstore data format

Our sensor device relies on an inexpensive, low-cost, and low-power microcontroller with
limited computational resources. Since we must store sampled measurements to be later

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 55

Figure 4.2: Screen captures from the website frontend of the Local Server. Top: Shows the
list of associated devices and when they last reported. Also allows selection of variables
to plot and links to configure devices. Bottom-left: Configuration screen to set-up and
change between device configurations. Bottom-right: Timeseries plotting screen which allows
zooming, panning, and real-time animation to track incoming data.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 56

reported to the server, limited memory space can restrict the amount of power we can save
by limiting the number of measurements that can be stored.

For example, the ATmega1284 microcontroller that we use contains 16384 bytes of RAM,
2416 of which are used by our program. The average size of a message containing a mea-
surement is 29 bytes (see Sensor Data Report format in Section 4.4), therefore, without
compression, the maximum number of messages stored is 481. If a message is generated
every 10 seconds, this corresponds to about 80 minutes of data stored. Thus, the data must
be successfully delivered to the server within 80 minutes, otherwise some measurements must
be lost.

Thus, we develop the recordstore data format which the device uses to store messages to
be later transmitted to the server. This provides simple and efficient compression, taking
advantage of the fact that sensor data messages are very often the same length and have
many repeated bytes, especially at high enough sample rates where environmental conditions
do not change much between samples.

In addition to the messages being stored in the devices’ RAM in this manner, messages are
also transmitted to the server in this format (in fact the contents of the memory are simply
“dumped” onto the communications channel). This therefore reduces the communications
load. An additional advantage of the recordstore format is that it is stream-based, meaning
that previously inserted bytes do not need to be changed (although they are referenced). The
primary disadvantage of this format is that it will perform very poorly for rapidly changing
data, such as measurements taken with very long sample intervals. In these situations, more
overhead bytes may be added than the number which are saved by compression. Another
minor disadvantage is that the compression technique limits the size of each message to 128
bytes, however, we currently have no need to send messages this long. In an experiment
where 500 measurements were taken, once every 2 seconds, the recordstore method achieved
a compression ratio of 1.5:1, or a reduction in memory requirements of 30%. Primarily, this
serves to allow more samples to be stored in the device’s memory prior to a report being sent.
If latency is not a concern, this compression can significantly increase battery life due to less
reports needing to be sent to send the same amount of data. Compression of timeseries data
is an interesting and useful direction of study, for which the algorithm described is only an
initial result. Future work will attempt to compress the data further since it is so important
to the battery performance of the sensor.

Figure 4.3 is an illustration of the data structure of the recordstore format. The memory
block contains a list of records, each of which encapsulates one message (See Section 4.4 for
the types of messages). There are two types of records: template records and delta records,
represented in Figure 4.3 by the solid and hatched blocks, respectively. Additionally, to
improve efficiency, a list of template pointers keeps track of the template records for quick
referencing.

The template records take the following form:
7 6 0

1 Length Message Data

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 57

Figure 4.3: Diagram of the recordstore data structure in a typical scenario. There are two
sets of records in this scenario, designated by the yellow and blue blocks. The solid yellow
and blue blocks are the templates for that type of record and the hatched blocks are delta
records which refer to the respective templates.

where Length contains the length, in bytes, of the Message Data field, which contains an
exact copy of the message to be encoded.

The delta records take the form:
7 6 0

0 Length Changed Bytes Mask Changed Bytes List

where Length contains the length, in bytes, of the uncompressed message to be encoded.
This field directly determines which template record that the delta record corresponds to,
where the Length field matches between the two. The Changed Bytes Mask field is a
(

8 · ⌈Length

8
⌉
)

-bit bitmask specifying which bytes are different between the message to be
encoded, and the message in the corresponding template record. The following Changed
Bytes List field then provides only the bytes of the message which were not the same as the
template. For example, Changed Bytes List = 0x11 means that only the first and fifth
bytes were different between the template and the message to be encoded. Then, Changed
Bytes List would contain two bytes: the first and fifth byte from the message to be encoded,
in that order.

Encoding

Assume we are given a message, M , whose length in bytes is l, which must be inserted into
the recordstore. The encoding procedure is as follows:

1. Look through the template records pointed to by the template pointers list. If the
Length field of any template, T , is equal to l, then do 1b, however, if there are no
such templates do 1a.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 58

a) Create a new template record by prepending l as a 7-bit integer and the 1-bit
value 1 to M . Insert this record at the end of the memory block and create a new
entry in the template pointers list pointing to this new template record.

b) Create a new delta record starting with the 1-bit value 0 and l as a 7-bit unsigned
integer. Create the Changed Bytes Mask field with a length of ⌈ l

8
⌉ bytes and

initialize all bits to 0, and also create Changed Bytes List as an empty list.
From the first to the last byte, compare the template T with the message M . If
the byte at position p is different, then set the pth bit of the Changed Bytes
Mask field to 1 and append the pth byte from M to the Changed Bytes List.
After all bytes are compared, insert the record at the end of the memory block.

Decoding

Assume we are given a memory block of length L containing all of the records, in the
order they were inserted. Let bi represent the ith byte from the memory block, and let
P : (lengths)→ (messages) be an initially-empty map. The goal is to generate a list, D, of
decoded messages, which is initially empty. The decoding procedure, starting at i = 1, is as
follows:

1. If i ≥ L, then we are done. Otherwise, retrieve the length l from the 7 least significant
bits of bi. Look at the MSB of bi, if it is 1, then do 1a, otherwise do 1b.

a) The record is a template record. The decoded message, M are the bytes bi+1

through bi+l. Insert M into D as a decoded message and set the map P (l)←M .
Set i← i + 1 + l and continue with 1.

b) The record is a delta record. Retrieve the template message from the map and
initialize the decoded message to an exact copy: M ← P (l) (it is an error if no
mapping yet exists). Retrieve the Changed Bytes Mask bitfield from the next
⌈ l

8
⌉ bytes, and create a list O = {o1 . . . on} of the bit-positions set to 1. Retrieve

the Changed Bytes List from the next n bytes. For each oj in O, set the ojth
byte of M to the jth byte of the Changed Bytes List. Insert M into D as a
decoded message. Finally, Set i← i + 1 + ⌈ l

8
⌉+ n and continue with 1.

4.4 Communications protocol

We developed a custom binary format for sensors to report their readings to the database
server. Our motivations are the following:

• The protocol should be simple enough to encode and decode on a microcontroller
without consuming very much power. Thus, we chose to use a binary protocol relying
on native C data types such as integers and IEEE 754 floating point numbers.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 59

Sensor Server

TCP SYN

TCP SYN-ACK

TCP ACK

Timesync message

Recordstore Data message, TCP ACK

Wait 500ms for host commands

Configure Sensor message (optional)

TCP ACK

TCP FIN

TCP ACK

TCP FIN

TCP ACK

Figure 4.4: Typical exchange between sensor and server during one report, showing packets
at the transport layer and above.

• We should also balance extensibility of the protocol to add new types of messages and
sensor data without the protocol becoming overly complex. Our compromise was to
have fixed-length fields specifying the type of hardware, type of message, and types of
sensor data present in each message. The meaning of the field values must be known
across all agents that wish to encode and decode the messages.

• To reduce power consumption, the protocol should reduce the number of packets that
need to be sent and minimize the amount of time the radio needs to be active. Thus,
our protocol incorporates “batching” many sensor samples into one compressed report
which is sent to the server infrequently. Section 4.3 describes the recordstore technique
designed to accomplish this.

With these considerations in mind, we develop a simple, yet easily extensible, protocol
for the environmental sensors. Our protocol is essentially a custom binary format relying
on the TCP/IP networking stack to deliver bytes from the sensor to the server and from
the server to the sensor. Figure 4.4 illustrates a typical packet exchange between the sensor
devices and the server (at the transport layer and above) for one sensor report interval.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 60

Lower-layer considerations

Our protocol relies on a layered communications model where lower layers ensure certain
properties about the connection. Our protocol requires that the lower layers guarantee a
reliable and error-free transmission of bytes between agents on the network, or, if this cannot
be guaranteed, to inform our application as such. Thus, we chose to build our protocol as
an application atop a TCP/IP stack. The TCP/IP stack extensively uses acknowledgement
packets to validate the successful transmission of data, which is important to ensure that
our sensor data is not lost, since we can later re-send the data if a transmission failed. In
practice, if the current link is reliable enough to establish a connection, then we assume
the link is also ready to transmit data, whereas if the link does not survive the initial TCP
handshake, we assume that the link is not reliable and save the data for later retransmission.
While we have observed this assumption to be correct while developing the sensors, we have
yet to perform any extended tests to validate the assumption.

Thus, TCP is chosen for its built-in mechanisms to ensure data reliably reaches the
server, however, this comes with a major drawback. Since TCP relies on many separate
control packets to establish and tear-down a connection (at a minimum 7, See Figure 4.4),
this requires that the radio to be active for the entire time. Thus, approximately one-
third (See Figure 4.9) of the sensor’s battery life is expended by the radio alone, even at
a very infrequent reporting rate. Future work will be to use the UDP protocol for which
packet reliability is not enforced by the protocol. We can add a custom acknowledgment
method which requires less overhead than TCP. For example, the server could send a single
acknowledgement to the sensor upon receiving a data message, rather then setting up and
tearing down an entire TCP connection.

Message framing and escaping

Since TCP is a stream-oriented protocol, it guarantees that bytes are delivered reliably and
in order (otherwise delivering an error). However, TCP does not provide framing utilities to
designate discrete sets of bytes that should be treated as one message. We considered the
following options when faced with the task of framing messages in the TCP stream:

Connection-based framing

The first method is to constrain each TCP connection to only contain one message, therefore,
simply initiating and terminating the TCP connection signals the start and end of a message.
This is simple to implement, and requires no extra overhead (i.e. extra energy consumed)
when only one message needs to be sent per reporting interval. However, the overhead is
very significant when needing to transmit more than one message since the TCP connection
must be reconnected, and the radio must be awake during that time.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 61

Length-based framing

The second method is to append each message with a 16-bit length field, l, of the message
which follows. Thus, the following l bytes are treated as a single message, and the l-th and
l + 1-th bytes are the length field for the next message. Thus, the overhead is exactly 2-
bytes per message. The main drawback to this method is that errors such as dropped bytes
are nearly irrecoverable, as are errors in accurate transmission of the length fields. This is
because any mismatch between the received length field value and the actual length of the
following message will cause the wrong bytes to be read and interpreted as the length field
of the next message.

Delimiter-based framing

The third method, and the chosen method for framing our messages, utilizes a delimiter
(we use the hex value 0x0A, i.e. the linefeed character) to indicate the boundaries between
messages, by appending this delimiter to the end of every message. Thus, there is only
one byte of overhead per message, and communications errors are generally recoverable for
multiple message streams, as the next correctly received delimiter will be correctly inter-
preted. The method described is inspired by, and is very similar to, the High-Level Data
Link Control (HDLC) protocol [62].

For messages which do not contain the delimiter character, 0x0A, no further change is
necessary, however, since we cannot make this assumption, an additional escaping step is
necessary to ensure that any part of the payload is not misinterpreted as the delimiter
character. Therefore, we make the following substitutions when the payload is sent:

0x0A⇒ 0x7D, 0x2A

0x7D⇒ 0x7D, 0x5D

The receiver, after splitting the stream into discrete messages using the delimiter characters,
then makes the reverse of the above substitutions in order to recover the original messages.
In this way, any bytes in the message do not interfere with the framing and escaping mech-
anisms. The escaping process adds some amount of overhead, about 1 extra byte for every
128 message bytes if the message is random data, or, in the worst case, doubling the message
size (if all message bytes are 0x0A and 0x7D).

Message descriptions

All messages sent between the sensor and server are in the following format:

BT MT Message Data

containing the board-type BT and message-type MT fields, as well as an arbitrary-length
data field which varies depending on the value of MT. For the environmental sensing plat-
form, BT is always equal to 2.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 62

Below, we describe the most commonly used message types, where “Command” refers to
messages usually sent from the server to the sensor, and “Report” refers to messages usually
sent from sensor to server. We assume that the byte ordering of all integers is little-endian.

Timesync Command (MT=0x00)

0x02 0x00 Unix Timestamp

This command is sent to the sensor to notify it of the current time. The time is given
as a 32-bit integer representing seconds elapsed since January 1, 1970. For example, Jan-
uary 1, 2014 is equivalent to a timestamp of 1388563200. The current implementation does
not incorporate timezones, and so all times are given by the local timezone of the server.

Sensor Data Report (MT=0x01)

0x02 0x01 Unix Timestamp Fields
Present

Field
1

Field
2

· · ·

This message is for the sensor to report environmental measurements. The Unix Times-
tamp is in the same format as described above for the Timesync Command and represents
the time that the sample was taken for the subsequent fields. The Fields Present field is
a 16-bit bitfield indicating what types of measurements are present in the following list of
fields. If a bit is set in the bitfield, then that means that the field is included in the following
list of fields, with the lowest bit-indexed field coming first. The meaning of each bit of Fields
Preset is board-dependent (i.e. the value of BT); for the environmental sensor, BT = 2,
the meaning of the bits are as follows:

Bit index Type Units Binary Format
0 Temperature ◦C 32-bit IEEE 754
1 Humidity RH% 32-bit IEEE 754
2 Occupancy % 32-bit IEEE 754
3 Ambient Light lux 32-bit IEEE 754
4 3-axis Acceleration g 3 fields, 32-bit IEEE 754
5 3-axis Angular Rotation Rate ◦ s−1 3 fields, 32-bit IEEE 754
6 Last Received Signal Strength dBm Signed 8-bit integer
7 Not implemented
8 Occupancy State Changed boolean Unsigned 8-bit integer
9 Orientation Changed Code Unsigned 8-bit integer
10 Light Level Changed boolean Unsigned 8-bit integer
11-15 Not implemented

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 63

The Occupancy State Changed field is sent with value 1 whenever human activity is
detected (via the PIR sensor) after 10 seconds of inactivity, and sent with value 0 whenever
human activity is not detected for 10 seconds, after previously sending the value 1.

The Orientation Changed field is sent whenever the sensor device changes orientation
so that any of its axis are aligned, or closely aligned with the gravity vector, and the other
two axis are parallel to the ground. The following codes are defined:

Code Orientation Code Orientation
0x02 X-axis pointed UP 0x01 X-axis pointed DOWN
0x08 Y-axis pointed UP 0x04 Y-axis pointed DOWN
0x20 Z-axis pointed UP 0x10 Z-axis pointed DOWN

The Light Level Changed field is sent with value 0 any time the ambient light is darker
than a certain level (approximately the light level inside a closed desk drawer), and sent with
value 1 whenever the ambient light is above that level. There is a small amount of hysteresis
applied to prevent chattering.

Typically, the sensor periodically samples the measurements and generates Sensor Data
Report messages every Sample Interval seconds. However, the Occupancy State
Changed, Orientation Changed, and Light Level Changed fields are asynchronous,
meaning that a Sensor Data Report message for these fields is generated exactly whenever
the appropriate event occurs (to a resolution of 1 second). This allows us to capture events
which happen in between the sample intervals.

Configure Sensor Command (MT=0x02)

0x02 0x02
Variables
Present

Variable 1 Variable 2 Variable 3

This command is used to configure the sensor, mainly to allow remote configuration of
variables that affect the battery lifetime of the device. This message is extensible to allow
up to 8 configuration variables to be defined. The Variables Present bitfield is currently
implemented as:

bit 0 Fields-to-report variable present.

bit 1 Sample Interval variable present.

bit 2 Report Interval variable present.

bits 3–7 Not implemented.

If a bit is set in the bitfield, then the corresponding variable is present in the following
fields of the message, with the lowest bit-indexed variable coming first. For example, if

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 64

Variables Present = 0x06, then the Sample Interval and Report Interval fields are
present, in that order, following the Variables Present field.

The Fields-to-Report variable is a 16-bit bitfield instructing the sensor to measure and
report the environmental fields corresponding to the bits set. This can allow the sensor
to reduce energy consumption by turning off the measurement hardware for the fields that
are not needed. The bits have the same meaning as the Fields Present bitfield described
above for the Sensor Data Report message. Therefore, the Fields Present field of
the subsequent Sensor Data Reports coming from the sensor should match the value of
Fields-to-Report given by the server.

The Sample Interval variable request is a 16-bit unsigned integer specifying, in seconds,
the time that the sensor should wait before taking periodic measurements from the environ-
ment, such as light level or temperature (this does not apply to asynchronous measurements,
such as occupancy level change detection). A typical value for this is 20 seconds. Increasing
this value will increase battery life at the cost of temporal resolution of measurements.

The Report Interval variable request is a 16-bit unsigned integer specifying, in seconds,
the time that the sensor should wait before attempting to contact the server to receive
commands and send the latest batch of measurements. A typical value is 3600 seconds, or
1 hour. Increasing this value increases battery life at the cost of latency before environmental
measurements can be used.

Current Configuration Report (MT=0x03)

0x02 0x03 Fields-to-report Sample Interval Report Interval

This reports to the server the current configuration of the sensor device. If there is a
mismatch between the reported configuration variables and those desired by the user, then
a Configure Sensor Command is sent by the server to correct the mismatch.

Recordstore Data Report (MT=0x05)

0x02 0x05 Recordstore Data

In this message, Recordstore Data is a compressed set of many more messages (See Sec-
tion 4.3 for a description of the format). In fact, in our implementation, messages from
sensors to the server are always wrapped in a Recordstore Data Report which is decom-
pressed into individual messages on the server. This saves an average of 33% in communi-
cation load.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 65

Table 4.1: Iterations of the Environmental Sensing Devices

Version 1 Version 2 Version 3

Device Identifier Report (MT=0x06)

0x02 0x06 ID Type Device Identifier

This message is used by the sensor to report its ID to the server and is typically included
with each sensor measurement message. For the environmental sensor, ID Type is set to
0x01, meaning that the following identifier should be interpreted as a 48-bit WiFi MAC
Address, and the device identifier is the 48-bit binary-encoded Wifi MAC Address provided
by the wireless module. A future extension will be to allow human-readable names to be set
on the sensors, such as “Room 406A, Supply Vent CO2 Sensor”, using ID Type = 0x40.

4.5 Environmental sensor devices

The most visible and numerous element of the environmental sensing platform are the en-
vironmental sensing devices which are the instruments responsible for collecting physical
measurements and delivering them to the server. These are hardware devices designed from
the ground-up, although they share design elements found in the hobbyist community, such
as the Arduino [63] design. Many wireless sensor nodes have been developed by the research
community to accomplish the task of continuously and remotely monitor an environment [64,
65, 66, 67, 68]. We see this plethora of new designs as exciting evidence of iterative improve-
ment in sensor designs, incorporating novel ideas and new technologies.

Our design represents another incremental step towards a permanent and easily-deployable
sensing infrastructure that can operate for many years inside a smart building. Notably, by
using Microchip’s RN-XV [69] low-power IEEE 802.11 (WiFi) module, we are one of the
first to use WiFi technology for this application. In the past, WiFi has been overlooked in

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 66

favor of other radio protocols, such as IEEE 802.15.4 and Bluetooth, due to WiFi’s high
active power consumption. However, as WiFi hardware becomes lower power (driven by the
venerable advancement of smartphones), WiFi is gaining attention as a contender to supply
the communication requirements of wireless sensor networks (WSN)[70].

Our hardware design has proceeded through several iterations to reach its current form
(See Table 4.1). Since Version 1 was our first experience with the physical implementation of
the design, it had several hardware errors that needed to be fixed. In Version 2, we corrected
these errors, allowing us to develop a codebase that would be compatible with Version 3,
in which we added further expansion capabilities, reduced the physical size and significantly
reduced the cost of production (by using 2 routing layers instead of 4, and a rectangular
outline).

Commercial alternatives

Prior to designing a custom hardware solution, we first evaluated alternative commercial
solutions, some of which are listed in Table 4.2. Some platforms, such as the Digi XBee
Sensors[71], are commercially packaged, produced and sold through major distributors, which
makes it extremely quick and convenient to build a platform upon. However, none fulfilled all
our requirements of variables sensed, battery life, or cost. Moreover, proprietary solutions
prevent us from extending the sensors to measure more variables, installing experimental
networking protocols, and are also vulnerable to becoming unsupported by the company.

There are also many WSN-centric development kits intended for research and develop-
ment, perhaps the most referenced and studied being the Telos and TelosB platforms[66].
These are somewhat unfinished products and require some development of software, hard-
ware, and mechanics to fit the parameters of our deployment. They also rely on an exper-
imental and changing code base, such as TinyOS, and requires a higher level of knowledge
to configure, as opposed to simple and user-friendly interfaces such as the X-CTU utility by
Digi. However, with this cost comes the benefit of being able to keep up with improving
protocols and a high amount of customization.

Finally, there are proof-of-concept and short-run products such as the Powercast WSN-
1101[72] (and derivatives), which feature remarkable improvement in battery life and package
size. Sensor nodes like these are usually developed by companies to demonstrate an under-
lying technology innovation (in this case, wireless charging, low-power micro-controller, and
energy storage improvements). In many cases, the true product is an OEM module that is
sold to other companies to integrate into a commercially packaged product.

Hardware design

Designing the environmental sensor from the ground-up afforded us a great amount of flex-
ibility in choosing state-of-the-art components available. As an overview, the block-level
diagram of the Environmental Sensor node is shown in Figure 4.5.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 67

Table 4.2: Feature table of sample of environmental sensors.

Digi XBee
Sensors[71]

Measurements

Temperature,
Humidity, Ambi-
ent Light

Battery Type

3 Alkaline AA
Cells
(4.5V
2700mAh)

Battery Lifetime

1.5 years (1/30
Hz rate)
2.5 years (1/60
Hz rate)
6 years (1/3600
Hz rate)

Communications

2.4GHz
IEEE 802.15.4
ZigBee mesh
network

Cost 109 USD

Telos Platform[66]

Measurements

Temperature,
Humidity, Ambi-
ent Light

Battery Type

2 Alkaline AA
Cells
(3V 2700mAh)

Battery Lifetime

3 years (1% duty
cycle)

Communications

2.4GHz
IEEE 802.15.4
TinyOS mesh
network

Cost 110 USD

Powercast
WSN-1101[72]

Measurements

Temperature,
Humidity, Light,
CO2 (optional)

Battery Type

Integrated
Lithium OR
Radio Power
Transfer

Battery Lifetime (1/60 Hz

rate)

25+ years (bat-
tery)
Perpetual (RF-
powered)

Communications

2.4GHz IEEE
802.15.4
Proprietary
mesh

Cost 200–400 USD

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 68

Figure 4.5: Environmental Sensor system diagram illustrating the major on-board instru-
ments and expansion capabilities. Communications buses are indicted by solid-color paths.

Microcontroller

At the logical center of the design is Atmel’s ATmega1284 microcontroller. This particular
choice has a high amount of program memory (128KB) and RAM (16KB), which allows us
to add in many code features without running out of space. However, most importantly,
the microcontroller has the peripheral features required (I2C, SPI, and two UART ports),
and the capability of low-power sleep while operating a timer from a 32.768KHz crystal.
Even though there are many microcontroller families (e.g. TI’s MSP430, Microchip’s PIC)
which satisfy our requirements, an additional reason for choosing the ATmega family is due
to its reliance on an open-source and free toolchain (GNU GCC) and extensive community
support through the Arduino community (e.g. the community provides driver code for many
sensors).

Communications

A necessary component for a wireless sensor is the wireless transceiver. Initially, we did not
seek to tie our design to a specific wireless module, therefore we included a universal 20-pin
socket, popularized by the ubiquitous XBee module. This is the connector footprint that is
defined by many of Digi’s OEM XBee modules. Due to the popularity of the XBee module,
many other companies produce modules which adhere to the same connector footprint and
signal locations, therefore we allow ourselves to evaluate these alternative offerings without
a hardware redesign of the board.

Of these alternatives, we are particularly interested in integrating the OpenMote [73] since
it incorporates the IEEE 802.15.4e stack via the OpenWSN project [58]. IEEE 802.15.4e uses
Time Synchronized Channel Hopping (TSCH) to combat narrow-band challenges and achieve
99.999% end-to-end reliability [74]. Therefore, when the OpenMote has reached maturity, it

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 69

offers to address our reliability concerns while achieving much lower latency and power than
our WiFi selection.

Ultimately, we chose Microchip’s RN-XV[69] module which, in our experience, proved
more reliable than the XBee offering. Although the power consumption of this WiFi transceiver
is up to 10 times greater than Bluetooth or IEEE 802.15.4 products, the high data rate (over
200 times faster) allows us to transmit many measurements in one “burst”, thus limiting the
time that the radio must be turned on.

Power supply

In the standard configuration, the sensor is powered via a 3.7-volt Lithium-Thionyl Chloride
C-cell battery with a nominal battery life of 9Ah. This particular chemistry is intended
for powering long-lifetime devices, having a low self-discharge of less than 1% per year.
However, the capacity of the battery is significantly reduced when pulling more than 2 mA
of continuous current or more than 400 mA of pulsed current (which could damage the
battery). The capacity of the battery is also reduced at lower current levels, such that at
a 100 µA continuous current draw (roughly the average draw of the sensor), the effective
capacity is roughly 8Ah. In our design, a 100 µF capacitor is used to lightly buffer the
current draw during the times that the radio is active.

The 3.7V battery voltage is dropped to the system voltage of 3.3V via a linear regulator.
Therefore, instead of the battery, the system can also be supplied with another power source
of up to 6V and as low as 3.5V. For proper operation, the external supply should be able to
supply current up to 250 mA (@12 dBm) or 140 mA (@0 dBm) during transmission, and, on
average 200 µA.

Temperature and humidity sensing

Measuring Temperature and Humidity from the local environment is accomplished by Mea-
surement Specialties’ HTU21D [75] instrument. This instrument is attached to the shared
I2C bus and can be queried to provide 12-bit and 14-bit digital readings of relative humidity
and temperature, respectively. The stated accuracy of the humidity sensor is ±2%RH typical
over the 20%RH to 80%RH range, and up to ±3%RH outside of this range. The maximum
error tolerance is stated to be ±5%RH over the whole range. Although the instrument is
calibrated at the factory, the relative humidity reading must be temperature-compensated to
achieve the stated accuracy. The coefficients and formula needed for this correction are spec-
ified by the datasheet. The stated accuracy of the temperature sensor is typically ±0.3 ◦C
and maximally ±0.4 ◦C over the range of roughly 5 ◦C to 60 ◦C which well covers the expected
range of temperatures encountered indoors.

Ambient light sensing

Ambient visible light is measured by AMS’ TSL2560 instrument [76]. This design of the IC
incorporates two light-sensing photodiodes: one measures visible and IR light from 300 nm

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 70

to 1100 nm, and the other measures IR light from 500 nm to 1100 nm. Therefore, the reading
from the second (IR only) photodiode can be used to compensate for the light energy that
the first (visible and IR) photodiode measures, but is not visible to the human eye. An
additional feature of the instrument is its ability to change the integration time of the on-
board analog-to-digital converter (ADC). This is typically changed to adapt to various light
conditions, such as a long integration time for dark environments, and short integration time
for outdoor environments. In our implementation, which is mostly to be deployed indoors,
we have fixed the integration time to 101 ms. The light sensing instrument is attached to the
shared I2C bus for configuring the instrument and reading the 16-bit values measurements
of the two photodiodes. The microcontroller uses the two measurements to calculate a lux
reading, based on a relation described in the TSL2560 datasheet. We also used the interrupt
feature of the instrument, which detects when the light level crosses above or below a pre-
configured threshold. When enabled, this allows our sensor to timestamp events such as
when the sensor is put inside a drawer or the lights are turned on and off.

A particular integration note about this instrument is that the responsivivity to light
is somewhat directional (120◦ beam-width at half-maximum). Therefore, the choice of en-
closure and mounted configuration of the environmental sensor can dramatically affect the
ambient light readings. For practical studies, it would be prudent to ensure that all of the
sensors are mounted in a similar way to properly measure the light levels in the indoor
space. Alternatively, we should study the changes in light intensity over time as opposed to
emphasizing the absolute lux values of light.

Orientation sensing

Although capable of accurately measuring rapid acceleration, we include the LIS3DH Ac-
celerometer by ST Microelectronics [77] primarily to measure the orientation of the device,
with respect to gravity, and secondarily to measure high-acceleration “bumps”, such as foot-
steps. Detecting orientation and bumps provides information in a mobile environment, such
as if the device is in the pocket of a mobile human occupant. The number of footsteps taken
and whether the person is sitting or standing can be extremely valuable pieces of information
in an occupant tracking or occupancy estimation problem. In these situations, the accuracy
of the instrument is not of large concern.

This instrument features low-power (6 µA at 50 Hz sample rate) continuous operation,
which allows us to capture and timestamp events which occur in between periodic samples.
For orientation purposes, the typical magnitude of acceleration we are measuring is 1 g, so the
stated offset error of 40 mg represents about a 4% error. Additionally, there is some sensitivity
to temperature which is stated as 0.01 %/◦C. The 3 16-bit values of acceleration are read
from the device over the shared I2C bus. Additionally, we use the interrupt capabilities of the
device to inform the processor when the orientation has changed (the x, y, or z measurement
axis is aligned with the gravity vector).

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 71

Motion detection

We measure motion using Panasonic’s AMN41121 passive infrared (PIR) motion detector
module [78]. This module utilizes a pyroelectric element to monitor small changes in infrared
black-body radiation emitted by humans (7-14 µm). There is a specialized lens which forms
a pattern of discrete detection zones corresponding to one of four sensing regions of the
pyroelectric element. Further circuitry within the device monitors changes in the infrared
light measured by the four regions to determine whether a detection event has occurred.
Ultimately, the sensor will detect when an infrared-emitting body, such as a human moves
across the detection zones, but remain insensitive to overall temperature increases or de-
creases within the field-of-view. In practice, we have found that the sensor is also insensitive
to an unmoving human, i.e. some movement across the detection zones is necessary to signal
a detection.

The field-of-view of the sensor is stated to be 100◦ along one axis and 82◦ along the
other, and the detection range is at least 5 m from the sensor. Within this cone, there are
64 discrete detection zones distributed somewhat uniformly. There are three other models
within the family line of sensors, each having different lenses and correspondingly different
fields-of-view and detection ranges. Since these other models are pin-compatible, we could
easily switch out the AMN41121 for one of these alternative lens configurations, depending
on the end application. A drawback of the module is that it needs at least 7 seconds for
the circuit and sensor to stabilize before the detection is reliable. Therefore, we realistically
cannot duty-cycle the sensor to save power, however, since the static power consumption is
only 46 µA, we can leave the sensor powered and still achieve a long battery lifetimes.

The module interfaces to the microcontroller via a single output which connects the
attached signal to Vdd (HIGH) when a detection occurs. An external pull-down resistor
pulls the signal to GND (LOW) otherwise. Although the datasheet does not specify the
timing of the signal during a detection, we have found that, the signal will stay HIGH as
long as there is activity, but can sometimes intermittently go LOW, even while humans are
moving in front of the sensor. Therefore, we require some intelligent interpretation of the
signal, rather than simply assuming that a HIGH signal means humans are present and a
LOW signal means humans are not present.

Our strategy is to report two calculated measurements: the first is the occupancy per-
centage, which is the percentage of time (with a resolution of 1/256 seconds) that the signal
was HIGH over the last sample interval. The second is the occupancy state changed event,
which sends a value of 1 if the signal goes HIGH after being LOW for 10 seconds, or sends
a value of 0 if the the signal is LOW for 10 seconds after previously sending a 1. We believe
these measurements will be sufficient to determine whether the space in front of the sensor
is occupied by one or more humans at any time.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 72

Figure 4.6: Pin configuration of the expansion port of the environmental sensor, allowing
adaptation of a wide variety of additional sensors.

Expansion capabilities

The expansion port (see Figure 4.6) is a 10-pin male IDC connector with standard 0.1”
spacing. The port exports an SPI Master interface, including clock (SCK), Master-Out-
Slave-In (MOSI), Master-In-Slave-Out (MISO), and a single slave Chip Select (CS) line.
These four signals can also be used as General-Purpose Input Output (GPIO) pins, including
the ability to timestamp changes in voltage. We have also written a software-defined serial
driver using these pins which emulates an asynchronous serial port at 9600 baud. The shared
I2C bus is also available on the expansion port, composed of the Serial CLock (SCL) and
Serial DAta (SDA) signals. It should be noted that all of these pins operate using 3.3V
digital logic levels and are not intended to communicate with 5V logic levels. Finally, the
expansion port includes four power-supply pins: two GND pins, VCC, which is the system
voltage of 3.3V, and VBATT which is either 3.7V from the lithium primary battery, or can
be used as a 3.5V to 6V power supply input when the battery is not being used.

In addition to the expansion port, there are an additional two analog inputs exposed
as unpopulated test points which may be used for interfacing devices which have analog
outputs.

Firmware design

The firmware of the ATmega microcontroller was programmed in “bare metal” (i.e. no
underlying operating system) C code and debugged using the on-board JTAG connector.
The code is logically organised into:

• Device drivers – code which knows how to configure and extract data from the instru-
ments.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 73

SLEEP
CHECK

ASYNCH

SAMPLEREPORT

Interrupted

@1 Hz : t← t + 1

t ≥
last_

sam
ple

+
S
am

p
le

In
tervalt ≥ last_report + Report Interval

: last_sample← t
t
<

last_
report+

R
ep

o
rt

In
terval

: last_
sam

ple←
t

: l
as

t_
re

po
rt
←

t

Figure 4.7: State machine diagram of the firmware running on the ATmega microcontroller
of the environmental sensor. The variables t,last_sample, and last_report represent time
variables and initialized to 0. Sample Interval and Report Interval are configuration
variables.

• Peripheral drivers – code which knows how to configure and use the ATmega hard-
ware peripherals which are shared between multiple modules. Drivers for hardware
peripherals which entirely used by one code module are usually included within that
module.

• Radio drivers – code which knows how to configure and use the attached radio transceiver
(such as the RN-XV, or XBee modules). This code also handles the escaping and wrap-
ping routine described by Section 4.4.

• Utilities – generic, non sensor-related, utilities such as CRC generation and a task
scheduler.

• Sensor Logic – Computational code, such as scheduling when samples are taken and
reported, constructing reports and following commands specified in Section 4.4, and
implementing the recordstore data structure (see Section 4.3).

We illustrate the simplified normal operation of the sensor by Figure 4.7 as a finite state
machine with four states:

• The machine begins in the SLEEP state, which represents the lowest-power state.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 74

• The machine may be interrupted (e.g. by the PIR sensor) and transition to the
CHECK ASYNCH state which interprets the interrupt and possibly creates a Sen-
sor Data Report.

• The machine may also transition to the SAMPLE state if it is time to read the next
periodic sample and create a Sensor Data Report. A transition to this state triggers
the sampling schedule to execute.

• Finally, the machine transitions to the REPORT state if it is time to transmit the
stored samples to the server over the radio.

When the machine transitions to the SAMPLE state, the processor must activate the
peripheral instruments, instruct them to make a conversion, wait for the conversion to com-
plete, then retrieve the conversion result. To be efficient, while waiting for a conversion
to complete for one instrument, the processor can be simultaneously communicating with
another instrument. To make this process straightforward, a simple real-time scheduler is
provided for the device drivers to use to schedule their operations. Starting from when the
SAMPLE state is entered, and the sampling scheduler is triggered, the scheduler allows
drivers to specify the earliest time that a task should be executed (but it could be executed
later than specified).

Table 4.3 is the sampling schedule for the instruments on the environmental sensor. The
first column gives the time offset from when the sample is triggered. For example, the
light and the temperature/humidity instruments require a conversion time, evidenced by the
choice of time offset to start and read the conversions. If more than one task is specified to
execute at the same time, such as those at the 1 ms time offset, the scheduler executes them
in the order they were placed into the queue. Finally, there is a special value of time offset,
LAST, which instructs the scheduler to execute the task after running all other tasks which
are not at time offset LAST. Additionally, there are times when no tasks need to be run (e.g.
from 67 ms to 106 ms) where the scheduler turns off the CPU to save power (approx. 4 mA
of current consumption saved).

Battery lifetime

One of the most important motivations in designing the environmental sensor was to achieve
a multi-year battery lifetime in order to reduce the maintenance cost of the network (i.e.
labor and supplies needed to frequently replace batteries). Therefore, we utilized several
strategies to bring down the average current consumption to a target of less than 200 µA.
This included:

• Extreme duty-cycling of the processor and sensors, waking only to take a sample from
the instruments or communicate using the radio. A single sample requires that the
processor is active for a little over 100 ms, whereas a single radio transmission requires
approximately 1 s of radio activity (associate, transmit, then wait for host commands).

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 75

Table 4.3: Standard schedule of tasks executed to take one sample

Time (ms) Component Description
0 Reporting Start constructing new Sensor Data Report
1 Temp/Humid Start humidity conversion
1 PIR Calculate PIR occupancy percentage value and reset
1 Light Wake light sensor to start conversion
1 Accel. Read latest acceleration reading

17 Temp/Humid Read converted humidity & start temperature conversion
67 Temp/Humid Read converted temperature

106 Light Read converted ambient light reading
LAST∗ Reporting Store Sensor Data Report into recordstore memory

∗ Special signal to the scheduler to always run these tasks last.

Therefore, a sample taken every 10 s represents a sampling duty cycle of 1% and radio
transmission made every hour represents a communication duty cycle of 1.7%.

• Selection of components with low current requirements. Not only does this reduce
the amount of energy consumed, it reduces the peak load needed to be supplied by
the linear regulator and battery. Typically, linear regulators with higher peak current
capability also have a higher leakage current, and, additionally, high peak current
draws can damage or reduce the effective capacity of the battery. The most important
component, in this respect, is the choice of radio transceiver. For example, modules
such as the XBee-PRO and XBee Series 6 (WiFi) are not used due to their high (over
300 mA) peak consumption.

To determine the feasibility of having a multi-year battery life, we create a power con-
sumption worksheet, shown in Table 4.4, listing the power requirements for each device
during their sleep and active modes, and the typical amount of time they are required to be
active to perform their functions.

Using the information in Table 4.4, we simulate and plot, in Figure 4.8 the battery
lifetime of an environmental sensor node powered by a lithium battery (See “Power supply”
in Section 4.5), over varying values of sample intervals (i.e. when a measurement is gathered
from the instruments) and report intervals (i.e. when a set of measurements are sent to the
server). We simulate current consumption from the light sensor, humidity and temperature
sensor, accelerometer, PIR sensor, microcontroller, and radio. We also simulate the reduction
of battery capacity at low average current draw. We do not simulate leakage currents or the
power consumption of the 3.3V regulator, or atypical conditions which would cause devices to
be powered longer than expected, in particular, when communications problems may cause
the radio to remain active for up to 5 seconds per report.

We believe that we can achieve a battery lifetime of over 5 years by using a 10 second
sample interval and 60 second reporting interval. In this configuration, the average current

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 76

T
ab

le
4.

4:
P

ow
er

co
ns

um
pt

io
n

w
or

ks
he

et

D
ev

ic
e

Sl
ee

p
po

w
er

co
ns

um
pt

io
n

A
w

ak
e

po
w

er
co

ns
um

pt
io

n
A

ct
iv

e
ti

m
e

pe
r

sa
m

pl
e

A
T

m
eg

a1
28

4
0.

6
µA

C
P

U
on

:
4.

5
m

A
C

P
U

off
:

0.
5

m
A

A
t

le
as

t
10

1
m

s

R
N

-X
V

∗
4

µA
R

X
:

40
m

A
T

X
@

0
dB

m
:

13
5

m
A

T
X

@
12

dB
m

:
24

0
m

A

A
ss

oc
ia

ti
on

:
15

m
s

A
ut

he
nt

ic
at

io
n:

50
m

s
–

25
0

m
s

A
pp

lic
at

io
n:

50
0

m
s

–
5

s

A
M

N
41

12
1

N
o

sl
ee

p
m

od
e

46
µA

A
lw

ay
s-

on

H
T

U
21

D
20

nA
45

0
µA

T
em

pe
ra

tu
re

:
44

m
s

H
um

id
it

y:
14

m
s

T
SL

25
60

3.
2

µA
24

0
µA

10
1

m
s

L
IS

3D
H

∗
∗

0.
5

µA
6

µA
1

m
s

∗
N

ot
ac

ti
ve

fo
r

ev
er

y
d
at

a
sa

m
p
le

.
T

y
p
ic

al
ly

on
ly

ac
ti

ve
on

ce
p

er
h
ou

r.
∗

∗
T

y
p
ic

al
ly

al
w

ay
s-

on
to

d
o

as
y
n
ch

ro
n
ou

s
or

ie
n
ta

ti
on

ch
an

ge
d
et

ec
ti

on
.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 77

1

1
1

222

2
2

2

33

3
3

3

44
4

4
4

55

5

5
5

6

6
6

6

7

7
7

8

8

9

S
a

m
p

le
 I

n
te

rv
a

l
(s

)

Reporting Interval (m)
20 40 60 80 100 120

10

20

30

40

50

60

Figure 4.8: Battery Life (surface contours, in years) given by varying the amount of time
between samples (y-axis) and time between transmitting the data to the server (x-axis).

8uA

56uA

57uA

47uA

Standby

Communication

Sensing

Processing

Figure 4.9: Breakdown of average current for target battery lifetime of 5.4 years. Sample
interval is 10 seconds and Reporting Interval is 1 minute .

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 78

consumption is 168 µA, and the effective battery capacity at this current is 8.03 Ah. Fig-
ure 4.9 shows a breakdown how this current is used in this configuration, with relatively
equal amounts of current being used for communication (56 µA), sensing (57 µA (46 µA of
which is the always-on PIR sensor), and processing (47 µA). A relatively minuscule amount
of current (8 µA) is used for inactive devices while they are in their respective sleep modes.

Supported extensions

Although there is a rich suite of instruments already fixed on the main board, we included the
10-pin expansion connector (See “Expansion Capabilities” of Section 4.5) to allow virtually
limitless expansion possibility to interface other sensors. Below are examples of external
devices that we have interfaced to the environmental sensor board to allow other types of
measurements:

CO2 sensing

Sensing CO2 has many important uses in intelligent building research, particularly in occu-
pancy estimation [79]. We have successfully interfaced the K-30 CO2 sensor from CO2Meter [80]
to the expansion port of the environmental sensor board (See Figure 4.10), utilizing the
shared I2C bus. The K-30 sensor achieves an accuracy of ±30 ppm ± 1% using a self-
calibration procedure called Automatic Baseline Correction (ABC) which adjust the read-
ings such that the lowest value in the last 7.5 days is equal to 400 ppm (the assumed outdoor
air CO2 concentration).

In our experience with data gathered from multiple K-30 sensors co-located with a lab-
grade reference CO2 meter, we have found that offset errors of up to 100 ppm are common.
However, the K-30 sensors were likely not powered long enough for their ABC algorithm
to adjust and correct the incorrect baseline. For our experimental work, we have manually
corrected the baseline by knowledge of when the environment has been unoccupied for a long
time and adjusting the results so that the measurement is 400 ppm at this time.

The K-30 requires a power input of 4.5 V to 9 V at an average current of 40 mA and
maximum current of 300 mA, therefore, we require that an external power source (between
4.5 V and 6 V) is applied. We connect the VBATT input of the environmental sensor to the
power supply of the K-30 device, so that they share the same power source.

We found that when the K-30 sensor is attached, that it impedes the operation of the
HTU21D instrument, causing its measurements to fluctuate (See Figure 4.11). We believe
the cause is due electrical noise generated by high peak currents pulled by the K-30 sensor
every time it makes a CO2 measurement (which happens automatically and not under our
control).

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 79

Figure 4.10: Left: The K-30 CO2 sensor from CO2Meter [80]. Right: Sensor attached to
the expansion port of a “Version 2” environmental sensor. This used the software-defined
serial driver to read from the sensor, however support for the I2C interface has been added
in “Version 3” of the environmental sensor’s expansion connector.

Door opening detection

The door open detector expansion utilizes the GPIO capabilities of the expansion port by
attaching a magnetic switch and pull-up resistor. A schematic of the simple circuit is shown
by Figure 4.12. When the magnetic switch is closed by the magnet being close by, the signal
goes to 0V, whereas when the magnet is far, the magnetic switch is open and the signal is
pulled to VCC by the pull-up resistor. The current consumption of the circuit is 10 µA, when
the switch is closed, and the leakage current of the ATmega’s GPIO input driver (maximum
1 µA), when the switch is open. The interrupt capabilities of the GPIO port allow us to
timestamp exactly when the voltage level changes, to within one second.

To install the sensor, the magnetic switch is installed on either a door or its frame, and
the magnet is installed on the other side, such that when the door is closed, the magnet comes
within 1 cm of the switch, and when the door is open, the magnet is far from the switch.
Note that we could similarly install the switch and magnet combination on windows, draws,
or cabinets which, given the context, could provide information about where occupants are
and which objects in the office are being manipulated.

4.6 Evaluation

Given that a long battery life is one of the primary features of the platform described, it
is necessary to validate that the platform actually consumes the theoretical amounts that
we calculated from the data sheets. Therefore, we designed a circuit, shown in Figure 4.13

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 80

F
ig

ur
e

4.
11

:
E

xa
m

pl
e

2
ho

ur
ti

m
es

er
ie

s
pl

ot
s

sh
ow

in
g

eff
ec

t
of

C
O

2
se

ns
or

ad
di

ng
no

is
e

to
th

e
hu

m
id

it
y

m
ea

su
re

m
en

t.
T

he
to

p
pl

ot
sh

ow
s

th
e

hu
m

id
it

y
re

ad
in

gs
fr

om
th

e
en

vi
ro

nm
en

ta
ls

en
so

r
w

it
h

th
e

K
-3

0
se

ns
or

at
ta

ch
ed

an
d

th
e

bo
tt

om
pl

ot
sh

ow
s

th
e

hu
m

id
it

y
re

ad
in

gs
w

it
ho

u
t

th
e

K
-3

0
se

ns
or

at
ta

ch
ed

.

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 81

Figure 4.12: Schematic of door opening detection based on a magnetic switch attached to
one of the GPIO pins of the expansion port.

to measure the current consumed by our prototype. An operational amplifier produces an
regulated 3.75 V output voltage at up to 250 mA (i.e. (12 V− 3.75 V)÷ 33 Ω). The voltage,
v, at the output of the amplifier is captured with an oscilloscope and we can calculate the
supply current, i, as

i =
v − 3.75 V

33 Ω
.

The standby current consumption was too low to precisely measure using the tools at
our disposal (theoretically, the voltage difference across the 33 Ω resistor would be < 2 mV
at 60 µA). Since we cannot reliably measure the standby current, for the following plots we
plot the current differential, that is, the amount of extra current that doing a task consumes
in addition to the standby current.

We measured the current consumption while the device took one environmental sample
and plotted the results in Figure 4.14. There are 5 spikes in current consumption, corre-
sponding to the 5 times when the processor is active, according to the schedule in Table 4.3.
We also calculated that the energy capacity drained from the battery for one sample is
1.09 µAh. Note that this is much lower than expected by the numbers previously calculated
in Section 4.5, indicating that our previous estimates were conservative.

Figure 4.15 provides similar plots of the current consumption profile while the sensor
is transmitting the collected measurements to the server. In this plot, the spikes represent

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 82

Figure 4.13: Schematic of measurement circuit used to measure currents up to 250 mA
consumed by the environmental sensor.

0 50 100 150
0

5

10

15

20

Time (ms)

C
u
rr

e
n
t
(u

A
)

Figure 4.14: Current consumption while one environmental sample is being measured. In
this example, 85 pAh was drained from the battery (excluding standby current).

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 83

0 1 2 3 4 5 6 7
0

50

100

150

Time (s)

C
u
rr

e
n
t

(m
A

)

Figure 4.15: Current consumption during transmission of stored measurement data. In this
example, 75 µAh was drained from the battery (excluding standby current).

times when the radio is transmitting and consuming up to 240 mA of current. The sensor
consumes around 50 mA of total current when the radio is active, but only listening (itself
consuming 40 mA).

To estimate the battery lifetime, T , we assume a battery capacity, Cbatt = 8 Ah (derated
from 9 Ah after 5 years of age) and a standby power consumption of 60 µA. We also assume
the sensor is configured to take samples every 10 seconds and send a report (approx. 6.9kB
each) every hour. We assume that each sample and report consumes the amount of energy
as measured above. Therefore, we have the relations:

nsamples =
T

(10 s)
Csamples = nsamples · (85 pAh)

nreports =
T

(3600 s)
Creports = nreports · (75 µAh)

Cstandby = T · (60 µA)

Cbatt = Csamples + Creports + Cstandby

Solving these equations gives a battery life of approximately 6.7 years, after taking 21 million
environmental samples and sending 59 thousand reports. Of the 8 Ah battery, approximately
4.4 Ah (56%) is used for communication, 1.8 mAh (0.02%) for synchronous samples (not

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 84

including consumption from the always-on PIR or accelerometer instruments), and 3.6 Ah
(44%) used for standby consumption, including the PIR and Accelerometer instruments.

Clearly the battery lifetime could be extended by increasing the report interval. Addi-
tionally, there does not appear to be a significant power penalty to increasing the sample
rate of measuring light, humidity, and temperature. However, we are limited by the memory
space of the device, as these samples must be stored until the next report is sent. Therefore,
for future designs, increasing the amount of memory, perhaps via an externally connected
memory chip, could prove fruitful in improving the battery lifetime. An alternative is to
perform some computation on the sensor node to determine whether a sample is useful to be
held or discarded. For instance, if the sensor detects that a quantity is rapidly changing, it
could choose to store more of the samples, however, if the measurements are not significantly
changing, many of the high-rate samples could be discarded.

Secondarily, we could increase the battery lifetime by reducing the standby power con-
sumption of the device, especially by turning off the PIR detector which consumes 46 µA.
For instance, we could place two sensors with overlapping PIR detection regions and turn
only one PIR detector on at a time, or other sensors could be used to determine whether the
PIR detector is needed. For instance, if a door-open detector senses that a door is closed to
an empty room, then there is no reason for a PIR detector to be monitoring that room since
there is no possibility of humans entering without opening the door.

4.7 Conclusions and Future Work

Ultimately, we achieve our objective of a 5+ year lifetime for the environmental sensor devices
and it is comforting to know that there is room for unaccounted factors. Therefore, the
environmental sensing framework, as a whole, enables practical deployment of a permanent
sensing architecture in the office space. The sensing devices themselves can operate for over
5 years while consuming a lifetime average of 140 µA. Therefore, the costs of deploying and
maintaining such a network is significantly reduced in comparison to networks which require
wiring or frequent battery replacements.

Although we have achieved our power consumption targets using WiFi technology, we
recognize that other standards-based technologies exist, such as IEEE 802.15.4e and Wire-
lessHART, which offer high-reliability, low-latency, and low-power relative to WiFi technol-
ogy. For example, the SmartMesh line of products from Linear Technology offers roughly the
same order of power consumption (less than 100 µA) for communications, but at a latency of
less than 10s and achieves 99% reliability (for 100 nodes) [81]. A future goal is to integrate the
OpenMote [73] which implements an open-source implementation of IEEE 802.15.4e, Open-
WSN [58]). Using the same standards-based protocols, OpenWSN theoretically achieves
similar performance to SmartMesh. The primary challenge in incorporating this technology,
however, is that it is not well suited to mobile environments, since nodes must undergo a
lengthy and costly rejoining process if they frequently leave and enter the radio range of their

CHAPTER 4. INDOOR ENVIRONMENTAL SENSORS FOR MOBILE SENSING 85

neighbors [82]. To address this requires careful adjustment of the network parameters and a
network topology that assists mobile nodes in staying associated within the mesh network.

From our observations of current, the WiFi module consumes most of its power in idle
receive mode, not during transmission of a packet. These times are spent either when the
ATmega microcontroller is communicating the data packet to the RN-XV module, or when
the sensor is waiting for a command to be sent to it from the Local Server. Therefore, we
could significantly reduce power consumption with a faster data connection to the RN-XV
and a protocol which does not rely on the module to wait for a possible command from the
Local Server. The first change would require selection of a WiFi module which supports
the SPI communications bus, which can be much faster than an asynchronous connection.
The second change could be accomplished by sending a flag with the TCP acknowledgement
packet, indicating whether the server has a command waiting for the sensor.

Another way to reduce the data throughput, and thus the communication and memory
requirements, would be to process the data on the ATmega prior to storage. This processing
step would be highly dependent on the end application. For example, instead of recording
the temperature every 10 seconds, we could record only when the temperature rises or falls
below some threshold. However, since we want to avoid constraining the sensors to one
application, and because WiFi affords a relatively high data bandwidth, we choose to send
the measurements with very little processing.

Using the measurements collected from the on-board instruments, as well peripheral
instruments, such as CO2 and Particulate Matter sensors, we can gather information about
the occupancy of building spaces. For instance, in the following chapter, we will describe how
measurements of CO2 concentrations inside of a conference room can be used to accurately
estimate the occupancy of that room. We were able to accomplish this non-trivial feat by
modelling the CO2 concentrations within the room and building an estimator for the rate
of CO2 production. To apply the estimation theory, it was necessary to develop the CO2

sensor platform shown in Figure 4.10.
If the sensors are carried by occupants, this will provide information needed to track the

occupant using the particle filtering technique described by Chapter 6. We collect the signal
strength from an occupant-carried device and find the most likely position of the occupant by
mapping these measurements to previously constructed statistical distributions. However,
in addition to signal strength measurements, the framework can be adapted to accept any
type of measurement that is affected by the occupants’ positions. For instance, the particle
filter can glean information from light measurements, such as knowing that the occupant is
near or far from a sun-facing window. Further examples are discussed in Section 6.5.

As well as providing the inputs to our occupancy estimation and occupant tracking
techniques, the system also proves to provide valuable inputs to other smart building projects.
The temperature, humidity, particulate matter, and CO2 readings are used to control and
study the indoor air quality of the space, and the light-level readings are likewise used to
determine if an adequate and healthy amount of light is being provided. Since readings are
taken frequently and stored permanently, we enable future studies by collecting a rich and
long-running data set to be analyzed.

86

Chapter 5

Models of indoor occupancy

5.1 Introduction

In the previous chapter, we briefly described the advantages of estimating indoor occupancy,
especially in regards to significantly reducing energy usage of a building. To detect activity
and movement in the building, the most straightforward methods are light-based, such as
passive infrared (PIR) sensors, which detect movement of body heat, or emitter-detector
pairs which trigger when a light beam is broken. Ultrasound sensors are also popular to de-
termine whether a space is occupied by emitting ultrasonic chirps and measuring differences
in the response. Magnetic switches can also be added to doors to determine when they are
open or closed. These types of sensors provide accurate detections of occupants, however,
the information they provide is limited. For instance, these light-based and ultrasound-
based sensors usually have a small detection volume and cannot distinguish the number of
occupants or the amount of activity that is occurring [83].

More recently, there has been a host of indoor positioning systems (IPS) [84, 85, 86, 87]
developed to obtain a person’s location (i.e. x-y coordinates) continuously. For instance,
an IPS is used in Chapter 6. From the positions of individual occupants in the building,
a distribution can be constructed by counting the number of occupants in a given area.
However, a wireless IPS infrastructure requires that the occupants carry radio tags, such as
custom RFID tags. It is difficult to enforce that occupants carry exactly one tag with them
at all times, such as when visitors are present. This is somewhat alleviated by WiFi-based
IPSs, which sniff the transmissions of occupants’ cell phones without any prior association.
However, the method still requires that the occupants carry exactly one WiFi device, that
the device has WiFi enabled at all times, and that the device consistently transmits over the
WiFi channel. Therefore, IPSs have these challenges which can prevent them from accurately
tallying the true number of occupants in a space.

To explore techniques which do not have these limitations, we directly estimate the
occupancy level of indoor spaces. This has several advantages over counting the number
occupants in a space from the results of an IPS: The first is that the focus of many IPSs is

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 87

to obtain the highest positioning accuracy (i.e. distance between true and estimated posi-
tion), irrespective of the logical boundaries which divide the building into spaces. Therefore,
even an accurate IPS could result in poor occupancy estimation, such as if occupants are
positioned on the other side of a wall from their true position. The limitation demonstrated
by this particular example is addressed in Chapter 6 with an IPS that integrates obstacle
information into the estimation. A second advantage of directly estimating occupancy level
is that other types of sensing technologies are available to add information into occupancy
estimates. These technologies measure environmental variables, such as CO2 and Particulate
Matter (PM) concentrations which are correlated to occupant activity, and can thus be used
as a proxy. Moreover, heating, ventilation, and air conditioning (HVAC) accounts for 48%
of the total energy usage in US office buildings [53]. Therefore, it is natural to investigate
airborne phenomena as a proxy for occupancy, since we would like to control the same air
spaces as we are estimating the occupancy of (e.g. we would like to estimate whether a room
is occupied to control the HVAC services for that room—both the control and the estimation
problem operate on the same air space). Finally, as a practical advantage, direct occupancy
estimation techniques often require no occupant-carried sensors.

We also specifically choose to investigate indoor CO2 and PM concentrations due to
their importance for monitoring Indoor Air Quality (IAQ) which must be maintained for
the health and productivity of the occupants. In fact, scientists have termed Sick Building
Syndrome (SBS) [88] as symptoms, such as headache, fatigue, and rash, which are brought
on by low-level exposure to non-industrial indoor airborne contaminants. Diluting the con-
centration of these contaminants to a safe level has a direct energy cost, since fresh air must
be brought in from the outside, filtered, and conditioned. Referred to as ventilation, this
process is nevertheless very important as ventilation rate per person is strongly correlated
to the occupants’ productivity [89, 90, 91]. In current buildings, the ventilation rate is often
insufficient since regulations only specify minimum rates for the ventilation system design,
but do not specify rates during operation [91]. To properly satisfy the IAQ requirements,
the ventilation rate should be increased to reduce contaminants while the building is occu-
pied, and to save energy, decreased while the building is unoccupied. Therefore, we need to
monitor both the occupancy, and the pollutant concentrations of spaces within the office.
Our goal is to estimate the occupancy using the same sensing infrastructure that is needed
to monitor pollutants, which will further add value to deploying these important sensors.

5.2 Correlation of occupant activity to coarse

particulate matter

Indoor particulate matter sensing

As previously discussed, acceptable IAQ is an occupant need and should be sensed and
controlled for. The need for PM sensors in consumer devices which control air quality, such
as air purifiers, is an example where manufacturing advances have made the sensors much less

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 88

(a) The wireless PM sensor, mounted on the
back of the PPD-20V, which used for PM
measurements for particles ≥ 0.5 µm.

02/20 02/21 02/22
0

200

400

600

800

1000

 ≥
0

.5
 µ

m
 p

a
rt

ic
le

s
 (

 L
)

C
o

n
c
e

n
tr

a
ti
o

n
 o

f p
c
s
/

(b) PM detected inside office on UC Berkeley
campus. Shaded area represents times between
10:00 PST and 20:00 PST each day.

Figure 5.1: Real-time PM sensing infrastructure sensor (a) and example data (b).

expensive than laboratory equipment. PM sensors measure the particulate concentration,
which, at high levels, correlates to health problems [92]. Beyond their original intended
use for IAQ, they can also be used for indoor occupancy estimation by observing the effect
of occupants on local PM concentrations. While conducting continuous monitoring of PM
concentration for IAQ, we noticed trends intuitively correlating to occupant activity. For
example, Figure 5.1b shows a time-series of PM detected in an office space at the UC Berkeley
campus over two full 24-hour periods. Clearly, there is a trend of a higher concentration of
particles during the working hours of the day, and we can even see when there is a surge of
activity inside of the workday, as indicated by the rise in PM. This trend is also consistent
with previous work that showed significant increases of PM concentrations due to occupant
activity such as walking [93].

In this section, we use a low-cost (< 8 USD) PM sensor to infer the local movement
of occupants in a corridor by sensing the resuspension of coarse (≥ 2.5 µm) particles. To
obtain meaningful values from the inexpensive sensors, we have calibrated them against a
laboratory-grade instrument. After calibration, we conducted a 7.8 hour experiment measur-
ing coarse PM within a pedestrian corridor of a heavily-used office area. Comparing against
ground truth data obtained by a camera, we show that the PM sensor readings are correlated
with occupant activity, thus enabling statistical methods to infer one from the other.

Our hypothesis is that PM concentration is an additional method that can be used to
detect occupancy. In the present study, we focus on the effect within a corridor, allowing
us to easily obtain a ground-truth via camera. However, motivated by the results plotted in
Figure 5.1b, we believe that occupancy and activity for an entire room could be estimated.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 89

Procedure

Real-time monitoring

To enable long-term experiments, we designed and built a wireless-enabled PM sensor based
on the PPD-20V sensor, shown in Figure 5.1a. The circuit board has the same dimensions
as the PPD-20V sensor and is attached to the back by two bolts and two sets of header pins.
An on-board ATmega128 microcontroller reads the digital output of the PM sensor and
calculates the PM sensor ratio over 10 minutes. Every 10 minutes, the microcontroller uses
an 802.15.4 transceiver (Digi XBee series) to send the reading to a sink node containing an
embedded Linux computer (Beaglebone) and its own 802.15.4 transceiver. Python software
communicates with the transceiver and forwards the raw sensor packet data to our Internet
server for interpretation. Software running on our Internet server receives and interprets
the data packet, then inserts the data into an sMAP [60] server instance running on itself.
Thus, software for our future research projects can retrieve the data using the standardized
sMAP protocol. Figure 5.1b shows one example of data that was collected with the device in
Figure 5.1a and retrieved using sMAP. We can also use the sMAP web interface to quickly
visualize the data as it arrives. Given the prohibitive expense of the PPD-20V sensor, our
plan is to adapt the design to accommodate the DSM501A sensor and deploy many of these
in the office for future coarse PM studies.

Particulate matter sensing

Our experiments consisted of measuring particle concentration using 8 PM sensor modules.
The specifications of the two models tested are given in Table 5.1. Figure 5.2 shows the
principle of operation of the PPD-20V sensor and the DSM501A sensors operate using a
similar principle. Essentially, the sensor employs a Light-Emitting Diode (LED) aimed at a
small point inside the device. When a particle of sufficient size passes by this point, a detector
picks up the scattering of the LED light and outputs a digital signal on the output pin. A
feature of the DSM510A device is that it provides two outputs with different sensitivities. A
resistive heater causes convective airflow which ensures a small flow of air is passed through
the device. We have programmed an ATmega168 microcontroller to receive the 13 digital
signals from the PPD-20V and DSM501A sensors and record the data onto a Secure Digital
(SD) memory card. It is programmed to sample every signal at 2.5 kHz to see if it is 0 V
(logic 0) or 5 V (logic 1). Every 50 ms, it logs the number of samples that were logic 1
during the last period. This data set can be processed into a ratio of the time that the
signal is 0 V within a time window. After calibration against an accurate sensor, the GT-
526S laser particle counter, this ratio value can be mapped to meaningful units (described
in Section 5.2).

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 90

Table 5.1: Sensor models tested.

Model Qty. Tested Cost PM Size detected
DSM501A[94] 5 < 8 USD Two outputs: ≥ {1, 2.5} µm
PPD-20V[95] 3 ∼ 700 USD ≥ 0.5 µm
GT-526S[96] 1 (reference) 2990 USD Six outputs: ≥ {0.3, 0.5, 1, 2, 5, 10} µm

Updraft

Resistor Heater

LEDDetector

Figure 5.2: Operation of a low-cost PM sensor measuring scattering of LED light
(Shown: PPD-20V).

Physical configuration

The experiment was carried out in the main corridor of 490 Cory Hall (also known as the
SWARM lab) on Berkeley campus, which is a heavily used and trafficked office location.
Figure 5.3 gives a picture of the corridor prior to the experiment being run.

The camera and PM Sensors were mounted on an aluminum structure leaned against one
side of the corridor and visual landmarks were placed on the other side of the corridor. The
sensors and landmarks were arranged according to Figure 5.4. Figure 5.5 is a picture of the
apparatus we constructed to achieve this configuration. Although the analysis in this article
does not look into differences in PM readings due to spatial variations, the apparatus allows
us to investigate this later. The most valuable contribution of the apparatus was allowing us
to run a multiplicity of sensors with all of them relatively close and in the same orientation,
and we found that averaging the readings from several sensors gave the smoothest results.

Ground truth sensing

The goal of the ground truth observation was to determine when occupants or other ob-
jects passed in proximity of the PM sensor. Ground truth data was collected using a Veho
VCC-003-MUVI digital video recorder. After replacing the stock memory card with a 16 GB
card, and the battery with a much larger one, the camcorder was capable of recording ap-
proximately 10 hours of video at a resolution of 640×480 pixels. We placed visual landmarks

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 91

Figure 5.3: Main corridor of 490 Cory Hall, prior to experiment being started. Rooms on
the left are lab areas and cubicles on the right are occupied work spaces.

(bright orange tape strips) in the field-of-view of the camera, to make post-processing more
straightforward. Examples of the images captured are shown in Figure 5.6.

To obtain the ground truth, the video was later post-processed to detect when something
obscured the visual landmarks. We made the determination based on whether the hue,
saturation, and value of the color at the landmark locations fall outside a specified range.
Since the video is also archived, we can validate the computer vision manually.

Results

Filtering

Data recorded by the apparatus was taken at a high sample rate relative to the effects we
intended to measure. By inspection, the individual PM samples are not easy to interpret
as they are mostly either a ratio of 1 or 0. By doing several filtering steps we are able to
extract a meaningful signal.

The raw data of the experiment comes in the form of a text file from the PM sensor
apparatus as well as a video file from the digital video recorder. The video file was processed
by a simple computer vision algorithm to give a set of times, C = {t1, t2, . . . , tn}, when
occupant activity occurred in front of the camera. There were a total of 312 such occurrences

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 92

PPD-20V

DSM501A

Camera Visual Landmarks

Figure 5.4: Physical Configuration of the sensors and visual landmarks. Dotted line indicates
center of view of camera.

Figure 5.5: Physical implementation of the design in Figure 5.4.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 93

(a) Clear View (b) Obscured View

Figure 5.6: Example images showing detection of occupant in corridor from obscured visual
landmarks (orange strips).

during the experiment. We calculated a camera occurrence rate, xi, by the following:

xi =
|{t|t ∈ C ∧ t ≥ Ws(i− 0.5) ∧ t < Ws(i + 0.5)}|

Ws

where Ws is the “sample period” and is set to 10 s for these results. Thus, xi is a discrete
signal representing the number of camera occurrences per second, evaluated every 10 s.

The PM sensor signals, originally at a sample period of 50 ms, are down-sampled to a
sample period of Ws (10 s), by averaging every 200 readings.

We then passed each signal, both PM readings and camera occurrence rate, through a
sliding window average filter with a window size of 30 samples. Thus, the resulting samples
still have a sample period of 10 s, but each sample represents the average of 300 s, or 5 min,
worth of data.

Selection of variables

The text file provides timeseries of 13 variables, 2 per DSM501A sensor and 1 per PPM-
20V sensor, so we sought to find which signals were relevant. We found that the coarse
outputs correlated most with camera occurrences, an effect which is also supported by [97],
which found that occupancy is a large factor in supermicron particle concentration, but an
insignificant factor for finer particles. Intuitively, this is because larger particles are overcome
by gravity and settle faster than finer particles which are kept afloat by air currents. Sensors
which are sensitive to smaller particles are actually less effective for inferring occupancy
since their readings will ultimately be dominated by submicron particles (which have a
concentration almost 10 times as large as supermicron particles). To verify, we computed
the Pearson’s correlation coefficient between the camera data and PM readings, grouped

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 94

01234

Camera Occurances
per 100s

1
2

3
4

5
6

7
5

0

1
0

0

1
5

0

2
0

0

H
o

u
rs

Concentration of

≥2 µm particles (pcs/L)

F
ig

ur
e

5.
7:

T
im

es
er

ie
s

of
fil

te
re

d
da

ta
ov

er
7.

8
hr

ex
pe

ri
m

en
t.

T
op

:
G

re
en

lin
es

m
ar

k
ca

m
er

a
ob

st
ru

ct
io

n
oc

cu
rr

en
ce

s
an

d
m

ag
en

ta
lin

e
is

th
e

fil
te

re
d

ca
m

er
a

oc
cu

rr
en

ce
ra

te
.

B
ot

to
m

:
F

ilt
er

ed
≥

2.
5

µm
ou

tp
ut

s
fr

om
D

SM
50

1A
(a

ve
ra

ge
of

5)
.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 95

Table 5.2: Pearson’s Correlation Coefficient for different outputs.

Output r
≥ 0.5 µm from PPD-20V -0.03
≥ 1 µm from DSM501A 0.28
≥ 2.5 µm from DSM501A 0.49

0 0.5 1 1.5 2
0

50

100

150

200

250

Mean PM Sensor Ratio (parts per 1000)

C
o

n
c
e

n
tr

a
ti
o

n
 o

f
≥

2
µ

m
 p

a
rt

ic
le

s
 (

p
c
s
/l
it
e

r)

Figure 5.8: Scatter plot of ≥ 2 µm particle concentration from OPC against ≥ 2.5 µm output
from the DSM501A.

by the size of particles sensed. The results, presented in Table 5.2, show that the amount
of linear correlation between camera occurrences and PM readings is the most when the
particles are 2.5 µm or larger.

Ultimately, we decided to construct a signal, yi, composed of the average of all 5 DSM501A
≥ 2.5 µm outputs. That is,

yi =
1
5

(

5
∑

k=1

PMk,2.5 µm
i

)

where PMk,2.5 µm
i is the ith reading of the ≥ 2.5 µm output from the kth DSM501A sensor.

This signal, by inspection, was smoother than any individual PM output and showed more
correlation with the camera data.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 96

Table 5.3: MSE of linearly calibrated outputs compared to OPC

Output MSE
≥ 0.5 µm from PPD-20V 4.7%
≥ 1 µm from DSM501A 19.4%
≥ 2.5 µm from DSM501A 9.5%

Calibration

The calibration procedure consisted of a 29.5 hour experiment where data was collected by
the test apparatus while the OPC measured accurate values of PM concentration. For both
the ≥ 0.5 µm and ≥ 1 µm outputs, we used the corresponding channel from the OPC to
compare against. For the ≥ 2.5 µm output of the DSM501A sensor, we used the ≥ 2 µm
channel of the OPC to compare against.

For each output we performed a linear fit against the reference data. The scatter plot
in Figure 5.8 illustrates the data collected and the fitted line for the ≥ 2 µm output. To
determine the accuracy of the linearly fitted model, we also calculated the relative Mean
Squared Error (MSE) of the modelled concentration against the real concentration, shown
in Table 5.3. Examining the time series, we found that there was a spike of airborne PM at
around 00:00 hours during the experiment. The spike could be seen mostly in the micron
or lower sized particles and was picked up by the PPD-20V unit. However, the DSM501A
did not pick up the spike in PM, perhaps because some characteristic of the particles such
as surface (changing the refraction characteristics) or composition (causing them to not
be caught in the heater updraft) caused them to not be detected by the DSM501A. This
complicated the calibration results significantly as can be seen by the ≥ 1 µm results of
Table 5.3.

Fortunately, as described in the previous section, we opted to use the ≥ 2 µm outputs
of the DSM501A for correlation with activity. This output could be calibrated reasonably
accurately and thus we used the following linear model to map the PM sensor raw units to
real-world values:

PM≥2 µm =
(

8.48× 104
)

(PM Sensor Ratio) + 45.7

Synchronization of PM sensor and camera data

We also shifted the PM sensor data earlier in time so that it more closely correlates to the
camera data. We calculate the shift amount as the peak location of the cross-correlation
of the two signals. For this experiment, the shift amount was found to be 30 s. Physically,
this represents the time it takes for activities happening in front of the camera to affect
the sensors via air circulation or diffusion. It could also account for experimental errors in
synchronizing the time offset of the two signals.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 97

0 50 100 150 200

0

1

2

3

4

C
a

m
e

ra
 O

c
c
u

ra
n

c
e

s
p

e
r

1
0

0
s

Concentration of

≥ 2 µm particles (pcs/L)

Figure 5.9: Scatter plot of the data shown in Figure 5.7. Magenta line is the linear fit to the
data.

490 Cory corridor experimental results

Figure 5.7 is a plot of the two signals x (Top) and y (Bottom) after the filtering steps
described above. The green lines are plotted at the times in the set C. Visually, we can see
a clear correlation of the two signals, particularly noting that many of the sharp increases
in PM are correlated with increase in camera occurrences. There are some cases (e.g. at 5.5
hours) where there is a spike in PM concentration, but no corresponding spike in camera
occurrences. One explanation is that there were significant resuspension events in the nearby
cubicle without any persons moving in front of the camera.

The same data, is presented in a scatter plot in Figure 5.9 and we also plot the linear fit
to the data. The linear fit is given by: yi = (2.6× 10−2) xi + 4.6× 10−4.

This data could be used to construct the statistical models: Pr (xi, yi) (i.e. joint prob-
ability), Pr (xi|yi) (e.g. for maximum likelihood detection), or Pr (yi|xi) (e.g. as a sensor
noise model). In particular, the noise model, Pr (yi|xi), is an input to Baysian estimation
algorithms such as the particle filter [98, 99].

An example which demonstrates using the correlated data is a simple binary detector.
Consider a detector which outputs true if the camera occurrence rate is less than once per
100 s, using the information of whether the ≥ 2 µm concentration is less than 100 per liter.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 98

Used on this data set, the detector would be correct 66% of the time with a 42% false
positive ratio and 28% false negative ratio. While this alone is far from ideal, it could be
combined in a multiple agent decision framework containing other sensors such as passive
infrared detectors.

Future work and connections

We have shown via experimentation that local occupant activity, measured visually by a
camera, is correlated to the concentration of coarse particles, particularly those ≥ 2.5 µm.
These types of particles can be easily sensed with low-cost PM sensors such as the DSM501A.
Furthermore, if smoother data based on an average over numerous measurements is needed,
more low-cost sensors could be added, while still being economical. We have also described
the hardware developments which enable real-time reporting of PM sensor data to a central
server using wireless technology. These hardware modules, while primarily intended for air
quality monitoring, can also indicate occupant activity as we have shown by this article.
We believe it will prove to be yet another piece of valuable information for estimating the
occupancy of smart buildings.

An important next step will be to investigate the causality of the variables we are mea-
suring. Of particular concern is describing the hidden variable which is measured by both
the camera and PM sensor. That is, we have not determined whether how dependent the
PM measurement is on the occupancy of the entire room versus the local occupancy directly
in front of the camera. An experiment which could disambiguate the two would be to also
place several PM sensors away from the test apparatus and measure the PM level of the
entire room. For a permanent deployment, multiple sensors in the same room will be useful
for estimating this background PM. We would then look at deviations of the local PM from
the background level.

Further study into using coarse PM readings as a means of estimating occupancy directly
is motivated by these results which show that there is a correlation between the two variables.
Our method would be to fuse the partial information provided by PM readings with the
information gathered from other sources, such as CO2 concentration measurements. There
is extensive literature[100] on information fusion techniques which can take redundant or
complementary information and fuse them into a better estimate than either information
source would provide on their own. For instance, in the next section, we discuss a method
which provides information about occupancy using CO2 measurements from the supply and
return air vents of a conference room. In Section 6.5, a unified particle filter is introduced
which can incorporate all sources of information into an occupant tracking and occupancy
estimation framework.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 99

5.3 Effect of occupant on room-level CO2

concentrations

Indoor CO2 monitoring

Another metric for measuring indoor air quality (IAQ) is the airborne concentration of CO2.
For example, a study was conducted by assessing the performance of 22 participants while
controlling the environments’ CO2 concentration [101]. In this study, moderate decrements
in decision-making performance were observed for CO2 levels of 600 and 1000ppm, and large
decrements for CO2 levels of 2500 ppm. Another study also found the risk of developing
sick building syndrome (SBS) is significantly decreased when CO2 concentrations are below
800 ppm [91]. Therefore, there is a compelling argument to monitor and reduce indoor CO2

concentrations in order to maximise the productivity of the occupants. However, there is
also pressure to reduce ventilation (the primary means of removing CO2) to save energy. Our
objective is to estimate occupancy from the measured indoor concentrations of a conference
room, so that building services including ventilation, have this information when making
control decisions.

Although we have discussed other phenomena which can be a proxy for occupancy, using
CO2 concentrations has a particular advantage in that human breath is the primary source
of CO2 in the building due to humans’ metabolic activity [91]. Human breath contains
a concentration of over 1.7% CO2, depending on the metabolic rate of the occupant and
the amount of time a breath is held before exhaling [102]. For comparison, outdoor air CO2

concentration contains around 400 ppm [103]. In our CO2 monitoring studies, we have mainly
observed CO2 concentrations from 400–500ppm, although concentrations above 1000 ppm are
observed when a room is highly-occupied [79].

Modeling CO2 dynamics is challenging, due to the complexity of air dynamics. Most
recently, two categories of models are used: Zonal models and Computational Fluid Dynamics
(CFD) models. CFD models provide the most rich and detailed view of air motion in a space,
however, they are beset by arduous work in modeling the physical space (e.g. providing
locations of all walls, furniture, and occupants) and identifying all parameters that are
needed for the model. CFD models also suffer from lengthy computation times to solve the
necessary PDEs at a high resolution, especially near boundaries [104], [105]. Zonal models
relate the movement of air between discrete and well-mixed spaces, such as rooms and parts
of rooms. Generally, zonal models rely on ODE mass-balance laws between these spaces,
which, in comparison to CFD models, can be solved very quickly [104]. However, this comes
at the expense of not modeling the distributed nature of airborne contaminant transfer within
a single space, and complex local phenomena such as jets of air coming from a vent [106].

Yet, for designing and implementing estimation algorithms for the CO2 concentration,
one has to develop a simple, and at the same time, accurate PDE-based model that retains
the distributed character of the system. Based on this model, one can then design an observer
for estimating the unknown CO2 input that is produced from humans. The observer design

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 100

has to be developed using the minimum number of sensors, in order to reduce cost and
increase reliability. It is also crucial to develop online identifiers for the parameters of the
model, since these parameters change with time due to their dependency on time-varying
quantities such as heat generation [107].

Tuning and verifying the applicability of the model requires experimental data to be col-
lected. We conduct two experiments. In the first, a regulated amount of CO2 gas is released
in the conference room for specific time periods while CO2 concentrations are measured at
eight different locations in the room. We use the measurements of the CO2 concentration
in order to develop a model that reproduces the measured CO2 concentrations at the eight
different locations, given the known CO2 release. We also use the measurements from this
experiment in order to identify in which sensing locations the measured CO2 concentrations
are more sensitive to an external CO2 source. In the second experiment, we monitor the
evolution of the CO2 concentrations at three different locations in the room (the ventilation
system’s input and output, and at a table located in the conference room) as two researchers
enter and exit the room at recorded times. The purpose is to verify the model that we
develop in the first experiment under a CO2 input that is generated by humans.

By conducting the two experiments, we aim to develop a data-driven model whose output
matches the output of the actual system, when the same inputs are applied to both the model
and the system, which is simple enough for estimation and identification purposes. We do
not attempt to modeling the exact physical phenomena govern the dynamics of the CO2.
Yet, our model provides some insight on the actual spatially distributed dynamics of the
CO2 concentration since it is a PDE model.

We model the dynamics of the CO2 concentration in the room using a convection PDE
with a source term which is the output of a first-order ODE system driven by an unknown
input which models the human’s emission rate of CO2. The source term represents the effect
of the humans on the CO2 concentration in the room. In our experiments, we observe a
delay in the response of the CO2 concentration in the room to changes in the human’s input.
For this reason, the source term is a filtered version of the unknown input rather than the
actual input. We assume that the unmeasured input from the humans has the form of a
piecewise constant signal. This formulation is based on our experimental observation that
humans contribute to the rate of change of the CO2 concentration of the room with a filtered
version of step-like changes in the rate of CO2.

The value of the PDE at the one boundary of its spatial domain indicates the CO2

concentration inside the room at the location of the air supply. At this location, incoming
air is entering the room, and hence, one can view the CO2 concentration of the fresh incoming
air as an input to the system. The value of the PDE at the other boundary of its spatial
domain indicates the CO2 concentration at the air return of the ventilation system. The air
at this point is mixed with CO2 that convects from the air supply towards the air return, and
with CO2 that is produced from humans. We consider the CO2 concentration at this point
as the output of our system. Any value of the PDE on an interior point of its spatial domain
is an indicator of the concentration of CO2 at the ceiling in a (non-ratiometric) normalized
distance along an axis from the supply to the return vent.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 101

Figure 5.10: The conference room under study.

At the conclusion of our study [79, 108], we develop a model whose output closely matches
the observed concentration and develop an estimator and identifier with proven convergence
properties. These results are demonstrated to be applicable by running them against exper-
imental data gathered during two experiments inside a conference room.

Procedure

Our experimental work takes place in a 44 m3 conference room, shown in Figure 5.10. The
room is completely interior within the building and has no outside walls. On the ceiling
there is one air supply vent with a diffuser and protective grate, and there is also an air
return vent with a protective grate.

We measure CO2 concentration using the K-30 Sensor Module [80] which comes with
specifications of ±30 ppm ± 3% accuracy and repeatability of ±20 ppm ± 1%. Since we
expect the nominal CO2 concentrations of the room to be no more than 1500 ppm, this gives
a repeatability error bound of ±35 ppm.

Constant errors in CO2 readings are corrected by a method called Baseline Correction.
Essentially, sensor readings are taken over a time period and the lowest concentration seen
during that period is assumed to be 400 ppm, corresponding the outdoor air concentration
(i.e., the steady-state value if the room is ventilated and no occupants are present). The
sensor itself performs this correction automatically over a seven and a half day interval. We
manually perform this correction by operating all of the sensors overnight, then subtracting
an offset from each data set so that the minimum readings from each sensor equaled each
other. This ensures that all of our sensor readings are using the same baseline, even if this
baseline is up to (−30 ppm− 400 ppm · 3%) = −32 ppm away from the real value.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 102

Figure 5.11: A CO2 data-logging sensor which was used for the experiments.

Figure 5.11 depicts a close view of the data-logging CO2 sensor used for these experiments.
An external microcontroller is attached to the K-30 sensor and, every seconds, polls the
current CO2 concentration reading from the K-30 device. These recordings are written to
an SD-card where they are stored until retrieved at the conclusion of the experiment.

Experiment I: Controlled CO2 release

In the first experiment, we have two goals:

• The first goal is to examine the spatial dependence of CO2 concentration in the room,
in particular how well-mixed the air is. If there is a spatial dependence, we would like
to identify the sensor which exhibits the most dependence on CO2 generation in the
room.

• The second goal is to collect data that can be used for manual or automatic identifi-
cation of the parameters of a model whose output matches the measured data, when
the same CO2 input is applied to the model and the conference room.

Therefore, our testing methodology is to add a controlled disturbance of CO2 into the
room and measure the resulting response on the sensors placed in the room.

The disturbance input consists of beverage grade (99.9% purity) CO2 gas being released
via a flow regulator at approximately 2 CFM, and passed through a small 200 W personal
heater, to simulate warm breath. A mechanical timer is used to switch the regulator and
heater on and off with a 2 hr period (1 hr on, 1 hr off).

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 103

0
5

1
0

1
5

2
0

2
5

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

G
la

ss
 S

h
o
rt

 W
a
ll

W
h
it
e
b
o
a
rd

G
la

ss
 L

o
n
g
 W

a
ll

R
e
tu

rn
 -
 T
a
b
le

M
id

d
le

 C
e
ili

n
g

S
u
p
p
ly

 -
 T
a
b
le

S
u
p
p
ly

 -
 C

e
ili

n
g

R
e
tu

rn
 -
 C

e
ili

n
g

T
im

e
(h

ou
rs

)

CO2conc.(ppm)

F
ig

ur
e

5.
12

:
C

O
2

co
nc

en
tr

at
io

ns
du

ri
ng

E
xp

er
im

en
t

I.
Sh

ow
in

g
m

ea
su

re
m

en
ts

fr
om

al
l

8
lo

ca
ti

on
s

ov
er

th
e

ap
pr

ox
i-

m
at

el
y

22
ho

ur
ex

pe
ri

m
en

t.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 104

Figure 5.13: The locations of the CO2 sensors during Experiment I.

We deploy a total of fifteen CO2 sensors in the conference room at eight different locations
as it is shown in Fig. 5.13. At seven of the eight locations, two CO2 sensors are co-located
for redundancy in case hardware failure made a reading invalid. We do not encounter
any hardware failures during the experiment, so we instead take the mean of redundant
measurements.

Figure 5.12 gives the sensor readings from this test. When the CO2 injection is turned
off, all of the measurements settle to a steady-state value, which is almost the same for
all sensors. However, when CO2 injection begins, we see clear spatial differences in CO2

concentrations. During injection, the highest concentrations of 900 ppm are seen by sensors
placed at the air return vent and sensors placed on the ceiling at the midpoint between
the supply and return vents. The lowest concentrations are seen at the supply vent, which
stays below 600 ppm. All of the other sensors, which are placed between chest and waist
level in the room, exhibit similar behavior in response to the CO2 injection. In general,
besides transient behavior due to ventilation turning on and off, the CO2 concentrations
from different points in the room react the same, albeit with different magnitudes.

From this experiment, we conclude that, when CO2 is being generated in the room,
the concentration of CO2 local to the air supply represents a mixture of the room’s CO2

concentration and that of the fresh air (about 400 ppm). Other than at the supply vent,
we observe that there are large variations on the CO2 concentration between points at the
ceiling and points at table height. This is explained by the fact that a warm breath from
an occupant acts as a “bubble” of gas that rises to the ceiling, since it is more buoyant
than the ambient, cooler air. Also, we observe that there are smaller variations on the CO2

concentration between different points at the ceiling.
Furthermore, we also conclude that, of all the sensors, the measurements most affected by

the production of CO2 were those taken at the air return vent. Therefore, these measurements
will be most useful to observe and perform system identification with.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 105

0
9
/2

6

2
P

M
0
9
/2

6

3
P

M
0
9
/2

6

4
P

M

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

CO
2
 conc. (ppm)

T

A
B

L
E

A
IR

 R
E

T
U

R
N

A
IR

 S
U

P
P

L
Y

O
c
c
u
p
a
n
t

2
 o

n
ly

O
c
c
u
p
a
n
t
1
 a

n
d
 2

R
o
o
m

e
m

p
ty

O
c
c
u
p
a
n
t

1
 o

n
ly

F
ig

ur
e

5.
14

:
C

O
2

co
nc

en
tr

at
io

ns
du

ri
ng

E
xp

er
im

en
t

II
.S

ho
w

in
g

m
ea

su
re

m
en

ts
fr

om
3

lo
ca

ti
on

s
in

th
e

co
nf

er
en

ce
ro

om
ov

er
3

ho
ur

ex
pe

ri
m

en
t.

M
ag

en
ta

lin
es

in
di

ca
te

w
he

n
oc

cu
pa

nc
y

ch
an

ge
s

oc
cu

rr
ed

.
T

he
ar

ro
w

s
in

di
ca

te
th

e
ti

m
e

in
st

an
ts

at
w

hi
ch

th
e

ve
nt

ila
ti

on
ra

te
in

cr
ea

se
s1

.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 106

Experiment II: Release of CO2 from occupants

In the second experiment, the goal is to determine the effect of real occupancy on the
concentration of CO2 in the room. For this experiment, three CO2 sensors are deployed: one
each at the air supply and return vents, and one on the conference table at the center of the
room. Our excitation procedure consists of adding or removing one of two participants of
the experiment, and noting the time that the occupancy changes. Fig. 5.14 is a plot of the
data gathered from this experiment and when the occupancy transitions occur.

From this plot, we can see the general trend that CO2 concentration at the conference
room table and at the return vent increases when occupants arrive and decreases when
occupants leave the room. We also conclude that the concentration at the air supply vent
is much less dependent on occupancy. This can be attributed to the constant fresh air
ventilation that is provided by building services, so that fresh air concentration dominates
the concentration in the area near the vent.

We can also see an interesting effect starting at the approximate times of 1:30PM, 2:20PM
and 3:40PM, where the CO2 measurement at the air supply sharply drops and corresponds
to a rise in CO2 in the other two measurements. We hypothesize this is due to the ventilation
rate increasing. Near to the supply vent, a greater quantity of fresh air would mix with the
air near the sensor, driving the concentration down. A higher air velocity in the room will
also impart more turbulent mixing of pockets of CO2 concentration within the room, pushing
them out of the air return and increasing the concentration at that point. The mixing of
these pockets also causes an increase in the CO2 concentration near the table.

Modelling the CO2 dynamics

Model design

The model for the CO2 dynamics of the conference room are developed in [79]. Our model
consists of a PDE and an ODE part. The ODE part is given by

Ẋ(t) = −aX(t) + V (t) (5.1)

V̇ (t) = 0, (5.2)

where, X(t), in ppm, models the source term of occupant CO2 production on the relative
concentration (in ppm) of the room in the local vicinity of the occupant (the evolution of
which is described later on by a PDE), and V (t) is a step-valued function, in ppm · s−1,
representing the level of the occupant CO2 production rate within the vicinity of occupants.
Parameter, 1

a
, in units of 100s, represents a time constant specifying how fast changes in

occupancy affect the CO2 concentration in the room, in the local vicinity of the occupant.
1We assume that the air ventilation rate increased at the marked points because an increased proportion

of fresh air (typically 400 ppm) would cause a drop in the supply CO2 concentration. The validity of this
hypothesis could be verified by measuring the flow of incoming air at the supply with an anemometer.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 107

The ODE is coupled with a PDE that models the CO2 concentration in the room given
by

ut(x, t) = bux(x, t) + bXX(t) (5.3)

u(0, t) = Ue −∆U(t), (5.4)

with ∆U(t) = U(t) − Ue, where u(x, t), in ppm, is the concentration of CO2 in the room
at a time t ≥ 0 s and for 0 ≤ x ≤ 1, −b > 0, in 1

100s
, represents the rate of air movement

in the room, and bX > 0, in 1
104s

, specifies the rate of diffusion of CO2 from the local
vicinity of the occupant to the room. The spatial variable x is unitless and represents a
normalized distance along a horizontal axis that connects the air supply and air return. The
air supply and air return are located at x = 0 and x = 1 respectively. Therefore, u(0, t)
is the CO2 concentration inside the room at the location of the air supply and u(1, t) is
the CO2 concentration inside the room at the location of the air return. The input U(t) is
the measured ppm concentration of the fresh incoming air. We do not simply specify the
boundary condition at x = 0 as u(0, t) = U(t). The reason is that during our experiments
we observe that a sudden drop in the measured CO2 concentration at the air supply results
in an increase of the CO2 concentration at the air return. Our explanation for this effect
is that a drop in CO2 concentration at the supply from its equilibrium value corresponds
to increased airflow at the vent, i.e. more fresh air gets mixed in the local vicinity. The
increased airflow has the effect of pushing pockets of CO2 air out of the return vent. One
way to capture this effect is to multiply the difference of the CO2 concentration from its
equilibrium value ∆U(t) = U(t)−Ue with minus one, where Ue, in ppm, is the steady state
input CO2 concentration at the supply ventilation.

In Figure 5.15, we illustrate the geometrical representation of our model. The PDE
portion of the model, u(x, t), represents convection of air from the air supply to the air
return vent near the ceiling. Note the absence of a diffusive term, which we have omitted
since it plays a relatively minor role in dispersing indoor pollutants [107]. We choose to
model the CO2 concentrations near the ceiling since this is where we see most effect from
occupant-generated CO2 (see Section 5.3). This is explained by the fact that a warm breath
from a occupant occupant acts as a “bubble” of gas that rises to the ceiling, since it is
more buoyant than the ambient, cooler air. Thus, the air coming from lower in the room
is modeled as a source term on the PDE across its entire length. The ODE portion of the
model is intended to model the fact that this bubble of air does not immediately rise to the
ceiling but only gradually.

Simulations

In Fig. 5.16 we show the concentration of CO2 at the air return and the air supply measured
by the CO2 sensors for our first experiment in which we periodically release CO2 every one
hour. We also show the output u(1, t) of our model with parameters as shown in Table 5.42

2In this section we manually tune the parameters of model (5.1)–(5.4) in order to match the measured
CO2 concentration at the air return with u(1, t). In Section 5.3 we design identifiers for online identification

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 108

Input from occupants

Direction of convection

SupplyReturn

V

u(x , t)

u(1, t) u(0, t)

X

u(1, t) U(t)

Figure 5.15: The geometrical representation of our model. Fresh air (U) enters the room
from the supply ventilation. Air near the ceiling (u) convects from the air supply to the air
return vent. The occupants produce CO2 (V) which rises (X) to the ceiling.

and initial condition u(x, 0) = 400 ppm. The input V to our model, with which we emulate
the behavior of the CO2 that is released from the pump, is the square wave that is shown in
Fig. 5.17.

In Fig. 5.18 we show the CO2 concentration from Experiment II measured from the CO2

sensor and predicted from model (5.1)–(5.4) with parameters shown in Table 5.5, initial
condition u(x, 0) = 400 ppm, and input V that is shown in Fig. 5.19, with which we emulate
the behavior of the CO2 that is produced by occupants.

Estimation of the occupant-generated CO2

Observer design

The observer for the plant (5.1)–(5.4) is developed in [108], assuming measurements of u(1, t)
and U(t). This observer assumes that the parameters of the model are known, since they can
either be manually identified (as in Section 5.3), or they can be identified using parameter
identifiers (as in Section 5.3). From [108], we have the following observer, which is proven
to be asymptotically stable:

ût(x, t) = bûx(x, t) + bXX̂(t) + p(x) (u(1, t)− û(1, t)) (5.5)

û(0, t) = −U(t) + 2Ue (5.6)
˙̂

X(t) = −aX̂(t) + V̂ (t) + L1 (u(1, t)− û(1, t)) (5.7)
˙̂
V (t) = L2 (u(1, t)− û(1, t)) . (5.8)

of the parameters of model (5.1)–(5.4).

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 109

Table 5.4: Parameters of the model (5.1)–(5.4) for Experiment I.

Physical Parameter
Model
parameter

Value

Convection coefficient
(

1
100s

)

−b 0.8

Source term coefficient
(

1
104s

)

bX 0.2

Time constant of the
occupants’ effect (100s)

1
a

10

Equilibrium concentration at
the air return (ppm)

Ue 450

Table 5.5: Parameters of the Model (5.1)–(5.4) for Experiment II.

Physical Parameter
Model
parameter

Value

Convection coefficient
(

1
100s

)

−b 0.8

Source term coefficient
(

1
104s

)

bX 0.16

Time constant of the
occupants’ effect (100s)

1
a

10

Equilibrium concentration at
the air return (ppm)

Ue 370

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 110

0 100 200 300 400 500 600
400

500

600

700

800

900

1000

t (sec×100)

C
O

2
co

n
ce
n
tr
a
ti
o
n
(p

p
m
)

Figure 5.16: Solid line: The simulated concentration of CO2 at the air return u(1, t) given
by the model (5.1)–(5.4) for Experiment I. Dashed line: The concentration of the CO2 at
the air return measured by the CO2 sensor. Dotted line: The concentration of CO2 at the
air supply measured by the CO2 sensor.

0 100 200 300 400 500
0

50

100

150

200

250

t (sec ×100)

V
(p

p
m

/s
)

on

off

Figure 5.17: The input V to the model (5.1)–(5.4) from Experiment I modeling the concen-
tration of CO2 that is released from the pump. When V = 0 the CO2 pump is turned off
and when V 6= 0 the CO2 pump is turned on.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 111

0 20 40 60 80 100

350

400

450

500

550

600

650

700

t (sec ×100)

C
O

2
co

n
ce

n
tr

at
io

n
(p

p
m

)

Figure 5.18: Solid line: The simulated concentration of the CO2 at the air return u(1, t)
given by the model (5.1)–(5.4) for Experiment II. Dashed line: The concentration of the
CO2 at the air return measured by the CO2 sensor. Dotted line: The concentration of CO2

at the air supply measured by the CO2 sensor.

0 20 40 60 80 100
0

50

100

150

200

V

t (sec ×100)

(p
p
m

/s
)

Two occupants
in room

One occupant
in room

N
o

o
cc

u
p
an

ts
in

ro
om

One occupant
in room

Figure 5.19: The input V to the model (5.1)–(5.4) from Experiment III modeling the input
concentration of CO2 from the occupants.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 112

Simulations

We test our observer design for the model (5.1)–(5.4) by applying the input U that is mea-
sured from the sensor, and the input V which is shown in Fig. 5.17 and 5.19 for each of the
two experiments. The initial conditions for the observer are û(x, t) = 400, for all x ∈ [0, 1],
X̂(0) = V̂ (0) = 0. We choose the observer gains as L1 = 9.5, L2 = 4. In Fig. 5.20 we
show the estimation of the state u together with the estimation error, and in Fig. 5.21 we
show the estimation of the input V from the pump for the first 110 × 100 seconds for Ex-
periment I. Using the same initial conditions for the observer and the same observer’s gains
as in Experiment I, we show in Fig. 5.22 the estimation of the state u together with the
estimation error, and in Fig. 5.23 the estimation of the input V produced by the occupants
for Experiment II.

Online model parameter identification

Identifier design

We also use the identifier developed in [108] for online identification of the parameters b,
bX and a. We start by assuming that the ODE and PDE states are measured. Directly
measuring these quantities in an actual implementation might be impractical. Yet, our
online parameter identifiers can be in principle combined with a state-estimation algorithm
in order to simultaneously perform state estimation and parameter identification. However,
in order to identify (offline) the parameters of our model this assumption is reasonable since
we can use the data that we collect from our controlled-CO2-release experiment in Section 5.3.

To define the identifier, we deal first with the identification of b and bX . Define the
“estimation" error

e(x, t) = u(x, t)− bv(x, t)− bXp(x, t)− η(x, t), (5.9)

between the measured state u and the signals v, p, η, where v is a filter for ux, p a filter for
X and η is an input filter, given by

vt(x, t) = b̂vx(x, t) + ux(x, t) (5.10)

v(0, t) = 0 (5.11)

pt(x, t) = b̂px(x, t) + X(t) (5.12)

p(0, t) = 0 (5.13)

ηt(x, t) = b̂ηx(x, t)− b̂ux(x, t) (5.14)

η(0, t) = −U(t) + 2Ue. (5.15)

The goal of the filters (5.10)–(5.15) is to convert the dynamic parametrization of the plant
into a static one. This is the main attribute of the swapping identification method [109],

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 113
E

st
im

at
ed

C
O

2
co

n
c.

(p
p
m

)

E
st

im
at

io
n

er
ro

r
(p

p
m

)
Figure 5.20: Left: The estimation of the CO2 concentration û(x, t) in the room for Experi-
ment I. Right: The estimation error ũ(x, t) = u(x, t) − û(x, t) of the CO2 concentration in
the room for Experiment I (shown after 1× 100 sec for a better visualization).

0 20 40 60 80 100 120
0

50

100

150

200

t (sec×100)

V̂ (t)
V (t)

Figure 5.21: The estimation V̂ (blue line) of the pump input V (black line) in Fig. 5.17 for
Experiment I.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 114
E

st
im

at
ed

C
O

2
co

n
c.

(p
p
m

)

E
st

im
at

io
n

er
ro

r
(p

p
m

)
Figure 5.22: Left: The estimation of the CO2 concentration û(x, t) in the room for Experi-
ment II. Right: The estimation error ũ(x, t) = u(x, t)− û(x, t) of the CO2 concentration in
the room for Experiment II (shown after 3× 100 sec for a better visualization).

0 20 40 60 80 100
−200

−150

−100

−50

0

50

100

150

200

t (sec×100)

V̂ (t)

V (t)

Figure 5.23: The estimation V̂ (blue line) of the input V (black line) in Fig. 5.19 produced
from the occupants for Experiment II.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 115

[110], [111]. Using the static relationship (5.9) as a parametric model and defining the
“prediction error"

ê(x, t) = u(x, t)− b̂v(x, t)− b̂Xp(x, t)− η(x, t), (5.16)

the identifiers for b and bX are given by the following gradient update laws with normalization

˙̂
b(t) = −γ1b̂(t)Projb̄

{
∫ 1

0 ê(x, t)v(x, t)dx

1 +
∫ 1

0 v(x, t)2dx +
∫ 1

0 p(x, t)2dx

}

(5.17)

˙̂
bX(t) = −γ2b̂(t)

∫ 1
0 ê(x, t)p(x, t)dx

1 +
∫ 1

0 v(x, t)2dx +
∫ 1

0 p(x, t)2dx
, (5.18)

where the projector operator is defined as

Projb̄{τ} =

{

0, if b̂ = b̄ and τ > 0
τ , otherwise

. (5.19)

and γ1, γ2 > 0, b̄ < 0. The goal of the projection operator is to ensure that b̂ < b̄.
We design next an online identifier for a. Define the filters

Ω̇0(t) = Ā (Ω0(t)−X(t)) + V (t) (5.20)

Ω̇(t) = ĀΩ(t)−X(t), (5.21)

where Ā < 0. Defining the error

ǫ(t) = X(t)− Ω0(t)− Ω(t)a, (5.22)

the identifier for a is

˙̂a(t) = γ3
ǫ̂(t)Ω(t)

1 + Ω(t)2
(5.23)

ǫ̂(t) = X(t)− Ω0(t)− Ω(t)â(t), (5.24)

where γ3 > 0. From [108], it can be proven that the estimated parameter â(t) converges to
the true value of the parameter a. Furthermore, if the parameter b is known, then it can
also be shown that the estimate b̂X(t) also converges to the corresponding true value bX .

Simulations

We initialize the filters as v(x, 0) = p(x, 0) = η(x, 0) = 50, for all x ∈ [0, 1], and the update
laws as b̂ = −3, b̂X = 0, and â = 0.5. We set the upper bound of the estimation of b that
is used in the projector operator as b̄ = −0.1. The gains of the update laws are chosen as
γ1 = 3, γ2 = 1.5 and γ3 = 0.3. In Fig. 5.24 we show the estimations of the parameters b, bX ,
and â for Experiment I that converge close to their true values.

Using the same initial conditions for the filters and the update laws, as well as the same
gains for the update laws, we show in Fig. 5.25 the estimations of the parameters b, bX , and
â for Experiment II that converge close to their true values as in the case of Experiment I.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 116

0 20 40 60 80 100 120
−3

−2.5

−2

−1.5

−1

−0.5

0

t (sec×100)

b̂
(t
)

0 20 40 60 80 100 120
0

0.5

1

1.5

2

t (sec×100)

b̂
X
(t
)

0 20 40 60 80 100 120
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t (sec×100)

α̂
(t
)

as
d
fa

sd
fa

sd
fa

sd
f

â
(t

)

Figure 5.24: Blue line: The estimations b̂, b̂X and â of the parameters b, bX , and a given by
(5.17), (5.18), (5.23), for Experiment I. Black line: The true values of the parameters b, bX ,
and a from Table 5.4.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 117

0 20 40 60 80 100 120
−3

−2.5

−2

−1.5

−1

−0.5

0

t (sec×100)

b̂
(t
)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t (sec×100)

b̂
X
(t
)

0 20 40 60 80 100 120
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t (sec×100)

α̂
(t
)

as
d
fa

sd
fa

sd
fa

sd
f

â
(t

)

Figure 5.25: Blue line: The estimations b̂, b̂X and â of the parameters b, bX , and a given by
(5.17), (5.18), (5.23), for Experiment II. Black line: The true values of the parameters b, bX ,
and a from Table 5.5.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 118

Conclusions of the CO2 study

Presently, we develop a PDE-ODE model that describes the dynamics of the CO2 concen-
tration in a conference room, and validate that the model is suitable using data from two
ground truth experiments. We design and validate an observer for the estimation of the
unknown CO2 input that is generated by occupants, which acts as a intuitive proxy for the
number of occupants breathing in the local air space. The estimator used in this study
also has mathematical guarantees of convergence. To estimate unknown parameters of the
model, we design online parameter identifiers which can be proven to converge to the true
values, and we show in our experimental work that the parameters are indeed identified.

A topic for future research is to combine the observer design with the update laws for
the estimation of the parameters of the model. In other words, to design an adaptive
observer [109]. Yet, in contrast to the finite-dimensional case, in the case of PDE systems
this is far from trivial due to the lack of systematic procedures for the construction of
state-transformations that can transform the original system to a system having an observer
canonical form [109], [111]. For this reason designing adaptive observers for PDE systems is
possible only in special cases [111]. As an alternative one could resort to finite-dimensional
approximations as it is done, for example, in [112].

To address the end application of occupancy estimation, future work will address the
problem of estimation of the actual occupancy level using measurements of CO2. This is a
highly non trivial problem because occupants’ CO2 generation rates can vary widely between
different persons depending on current activity, diet, and body size [105]. One possibility
to address this problem is to build a database of parameters which characterize the amount
of CO2 generated by each individual, however, this would require a means of consistently
identifying occupants. A more robust direction that we are pursuing is to use sensor fusion
techniques to combine other sources of information, such as correlations to coarse PM (see
Section 5.2), into the estimation.

5.4 Conclusions

The primary purpose of office and residential buildings is always to provide comfortable
residence for their occupants to work and live. Heating, ventilation, air conditioning and
lighting services are means of preparing the indoor environment for occupants, however
provisioning and operating these services incurs significant cost and energy demands. To
mitigate these costs, methods which estimate indoor occupancy can simply turn off lights and
HVAC services when occupants are not present to consume them. Despite the simple control
strategy, this can reduce consumption by up to 15% [54] when systems are heavily duty-
cycled. However, perhaps more exciting is that once we can accurately estimate occupancy
indoors, we can begin to improve models of occupancy in buildings. These models are used
to predict future occupancy, so that building services can plan ahead for energy-efficiency,
and building designers can appropriately provision services to suit future occupant demands.

CHAPTER 5. MODELS OF INDOOR OCCUPANCY 119

The studies conducted in this chapter are the first steps in demonstrating that readings
from indoor air quality (IAQ) sensors, in this case CO2 and Particulate Matter (PM), can
be used to estimate local occupancy. The techniques we develop do not require occupant-
carried tags or an indoor positioning infrastructure to function. This is an important result
since the types of sensors used are already being deployed for IAQ purposes, meaning we
are adding value to an existing value proposition. Our hope would be that this leads in a
direction that encourages building owners to deploy more IAQ sensors, especially given that
Sick Building Syndrome is becoming more of a concern.

Although we specifically illuminate the advantages of directly estimating occupancy, we
also note that the occupancy estimation problem is fundamentally coupled to the occupant
tracking problem. In fact, we will demonstrate in the next chapter how occupancy informa-
tion can be integrated into a positioning infrastructure. This is a new development in the
field of positioning, whereas traditionally, occupant tracking has been used as an input to
solving occupancy estimation only.

120

Chapter 6

Filtering Algorithms for Occupant
Tracking

6.1 Introduction

Within the office space mobile environment, a valuable direction of research is to directly
estimate the position of the occupants over time, i.e. occupant tracking. We have already
discussed the benefits of occupancy estimation, which can calculated from accurate occu-
pant tracking of all occupants. However, identifying and tracking individual occupants has
benefits beyond occupancy estimation purposes. For instance, individual occupants could
have different tolerances for indoor climates and lighting and building services could be ad-
justed accordingly. Another popular use of occupant tracking is to provide location-based
services, such as indoor navigation, advertising and assisting occupants in finding each other
indoors. There is also research interest in “social games” where occupants are incentivized
to save energy in their daily routine and tracking the position of the participants is essential
to enforcing the rules of the game. In this chapter, we construct a solution to the occupant
tracking problem using particle filters. Via a field operational test, we validate that the par-
ticle filter is a viable method for occupant tracking, and can be the basis of many possible
extensions. These extensions include connections to our work in occupancy estimation and
on the development of the environmental sensing platform. Addressing the occupant track-
ing and occupancy estimation problems simultaneously, a unified particle filter is proposed
which shares information between the two problems and incorporates information gathered
from a variety of sensors.

Indoor Positioning Systems

The application area for Indoor Positioning Systems (IPS) is rapidly expanding as researchers
discover location-aware services such as on-demand lighting or ventilation control. However,
due to the unstructured nature of indoor environments, designing an IPS has many differ-
ent challenges and requirements in comparison to outdoor and large-scale positioning sys-

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 121

tems [113]. The requirements of an IPS vary in cost, power usage, accuracy, reliability, and
computational efficiency, depending on the application. This has led to many IPS concepts
which fill particular niches. For example, a robot needs highly accurate positioning to avoid
obstacles, whereas a location-aware service for occupants may only need to know which room
an occupant is in. For the former case, a highly accurate ultrasound system [114] might be
used. However, in the latter case, power consumption is a greater concern than positioning
accuracy, where room-level accuracy might be sufficient.

Advances in low-power radios and improved wireless network protocols have enabled
Radio Frequency Identification (RFID) as a practical solution to the occupant tracking
problem, with many approaches of how to use radio measurements for positioning [84]. A
popular avenue of research is to use existing WiFi infrastructure by measuring received signal
strength (RSS) to the building’s access points [85, 86]. However, some buildings do not have
the access point density needed for the IPS to function, and more must be installed. Also,
WiFi devices inherently have higher power requirements than other technologies, but are
considered practical since many occupants already carry and use these types of devices,
such as smartphones. Alternatively, IEEE 802.15.4 is a low-cost and low-power wireless
sensor network technology which can be deployed for positioning and other low data-rate
applications [115, 116]. A device based on this technology can be installed in an employee
ID badge, or in our case, a small fob that the occupant carries.

Statistical techniques for radio-based indoor positioning

In this chapter, we describe a method to filter RSS measurements using a sequential Monte-
Carlo Bayesian estimation technique [99, 5], also known as a particle filter. We implement the
most basic form of the algorithm, called Sampling Importance Resampling (SIR). Particle
filtering methods are especially applicable to unstructured environments due to their abil-
ity to elegantly handle non-continuous systems and integrate heterogeneous measurements.
They have been used successfully in robotics [117], and in IPS installations with a combina-
tion of sensors such as RFID, inertial, infrared, and laser scanning [118, 119, 120]. A similar
particle filtering IPS implementation [121] to ours uses WiFi instead of RFID technology
and explores the same “histogram method” to model the RSS measurements. Their state
is modelled as the occupant being at one of 510 predefined calibration cells. The occupant
must travel along and adjacency graph between these cells. Our implementation also relies
on an adjacency graph, but one which is parametrized and automatically computed from the
floorplan layout. We also directly model the state as continuous 2D coordinates, instead of
discrete locations.

Our IPS strictly uses RSS measurements, although we envision adding other types of
sensors to improve the tracking performance. This article is an account of how our IPS is
built up from the principles of particle filtering, including practical implementation details
one might need if installing an RSS-based IPS system of their own. In particular, we pro-
vide a unique method of incorporating the RSS sensor measurements in a way that reduces
dependence on a physical transmission model by creating empirical estimates of sensor error

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 122

distributions. This leads our IPS implementation to achieve within a 5 m accuracy for 90%
of estimates. We also provide a discussion of the computational requirements of our multi-
threaded program, which achieves a real-time to execution time ratio of about 18000, leaving
significant room for more complex models and tracking of several hundreds of occupants.

6.2 Indoor positioning using SIR

SIR estimation framework

In this section, we instantiate the SIR algorithm [5, 117] for our system. For this article,
we denote xt as a three-dimensional random variable corresponding to time t. We use a
discrete-time algorithm with a time interval of δt, in seconds. The first two dimensions,
xt,1:2, are the coordinates, in meters, of the occupant-carried RFID tag being positioned,
and the last dimension, xt,3, represents an attenuation factor, in dBm, of the tag’s local
environment. This third term attempts to correct for calibration errors or differences in
radio propagation between different tags. To simplify notation when discussing the state in
a general context, we use x1:2 to represent the coordinates of the tag and x3 to represent the
attenuation factor. We define yt as the RSS observations measured at time t by the RFID
system. This observation vector has Nsensors dimensions and measured in units of dBm.

The goal of the algorithm is to estimate the belief distribution

Pr (xt|y1...t) , (6.1)

i.e. the probability at time t of state xt being the actual state of the system, given all of
the past observations from t = 1. If we estimate the belief perfectly, then the maximum
likelihood estimate,

x̂t = argmax
x

Pr (x|y1...t) ,

is the ideal estimation of the tag’s position given all of the previous data.
If we assume a hidden Markov Model, then the current observations only depend on the

current state, i.e.
Pr (yt|x1...t, y1...t) = Pr (yt|xt) ,

and the next state depends only on the last state, i.e.

Pr (xt+1|x1...t) = Pr (xt+1|xt) .

Applying Bayes rule and the above assumptions gives

Pr
(

xt

∣

∣

∣y1...(t−1)

)

= (6.2)
∫

Pr (xt|xt−1) Pr
(

xt−1

∣

∣

∣y1...(t−1)

)

dxt−1,

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 123

Pr (xt|y1...t) =
Pr (yt|xt) Pr

(

xt

∣

∣

∣y1...(t−1)

)

Pr
(

yt

∣

∣

∣y1...(t−1)

) (6.3)

= ηPr (yt|xt) Pr
(

xt

∣

∣

∣y1...(t−1)

)

,

where η is a normalization constant and essentially accounted for by (6.4).
Thus, (6.2) and (6.3), are a recursive solution to (6.1), and are termed the prediction and

update steps, respectively.
For many problems, including the indoor positioning task, analytically evaluating (6.2)

and (6.3) is infeasible, therefore we turn to Monte-Carlo methods where samples are used to
estimate the distribution.

We track the belief by a set of n particles, where the i-th particle consists of a state esti-
mate, x(i), and importance factor, w(i). Although not strictly necessary, when the importance
factors are updated, they are renormalized so that

n
∑

i=1

w(i) = 1. (6.4)

The prediction and update steps are adapted to propagate samples and are as follows:

Prediction

For each particle, sample
x̄

(i)
t ∼ Pr

(

x
(i)
t

∣

∣

∣x
(i)
t−1

)

,

so that the particles are now distributed as (6.2). The state transition distribution,

Pr
(

x
(i)
t

∣

∣

∣x
(i)
t−1

)

,

represents the system dynamics and is described in Section 6.2.

Update

For each particle, evaluate the non-normalized importance weight

w̄
(i)
t = Pr

(

y
(i)
t

∣

∣

∣x
(i)
t

)

,

where the observation distribution, Pr
(

y
(i)
t

∣

∣

∣x
(i)
t

)

, represents the sensor noise and is described
by Section 6.2. Then, the importance weights are normalized by

w
(i)
t =





n
∑

j=1

w̄
(j)
t





−1

w̄
(i)
t .

We then take n samples,
{

x
(i)
t : i = 1, . . . , n

}

, from the discrete distribution defined over
{

x̄
(i)
t : i = 1, . . . , n

}

, where Pr
(

x = x̄
(i)
t

)

= w
(i)
t .

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 124

After both steps are run, the particles are will be approximately distributed according to
the belief (6.1). Additionally, the pairs of x̄

(i)
t and w

(i)
t approximate the probability density

function (PDF) of the belief, i.e.

w
(i)
t ≈ Pr

(

x̄
(i)
t

∣

∣

∣y1...t

)

Two more implementation details remain. Since this is a recursive algorithm, an initial
state must be chosen for each of the particles

{

x
(0)
1 , . . . , x

(n)
1

}

, from a given prior distribution
f1(x). The initial states are sampled from uniform distributions since little is known about
the state of the system before any measurements arrive. For the coordinate states, x1:2,
the uniform distribution is over the entire floor area of the office space, whereas for the
attenuation factor, x3, we sample from U (−amax, amax), where amax is a model parameter.

The second implementation detail is the method used to select the actual estimate, x̂t,
of the state from the set of particles. We chose the estimate via one of the following two
methods and evaluated both for their accuracy:

maximum likelihood particle (MLP)

x̂t = x̄
(i)
t ,

i = argmax
j

w
(j)
t .

nearest weighted mean particle (NWMP)

x̂t = x̄
(i)
t ,

i = argmin
j

‖x̄(j)
t,1:2 −mt‖2,

mt =
1
n

n
∑

k=1

w
(k)
t x̄

(k)
t,1:2.

State Transition Distribution

During the update step, there is the need to sample from Pr
(

x
(i)
t

∣

∣

∣x
(i)
t−1

)

. The state is com-
prised of the x-y coordinate pair of the tag, xt,1:2, and the attenuation factor, xt,3, which are
sampled from two separate models.

Tag Coordinates

The state transition distribution essentially adds knowledge about the system dynamics into
the estimation. For our problem, this means describing where a tracked occupant could

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 125

move to (i.e. their future position x
(i)
t+1,1:2) between time t and time t + 1, given their current

position is x
(i)
t,1:2.

Common choices for the transition distribution for robot and occupant tracking problems
incorporate the velocity or heading in the state and use kinematic models with additive
gaussian white noise [120, 117]. Other, more complex models try to add intuition about
human motion [122], or learn the model using machine learning techniques [123].

Our initial approach is to use a circular uniform distribution centered on x
(i)
t,1:2 with radius

of v ·δt, where v is an average occupant’s walking speed in m/s. This is easy to sample from,
but does not incorporate any information about the local environment, such as the fact that
occupants will not move into or through obstacles, such as walls and tables.

Therefore, we devise a method which includes reachability information in the transition
distribution. We start with an obstacle map of the office space, shown in Figure 6.1, defining
the domain of the space and the obstacles, such as walls or desks, which obstruct movement.
The domain is discretized into square cells of width C in meters.

Before the IPS program can start, we must precompute a look-up table (LUT). For each
cell in the domain, we compute the set of cells reachable within a grid distance of ⌊vδtC−1⌋.
We use depth-limited dynamic programming [124] and a 4-adjacency graph model of the
cells to compute these sets.

Although the precomputation step is computationally intensive, it only needs to per-
formed once if v, C, and δt are constant. The benefit is that we can construct a distribution
which is easy to sample from and physically intuitive. Our sampling method is illustrated
by Figure 6.2 for ⌊vδtC−1⌋ = 4. The steps are as follows:

1. Find the index of the cell, c, corresponding to the coordinates given by x
(i)
t−1,2:3 (blue

circle), shown by the red-bordered and green shaded cell,

2. Using the precomputed LUT, find the reachable set, R, of cells for cell c, shown by the
green and orange shaded cells,

3. Pick a cell r at random from R, shown by the orange shaded cell,

4. Sample x
(i)
t,2:3 (yellow circle) from a uniform distribution over the points in r.

Other map-matching techniques rely on detecting obstacle crossings during the prediction
step and either redrawing samples that are within an obstacle or terminating and reinitial-
izing the particle [120]. Our method saves the computational load of detecting and handling
obstacle crossings, at the cost of map precision, since it requires discretization. Our method
also allows a more accurate representation for large δt, as it allows a particle to travel around
an obstacle, provided it is reachable within δt time.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 126

Figure 6.1: Obstacle map of the domain. Black areas represent obstacles that occupants
cannot enter or pass through.

Attenuation Factor

In addition to the position components of the state, x1:2, we also describe the state transition
distribution of the attenuation factor x3 by

Pr
(

x
(i)
t,3

∣

∣

∣x
(i)
t−1,3

)

= U
(

x
(i)
t−1,3 − δa, x

(i)
t−1,3 + δa

)

,

where δa is a model parameter.

Repositioning

One problem of particle filters is that the particle state estimates converge as more infor-
mation becomes available and the variance of the belief is reduced. While this seems to
be ideal, this means that the particle states cover less and less of the domain, and we lose

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 127

C

x
(i)
t−1,1:2

x
(i)
t,1:2

Cell c

Cell r

Figure 6.2: Illustration of the state transition sampling approach. Grey cells are obstacles,
green and orange cells are reachable from cell c within a grid distance of 4. The orange cell
r is picked at random from the reachable set. Blue and yellow circles represent the last and
current state, respectively.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 128

information about that part of the distribution. Thus, we augment the sampling algorithm
with a repositioning step:

x
(i)
t ∼







f1(x) z < Γ

Pr
(

x
(i)
t

∣

∣

∣x
(i)
t−1

)

otherwise

z ∼ U (0, 1)

where Γ ∈ [0, 1] is the repositioning ratio, and an algorithm parameter. A Γ > 0 ensures
that some fraction of particles are artificially moved to “explore” parts of the domain that
might have been missed.

Observation Distributions

It is well known that modelling propagation of radio signals in an unstructured indoor
environment is highly complex [125] due to varied reflection and attenuation properties
of materials in the space, as well as multi-path affects, which are especially present with
narrow-band and high-frequency channels. Therefore, there are a variety of models used
for radio positioning systems such as ours. Some directly derive the model from physical
phenomena [86], and others are data-driven models where many measurements are taken at
fixed points to create an RSS fingerprint [116, 87, 85].

Our method is a data-driven model, but motivated by the physical property that the RSS
will, in general, be lower as the sensor is farther from the transmitter. A broad description
of the method is that, for each sensor, r, we radially partition the domain into Nbins evenly-
spaced bins. For each bin, b, there is a corresponding empirically-derived PDF, f r

b (·), of the
signal strength measurement if the sensor is inside the corresponding partition.

To derive the method, we start by assuming the sensor outputs are independent from
each other, given the state. Thus, we can decompose the observation distribution by

Pr (y|x) =
Nsensors
∏

r=1

Pr (yr|x) ,

where yr is the RSS reading from the rth receiver. We model the individual sensor distribu-
tions as

Pr (yr|x) =







f r
b (yr) + x3 b ≤ Nbins

0 otherwise

b =
⌊

Nbins
dmax

‖pr − x1:2‖2

⌋

+ 1,

where pr is the coordinates of the rth sensor and dmax is an algorithm parameter and
represents the maximum distance between any sensor and a possible tag’s position.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 129

−100−90−80−70−60−50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f
1
(y)

f
2
(y)

f
3
(y)

f
4
(y)

f
5
(y)

Figure 6.3: Example of learned probability distributions for a receiver for Nbins = 5 and
dmax = 21 m.

The distribution f r
b (yr) is empirically derived from a ground truth training data set

GT = {(y1, g1), . . . , (yT , gT)} ,

where yi is an RSS measurement, gi is the coordinates where the transmitter is located when
yi is taken, and T is the total number of training data points.

The RSS measurements are partitioned into Nbins sets

{BINr
i : i ∈ 1 . . . Nbins} ,

where
BINr

i , {yj : (i− 1) · s ≤ ‖gj − pr‖2 ≤ i · s} ,

and s = dmax/Nbins.
Finally, we make a gaussian kernel estimate [126] using the scipy.stats.gaussian_kde

function of the Scipy [127] distribution. The estimate is sampled at 100 points from−125 dBm
to −10 dBm and used as the numerical estimate for f r

b (·). Figure 6.3 shows the family of
PDFs, f r

b (·) for b = {1, . . . , 5}, learned from a 40 min ground truth experiment, for a single
sensor.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 130

(a) Tag
(b) Sensor

Figure 6.4: Active RFID devices used by the IPS sensor network.

6.3 System architecture

Sensor placement

A grid of 24 sensors are installed in the false ceiling of a 16.5 m × 13.2 m (217.8 m2) office
area, above the ceiling tiles, to be hidden from view. The grid configuration is 6 by 4 sensors
and the spacing between sensors is 3.3 m and 4.4 m, respectively. Power to the sensors is
supplied by 5 V low-voltage wires run through the false ceiling, with 4 cable runs powering
6 sensors each. We measured the voltage drop at the end of each cable run to be less than
1 V, even when the system is powered on. Though this means there is only 4 V available to
the last sensor, this is not a cause for concern since the sensors internally regulate the input
power to 3.3 V.

Network setup

A diagram of the network configuration of our RFID-based IPS system is shown in Figure 6.5.
Our sensor network is constructed of a low-cost network of ZigBee devices based on the TI
CC2530 System-on-Chip [87]. There are three types of devices in the network:

• The tags (see Figure 6.4a) are small key-fob devices which are programmed with a
unique 16-bit ID and broadcast this ID every second. They are designed to operate
continuously for 1 month on a small lithium battery.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 131

Active RFID Tag

Active RFID Sensors

(6 × 4 grid)

ZigBee Mesh Network

ZigBee Coordinator

BeagleBone

embedded

computer

TCP/IP Link

Virtual

Server

Figure 6.5: Network diagram showing data flow from beacons emitted by occupant-carried
RFID tags to an Internet server which stores the data and runs the positioning program.

• The sensor (see Figure 6.4b) devices are low-cost (approx. 15 USD) and also pro-
grammed with a unique 16-bit ID. They form a ZigBee mesh network with the other
sensors and coordinator. Upon receiving a beacon from any tag, they note that tag’s
ID and the RSS value of the beacon, and send it along the ZigBee network to the
coordinator. The radios of the sensors must always be listening in order for the system
to operate, thus these sensors cannot be battery-powered.

• There is one coordinator which initializes the ZigBee network and collects data packets
from the sensor nodes. These packets are output in a custom format out of an external
serial connection.

Not every beacon from the tags actually arrives at the coordinator due to network col-
lisions or interference. For example, we experienced only a 8-20% successful transmission
rate. We believe a higher transmission rate would greatly improve the performance of the
IPS method.

A BeagleBone [128] embedded computer is connected to the coordinator and parses the
custom format. The BeagleBone connects over the Internet via a TCP/IP socket to a
Virtual Private Server (VPS) instance which handles sensor data storage and processing.
Every second the software on-board the BeagleBone reports the RSS measurements received
from the sensor network in the last second to the VPS.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 132

sMAP
server

GT data

Real data

Sensor Locations
and parameters

Precompute

Reachability
LUT

Training

Phase

f
r

b
(·)

SIR

Algorithm

Figure 6.6: Process of the IPS software flow. Blue processes are precomputation steps,
and grey files are intermediate outputs, but can be reused as long as parameters are held
constant.

The VPS runs an instance of the sMAP [60] server, which efficiently stores the sensor
data. The VPS also runs custom software to aid in translating information to and from the
sMAP format.

Software setup

Precomputation

The software process for retrieving and generating the necessary inputs to the SIR algorithm
is shown by Figure 6.6. The precomputation steps are to compute the reachability LUT for
the state transition distribution described in Section 6.2, and also to compute the numerical
probability distributions from the ground truth data, referred to by Section 6.2.

We relied heavily on the SciPy [127] distribution to implement loading and manipulating
ground truth data for generating f r

b (·). Fortunately, despite using a non-compiled language
such as Python, an input of 14760 data points is processed in less than 1.7 s.

Although computing the reachability LUT is computationally arduous, a small cell size,
C, is desirable to reduce discretization error. Therefore, this part of the algorithm is incor-
porated into our C++ framework and compiled with a high optimization level. Computing
the LUT for 49152 grid cells at C = 25 cm, takes less than 30 s, and for the default parameter
value of C = 75 cm, computing the map takes less than 500 ms.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 133

SIR Algorithm Program

We implement the SIR algorithm as a multithreaded application in C++ and emphasize
speed of execution. Our development machine has 4 cores, so we use a pool of 5 worker
threads and one coordinator thread, in an attempt to saturate the CPU with workload. We
are able to use multiprocessing techniques whenever each particle needs to be independently
processed without interaction from others. In the SIR algorithm, this is during the prediction
step and while evaluating Pr

(

y
(i)
t

∣

∣

∣x
(i)
t

)

during the update step. For these tasks, we divide
the set of particles into 5 equal subsets and each worker thread is responsible for predicting
and updating their respective subset. There is also the need to sort an n-sized array during
the update step, when the particles are resampled. At this time, the worker threads are used
to sort 5 subarrays and the coordinator thread merges the subarrays into one sorted array.

The C++ program also uses Simple Directmedia Layer (SDL) [129] to animate the
progress of the particle filter. The visualizer shows the obstacle map, the particle state
coordinates, sensor positions, IPS output estimate, and the actual position of the tag, if
given. These visualizations assist in debugging the implementation and tuning parameters.
An example of 6 steps of the SIR algorithm in progress is shown by Figure 6.8.

6.4 Field operational test

To evaluate the method, we ran three experiments and collected three corresponding sets of
RSS measurements. All of the described experiments consisted of walking once along the
trajectory shown in Figure 6.7.

Ground Truth (GT) was to collect the learning data needed for the calibration described
in Section 6.2. Average speed was 5 cm/s, enforced by pausing for 10 s every 50 cm.
Three tags were carried for this test, to increase the number of data points collected.
The experiment lasted approximately 40 minutes and collected 14760 (8.5% of sent)
RSS measurements.

Tuning (TUN) was to tune the model parameters to a quicker moving particle than the
GT data set. The average speed was 50 cm/s and 1106 (19% of sent) RSS measure-
ments were taken.

Verification (VER) was reserved to evaluate the performance of the method and we do
not use the results to tune or adjust the algorithm. The procedure was the same as
the TUN experiment and 721 (12.5% of sent) RSS measurements were taken.

The performance of the IPS is measured by the RMS and MAX evaluation functions:

RMS(x̂, x⋆) =

√

√

√

√

1
T

T
∑

t=1

‖x̂t − x⋆
t‖2

2

MAX(x̂, x⋆) = max
t=1,...,T

‖x̂t − x⋆
t‖2

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 134

P
a
ra

m
e
te

r
D

e
sc

ri
p

ti
o

n
D

e
fa

u
lt

E
ff

e
ct

o
f

A
d

ju
st

in
g

δt
T

im
e

in
te

rv
al

5
s

B
es

t
pe

rf
or

m
an

ce
be

tw
ee

n
3

s
an

d
9

s.

n
N

um
be

r
of

pa
rt

ic
le

s
10

0
P

er
fo

rm
an

ce
de

gr
ad

es
be

lo
w

n
=

60
,

ot
he

rw
is

e
m

ar
gi

na
l

im
pr

ov
em

en
t

w
it

h
m

or
e

pa
rt

ic
le

s.

Se
le

ct
io

n
M

et
ho

d
M

et
ho

d
to

se
le

ct
x̂

t
fr

om
th

e
se

t
of

pa
rt

ic
le

s.
N

W
M

P
U

si
ng

M
L

P
re

su
lt

s
in

sl
ig

ht
ly

re
du

ce
d

pe
rf

or
m

an
ce

.

Γ
R

ep
os

it
io

ni
ng

ra
ti

o
0%

Sl
ig

ht
ly

w
or

se
pe

rf
or

m
an

ce
fr

om
0

<
%

Γ
≤

50
%

,
si

gn
ifi

ca
nt

ly
w

or
se

w
he

n
Γ

>
50

%
.

a
m

ax
M

ax
im

um
in

it
ia

l
at

te
nu

at
io

n
1.

5
dB

m
N

o
eff

ec
t

on
pe

rf
or

m
an

ce
.

δa
M

ax
im

um
ch

an
ge

of
at

te
nu

at
io

n
0.

75
dB

m
Sl

ig
ht

im
pr

ov
em

en
t

in
si

de
0.

25
dB

m
an

d
0.

75
dB

m
.

C
R

ea
ch

ab
ili

ty
L

U
T

ce
ll

w
id

th
0.

75
m

Si
gn

ifi
ca

nt
ly

w
or

se
pe

rf
or

m
an

ce
w

he
n

C
>

0.
75

m
.

v
O

cc
up

an
t

m
ov

e
sp

ee
d

0.
5

m
/s

Si
gn

ifi
ca

nt
de

cr
ea

se
in

pe
rf

or
m

an
ce

as
v

m
ov

es
aw

ay
fr

om
0.

5
m

/s
.

N
b
in

s
N

um
be

r
of

pa
rt

it
io

ns
fo

r
th

e
ca

lib
ra

ti
on

in
Se

ct
io

n
6.

2
5

Si
gn

ifi
ca

nt
ly

w
or

se
pe

rf
or

m
an

ce
fo

r
N

b
in

s
/∈
{3

,5
}.

T
ab

le
6.

1:
L

is
t

of
pa

ra
m

et
er

s
tu

ne
d

an
d

th
ei

r
eff

ec
ts

on
th

e
ac

cu
ra

cy
of

th
e

IP
S.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 135

A B

H

Q R

Q

 S

 N M

F D

 P O

 T

 C

 L J

E

Q

8.5

3

5.5

3.5

3 2 2

5 5

6.5

5

2

2

7

5.5

3.5

5.5

Figure 6.7: Ground truth trajectory diagram plotted over the floor plan of the office space.
Trajectory starts at anchor point A and all distances are in meters.

where x⋆ is the known actual positions of the tag and T is the number of estimates generated.

Parameter tuning

Our IPS implementation has 8 main parameters shown by Table 6.1. For the “Effect” column,
other parameters are held at their default values while the tested parameter is adjusted. The
automated testing is performed with a Python program which runs the IPS program 10 times
for each parameter choice and calculates the RMS and MAX metrics of the tests.

The defaults for the parameters are determined by manual inspection. First we pick
realistic starting values (e.g. v = 0.5 m/s is the known speed of the moving occupant).
Then the Python program is run to sweep each parameter over a range of hand-picked
values, usually a linearly-spaced numerical range. It is infeasible to iterate combinatorially
over every configuration of parameters. Therefore, when testing, each parameter is swept

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 136

(a) t = 0 (b) t = 50

(c) t = 100 (d) t = 150

(e) t = 200 (f) t = 250

Figure 6.8: Intermediate steps of the SIR program visualized. Particle state estimates are
small crosses, the NWMP estimate is a square, the actual tag’s position is a circle, and
triangles give the sensor positions. Grid lines are spaced every 5 m. Parameters for the
simulation were set to default values given by Table 6.1, except n = 600, for illustrative
purposes.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 137

0 2 4 6 8 10
0

0.004

0.008

0.012

0.016

0.02

0.024

0.028

0.032

0.036

0.04
P

D
F

Error (m)
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Figure 6.9: Histogram of error magnitudes collected over 1000 tests using the VER data
set. Dotted line shows PDF estimate and solid line shows cumulative distribution function
estimate.

independently, while the others are held constant at their defaults. Then, we set the default
for the tested parameter to the value corresponding to the lowest value and performed the
sweep on another parameter. The method required significant supervision to find the default
values in Table 6.1, but automating the process is straightforward if needed for an integrated
IPS solution.

Note that, in this analysis, a couple of the features of our method seem to be irrelevant,
such as amax, or even degrading to the performance, such as repositioning, which is used
when Γ > 0. For the case of repositioning, the benefit is that it helps to recover the filter
if the particles get “stuck” in some part of the state space, which happens rarely. However,
this comes at a cost of aggregate performance.

Accuracy

Using the default parameter values and running the IPS program 1000 times on the VER
data set, we achieve an accuracy of 90% estimates within 5 m. The mean error is 2.9 m and
RMS error is 3.6 m. A histogram of the 144 thousand error samples is plotted in Figure 6.9.
From the histogram we can conclude that, while the mean error is within room-level accuracy,
there is still a significant probability of large errors, e.g. 1% probability of error being greater

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 138

0 50 100 150 200
0

5

10

15

20

x
 c

o
o

rd
in

a
te

 (
m

)

0 50 100 150 200
0

2

4

6

8

10

12

14

y
 c

o
o

rd
in

a
te

 (
m

)

0 50 100 150 200

t im e (s)

0
2
4
6
8

10
12
14
16

e
rr

o
r

(m
)

Figure 6.10: Example trajectory using default parameter values and VER data set. Dotted
line is actual trajectory of occupant.

than 9 m. Thus, the direction of future work will focus on improving the reliability of the
IPS by adding sensors, such as occupancy sensors, which can constrain particle estimates
closer to reality.

An example of the errors seen during two tests is shown by Figure 6.10, where the
timeseries of coordinates and the error term is plotted. In Figure 6.11 we plot the true and
estimated locations on a map of the space.

Examining these results, our IPS is able to achieve substantially better tracking along
the x dimension than the y dimension. This could be a result of there being 6 sensors along
the x dimension and spaced 3.3 m apart, rather than 4 sensors spaced 4.4 m apart in the y
dimension.

Another contributing factor is that the particle estimates seem to lag behind the true
value, especially during fast moves, such as those along the y dimension. The difference is
made more clear in Figure 6.12, where we plot the estimation results using the GT dataset,
where the occupant was moving much slower and the estimate follows the true position much
more closely.

Our motion model does not incorporate velocity or direction of movement, thus, the
cloud of particles tends to expand radially outwards, instead of following the true position.
An improvement to the algorithm would track the occupant’s intended direction, in addition

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 139

Figure 6.11: Plot of actual coordinates (blue circles) and estimated coordinates (red squares)
during VER experiment.

to their position, and favor estimates in that direction. This would likely correct for the lag,
but would require a finer time resolution, to avoid overshooting if the occupant suddenly
changes direction.

Computational Resources

Our eventual goal is to provide real-time IPS services simultaneously for many occupants,
therefore we evaluate the computational load of the algorithm. We use the GT data set,
which contains the most data points of the three, in order to reduce the impact of the time
it takes the program to load data into cache for each test. For each test, an average over
24 program executions is taken. Our testing CPU is an Intel Core i7-3720QM at 2.6GHz,
containing 4 cores and 8 logical processors. The system contains 24GB total of physical
RAM and runs Windows 7 Professional 64-bit.

For the default parameter values in Table 6.1, the average Memory Usage is 7.9 MB, and
the average Execution Time is 129 ms. This corresponds to about 3.7 thousand time steps
processed per second, or 5 real-time hours processed per execution second.

We are also interested in how three of the parameters, δt, C, and n, effect the resource
needs. Each parameter is swept across values which highlight their effect.

In Figure 6.13, we show that both the memory footprint and execution time increases
linearly, O(n), with n, the number of particles used. This follows intuitively since the

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 140

Figure 6.12: Plot of actual coordinates (blue circles) and estimated coordinates (red squares)
during GT experiment.

prediction step and evaluation of Pr (y|x) need to be performed once per particle. The
discrete resampling phase of the update step requires sorting the particles, so we expect to
see linearithmic, O(n log n), increase of execution time for very large n.

In Figure 6.14, reducing the cell width dramatically increases the computational require-
ments of the algorithm. This is because the number of cells in the reachability LUT is
proportional to C−2. Additionally, the the number of cells reachable from any other cells
is proportional to C−2v. Therefore, we expect to see a relation of O(C−4) between cell size
and memory usage. The execution time follows this trend as well, since loading a large LUT
is time-consuming in relation to executing the rest of the program. We empirically find the
relationship plotted in Figure 6.14 to be O(C−3.7).

Figure 6.15 gives the relation between the time interval and resources needed. The
amount of time steps for a given real-time interval increases proportionally to (δt)−1, there-
fore, we expect to see an O((δt)−1) effect on the computation time. Empirically, we find
that there is an O((δt)−0.85) relationship. The memory usage also follows this trend be-
cause we interpolate the sensor measurements into a timeseries with samples spaced at δt
as a preprocessing step. If interpolation is done on-line, the memory needs will be reduced

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 141

0 500 1000 1500 2000
0

10

20

M
e

m
o

ry
 U

s
e

 (
M

B
)

No. of particles
0 500 1000 1500 2000

0

500

1000

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Figure 6.13: Plot of the resources used as a function of the number of particle estimates, n.
Memory usage given by + markers and execution time given by ◦ markers.

10 20 30 40 50 60 70 80 90 100
7.7

474.2
500

M
e
m

o
ry

 U
s
e
 (

M
B

)

Cell Width (cm)
10 20 30 40 50 60 70 80 90 100

0.12

7.8
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Figure 6.14: Plot of the resources used as a function of the reachability LUT cell width, C.
Memory usage given by + markers and execution time given by ◦ markers.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 142

0 1 2 3 4 5
0

20

40

M
e

m
o

ry
 U

s
e

 (
M

B
)

Time Interval (s)
0 1 2 3 4 5

0

2

4

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Figure 6.15: Plot of the resources used as a function of the time interval, δt. Memory usage
given by + markers and execution time given by ◦ markers.

significantly.
Finally, the benefit of multithreading is examined by changing the number of worker

threads used by the program to assist in the prediction and update steps. The results
displayed in Figure 6.16, show that there is a significant benefit to execution time if threads
are used at all, and that 5 threads is the optimal value for this particular 4-core computer.
Note that a number of threads greater than the number of cores is optimal since at times
threads may be blocked waiting for memory accesses, and having an extra thread to occupy
the CPU during this time can actually improve processor throughput. However, having too
many threads, and the associated overhead, can quickly degrade throughput.

The results achieved in this section lead us to believe our algorithm is well-suited for
broader deployment covering more area and occupants. There is also room for more complex
motion and sensor models to be incorporated and continue to achieve real-time performance.

6.5 Future directions and extensions

State augmentations

Motivation for augmenting the state

Currently, the state of the particle filter tracks the 2-dimensional position of the occupant
on the office floor and also tracks the attenuation factor. A future direction is to also
augment the state to estimate additional information about the occupant. This will benefit

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 143

0 5 10 15
0.12

0.14

0.16

0.18

0.2

0.22

0.24
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

No. of worker threads

Figure 6.16: Plot of execution time as a function of the number of the number of worker
thread.

the particle filtering technique if this information allows more confident estimates of future
states. However, since we are adding more dimensions to the state, this also adds more
avenues for the particle filter to produce the wrong estimate, especially if the extra degrees
of freedom are not constrained by real sensor measurements. Therefore, it is important to
study the affects of augmenting the state to ensure that the estimation is actually improved.
Below, we describe two augmentations that are interesting for future study: Tracking the
velocity of the occupant, and tracking the target location of the occupant.

Tracking velocity

A natural extension to the particle filter would be to also track the velocity of the occupant
in addition to their position. This implementation tracks the velocity directly as

xt,4:5 = ẋt,1:2,

which is computed by finite-differences from the last state. Equivalently, one could augment
the state with the last state directly

xt,4:5 = xt−1,1:2,

or, if it is assumed that occupants have a nearly-constant walking speed, one could track
only the direction the occupant is currently moving

xt,4 = θ,

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 144

(a) Velocity Ignored (b) Translated uniform dist. (c) Designed distribution

Figure 6.17: Transition distribution strategies given occupant velocity. Previous position is
shown by a grey circle, current position is shown by a black circle, and the depiction of the
transition distribution (i.e. where an occupant can move to) is shown in green.

where θ is the angle from the point xt−1,1:2 to xt,1:2.
Once velocity information (or equivalently, the direction or last position of the occupant)

is tracked, we can incorporate this information into the state transition distribution for
position, Pr (xt,1:2|xt−1,1:2). Figure 6.17 illustrates possibilities of how the state transition
could be constructed, assuming no nearby obstacles. The current implementation is depicted
by Figure 6.17a, where no velocity information is incorporated and the distribution is a
uniform distribution around the current position.

A simple way of integrating velocity would be to simply translate this uniform distribu-
tion by the same movement that the occupant made in the last time step, as is shown by
Figure 6.17b. This essentially predicts that the occupant will continue moving in the same
direction, such as if they are walking down a corridor. There still remains some uncertainty
about the occupant’s movement which is modelled by continuing to use a uniform distribu-
tion. However, this model erroneously gives the possibility of the occupant moving farther
than v · δt in one time step.

A more intelligent construction of the state transition distribution is illustrated by Fig-
ure 6.17c, where the possible next locations are a subset of those in Figure 6.17a (and
therefore it maintains that the occupant cannot move farther than v · δt). The next loca-
tions are specified as those where the occupant continues walking directly along the current
heading or where the occupant makes a 90-degree turn before moving forward. Since the pas-
sageways in offices are often laid out rectilinearly, this places a higher emphasis on occupant
paths which include 90-degree turns. As seen by the figure, there is still some uncertainty
represented by the wideness of the green areas.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 145

Tracking desired areas

We can also utilize the logical division of a building into spaces (such as rooms, desks, and
cubicles) to add intuitive information into the tracking algorithm. A useful addition to the
state would be a prediction of the desired location that an occupant would want to go. For
example, if we determine that an occupant is thirsty, then there is a higher probability that
the occupant will follow a path leading to the water cooler. Although we do not yet have
sensors to directly sense a occupant’s intention, information such as historical behavior, time
of day, and current direction provide clues.

A corollary of this augmentation is to gather and track knowledge about where an oc-
cupant will not travel to, such as a janitor’s closet, or the opposite-gendered restroom.
Depending on how many areas are removed from consideration, this can significantly reduce
the size of the state space and consequently, possible errors in the estimation. In addition to
removing these specific areas from consideration, we can also remove any paths which lead
only to non-considered areas, since the occupant will not walk along these paths as well.

Information from fixed infrastructure

CO2 concentration

In Section 5.3, we describe a study carried out to model the effect of occupants on the CO2

concentration within a room and built an estimator and identifier for the model. Given
CO2 measurements at the supply and return vents in an enclosed room (such as a conference
room), we demonstrate a technique to estimate the rate of CO2 being generated by occupants.
Since this value is heavily dependent on occupants, it would be appropriate to augment the
observation distribution accordingly. For instance, if we detect that very little CO2 is being
generated in a room, this indicates very low probability that any tracked occupants are inside
of this room. A further improvement is to augment the state of positioning system to include
the metabolic rate of the tracked occupant, thus, the actual value of CO2 production may
be able to identify individual occupants inside a CO2-monitored room. The metabolic rate
of the occupant is determined when the occupant is known to be the only occupant inside a
CO2-monitored room (e.g. their own office with no visitors).

Coarse Particulate Matter

Like CO2, coarse particulate matter (PM) (i.e. airborne particles with diameter ≥ 2 µm) is
a proxy to local occupancy (See Section 5.2), thus, we will be able to use similar methods as
discussed for CO2. The main difference is that human occupants are the primary producers
of CO2 in office buildings, whereas many factors can influence coarse PM concentrations.
For instance, vacuuming frequency and floor type (e.g. carpet or tile) affects the amount
of particles latent on the floor to be re-suspended. Therefore, given a detected spike in
coarse PM from nearby occupant activity, there is still much uncertainty as to the number of
occupants nearby, and very clean floors can result in especially weak and uncertain detection

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 146

events. Fortunately, the particle filter is well adapted to accept uncertain sensor data, as
long as the sensor noise is well modelled. In our implementation, coarse PM can play a role
indicating whether an occupant is at their desk, i.e. if the sensor is mounted at foot-level
near their desk. The results from Section 5.2 show that a coarse PM sensor is useful as
a rudimentary threshold sensor, detecting when occupants walk past it. These detections
could indicate higher probabilities of trajectories which estimate that the occupant walked
past the sensor.

Light-based detection

Passive Infrared (PIR) sensing is a popular technology used by security systems, since they
reliably detect human occupant movement within a specified cone of detection. The main
limitation of PIR sensing for indoor positioning purposes is that the sensor cannot identify
occupants, nor can it distinguish between one or multiple occupants. Therefore, PIR sensing
alone cannot be easily used for positioning, but nonetheless is very valuable for narrowing
down the feasible state space. That is, if the PIR does not detect an occupant, then the
particle filter can remove any estimates falling within its cone of detection. Thus, a rich
network of environmental sensor devices (See Chapter 4) carrying PIR devices allows the
particle filter to focus the particle estimates on only the occupied areas of the building.

Infrared light is also used for reliable threshold detectors. Often seen in businesses to
detect customers entering and exiting the storefront, these sensors utilize a beam of light
from a laser or focused infrared diode and a corresponding light sensor. The beam of light
is directed across the detection area, such as a doorway, possibly reflected off of a mirror,
and finally reaches the sensor. An occupant is detected when they pass through the beam,
blocking it from reaching the sensor. Like the PM sensor, detection events provided by this
sensor can indicate a higher probability of trajectories which include crossing the beam of
light.

Contact-based detection

Switches are simple, reliable, and low-power devices which can immediately detect state
changes of objects like doors, windows, and drawers. Using switches connected to the expan-
sion port of environmental sensor devices (See Chapter 4), we can continuously monitor the
state of doors, which, when closed, represents an obstacle in the state-transition distribu-
tion. Switches can also be mounted on windows and drawers to detect state changes which
provide, with high-confidence, a small area (i.e. within arms-length) of possible locations of
an occupant.

Information from occupant-carried infrastructure

Wearable electronics, such as the Pebble [130] and eWatch [131], are becoming more ubiq-
uitous and carrying more sensors, owing to advances in miniaturization and manufacturing.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 147

Figure 6.18: Occupant-carried environmental sensing watch

Currently, technology is at the point where these smart watches can carry a suite of en-
vironmental sensors and continuously monitor the wearer’s local environment. In the near
future, manufacturing techniques will enable the vision of Smart dust [132]: a fully-integrated
cubic-millimeter size wireless sensor which could be non-intrusively integrated into jewelry,
clothes, and implants. In Figure 6.18, we show how the environmental sensing platform (See
Chapter 4) can be adapted into a smart watch to conduct wearable sensor studies.

The measurements collected from occupant-carried instruments is studied extensively.
Classifiers are one way of associating features, i.e. heuristics calculated from the measure-
ments, to activities that the occupant is performing [133]. For example, a high magnitude
of acceleration could indicate that the wearer is running. Particle filters (a type of Bayesian
classifier) demonstrate good performance at the activity recognition task [131, 134]. In ad-
dition, one study [131] demonstrates detection of coarse location from a pre-defined set (e.g.
apartment, bus, lab, office, restaurant, street, and supermarket). In our implementation,
we will attempt to achieve a finer location resolution, as well as use statistical distribu-
tions relating occupant positions to features, such that we do not need to pre-define distinct
locations.

As a motivating experiment, we use the environmental sensing watch to measure 3-
axis acceleration, light level, temperature, and humidity of the occupant’s wrist while the
occupant is in four different locations. We plot the features in Figure 6.19. The first two
locations are at a desktop, and the occupant is typing (as in Figure 6.18). Both locations
are near a window, however, the window near the “Desk” location is shaded, whereas the

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 148

Desk Lab Indoor* Outdoor*
0

0.5

1

1.5

2

2.5

3

m
lu

x

(a) Light level

Desk Lab Indoor* Outdoor*
22

23

24

25

26

27

28

d
e
g
 C

(b) Temperature

Desk Lab Indoor* Outdoor*
0

0.1

0.2

0.3

0.4

g

(c) Std. deviation of Acceleration

Figure 6.19: Features measured by the environmental sensing watch in different scenarios.
∗The indoor and outdoor tests were measured while occupant was walking normally.

window near the “Lab” location does not have shades. At the second two locations the
occupant is walking. The indoor location is inside a windowless hallway, and the outdoor
location is on an outdoor sidewalk.

Interpretation of light level

From Figure 6.19a, we can immediately recognize when the occupant is outside, as sunlight
is much brighter than indoor light, even if there is shade or clouds. Additionally, indoor
areas which receive more sunlight from windows, such as the lab, are distinguishable from
areas such as the desk and indoor hallway which where the sunlight is occluded.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 149

0 5 10 15
26.5

27

27.5

28

T
e
m

p
e
ra

tu
re

 (
d
e
g
 C

)

Time (m)

Figure 6.20: Cooling effect induced by walking. Between minute 1 and minute 3, the occu-
pant is walking from the desk to the lab location. After minute 3, the occupant is seated at
the lab location

Interpretation of temperature

The interpretation of temperature is more complicated since the occupant’s metabolic heat
generation influences the temperature reading of a wearable sensor. This is demonstrated
by the results in Figure 6.19b, where the temperature reading is noticeably lower when the
occupant is walking. We believe this is due to a cooling effect due to increased airflow over
the watch while walking (the occupant walks with a normal gait, including swinging their
arms). When the occupant is stationary, their body heat forms a warm boundary layer
surrounding themselves which read by the temperature sensor. Evidence of this effect is
seen by Figure 6.20, which plots a time series of temperature as the occupant walks from
the desk to the lab. While walking, the temperature reading drops by approximately 1.5 ◦C,
and then rises after the occupant sits and remains stationary at the lab.

Interpretation of acceleration

From the wristwatch experiment, we are clearly able to distinguish between walking and
stationary states of the occupant based on acceleration measurements. Our chosen feature
is the standard deviation of the magnitude of the 3-dimensional acceleration vector. That
is, given N 3-axis measurements of acceleration: ax[i], ay[i], az[i], and i ∈ {1, 2, . . . , N}, we

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 150

calculate

σ =

√

√

√

√

1
N

N
∑

i=1

(ā[i]− µ)2,

µ =
1
N

N
∑

i=1

ā[i],

ā[i] =
√

(ax[i])2 + (ay[i])2 + (az[i])2.

We show the values of σ for the four tested locations in Figure 6.19c. As expected, in the
latter two locations, when the occupant is walking, the value of σ is significantly higher than
the first two locations, when the occupant is stationary. This is likely due to the acceleration
sensor measuring the swinging of the arms as the occupant walks. We believe that detecting
whether the occupant is stationary or moving will improve the practical performance of the
particle filter, especially in the office, where occupants frequently stop and start moving
between places.

We have shown via a simple experiment that accelerometer measurements can provide
information useful for positioning. In future studies with occupant-carried acceleration sen-
sors, we will explore two additional manners in which the measurements can be used: by
detecting orientation and by detecting footsteps.

Orientation is relatively straightforward to obtain from filtered 3-axis acceleration mea-
surements simply by finding the relative direction of the gravity vector. We believe that
orientation of occupant-carried devices can provide valuable information towards determin-
ing the state of the occupant, given the context of the sensor placement. For instance, if such
a device is placed in a pocket, this can indicate whether an occupant is sitting or standing.
For the positioning problem, detecting that an occupant is sitting indicates that the occu-
pant is stationary, and probably located in a part of the office containing chairs. A sensor
mounted in a wristwatch similarly measures whether an occupant is doing desk work or their
hands are at their sides.

A popular and intuitive direction to integrate measurements from occupant-carried ac-
celerometers is to detect footsteps which can provide information about immediate motions
that the occupant is making [135, 136, 137]. For example, knowing the number of footsteps
an occupant takes in a given time period constrains the distance they have moved in that
period given an estimate of the occupant’s stride length. It is also possible to distinguish
between types of footsteps, such as walking, running and climbing stairs. This is powerful
if a map of the building is available, for instance, if an occupant is known to be climbing
stairs, then only trajectories which include a stairway will be considered. In some cases, if
gyroscopes and accelerometers are mounted on both feet, an Extended Kalman Filter can be
used to estimate the displacement of each foot between steps [138], further narrowing down
possible locations of the occupant.

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 151

Instead of being mounted on the feet and estimating positional displacements, our method
would only attempt to detect footsteps by looking for spikes in the signal when the occupant’s
foot strikes the ground. Therefore, the accelerometer can be mounted anywhere on the body
of the occupant as long as there is a fairly rigid physical connection to the foot. Our
hypothesis is that using accelerometer data from a smartphone carried in the occupant’s
pocket will be sufficient. If the occupant is carrying an environmental sensor (See Chapter 4),
then the accelerometer readings from this sensor can be used as well. We would program
either the phone or environmental sensor to report the number of footsteps ft counted every
second. To integrate into the particle filter, we would adjust the state transition distribution
to account for an adaptive travel distance per time step, instead of statically limiting it to
v ·δt (where v is the occupant’s walking speed and δt is the duration of one time step). Given
the current number of footsteps per second ft, we can instead constrain the occupant’s travel
distance to ft · s · δt, where s is occupant’s stride length. Since the parameter s is difficult
to identify, The most information will be gained when ft = 0, since this indicates that the
occupant is stationary (travel distance is equal to 0).

Coupling to occupancy estimation

As we demonstrate in Section 6.4, our implementation has the benefit of processing data at
5 real-time hours per second and requiring only 7.9 MB. Therefore, it is feasible to build
a composite particle filter which can track hundreds of occupants, in order to track every
occupant in a building. At this point, we will then be able to calculate an estimate of occu-
pancy for each space in the building by simply counting the number of tracked occupants in
each room. This is a typical application of IPSs, given the advantages of knowing occupancy
within a building (See Chapter 5).

This counting technique is a one-way transfer of information from the occupant tracking
problem to the occupancy estimation problem, however, our next direction will be to explore
the bi-directional sharing of information between the two problems. Our method is to use
the particle filter framework to create a joint estimator that tracks the occupancy of rooms
along with the position of occupants by augmenting the state. This allows us to address
the relationship between the two problems directly in the same framework via the state
transition distribution. For example, we can add a rule which explicitly specifies that a
room’s occupancy level is equal to the sum of the tracked occupants within it. This rule
implicitly defines a bi-directional dependency between the occupant tracking and occupancy
estimation results, since the particle filter will essentially estimate both simultaneously to
reach a feasible solution. The flow of information from the occupancy estimation problem
to the occupant tracking problem is especially interesting since we have identified new and
informative models of indoor phenomena like CO2 and particulate matter.

In building this new framework, we foresee several complications that will require special
treatment. For instance, it will be difficult to model visitors who are unknown and not
tracked by the system, yet still affect the true occupancy of the space. We will need to
allow some uncertainty in the coupling between the occupancy estimation and occupant

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 152

tracking problems. Another complication from building this composite estimator is that it
will create a very large and high-dimensional state space. Particle filters are some of the
best techniques for large state spaces, due to their scalability, however, there is still the
possibility of the particle estimates getting “lost” or “trapped” in parts of the state space.
With limited sensing, it is also more difficult to distinguish improbable states and narrow
down an estimate when the state space is large. We hope to address these problems by
providing enough information through a multitude of sensing technologies and intuitions
about occupant behavior. This information serves to narrow down the feasible areas of the
state space.

6.6 Conclusions

In this chapter, we have described an occupant-tracking system using particle filters that
achieves an average of room-level accuracy when deployed in a real office environment. More-
over, by construction, our method does not position occupants inside inaccessible areas,
which may lead to better estimates of the room that an occupant is inside. The particle
filter method is also dynamic, meaning that the estimation will improve over time as more
information is gathered. This results in slower-moving or stationary occupants resulting in
very good predictions, such as in Figure 6.12.

If we assume all occupants are participating by carrying the RFID tag required by our
IPS, then our method is likely to be accurate enough to estimate occupancy of the spaces in
the office. However, we understand that this assumption is invalid in the case where there
are visitors, or when participants forget to carry the tag. A popular answer to this problem
is to use WiFi-based technology that can sense any WiFi-enabled smartphone carried by
occupants since the occupants have other incentives to carry their phone with them. There
are drawbacks to this as well, since occupants might not own a WiFi-enabled smartphone,
or have the WiFi-disabled, or be carrying more than one WiFi-enabled device, such as a
laptop. An additional drawback is that there is heterogeneity in the radio transmission
characteristics of WiFi devices due to differences in the antennas, transceivers, and the way
they are used. Therefore, relying on a characterization of signal strength can fail when these
differences are not accounted for.

Therefore, as we describe in Section 6.5, our vision is that a hybrid infrastructure can be
built which simultaneously estimates occupancy and tracks many or all occupants. The in-
formation from both problems would be elegantly integrated together by the particle filtering
framework, which sees the building’s occupancy and position of its occupants as components
of a encompassing state variable. Although the state space will consequently be very large,
particle filters are well suited to estimate within these spaces, due to the Monte-Carlo ap-
proach. Particle filters also allow us to leverage the peculiarities of each type of sensor to
guide the particle filter estimates. Our studies into CO2 and particulate matter concen-
trations in Chapter 5 are examples of experiments we have conducted to understand how
these environmental variables are affected by occupants, and the results of these experiments

CHAPTER 6. FILTERING ALGORITHMS FOR OCCUPANT TRACKING 153

can produce the parameters and models needed to integrate the readings into the particle
filtering framework.

154

Chapter 7

Conclusions and Future Work

7.1 Contributions and status of the work

Applying estimation techniques towards real-world problems and using practical sensing in-
frastructures has particular challenges when facing mobile environments. However, these
challenges can be overcome when mathematical and technological tools are properly chosen
and applied towards the estimation problem. In this dissertation, we have described sev-
eral mathematical estimation tools which were successfully adapted and applied towards a
real-world scenario: Ensemble Kalman Filtering was used to estimate river currents given
measurements from Lagrangian sensors. PDE estimators were used to estimate the amount
of CO2 generated by humans in a conference room. Particle filters were used to estimate
the position of an occupant with radio signal strength readings. We have also described two
sensing architectures which provide the measurement inputs necessary for the estimation
tools: the Floating Sensor Network and the environmental sensing platform.

The contribution of the Floating Sensor Network is to enable more types of Lagrangian
river studies via the development of two novel drifter designs: the passive Android drifter
and the active Generation 3 drifter. Due to the low manufacturing cost of the units (around
$300), the Android drifter allows scientists to perform studies with a highly dense observation
of the river state, and satisfy cost constraints. As well, the real-time remote reporting ability
allows scientists to find and retrieve the units much easier than if the drifters only logged
their measurements locally. The motorized Generation 3 drifter design is also easily mass-
produced and has the unique ability to maneuver itself to avoid shorelines using an advanced
Hamilton-Jacobi safety control technique that we developed. This drifter gives scientists the
ability to conduct drifter studies in many parts of the river which cannot be otherwise
sensed, due to factors such as wind, pushing passive drifters into the shorelines. Currently,
we lend the Android drifter fleet to other environmental research groups within Stanford,
the University of California Davis, and the US Geographical Survey.

We have also contributed an architecture for the sensing of mobile occupants in a build-
ing. A sensor device was designed which uses WiFi for robust data delivery and is also

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 155

low-power enough to last for over 5 years on a battery. At the same time, the sensor is able
to collect a rich set of environmental variables from its suite of on-board instruments, and is
expandable to take measurements from nearly any other instrument, such as a CO2 sensor.
The device is also small enough to be carried by occupants or be deployed in size-constrained
locations. The long battery life and compatibility with existing WiFi infrastructure result
in a low-cost of deployment and maintenance. The environmental sensing platform is un-
der active development and deployment. Currently, we have produced 100 of the “Version
3” environmental sensor devices for deployment at UC Berkeley’s Center for Research in
Energy Systems Transformation (CREST) laboratory and the Singapore Berkeley Building
Efficiency and Sustainability in the Tropics (SinBerBEST) headquarters at the Campus for
Research Excellence and Technological Enterprise (CREATE) tower in Singapore. There are
eventual plans for inserting the measurements into a cluster-computing distributed database
with nodes in both Singapore and Berkeley. After this, the measurements will be available
alongside data from the buildings’ lighting, HVAC, and electrical systems.

7.2 Future applications

We envision many avenues of extension to the work described in this dissertation. During
our development of the active drifters, we explored the idea of a depth-profiling drifter, which
used a buoyancy control system allowing it to dive underwater. This capability would not
only allow 3-dimensional drifter studies, but also allow the drifters to leverage underwater
currents to carry them to a desired destination. We have have also prototyped Android-
based active drifters which have the capabilities of the active Generation 3 drifter, but are
significantly more economical due to using off-the-shelf Android smartphones.

Our experiences in developing the Hamilton-Jacobi safety control technique can be ap-
plied to other mobile environments which have mobility constraints. We imagine that mete-
orological sensing could be augmented with underactuated gliders, kites, and balloons which
have limited control authority, but can navigate enough to ride global wind currents to their
destination. Minimum time-to-reach functions, calculated as an intermediate step of the
safety control method, are also very powerful and can be used for other control algorithms.
For instance, we have explored finding Zermelo-Voronoi partitions [139] for distributed con-
trol of drifter fleets. These partitions can be generated by finding the intersections of mini-
mum time-to-reach functions emanating from each drifter in the fleet.

There is also significant interest by other researchers into the progression of the environ-
mental platform due to its suite of sensors supporting indoor climate and energy efficient
control studies. One project is to create a “building in a suitcase” which includes several of
the sensor devices, an access point, and a gateway PC with a mobile Internet connection.
With this, scientists or building contractors could rapidly deploy a functional environmental
sensor network to survey a building site.

Finally, we envision that the particle filtering framework will inspire future research in
this direction, as discussed in Section 6.5. An immediate goal is to extend the particle filter

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 156

to perform occupancy estimation as well as occupant tracking. In the further future, we
are especially excited about the flexibility in the types of measurements that the particle
filter can accept. This is because future smart buildings will undoubtedly be outfitted with
a plethora of sensors, such as temperature, light, occupancy (passive infrared and ultra-
sound), and plugload meters (i.e. devices which measure power consumption of appliances).
Our tracking framework could theoretically be installed on such a smart building and pro-
vide occupant tracking and occupancy estimation services without requiring any additional
dedicated infrastructure. Coupled with occupancy-aware control algorithms, this is clear ad-
vantage for future smart buildings to save energy without incurring prohibitive installation
costs.

More generally, this dissertation exhibits solutions to real-world estimation challenges. In
many cases, these solutions are not specific to the setting for which they were designed. For
instance, the environmental sensing architecture was extended from, and shared significant
portions of source code with, the Floating Sensor Network. Essentially we are building a
library of algorithms and tools (both hardware and software) for future studies in mobile
environments. Our goal is to give other researchers a head-start into their own experiments,
either by adapting the techniques developed by us, or finding inspiration in the design choices
we have made while designing their own platforms.

157

Bibliography

[1] P. Samar and S. B. Wicker. “On the behavior of communication links of a node in a
multi-hop mobile environment”. In: 5th ACM international symposium on mobile ad
hoc networking and computing. ACM. 2004, pp. 145–156.

[2] P. Bergamo and G. Mazzini. “Localization in sensor networks with fading and mobil-
ity”. In: 13th IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications. Vol. 2. IEEE. 2002, pp. 750–754.

[3] G. Evensen. “Sequential data assimilation with a nonlinear quasi-geostrophic model
using Monte Carlo methods to forecast error statistics”. In: Journal of Geophysical
Research 99.C5 (1994), pp. 10143–10162. doi: 10.1029/94JC00572.

[4] M. Krstic and A. Smyshlyaev. Boundary control of PDEs: A course on backstepping
designs. Vol. 16. SIAM, 2008.

[5] N. J. Gordon, D. J. Salmond, and A. F. Smith. “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation”. In: IEE Proceedings F (Radar and Signal Pro-
cessing). Vol. 140. 2. IET. 1993, pp. 107–113.

[6] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, 2005.

[7] DWR Drops State Water Project Allocation to Zero, Seeks to Preserve Remaining
Supplies. Jan. 31, 2014. url: http://www.water.ca.gov/news/newsreleases/

2014/013114pressrelease.pdf.

[8] Floating sensor network. 2010. url: http://float.berkeley.edu/.

[9] T. Conomos, R. Smith, and J. Gartner. “Environmental setting of San Francisco
Bay”. In: Hydrobiologia 129.1 (1985), pp. 1–12.

[10] J. C. Swallow. “A neutral-buoyancy float for measuring deep currents”. In: Deep Sea
Research 3.1 (1955), pp. 74–81. doi: doi:10.1016/0146-6313(55)90037-X.

[11] D. D. Clark. “Overview of the Argos system”. In: OCEANS ’89. Proceedings. Vol. 3.
Sept. 1989, pp. 934–939. doi: 10.1109/OCEANS.1989.586711.

[12] R. E. Davis. “Drifter observations of coastal surface currents during CODE: The
method and descriptive view”. In: Journal of Geophysical Research 90.C3 (1985),
pp. 4741–4755. doi: 10.1029/JC090iC03p04741.

http://dx.doi.org/10.1029/94JC00572
http://www.water.ca.gov/news/newsreleases/2014/013114pressrelease.pdf
http://www.water.ca.gov/news/newsreleases/2014/013114pressrelease.pdf
http://float.berkeley.edu/
http://dx.doi.org/doi:10.1016/0146-6313(55)90037-X
http://dx.doi.org/10.1109/OCEANS.1989.586711
http://dx.doi.org/10.1029/JC090iC03p04741

BIBLIOGRAPHY 158

[13] D. S. Bitterman and D. V. Hansen. “The design of a low cost tropical drifter buoy”.
In: Marine Data Systems International Symposium (MDS). 1986, pp. 575–581.

[14] P. P. Niiler, R. E. Davis, and H. J. White. “Water-following characteristics of a mixed
layer drifter”. In: Deep Sea Research Part A. Oceanographic Research Papers 34.11
(1987), pp. 1867–1881. doi: 10.1016/0198-0149(87)90060-4.

[15] A. Tinka, M. Rafiee, and A. M. Bayen. “Floating sensor networks for river studies”.
In: IEEE Systems Journal (2012). to appear; accepted Nov. 2011.

[16] J. C. Perez et al. “Development of a cheap, GPS-based, radio-tracked, surface drifter
for closed shallow-water bays”. In: IEEE/OES 7th Working Conference on Current
Measurement Technology. Mar. 2003, pp. 66–69. doi: 10.1109/CCM.2003.1194285.

[17] J. Austin and S. Atkinson. “The design and testing of small, low-cost GPS-tracked
surface drifters”. In: Estuaries 27.6 (Dec. 2004), pp. 1026–1029. doi: 10 . 1007 /

BF02803428.

[18] J. Beard et al. “Mobile phone based drifting lagrangian flow sensors”. In: IEEE 3rd In-
ternational Conference on Networked Embedded Systems for Every Application (NE-
SEA). IEEE. 2012, pp. 1–7.

[19] Android Developers. Google, Inc. 2014. url: http://developer.android.com/.

[20] K. Weekly et al. “Autonomous river navigation using the Hamilton-Jacobi framework
for underactuated vehicles”. In: IEEE Transactions on Robotics (2014). in review.

[21] C. Oroza et al. “Design of a network of robotic Lagrangian sensors for shallow water
environments with case studies for multiple applications”. In: Journal of Mechanical
Engineering Science (2012). in review.

[22] Google. Protocol Buffers: Google’s Data Interchange Format. url: https : / /

developers.google.com/protocol-buffers/.

[23] K. Ang, G. Chong, and Y. Li. “PID control system analysis, design, and technology”.
In: IEEE Transactions on Control Systems Technology 13.4 (2005), pp. 559–576.

[24] P. J. Van Leeuwen and G. Evensen. “Data assimilation and inverse methods in terms
of a probabilistic formulation”. In: Monthly Weather Review 124.12 (1996), pp. 2898–
2913.

[25] P. L. Houtekamer and H. L. Mitchell. “Data assimilation using an ensemble Kalman
filter technique”. In: Monthly Weather Review 126.3 (1998), pp. 796–811. doi: 10.

1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

[26] P. L. Houtekamer and H. L. Mitchell. “A sequential ensemble Kalman filter for at-
mospheric data assimilation”. In: Monthly Weather Review 129.1 (2001), pp. 123–
137.

[27] T. M. Hamill and C. Snyder. “A hybrid Ensemble Kalman Filter–3D variational
analysis scheme.” In: Monthly Weather Review 128.8 (2000).

http://dx.doi.org/10.1016/0198-0149(87)90060-4
http://dx.doi.org/10.1109/CCM.2003.1194285
http://dx.doi.org/10.1007/BF02803428
http://dx.doi.org/10.1007/BF02803428
http://developer.android.com/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://dx.doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2

BIBLIOGRAPHY 159

[28] C. L. Keppenne and M. M. Rienecker. “Initial testing of a massively parallel ensem-
ble Kalman filter with the Poseidon isopycnal ocean general circulation model.” In:
Monthly Weather Review 130.12 (2002).

[29] J. P. Kaipio and E. Somersalo. Statistical and computational inverse problems.
Vol. 160. Springer, 2005.

[30] J. M. Huttunen and J. P. Kaipio. “Approximation error analysis in nonlinear state
estimation with an application to state-space identification”. In: Inverse Problems
23.5 (2007), p. 2141. doi: 10.1088/0266-5611/23/5/019.

[31] J. M. Huttunen and J. P. Kaipio. “Approximation errors in nonstationary inverse
problems”. In: Inverse Problems and Imaging 1.1 (2007), p. 77. doi: 10.3934/ipi.

2007.1.77.

[32] A. Nissinen, V. P. Kolehmainen, and J. P. Kaipio. “Compensation of modelling errors
due to unknown domain boundary in electrical impedance tomography”. In: IEEE
Transactions on Medical Imaging 30.2 (2011), pp. 231–242. doi: 10.1109/TMI.2010.

2073716.

[33] Q. Wu, X. Litrico, and A. M. Bayen. “Data reconciliation of an open channel flow
network using modal decompositions”. In: Advances in Water Resources 32.2 (2009),
pp. 193–204. doi: 10.1016/j.advwatres.2008.10.009.

[34] Q. Wu et al. “Variational Lagrangian data assimilation in open channel networks”.
In: Water Resources Research (2014). in review.

[35] J. Latombe. Robot motion planning. Springer Verlag, 1990.

[36] S. LaValle. Planning algorithms. Cambridge Univ Pr, 2006.

[37] S. Sundar and Z. Shiller. “Optimal obstacle avoidance based on the Hamilton-Jacobi-
Bellman equation”. In: IEEE transactions on robotics and automation 13.2 (1997),
pp. 305–310.

[38] A. Tinka et al. “Viability-based computation of spatially constrained minimum time
trajectories for an autonomous underwater vehicle: implementation and experiments”.
In: American Control Conference. June 2009.

[39] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre. “Set-valued numerical analysis
for optimal control and differential games”. In: Stochastic and Differential Games:
Theory and Numerical Methods 4 (1999), pp. 177–247.

[40] A. Bayen et al. “A differential game formulation of alert levels in ETMS data for
high altitude traffic”. In: Proceedings of the AIAA Guidance, Navigation, and Control
Conference. Aug. 2003.

[41] I. Mitchell, A. Bayen, and C. Tomlin. “A time-dependent Hamilton-Jacobi formulation
of reachable sets for continuous dynamic games”. In: IEEE Transactions on Automatic
Control 50.7 (2005), pp. 947–957.

http://dx.doi.org/10.1088/0266-5611/23/5/019
http://dx.doi.org/10.3934/ipi.2007.1.77
http://dx.doi.org/10.3934/ipi.2007.1.77
http://dx.doi.org/10.1109/TMI.2010.2073716
http://dx.doi.org/10.1109/TMI.2010.2073716
http://dx.doi.org/10.1016/j.advwatres.2008.10.009

BIBLIOGRAPHY 160

[42] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of
Hamilton-Jacobi-Bellman equations. Birkhauser Boston, 2008.

[43] J. Sethian. Level set methods and fast marching methods: evolving interfaces in com-
putational geometry, fluid mechanics, computer vision, and materials science. 3. Cam-
bridge University Press, 1999.

[44] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces. Vol. 153.
Springer Verlag, 2003.

[45] I. Mitchell. “A toolbox of level set methods”. In: UBC Department of Computer
Science Technical Report 11 (2007).

[46] R. Bellman. “Dynamic Programming”. In: Princeton University Press (1957).

[47] R. Isaacs. Differential Games: A mathematical theory with applications to warfare
and pursuit, control and optimization. 1965.

[48] S. Osher. “A level set formulation for the solution of the Dirichlet problem for
Hamilton–Jacobi equations”. In: SIAM Journal on Mathematical Analysis 24 (1993),
p. 1145.

[49] J. W. Thomas. Numerical partial differential equations: finite difference methods.
Vol. 1. Springer, 1995.

[50] E. Ateljevich et al. “CFD modeling in the San Francisco Bay and Delta”. In: 4th
SIAM Conference on Mathematics for Industry. 2009.

[51] J. Lygeros, C. Tomlin, and S. Sastry. “Controllers for reachability specifications for
hybrid systems”. In: Automatica-Oxford 35 (1999), pp. 349–370.

[52] C. Cassandras and S. Lafortune. Introduction to discrete event systems. Vol. 11.
Kluwer academic publishers, 1999.

[53] L. Pérez-Lombard, J. Ortiz, and C. Pout. “A review on buildings energy consumption
information”. In: Energy and buildings 40.3 (2008), pp. 394–398.

[54] Y. Agarwal et al. “Occupancy-driven energy management for smart building automa-
tion”. In: 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency
in Building. ACM. 2010, pp. 1–6.

[55] C. Chao and J. Hu. “Development of a dual-mode demand control ventilation strategy
for indoor air quality control and energy saving”. In: Building and Environment 39.4
(2004), pp. 385–397.

[56] V. L. Erickson, M. Á. Carreira-Perpiñán, and A. E. Cerpa. “OBSERVE: Occupancy-
based system for efficient reduction of HVAC energy”. In: 10th International Confer-
ence on Information Processing in Sensor Networks (IPSN). IEEE. 2011, pp. 258–
269.

[57] ZigBee Alliance. ZigBee specification. 2006.

BIBLIOGRAPHY 161

[58] T. Watteyne et al. “OpenWSN: a standards-based low-power wireless development
environment”. In: Transactions on Emerging Telecommunications Technologies 23.5
(2012), pp. 480–493.

[59] P. Levis et al. “TinyOS: An operating system for sensor networks”. In: Ambient in-
telligence. Springer, 2005, pp. 115–148.

[60] S. Dawson-Haggerty et al. “sMAP: a simple measurement and actuation profile for
physical information”. In: 8th ACM Conference on Embedded Networked Sensor Sys-
tems. ACM. 2010, pp. 197–210.

[61] ReadingDB. 2014. url: https://github.com/stevedh/readingdb.

[62] INCITS, ANSI. “ISO/IEC 13239”. In: Information technology–Telecommunications
and information exchange between systems–High-level Data Link Control (HDLC)
procedures (2002).

[63] Arduino. 2014. url: http://www.arduino.cc/ (visited on 02/16/2014).

[64] P. Dutta et al. “A building block approach to sensornet systems”. In: 6th ACM con-
ference on Embedded network sensor systems. ACM. 2008, pp. 267–280.

[65] J. L. Hill and D. E. Culler. “Mica: A wireless platform for deeply embedded networks”.
In: IEEE Micro 22.6 (2002), pp. 12–24.

[66] J. Polastre, R. Szewczyk, and D. Culler. “Telos: enabling ultra-low power wireless
research”. In: Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth
International Symposium on. IEEE. 2005, pp. 364–369.

[67] H. Dubois-Ferrière et al. “TinyNode: a comprehensive platform for wireless sensor
network applications”. In: 5th international conference on Information processing in
sensor networks. ACM. 2006, pp. 358–365.

[68] M. Ceriotti et al. “Monitoring heritage buildings with wireless sensor networks: the
Torre Aquila deployment”. In: International Conference on Information Processing
in Sensor Networks. IEEE Computer Society. 2009, pp. 277–288.

[69] Microchip Technology Inc. RNXV Datasheet. 2012. url: http://ww1.microchip.

com / downloads / en / DeviceDoc / rn - 171 - xv - ds - v1 . 04r . pdf (visited on
10/29/2012).

[70] L. Li et al. “The applications of WiFi-based wireless sensor network in internet of
things and smart grid”. In: 6th IEEE Conference on Industrial Electronics and Ap-
plications (ICIEA). IEEE. 2011, pp. 789–793.

[71] Digi International Inc. XBee sensor. 2014. url: http://www.digi.com/pdf/ds_

xbeesensors.pdf (visited on 02/13/2014).

[72] Powercast Corporation. Lifetime power wireless sensor system. 2014. url: http :

/ / www . powercastco . com / PDF / wireless - sensor - system . pdf (visited on
02/13/2014).

https://github.com/stevedh/readingdb
http://www.arduino.cc/
http://ww1.microchip.com/downloads/en/DeviceDoc/rn-171-xv-ds-v1.04r.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/rn-171-xv-ds-v1.04r.pdf
http://www.digi.com/pdf/ds_xbeesensors.pdf
http://www.digi.com/pdf/ds_xbeesensors.pdf
http://www.powercastco.com/PDF/wireless-sensor-system.pdf
http://www.powercastco.com/PDF/wireless-sensor-system.pdf

BIBLIOGRAPHY 162

[73] OpenMote: Open hardware for the Internet of Things. May 2012. url: http://www.

openmote.com/.

[74] L. Doherty, W. Lindsay, and J. Simon. “Channel-specific wireless sensor network path
data”. In: Computer Communications and Networks, 2007. ICCCN 2007. Proceedings
of 16th International Conference on. IEEE. 2007, pp. 89–94.

[75] Measurement Specialties. Humidity and temperature Sensor - HTU21D. 2014. url:
http : / / www . meas - spec . com / product / humidity / HTU21D . aspx (visited on
02/17/2014).

[76] ams AG. TSL2560 ambient light sensor with SMBus Interface. 2014. url: http:

//www.ams.com/eng/Products/Light-Sensors/Light-to-Digital-Sensors/

TSL2560.

[77] STMicroelectronics. LIS3DH MEMS digital output motion sensor ultra low-power high
performance 3-axes "nano" accelerometer. 2014. url: http://www.st.com/web/en/

catalog/sense_power/FM89/SC444/PF250725#.

[78] Panasonic Corporation. AMN41121 | NaPiOn Series. 2014. url: http : / / www3 .

panasonic.biz/ac/e/search_num/index.jsp?c=detail&part_no=AMN41121.

[79] K. Weekly, N. Bekiaris-Liberis, and A. M. Bayen. “Modeling and estimation of the
humans’ effect on the CO2 dynamics inside a conference room”. Under review. 2014.

[80] CO2Meter, Inc. K-30 10,000ppm CO2 Sensor. 2014. url: http://www.co2meter.

com/products/k-30-co2-sensor-module.

[81] Linear Technology. Dust Networks SmartMesh Power and Performance Estimator.
2014. url: http://www.linear.com/docs/42452.

[82] Linear Technology. SmartMesh IP Application Notes. 2014. url: http : / / www .

linear.com/docs/43189.

[83] B. T. Rosenblum. Collecting occupant presence data for use in energy management of
commercial buildings. 2012. url: http://escholarship.org/uc/item/1pz2528w.

[84] H. Liu et al. “Survey of wireless indoor positioning techniques and systems”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
37.6 (2007), pp. 1067–1080.

[85] K. Kaemarungsi and P. Krishnamurthy. “Modeling of indoor positioning systems
based on location fingerprinting”. In: 23rd Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM). Vol. 2. IEEE. 2004, pp. 1012–
1022.

[86] P. Bahl and V. N. Padmanabhan. “RADAR: An in-building RF-based user location
and tracking system”. In: 19th Joint Conference of the IEEE Computer and Commu-
nications Societies. Vol. 2. IEEE. 2000, pp. 775–784.

http://www.openmote.com/
http://www.openmote.com/
http://www.meas-spec.com/product/humidity/HTU21D.aspx
http://www.ams.com/eng/Products/Light-Sensors/Light-to-Digital-Sensors/TSL2560
http://www.ams.com/eng/Products/Light-Sensors/Light-to-Digital-Sensors/TSL2560
http://www.ams.com/eng/Products/Light-Sensors/Light-to-Digital-Sensors/TSL2560
http://www.st.com/web/en/catalog/sense_power/FM89/SC444/PF250725#
http://www.st.com/web/en/catalog/sense_power/FM89/SC444/PF250725#
http://www3.panasonic.biz/ac/e/search_num/index.jsp?c=detail&part_no=AMN41121
http://www3.panasonic.biz/ac/e/search_num/index.jsp?c=detail&part_no=AMN41121
http://www.co2meter.com/products/k-30-co2-sensor-module
http://www.co2meter.com/products/k-30-co2-sensor-module
http://www.linear.com/docs/42452
http://www.linear.com/docs/43189
http://www.linear.com/docs/43189
http://escholarship.org/uc/item/1pz2528w

BIBLIOGRAPHY 163

[87] H. Zou et al. “An RFID indoor positioning system by using weighted path loss and
extreme learning machine”. In: 1st IEEE International Conference on Cyber-Physical
Systems, Networks, and Applications (CPSNA). 2013, pp. 66–71. doi: 10 . 1109 /

CPSNA.2013.6614248.

[88] C. A. Redlich, J. Sparer, and M. R. Cullen. “Sick-building syndrome”. In: The Lancet
349.9057 (1997), pp. 1013–1016.

[89] P. Wargocki et al. “The effects of outdoor air supply rate in an office on perceived air
quality, sick building syndrome (SBS) symptoms and productivity”. In: Indoor Air
10.4 (2000), pp. 222–236.

[90] D. Wyon. “The effects of indoor air quality on performance and productivity”. In:
Indoor air 14.s7 (2004), pp. 92–101.

[91] O. Seppänen, W. Fisk, and M. Mendell. “Association of ventilation rates and CO2

concentrations with health and other responses in commercial and institutional build-
ings”. In: Indoor air 9.4 (1999), pp. 226–252.

[92] A. Zanobetti and J. Schwartz. “The effect of fine and coarse particulate air pollution
on mortality: a national analysis”. In: Environmental Health Perspectives 117.6 (2009),
p. 898.

[93] J. Qian and A. R. Ferro. “Resuspension of dust particles in a chamber and associated
environmental factors”. In: Aerosol Science and Technology 42.7 (2008), pp. 566–578.

[94] Dust sensor module P/N: DSM501 Specifications. 2013. url: http : / / www .

samyoungsnc.com/products/3-1%20Specification%20DSM501.pdf.

[95] PPD-20V (Particle Sensor Unit). 2013. url: http://www.shinyei.co.jp/stc/

optical/main_ppd20v_e.html.

[96] GT-526S Handheld Particle Counter. 2013. url: http : / / www . metone . com /

documents/GT-526S-Datasheet.pdf.

[97] J. Qian et al. “Size-resolved emission rates of airborne bacteria and fungi in an occu-
pied classroom”. In: Indoor air (2012).

[98] D. Fox et al. “Bayesian techniques for location estimation”. In: Workshop on Location-
Aware Computing. 2003, pp. 16–18.

[99] S. Maskell and N. Gordon. “A tutorial on particle filters for on-line nonlinear/non-
Gaussian Bayesian tracking”. In: Target Tracking: Algorithms and Applications (Ref.
No. 2001/174), IEEE. IET. 2001, pp. 2–1.

[100] E. F. Nakamura, A. A. Loureiro, and A. C. Frery. “Information fusion for wireless
sensor networks: methods, models, and classifications”. In: ACM Computing Surveys
(CSUR) 39.3 (2007), p. 9.

[101] U. Satish et al. “Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2

concentrations on human decision-making performance”. In: Environmental health
perspectives 120.12 (2012), p. 1671.

http://dx.doi.org/10.1109/CPSNA.2013.6614248
http://dx.doi.org/10.1109/CPSNA.2013.6614248
http://www.samyoungsnc.com/products/3-1%20Specification%20DSM501.pdf
http://www.samyoungsnc.com/products/3-1%20Specification%20DSM501.pdf
http://www.shinyei.co.jp/stc/optical/main_ppd20v_e.html
http://www.shinyei.co.jp/stc/optical/main_ppd20v_e.html
http://www.metone.com/documents/GT-526S-Datasheet.pdf
http://www.metone.com/documents/GT-526S-Datasheet.pdf

BIBLIOGRAPHY 164

[102] M. J. Thorpe et al. “Cavity-enhanced optical frequency comb spectroscopy: applica-
tion to human breath analysis”. In: Optics Express 16.4 (2008), pp. 2387–2397.

[103] E. S. R. Laboratory. Up-to-date weekly average CO2 at Mauna Loa. 2014. url: http:

//www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html.

[104] A. C. Megri and F. Haghighat. “Zonal modeling for simulating indoor environment
of buildings: review, recent developments, and applications”. In: HVAC&R Research
13.6 (2007), pp. 887–905.

[105] A. K. Persily. “Evaluating building IAQ and ventilation with indoor carbon dioxide”.
In: ASHRAE Transactions 103 (1997), pp. 193–204.

[106] L Mora, A. Gadgil, and E Wurtz. “Comparing zonal and CFD model predictions of
isothermal indoor airflows to experimental data”. In: Indoor air 13.2 (2003), pp. 77–
85.

[107] A. Baughman, A. Gadgil, and W. Nazaroff. “Mixing of a point source pollutant by
natural convection flow within a room”. In: Indoor air 4.2 (1994), pp. 114–122.

[108] K. Weekly, N. Bekiaris-Liberis, and A. M. Bayen. “Modeling and estimation of the
humans’ effect on the CO2 dynamics inside a conference room”. In: (Mar. 20, 2014).
arXiv: 1403.5085.

[109] P. A. Ioannou and J. Sun. Robust adaptive control. Prentice-Hall, Inc., 1995.

[110] M. Krstic, I. Kanellakopoulos, P. V. Kokotovic, et al. Nonlinear and adaptive control
design. Vol. 8. John Wiley & Sons New York, 1995.

[111] A. Smyshlyaev and M. Krstic. Adaptive control of parabolic PDEs. Princeton Univer-
sity Press, 2010.

[112] S. Moura, M Krstic, and N. Chaturvedi. “Adaptive PDE observer for battery
SOC/SOH estimation via an electrochemical model”. In: ASME Journal of Dynamic
Systems, Measurement, and Control 136 (2014).

[113] A. H. Sayed, A. Tarighat, and N. Khajehnouri. “Network-based wireless location:
challenges faced in developing techniques for accurate wireless location information”.
In: IEEE Signal Processing Magazine 22.4 (2005), pp. 24–40.

[114] N. B. Priyantha. “The cricket indoor location system”. PhD thesis. Massachusetts
Institute of Technology, 2005.

[115] S. Lanzisera, D. T. Lin, and K. S. Pister. “RF time of flight ranging for wireless
sensor network localization”. In: International Workshop on Intelligent Solutions in
Embedded Systems. IEEE. 2006, pp. 1–12.

[116] L. M. Ni et al. “LANDMARC: indoor location sensing using active RFID”. In: Wire-
less networks 10.6 (2004), pp. 701–710.

[117] S. Thrun et al. “Robust Monte Carlo localization for mobile robots”. In: Artificial
intelligence 128.1 (2001), pp. 99–141.

http://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html
http://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html
http://arxiv.org/abs/1403.5085

BIBLIOGRAPHY 165

[118] D. Schulz, D. Fox, and J. Hightower. “People tracking with anonymous and id-sensors
using rao-blackwellised particle filters”. In: International Joint Conference on Artifi-
cial Intelligence (IJCAI). 2003, pp. 921–928.

[119] F. Evennou and F. Marx. “Advanced integration of WiFi and inertial navigation sys-
tems for indoor mobile positioning”. In: EURASIP journal on applied signal processing
2006 (2006), pp. 164–164.

[120] S. Beauregard, Widyawan, and M. Klepal. “Indoor PDR performance enhancement
using minimal map information and particle filters”. In: IEEE/ION Position, Location
and Navigation Symposium (PLANS). IEEE. 2008, pp. 141–147.

[121] A. Haeberlen et al. “Practical robust localization over large-scale 802.11 wireless net-
works”. In: 10th annual international conference on mobile computing and networking.
ACM. 2004, pp. 70–84.

[122] A. Bruce and G. Gordon. “Better motion prediction for people-tracking”. In: IEEE
international conference on robotics and automation (ICRA). 2004.

[123] M. Bennewitz, W. Burgard, and S. Thrun. “Using EM to learn motion behaviors
of persons with mobile robots”. In: Conference on Intelligent Robots and Systems
(IROS). Lausanne, Switzerland, 2002.

[124] E. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische
Mathematik 1.1 (1959), pp. 269–271.

[125] H. Hashemi. “The indoor radio propagation channel”. In: Proceedings of the IEEE
81.7 (1993), pp. 943–968.

[126] D. Scott. Multivariate Density Estimation. Wiley, 1992.

[127] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for
Python. http://www.scipy.org/. 2001–.

[128] BeagleBone. http://beagleboard.org/Products/BeagleBone. 2013.

[129] Simple DirectMedia Layer. http://www.libsdl.org/. 2013.

[130] Pebble Technology Corp. Pebble Smartwatch. 2014. url: https://getpebble.com/.

[131] U. Maurer et al. “Location and activity recognition using eWatch: A wearable sensor
platform”. In: Ambient Intelligence in Everyday Life. Springer, 2006, pp. 86–102.

[132] B. Warneke et al. “Smart dust: Communicating with a cubic-millimeter computer”.
In: Computer 34.1 (2001), pp. 44–51.

[133] S. J. Preece et al. “Activity identification using body-mounted sensorsÂŮa review of
classification techniques”. In: Physiological measurement 30.4 (2009), R1.

[134] N. Ravi et al. “Activity recognition from accelerometer data”. In: AAAI. Vol. 5. 2005,
pp. 1541–1546.

http://www.scipy.org/
http://beagleboard.org/Products/BeagleBone
http://www.libsdl.org/
https://getpebble.com/

BIBLIOGRAPHY 166

[135] H. Wang et al. “WLAN-based pedestrian tracking using particle filters and low-cost
MEMS sensors”. In: 4th Workshop on Positioning, Navigation and Communication,
2007. WPNC’07. IEEE. 2007, pp. 1–7.

[136] D. Gusenbauer, C. Isert, and J Krosche. “Self-contained indoor positioning on off-the-
shelf mobile devices”. In: International conference on indoor positioning and indoor
navigation (IPIN). IEEE. 2010, pp. 1–9.

[137] J. Collin, O. Mezentsev, G. Lachapelle, et al. “Indoor positioning system using ac-
celerometry and high accuracy heading sensors”. In: ION GPS/GNSS 2003 Confer-
ence. 2003, pp. 9–12.

[138] B. Krach and P. Robertson. “Integration of foot-mounted inertial sensors into a
Bayesian location estimation framework”. In: 5th Workshop on Positioning, Navi-
gation and Communication, 2008. WPNC 2008. IEEE. 2008, pp. 55–61.

[139] E. Bakolas and P. Tsiotras. “The Zermelo–Voronoi diagram: A dynamic partition
problem”. In: Automatica 46.12 (2010), pp. 2059–2067.

