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Abstract This article presents a data assimilation method in a tidal system, where data from both Lagran-
gian drifters and Eulerian flow sensors were fused to estimate water velocity. The system is modeled by
first-order, hyperbolic partial differential equations subject to periodic forcing. The estimation problem can
then be formulated as the minimization of the difference between the observed variables and model out-
puts, and eventually provide the velocity and water stage of the hydrodynamic system. The governing
equations are linearized and discretized using an implicit discretization scheme, resulting in linear equality
constraints in the optimization program. Thus, the flow estimation can be formed as an optimization prob-
lem and efficiently solved. The effectiveness of the proposed method was substantiated by a large-scale
field experiment in the Sacramento-San Joaquin River Delta in California. A fleet of 100 sensors developed
at the University of California, Berkeley, were deployed in Walnut Grove, CA, to collect a set of Lagrangian
data, a time series of positions as the sensors moved through the water. Measurements were also taken
from Eulerian sensors in the region, provided by the United States Geological Survey. It is shown that the
proposed method can effectively integrate Lagrangian and Eulerian measurement data, resulting in a suited
estimation of the flow variables within the hydraulic system.

1. Introduction

The Sacramento-San Joaquin River Delta in California is experiencing a drastic decline in fresh water resour-
ces, while the water demand in California continues increasing [M€uller-Solger et al., 2002]. Large-scale
numerical flow models, such as Delta Simulation Model II (DSM2), sponsored by the California Department
of Water Resources, have been used as crucial water resources management tools, providing information
about tidal forcing, and salinity transport in the bays and channels of the Delta. A number of factors affect
the performance of these state-of-the-art models, such as parameter calibration, mesh generation, and
choice of numerical solver. More importantly, the performance of the model largely relies on the determina-
tion of open boundary conditions and initial conditions.

Traditionally, the boundary and initial conditions required in the large-scale numerical flow models have
been achieved via the Eulerian observations near the boundaries, for example, tidal gauge data, or through
satellite data retrieval. Unfortunately, these measurements at large watershed have their intrinsic limitations,
specifically small coverage and sparse sampling [Molcard et al., 2006]. Furthermore, installed Eulerian sen-
sors have often experienced many failures, such as broken gauges, sensor drifts, improper use of measuring
devices, and other random sources [Albuquerque and Biegler, 1996;Wu et al., 2009a].

In the last decades, techniques using surface and subsurface Lagrangian drifters have significantly
advanced, and take measurements while the drifters move along a trajectory. Lagrangian data, in particular
collected from surface drifters, provide instant information about the flow, which can be used to describe
flow advection and eddy dispersion. Compared to the traditional Eulerian sensors, Lagrangian sensors have
several advantages: the devices are inexpensive to build and maintain, and with the advancement in GPS
technology, they are capable of providing more and more detail information about the dynamic flows.
Because of this merit, Lagrangian data have been widely studied in the last two decades, in particular, in
the field of atmospheric and oceanic sciences [Miller et al., 1994; Fisher and Lary, 1995; Honnorat et al., 2009].
The effectiveness of the measurement has been verified in many flow studies in numerous meteorological
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and oceanic systems [Anthes, 1974; Poulain et al., 1992; Kuznetsov et al., 2003]. In recent years, one particular
utilization of drifter measurements is to map currents and their variability in various flow regions, for exam-
ple, on the North Atlantic [Garraffo et al., 2001; Flatau et al., 2003], tropical Atlantic [Xie and Carton, 2004],
and so on.

Lagrangian measurements are especially valuable in channel networks where Eulerian sensors are sparse or
not reliable. As an example, in the entire California Delta (approximately 1100 square miles), there are less
than 20 fixed USGS stations installed to monitor the flow, whereas the total length of waterways in the area
is more than 700 miles. In this case, traditional Eulerian measures usually result in rather coarse flow estima-
tion in the network domain, while Lagrangian data, reflecting local flow information in essence, would help
to refine the estimation in any specific channel. Also, as an alternative of current fixed Eulerian stations in
channel networks, a drifter fleet, capable of carrying multiple physical, chemical, or environmental sensors
as needed, can be promptly deployed in any specific flow domain of interest, or the areas where some
unexpected event happens.

It is noted, however, that raw Lagrangian flow data are rather difficult to use and interpret, due to the fact
that Lagrangian motion is often affected by local flow perturbations, which are caused by various physical
processes, such as turbulence, surface wind, vertical mixing, etc. [Cowen and Monismith, 1997]. For example,
one of the main obstacles of assimilating Lagrangian data into a hydrodynamic model in channel networks
is the well-known tidal trapping phenomenon [Fischer et al., 1979]. The trapping mechanism makes water
elevation and velocity out of phase, inducing flow dispersion and eddy diffusion at the junctions of chan-
nels. The drifter trajectory at these junctions, due to the turbulent mixing processes, usually displays a sto-
chastic ‘‘spaghetti-like’’ shape, which is indicative of slow currents. However, these small-scale features are
not fully addressed by the numerical models, and furthermore cause oscillation in the data assimilation pro-
cess. Lagrangian data acquired from the sensors therefore need to be preprocessed for ‘‘smoother’’ trajecto-
ries to exclude any small-scale perturbations, or measurement error due to hardware malfunctioning
[Honnorat et al., 2009]. Another difficulty in processing Lagrangian data are that most numerical models for
geophysical systems are solved either on a fixed grid in space or as spectral models, which do not relate to
the Lagrangian observations directly in terms of the model variables [Salman et al., 2006].

Lagrangian flow data collected in the field are usually further integrated into underlying shallow water equa-
tions (SWEs) model in one or two dimensions. The technique, namely data assimilation, is an approach to
obtain the ‘‘best’’ state estimation of a hydraulic system, given measurements, and a specific model. Here
‘‘best’’ usually refers to the minimization of an error norm. The estimation results are considered optimal in
a sense that they minimize differences in the collected observations within certain spatial and temporal
scales, and given dynamical or statistical relationships defined by the model [Gunson and Malanotte-Rizzoli,
1996; Nodet, 2006; Tinka et al., 2009]. Through the data assimilation technique, the observational data will
compensate for poorly specified model parameters and variables, such as boundary conditions, initial con-
ditions, and other physical processes not incorporated into the model.

Data assimilation can be approached in many different ways. Most of the existing data assimilation methods
are categorized into two groups: sequential assimilation methods [Ide et al., 1997] and variational assimila-
tion methods [Navon, 2009, 1986]. Sequential methods, including ensemble Kalman filtering [Salman et al.,
2006, 2008; Fan et al., 2004; Tossavainen et al., 2008; Evensen and Van Leeuwen, 2000], particle filtering [Van
Leeuwen, 2009; Budhiraja et al., 2007; Van Leeuwen and Melanie, 2013], optimal statistical interpolation [Mol-
card et al., 2003], Newtonian relaxation (sometimes called nudging) method [Paniconi et al., 2003], and so
on, usually involve a series of state analysis and updates, where the observational data are incorporated
into the state one step at a time. Consequently, the implementation of these methods requires significant
computing resources. Variational assimilation methods, on the other hand, could reduce the overall compu-
tational resources, since only one single optimization computation is performed using all the observational
data. In classical variational data assimilation, the adjoint method is used to efficiently compute the gradient
of the criterion [Kamachi and O’Brien, 1995; Doucet et al., 2001].

In this article, we develop a quadratic programming (QP)-based variational method to assimilate Lagrangian
flow data acquired in channel networks, without consuming much of computational resources. The method
poses the estimation of the flow state in a channel network as an optimization problem, by minimizing a
quadratic cost function—the norm of the difference between the drifter observations and the model

Water Resources Research 10.1002/2014WR015270

WU ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 1917



velocity predictions—and expressing the constraints in terms of linearized equalities and inequalities. The
problem can then be efficiently solved using any fast and robust algorithms available for these kind of
posted problems.

Furthermore, we use a one-dimensional linearized Saint-Venant model to represent the flow state, not only
because it is easy to implement and enables efficient computation, but also because, in many practical
cases, if the boundary and initial conditions are properly quantified, the one-dimensional estimation results
are adequate for decision making and water supply management to retrieve critical flow characteristics in
the domain of interest.

To assess the performance of the proposed QP method, we investigated a distributed network of channels,
subject to quasiperiodic tidal forcing, in the Sacramento-San Joaquin River Delta. A field operational test
was carried out with a fleet of 100 surface drifters, deployed within approximately 0.55 km2 of the river net-
work. During the approximately 4 h experiment, 325,000 GPS readings were taken from the surface drifters
and collected, in real time, onto a central server. It is the first experiment of this kind, conducted at such
scale, in which high-density Lagrangian data have been collected in a river environment. We demonstrate
that the proposed QP approach can successfully handle this drifter data to obtain accurate estimations,
and, as a result, the channel network system is adequately simulated using one-dimensional linearized
Saint-Venant model. The results also imply that the flow estimations in a channel network can be promptly
obtained in a robust and accurate manner, despite of the uncertainties or inaccuracy inherent from model
simplifications. Thus, flow estimations could be provided even as fast as real time and give water resource
management a useful tool to understand the river system.

The QP-based variational method was first introduced to tidal channel studies to estimate the open bound-
ary conditions using simulated Lagrangian data [Strub et al., 2009], and its applicability to a one-
dimensional channel network models was initially verified with specific channel data in Wu et al. [2009b].
An early version of the QP assimilation method on a two-dimensional linear hydrodynamic model over a
short time domain was presented in Tinka et al. [2010]. In this article, we extend the work with a much
more comprehensive set of experimental data, a realistic one-dimensional shallow water model, and a com-
plete treatment of the experimental method, numerical schemes, and hardware platform.

The theoretical contributions of this article are the formulation of inverse QP schemes developed from line-
arized one-dimensional shallow water model with linear constraints, and the use of Lagrangian measure-
ments to reconstruct the distributed flow state. The practical contributions lie in the fact that this is the first
time the QP method is actually applied to Lagrangian flow data for assimilation in a tide-driven system.

The remainder of the article is organized as follows: section 2 introduces the mathematical flow models in
open channels: a linear Saint-Venant model in a single river reach is derived after linearizing and discretizing
the governing equations, and a linear channel network model is constructed enforcing the flow compatibil-
ity at the junctions of channels. Section 3 formulates the quadratic programming method and specifies the
cost function. Section 4 describes our drifter experiment in the Sacramento-San Joaquin River Delta per-
formed on 9 May 2012. Section 5 elaborates the postprocessing of the drifter data, starting from data filter-
ing, and following with data assimilation. Section 6 presents the assimilation results and discusses the
effectiveness of the method by correlating the model predictions with flow velocity data collected either at
the Eulerian stations or from the Lagrangian drifters. Section 7 summarizes our drifter measurements and
data assimilation.

2. Hydrodynamic Model in Tide-Driven Channel Network

2.1. Linearized Saint-Venant Model in Tide-Driven Hydrodynamic System
Linearized one-dimensional Saint-Venant equations (also called shallow water equations in its one-
dimensional form) are commonly used in open-channel hydrodynamic systems which describe the dynam-
ics of the shallow water flow [Litrico and Fromion, 2004a, 2006; Sanders, 2001; Sanders and Katopodes, 1999].
They usually consider the first-order flow perturbations around the steady state flow variables, assuming
the quantity of the perturbation is much smaller than the steady state flow [Litrico and Fromion, 2009,
2004b; Wu et al., 2007]. This assumption does not always hold in a tide-driven hydrodynamic system, where
the perturbed velocity v(x, t) is sometimes comparable to the steady state velocity V0ðxÞ. Here
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ðx; tÞ 2 ð0; LÞ3<1 . Water depths in the channel network, on the other hand, are generally large quantities
and do not vary remarkably with respect to time. In such case, we introduce the mean state flow variables
VT ðx; tÞ and Y0ðxÞ to quantify the flow properties.

The mean state velocity VT ðx; tÞ is a function of both location and time, generally derived from the historical
flow data, reflecting the historical tide information; Y0ðxÞ is the steady state water depth, reflecting the
geometry of the hydrodynamic system. For a tide-driven system, the first-order velocity (respectively water
depth) perturbations are represented as vðx; tÞ5Vðx; tÞ2VT ðx; tÞ (respectively, yðx; tÞ5Yðx; tÞ2Y0ðxÞ). V(x, t)
is the average velocity ðm=sÞ across cross section Aðx; tÞ5TðxÞ � Yðx; tÞ, where Y(x, t) is the water depth (m)
and T(x) is the free surface width (m) for a rectangular cross section.

The linearized Saint-Venant equations can be expressed as:

yt1Y0ðxÞvx1V0ðxÞyx1
dY0ðxÞ

dx
v2a0y50 (1)

ðVT 1vÞt1VT ðxÞvx1gyx1b0ðxÞv2c0ðxÞy50 (2)

with a0ðxÞ; b0ðxÞ and c0ðxÞ given by

a05
VT ðx; tÞ

Y0ðxÞ
dY0ðxÞ

dx
(3)

b05
g

VT ðx; tÞ 2Sb2ð22F2
0Þ

dY0ðxÞ
dx

� �
(4)

c05
4T0g

3Y0ðxÞðT012Y0ðxÞÞ
Sb2ð12F2

0Þ
dY0ðxÞ

dx

� �
(5)

Sb is the bed slope m/m, g is the gravitational acceleration ðm=s2Þ, and F0 is the Froude number.

The chosen of VT ðx; tÞ inherently reflect the historical tidal condition on the experimental date. In practice,
we chose the tidal velocity from the previous day or several days before. An iteration over this velocity tra-
jectory would likely result in a more accurate flow estimation; however, a simple and effective approach
using the first guess of VT ðx; tÞ has been proven to work very well.

During the model setup, the water stage, combined with geometry data measured by the Cross Section
Development Program (CSDP) [Tom, 1998], was used to determine the total water depth, which was subse-
quently incorporated in the model. In the 1-D Linearized Shallow Water model, a uniform rectangular chan-
nel is assumed to represent the river geometry for certain branch. The bed level slope was identified by
linearly interpolating between the bed levels of three major hydrometric stations.

2.2. Numerical Discretization Scheme
Equations (1) and (2) allow both implicit and explicit discretization schemes to be implemented. The implicit
scheme is chosen here, as it is not restricted by the Courant–Friedrichs–Lewy (CFL) condition, and the
inconvenient small time step can be avoided.

Applying the Preissman implicit finite difference scheme [Chau and Lee, 1991] to equations (1) and (2) leads
to:

f ðjDx; kDtÞ � h
2
ðf k11

j11 1f k11
j Þ1 12h

2
ðf k

j111f k
j Þ (6)

@f
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j
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1ð12hÞ

f k
j112f k

j
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(7)

@f
@t
�
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j 2f k
j112f k

j

2Dt
(8)

where f(x, y) is the flow variables (either v or y in our case), h 2 ð0; 1Þ is a time weighting coefficient, j
denotes the space index and k is the time index. This scheme has the advantage of allowing nonuniform
spatial grids and is unconditionally stable as long as h > 0:5. In practice, h is usually set to 1 to achieve a
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fully implicit scheme. This enables a more flexible schematization of the river, especially in the case of
strongly varying cross sections. The time step is a function of the required accuracy only and can be chosen
freely.

The linear form model for a single channel I can be represented as:

Ek;IXk11;I5Ak;IXk;I1Bk;IUk;I (9)

where Xk;I is the state variable for channel I at time tk:

Xk;I5ðvk;1;I; yk;1;I; � � � ; vk;lI ;I; yk;lI ;IÞ
T (10)

The velocity and stage perturbation at location jDx and time tk in channel I are denoted as vk;j;I and yk;j;I ,
respectively. The downstream point of channel I is denoted as lI and the index of the upstream point is 1.
The boundary conditions at time tk are represented by Uk;I , which includes the velocity at the upstream and
water stage at the downstream end:

Uk;I5ðuk;1;I; yk;lI ;IÞ
T (11)

The matrices Ek;I;Ak;I , and Bk;I are constructed by assembling equations (1) and (2) discretized using above
numerical method equations (6–8).

2.3. Network Model
The one-dimensional channel network model is constructed by decomposing the channel network into
individual channel reaches, and applying the linear model equation (9) to each branch. Internal boundary
conditions are imposed at every junction to ensure flow mass and energy conservation. For a river junction
illustrated in Figure 1, the linear equations of hydraulic internal boundary conditions at the junction are
assured by mass and energy conservation as follows.

Assuming no change in storage volume within the junction, the continuity equation can be expressed as:

vk;l1 ;1 � T15vk;1;2 � T21vk;1;3 � T3 (12)

where TI is the average free surface width for channel I, I 5 1, 2, 3.

Assuming the flow in all the branches meeting at the junction is subcritical, the equation for energy conser-
vation can be approximated by a kinematic compatibility condition as follows:

yk;l1;15yk;1;25yk;1;3 (13)

To model the entire network, the conservation equations for each individual channel and interior junctions
are assembled together. The flow variables inside the domain are therefore related by a linear equation:

Ek Xk115Ak Xk1Bk Uk (14)

where Xk is the concatenated vector of
Xk;I and Uk denotes the external
boundary conditions of the channel
network system.

3. Formulation of the Data
Assimilation Method

3.1. ‘‘Pseudo-Lagrangian’’ Data
Assimilation
One major issue to assimilate Lagran-
gian data into hydrodynamic models is
the quantification of the connection
between Lagrangian measurements
and Eulerian velocity. A simple and
intuitive solution to this challenge is to
approximate the Eulerian field by

Channel 3

Channel 1
Channel 2

1
2

3

Internal BC

External BC

External BC

External BC

Figure 1. Flow compatibility of channel junctions: (1) no change in storage volume
within the junction, equation (12); (2) kinematic compatibility condition, equation (13).
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dividing the position displacement dr with the sampling period dt, and the Eulerian velocity is thus estimated
as dr=dt. Such a method is usually called ‘‘Pseudo-Lagrangian’’ Data Assimilation [Molcard et al., 2005]. The
method works well when the sampling period dt is much smaller than the Lagrangian correlation time scale
Tl [Griffa, 1996; Veneziani et al., 2004].

3.2. Cost Function
In an ideal case in which the flow measurement devices are active and the measurement data are reliable, we can
construct a cost function to minimize the difference between the most valid observation data and model state
variables. The standardized framework was specified in Ide et al. [1997] and notations are defined as follows:

1. Xk: Concatenated vector of state variables (u, h) for all mesh points at time tk.

2. XB: Background term vector to improve well-posedness and convergence of the problem. It is a ‘‘first
guess’’ of the state of the system, usually derived from the historical data, and can be further refined in
the data assimilation process.

3. Uk: Vector of boundary conditions at time tk.

4. Yk: Vector of observed variables at time tk, namely the velocity components u and the water height h at
some mesh points at a time instant tk.

5. B: Covariance matrix of the background error.

6. Rk: Covariance matrix of the observation error at time tk.

7. Hk: Observation operator, which projects the state vector Xk into the observation subspace
containing Yk.

Our data assimilation strategy is to search for the initial state X0 and boundary conditions Uk that minimize
the l2-norm of the difference between the state and observation variables and the difference between the
initial state X0 and the background term XB:

J ðX0;UkÞ5ðX02XBÞT B21ðX02XBÞ1
X
ðYk2Hk ½Xk �ÞT R21

k ðYk2Hk ½Xk �Þ (15)

The objective function expressed in equation (15) is a function of the initial state and boundary condition of
the system.

The observation operator, Hk, is nonlinear in general variational data assimilation schemes. However, in a
‘‘Pseudo-Lagrangian’’ data assimilation process, in which the observations and state variables both repre-
sent velocity, Hk will be a time-varying observation matrix. For simplicity, if we take the assimilation time
step the same as the observation sampling time, Hk would be a ð0; 1Þ matrix, with element i; j51 if the
drifter associated with measurement i was in the cell associated with the state variable j at time k.

The covariance matrices B and Rk essentially specify the weights given to the error terms in equation (15). A
reasonable choice of B and Rk is B5b1 and Rk5r1, where b is determined by the quality of the background
term XB, and r should reflect the accuracy of the observations.

3.3. Quadratic Program Formulation of Data Assimilation
The linearization of network constraints makes it possible to pose the data assimilation problem as an opti-
mization problem, with the positive semi-definite quadratic cost function expressed in equation (15):

minimizeJ ðX0Þ5
1
2

XT PX1qT X

subject to GX � h

AX 5 b

(16)

In the previous formulation, X is the vertical concatenation of all state vectors from time t0 to the end of the
data assimilation period tmax, and P and q are formed by expanding all the terms in equation (15). Equation
AX 5 b represents the flow dynamics constrained by equations (1–13). In order to reduce the search time, G
and h are used to keep the search in a realistic set.

It should be noted that the computational cost of solving the quadratic program above is very low, as an
implicit discretization algorithm is adopted, allowing for a large time step discretion. Furthermore, the
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uniqueness of an optimum X is not guaranteed, due to the rank-deficiency of the observation matrix Hk;
however, we can still exclude all the linear subspaces from the set of optimal solutions by employing the
background term XB [Tinka et al., 2010].

4. A Field Operational Test in the Sacramento River and Georgiana Slough

4.1. General Description of the Field Operational Test
On 9 May 2012, an experimental deployment of 70 drifters was conducted at the junction of the Sacramento
River and Georgiana Slough near Walnut Grove, California. Figure 2 shows the spatial deployment area.

The Sacramento River is the larger channel including labels A and B, while the Georgiana Slough splits off
from the Sacramento River at F and continues south toward label C.

Figure 2. Annotated map of the Walnut Grove experimental area for the 9 May field operational test.
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Figure 3. Overview of the experimental timeframe. The two gray boxes denote the time domain during which the drifter data were col-
lected: deployment, sensing, retrieval, and redeployment.
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The flow velocity at surface along the Sacramento River was approximately 0.46 m/s (1.5 ft/s) in the out-
going (from northeast to southwest) direction. This is the noninverted tidal condition. Figure 3 shows the
water velocity at two U.S. Geological Survey (USGS): GES, GSS over time during the experiment.

The original plan was to deploy all of the drifters from the Walnut Grove Public Dock (label A in Figure 2),
allow them to propagate through the junction, retrieve them at downstream points B and C, then recycle
them at point D and E for the rest of the experimental run.

Unfortunately, on 9 May there was a significant underwater construction operation happening at the junc-
tion (box F, in Figure 2), requiring a midexperiment change of plans: drifters were initially released from A

Figure 4. Android drifter usage during the 9 May experiment. Photo credit: Berkeley Lab-Roy Kaltschmidt.

Figure 5. Android drifter set for the study with complete parts list.
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and picked up around F, then redeployed at D and E, then cycled from B–D and C–E. Drifter retrievals and
redeployments were performed by two boat teams of three workers (one pilot and two drifter retrievers), as
seen in Figure 4.

4.2. Android Drifters
The fleet of drifters used in the 9 May experiment consisted of UC Berkeley’s recently developed ‘‘Android
drifters’’ [Beard et al., 2012]. Each Android drifter is an inexpensive assembly consisting of a mobile phone
running the Android operating system, a lithium-ion battery to extend the phone life, a waterproof enclosure
based around a water filter canister, and supporting mechanical parts (Figure 5). Drifter sensor-gathering
operations are executed by a custom application written for the Android operating system environment.

Figure 6. (top) x and y coordinates of the GPS measurements as a function of time, of Drifter 37 during the field operational test. (middle)
Corresponding deviations of the x and y coordinates between successive measurements. These exhibit quantization due to the GPS-
capturing system of the Android phones used. (bottom left) Corresponding velocities obtained by finite differences of successive measure-
ments, compared against USGS measurements. (bottom right) GPS measurements captured during the experiment, plotted on map of the
domain, with USGS sensor station marked. The gray boxes indicate the time when the drifters were passing by USGS stations.
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Previous generations of drifters developed by the Floating Sensor Network team included custom devel-
oped electronics and additional features, notably autonomous propulsion [Oroza et al., 2013]. The design
priorities for this generation of drifter were to increase the amount of collected data through higher fleet
numbers (requiring lower production cost per unit), greater reliability, and improved manufacturability.
Avoiding custom electronics and taking advantage of the positioning and communication features of mod-
ern mobile phones allowed us to meet these design requirements. Operating passive drifters in river envi-
ronments, however, leads to greater personnel involvement for deployment, retrieval, and protection.

The core functionality of the Android app is to transmit time-stamped GPS positions to a remote server
over the cellular network. The app user interface features the ability to start and stop the service of
transmitting and logging, a display of current GPS data and orientation, and a menu to set the drifter
ID, measurement frequency and server address. During an experiment, drifters are subject to numerous

Figure 7. The data of Figure 6, filtered to include only points in which Drifter 37 was near the USGS station. (top) x and y tracks of the GPS
measurements as a function of time. (middle) Corresponding increments in x and y between the successive GPS tracks. (bottom left) Corre-
sponding velocities obtained by finite differencing the position (compared to USGS measurements). (bottom right) Measurement locations
of the above data.
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environments, most notably: storage in containers, floating in water, and transportation in boats
between deployments.

5. Implementation of Data Assimilation

5.1. Overview of the Drifter Data From 9 May Experiment
The GPS drifter data were collected via the LocationManager service of the Android operating system [Inc.,
2013]. Under normal conditions (i.e., clear sky and the GPS is locked onto more than four satellites), the operat-
ing system will provide the user application with a new position estimate every 1 s. The GPS coordinates are
provided by the operating system as a pair of double-digit (64-bit floating point) values representing global lati-
tude and longitude in decimal degrees. Immediately upon receiving these coordinates, the location is trans-
formed into UTM coordinates. Our customized software transmits the latest GPS coordinates every 5 s, rounds
them to the nearest centimeter, and stores them on an onboard memory.

Figure 8. The data of Figure 7, filtered to include only the second pass-by, around time 13:00, of the experiment. (top) x and y tracks of
the GPS measurements as a function of time. (middle) Corresponding increments in x and y between the successive GPS tracks. (bottom
left) Corresponding velocities obtained by finite differencing the position (compared to USGS measurements). (bottom right) Measure-
ment locations of the above data.
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Figure 6 shows the GPS measurements collected by Drifter 37 during the field operational test. Figure 7
shows a different view of the data where only points that are near the GSS station are represented. Further-
more, Figure 8 plots the points during the second travel that Drifter 37 passes by the GSS station. The drifter
data taken close to the GSS station are of interest because it can be directly correlated with the velocity
measurements taken at that station. Measurements taken further away could be at points where the local
river velocity does not match the velocity of the GSS station.

As shown in the bottom left plots in Figures 7 and 8, the flow velocity obtained by finite differencing the
drifter positions are correlated with that estimated by USGS gauging stations. During our 9 May experiment,

Figure 9. Rectangle spatial-time window to remove perturbations from Lagrangian drifters. The shadowed box is the space-time window
W. Dash lines denote the drifter trajectories, and orange arrow denotes the filtered velocity.

Figure 10. Velocity profile in a cross section. The average velocity across the river cross section �uðX; tÞ is calculated with the water column
mean velocity ucolumnðX; tÞ at each cell equation (19).
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one specific drifter (Drifter 37) passed by the gauging stations three times, and velocities calculated from
the drifter data were consistent with the gauging station measurements. Using the USGS measurements as
a reference, the drifter data fluctuated in a range of 25–30%.

The GPS coordinates provided by the Android operating system appear to be quantized to approximately
1.88 m in the x direction and 1.1 m in the y direction. Evidence of this is seen by the deviations of the x and
y coordinates, which seem to correspond to discrete values, i.e., ‘‘quantized.’’ A possible explanation for the
y direction is that the fifth decimal place in a decimal representation of latitude corresponds to 1.11 m for
this region. Unfortunately, we were unable to find the same relationship for the precision in the x direction
(the fifth decimal place for longitude is 0.88 m). This quantization problem is most likely due to the architec-
ture of the GPS-capturing system of the Android phone. The discretization error can be mitigated by a filter

Figure 11. Snapshot of the Android drifter fleet at two given times during the 9 May 2012 field operational test.
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with low pass characteristics [Stewart and Pfann, 1998]. Therefore, the filtering step discussed in the follow-
ing section is imperative to smooth out any discretization error.

The drifters transmit their data via a socket interface over the cell phone’s GSM connection to our Internet
server. The coordinates are both stored and transmitted as ASCII-encoded decimal numbers, along with the
drifter’s identifier, and a ‘‘valid’’ flag indicating whether the drifter is floating or in storage. The Internet
server parses and stores the received data in a SQLite database for later retrieval. The server software also
forwards the data, via a socket connection, to a computing cluster where data analysis can be performed.

5.2. Trajectory Filtering
In order to properly use the data, we collected from the 9 May experiment, we need to preprocess the
‘‘Pseudo-Lagrangian’’ data as described before. More specifically, when the time interval between successive
position measurements is smaller than the Lagrangian integral time scale T‘, the flow velocity u can be
approximated as finite difference of successive positions. However, in the case of experimental flows, such
as the ones we are dealing with, the estimated velocity cannot be used directly in the data assimilation sys-
tem, as the velocity of the drifters is perturbed by many physical processes that cannot be precisely simu-
lated in the shallow water models. In this case, one should recognize that individual trajectories are largely
unpredictable, and a statistical description is preferable. Ideally, when a large number of trajectory observa-
tions are available, a space-time filter should be applied to the original data set to remove any small-scale
perturbations and measurement errors.

In this section, we define a local space-time averaging filter, and discuss its related features. The filtered
drifter velocity ufilteredðX; tÞ is defined as the mean velocity observed at time t and location X in a space-time
windowW5Wt3Ws, whereWt denotes a temporal window around t andWs denotes the spatial neigh-
borhood of X(t).

ufilteredðX; tÞ5 1
T
XNobs

i51

ð
Wt

d
dt

Xobs
i 1Xobs

i 2Ws
dt; (17)

where

T 5
XNobs

i51

ð
Wt

1Xobs
i 2Ws

dt (18)

It is important to select a suitable bin size
for the filter. ChoosingWt andWs too
large yields an overly smooth mean while
using too small bins subsumes eddy-like
features. To determine a suitable window
size, two factors are compromised against
each other. On the one hand, the window

Figure 12. Flow chart for the data assimilation. Drifter data are divided into two parts for observation (used for the data assimilation) and
validation purpose.

Table 1. ‘2-Value for Assimilated Flow Velocity and Eulerian Sensors

Location Sacramento River Georgiana Slough

Filtering Window Full Fleet Half Fleet Full Fleet Half Fleet

30 s window
(drifter only)

0.06 0.09 0.07 0.08

150 s window
(drifter only)

0.05 0.06 0.06 0.07

150 s window
(drifter 1 stage)

0.02 0.03 0.03 0.03
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should be sufficiently large to ensure any small-scale perturbations being removed. On the other hand,
however, it should not be too big to have the most important characteristics of the flow taken out.
These space-time windows may be overlapped along the flow, resulting in a smooth flow
representation.

In Figure 9, a rectangular spatial window is drawn showing Lagrangian drifters located within it from
time t0 to time tf. A number of drifters travel through this spatial window during the time window Wt .
The observed drifter trajectories are represented with dotted lines. Essentially we ‘‘average out’’ the
velocities of all the drifters passing through the specific spatial window during a given time interval,
and denote the filtered velocity of these drifters with a solid arrow. The filtered velocity is thus consid-
ered to represent the local flow velocity at the specific time, and utilized in the subsequent flow
computations.

Figure 13. Assimilated flow velocity near USGS stations: (a) GES and (b) GSS using filtered drifter data with 30 s space-time window.

Water Resources Research 10.1002/2014WR015270

WU ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 1930



5.3. Average Velocity Across the Channel
Since our model relies on one-dimensional shallow water equations, the velocity in the model system is
defined as the average flow velocity across the channel, and thus the data we obtained from the previous
section ufilteredðX; tÞ need to be further refined.

Generally, for flows in open channels and natural rivers, actual velocities in a cross section varies from
the highest value near the channel center to the lowest value near overbanks or river bottom. In a
river discharge measurement protocol recommended by the USGS, the mean water column velocity
ucolumnðX; tÞ in a shallow water system is determined by the average of velocities measured at the verti-
cal locations 60% of the water depth. If the velocity profile follows the log-law-of-the-wall, the theoreti-
cal ratio of water column mean velocity over surface velocity would be 0.85. In practice, this ratio can
be verified by an acoustic instrument, usually placed at fixed locations to measure the velocity profiles
across the river. In the previous experiments, the velocity profiles were measured with an Acoustic

Figure 14. Assimilated flow velocity near USGS stations: (a) GES and (b) GSS using filtered drifter data with 150 s space-time window.
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Doppler Current Profiler (ADCP), and the computed mean velocity to surface velocity ratio is in the range
of 0.80–0.93, with a mean value of 0.86 [De Serres et al., 1999].

Once the water column mean velocity ucolumnðX; tÞ is determined, the average velocity across the river cross
section �uðX; tÞ is readily evaluated (Figure 10):

�uðX; tÞ5 1
A

ð
ucolumnðx; tÞhðx; tÞdx (19)

where

A5

ð
hðx; tÞdx (20)

where h(x, t) is the total water depth at the specific location x at time t.

Figure 15. Assimilated flow velocity near around USGS stations: (a) GES and (b) GSS using both filtered drifter data with 150 s space-time
window and Eulerian depth data.
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5.4. Assimilation Technique
Many data assimilation techniques, for example, adjoint and ensemble methods, are capable of processing
Lagrangian data. The adjoint method has been successfully applied to many types of data assimilation
problems, including weather applications, ground water flow studies, oceanography applications, and in
shallow water flow estimations. However, the integration of the adjoint of a large-scale model backward in
time is equivalent to several forward model simulations and thus remains computationally expensive. Sev-
eral other Bayesian methods, e.g., ensemble Kalman filtering and particle filtering, also demand enormous
computational resources.

The QP-based data assimilation in this article is implemented with the optimization modeling language
AMPL and solved with IBM ILOG CPLEX [CPLEX, ILOG, 2007]. We chose CPLEX as the optimization solver, not
only because it is very efficient and robust in large-scale optimization, but also because our cost function

Figure 16. Comparison of assimilated flow velocity at certain location with drifter data from the Reference Group.
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happens to be in a quadratic form, which is the designated utilization of the software. Moreover, this pack-
age also includes a distributed parallel algorithm for mixed integer programming to leverage multiple com-
puters to solve difficult problems with millions of constraints and variables.

6. Data Assimilation Results

6.1. Overview
In this section, we present the data assimilation results of our 9 May 2012 field operational test. Two sets of
data are tracked in our test: The first one is the drifter trajectories provided by the Lagrangian drifters. The
second set of data consists of water depth and velocity at certain locations in the deployment domain,
acquired with classical USGS Eulerian sensors.

Figure 17. Comparison of assimilated drifter trajectory with the drifter trajectory from the Reference Group.
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Figure 11 gives two snapshots of the Android drifters during the field operational test to illustrate the cover-
age of the experiment.

Figure 12 shows the flow chart of the data assimilation. Historical data from the USGS are used to generate
the background term for the QP process. The estimate of the state of the system is obtained by assimilating
the drifter data from the observational team, with or without the Eulerian stage information. Either the
Eulerian velocity data provided by USGS stations or the drifter data from a Reference Group (as defined
later) are used for validation.

We have conducted 12 numerical experiments with different settings as summarized in Table 1 to validate
the proposed Lagrangian data assimilation method. We have also investigated how the number of drifters
and the filtering window could affect the results. In addition, water depth measurement from the Eulerian
stations is specified to justify these results.

6.2. Assimilation With Lagrangian Data Only
Figures 13 and 14 present the flow velocity near the USGS stations predicted in the flow field recovered
from the assimilation results, using 30 and 150 s filtering windows, respectively. We compare them with the
velocity measured at two USGS stations for validation.

As described in the work of Domeneghetti et al. [2013], streamflow hydrograph relative to a specific gauging
station and flood event is calculated by converting measured water level into flow rate by means of an
existing stage-discharge relation, or rating-curve. The curve is generally calibrated over a series of h(t) to
Q(t) pairs, where h(t) is the water level measured at time t and Q(t) is the concurrent river discharge, which,
in turn, is often estimated through the velocity-area method [Fenton and Keller, 2001]. Note that the
discharge-velocity relationship can result in rather rough flow estimation. This is exactly one of the advan-
tages of using Lagrangian data in a river system, as the flow velocity is indeed an explicit measurement.

6.3. Assimilation With Both Lagrangian and Eulerian Data
We also have the local water depth measured at USGS stations included in the data assimilation, along with
the filtered Lagrangian drifter trajectories.

Figure 15 demonstrates a remarkable improvement of the flow field estimation, over the estimation results
which only include drifter trajectories. The assimilated results are significantly closer to the Eulerian flow
velocities at two USGS stations.

Figure 18. Comparison of the velocity data from the gauging station at GSS with estimated velocity using drifter data. This set of drifter
data contains 5% random Gaussian noise.
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6.4. Validation With Reference Drifters
In the two previous cases, the assimilated flow velocity is correlated with the Eulerian velocity at USGS sta-
tions. It is possible, however, to validate the assimilation method with another set of Lagrangian drifter data
as well, which provides an additional validation procedure, given that no data provide ‘‘ground truth.’’

We divide the Lagrangian drifters into two groups: one is for our regular data collection, from where the
flow state is essentially derived; the other group, namely the Reference Group, is for validation purposes
only, i.e., the drifter velocity acquired from these devices is correlated with the assimilated flow results.

Figure 16 shows the assimilation results with the Lagrangian data inputs from half of the drifter fleet, as
well as the drifter data collected from the other half fleet (i.e., the Reference Group). A good agreement is
demonstrated between the two data sets.

In addition, Figure 17 shows that the assimilated drifter trajectory is very close to the measured data from
the Reference Group, with a small fluctuation.

6.5. Error Analysis
The difference between the assimilated data and measurements is further evaluated by computing the rela-
tive error ‘2 norm:

‘25

XN

i51

ðûi2uiÞ2

XN

i51

ðuiÞ2

0
BBBB@

1
CCCCA

1
2

(21)

where ui is the measured flow variable of interest (e.g., the flow velocity from Eulerian sensors in this study),
ûi is the estimated flow variable, for i51toN measurement events.

Table 1 lists the ‘2 norm values of 12 numerical experiments. It shows that the proposed approach pos-
sesses good flow estimation accuracy, especially when the Eulerian data are also included in the assimila-
tion. Also, more drifters essentially carry more flow information into the assimilation, and consequently
improve the quality of flow estimation. Another factor contributes to the estimation accuracy is the filtering
time. The larger the time window (meaning the flow is observed in a coarser timeframe), the flow state
exhibits more steady, and thus, not surprisingly, the flow estimation becomes more accurate.

The observation errors can be specified in two categories: random error and systematic error. GPS signals,
for example, are treated as observations with random error. This inaccuracy is inherited from the GPS clock,
as signals can be distorted in atmospheric disturbances, or reflected from buildings and other large solid
objects, before they reach a receiver [Ward, 1997]. The random noise is usually assumed to follow the Gaus-
sian distribution. Wind forcing and waves driven by passing boat, on the other hand, are considered as fac-
tors with systematic error.

Two more numerical experiments were conducted to quantify the sensitivity of the proposed method to the
observation errors. Figure 18 shows that when the data contain random errors, the proposed method is able
to remove the noise and recover the flow field; however, when the data contained systematic errors, the pro-
posed method constructs a flow field with many deficits with oscillations. In some cases, the systematic error
is so big that it might even cause the assimilation processes converge to some unreasonable values. In the
case of 5% systematic errors, the proposed method leads to an analysis error around 4% (Table 2).

We also noticed that the mean values of the estimated velocity of Sacramento River in Figures 13–15 are a
bit off from the USGS measurements. This is likely due to the system error from GES measurements, or
some consistent wind effect in the Sacramento River.

6.6. Discussions on Assimilation Results
The assimilation results validate not only the suitability
of the proposed flow estimation method using Lagran-
gian data, but also the effectiveness of different data fil-
tering windows. It is noted that the estimation quality
of the flow state in the hydrodynamic system may be

Table 2. Relative RMS Error ‘2-Value for Assimilated Flow
Velocity in the Presence of Drifter Data Errors

Error Type 5% Random Noise 5% Systematic Noise

‘2 1.3% 3.86%
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further improved if Eulerian information, when available, is also included in the data assimilation. And gen-
erally, more drifters would result in a better flow estimation.

The choice of the space-time window affects the results of the filtered data significantly. As shown in Fig-
ures 13 and 14, the spatial dimension of the windows is set to be 15 m, and two different time windows of
30 and 150 s are specifically selected in our field test. The plots indicate that assimilated flow velocity esti-
mates become less ‘‘noisy’’ with a larger filtering window. The larger filtering window (meaning more drifter
information is ‘‘averaged’’) results in less fluctuations in the filtered Lagrangian data, and consequently a
smoother flow state. This trend is consistent with that of the drifter data. Moreover, the signal quality is
improved, and the signal magnitude is at the correct scale. We speculate that noise is either inherited from
the Lagrangian data controlled by unknown physical processes, or affected by any erroneous drifter meas-
urements, which can make the data assimilation results converge to unreasonable values.

Another interesting observation in Figures 13 and 14 is the effect of different drifter numbers involved in
the data assimilation, i.e., half versus full fleet. In general, the more drifters included in the assimilation, the
less noisy and the more plausible the flow estimation is. This is not surprising, since more drifters can essen-
tially carry more flow information into the assimilation process.

7. Summary

In this article, we presented the flow estimation for complex channel networks using Lagrangian measure-
ment data. This work is, to our knowledge, among the first successful applications of variational Lagrangian
data assimilation in tidal-driven environment. The solution is formulated as an optimization problem based
on minimizing the difference between measured Lagrangian data and modeled drifter trajectories, con-
strained by a one-dimensional implicit linear channel network model. The major advantage of the proposed
formulation is that it requires low-computational cost, making the proposed data assimilation method appli-
cable to many vast and complex hydraulic networks.

The effectiveness of the method has been validated with a field experiment in the Sacramento-San Joaquin
Delta, in which the Lagrangian drifter data were collected from GPS equipped drifters and processed with
proper filtering and assimilation method. Due to the accessibility restrictions, our drifters could only be
deployed in one specific branch of the Delta channels. In addition, we did not have enough manpower to
monitor and track the entire drifter fleet over a full tidal cycle. As a result, the experiment was constrained
both temporally and spatially. However, this prototype approach is extendable to a full tidal cycle analysis,
which will be composed of several repeats of drifter deployment and measurement.

In the future, we plan to extend the data assimilation techniques in a two-dimensional shallow water model, and
apply statistical filtering to achieve a more accurate representation of the flow state in a tidal channel network.
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