
intersections seems more desirable. This paper focuses on signal-
ized intersection delays as they are typically the major contributing
factor to arterial delays.

Various models focusing on signalized intersections have been
developed to estimate arterial travel times or delays. Statistical
methods are proposed in (1–3) in which travel times are modeled as
a linear combination of occupancy, flow, and signal parameters. Xie
et al. (4) treat arterial link travel time as the summation of cruise
time and signal delay. Cruise time is computed by using detector
speeds, and signal delay is estimated by using a simplified intersec-
tion queuing diagram that requires basic signal parameters. Skabar-
donis and Dowling developed an improved speed–flow relationship
(5) that was shown to be effective to calculate arterial link travel
times (6). These models are mainly for estimating average (or static)
arterial travel times; recent attention has focused on estimating dy-
namic (or time-dependent) arterial travel times (7, 8). Skabardonis
and Geroliminis (7) model link travel time as the summation of free-
flow travel time and signal delay; signal delay consists of single
vehicle delay, queuing delay, and oversaturation delay. The calcu-
lation of signal delay requires 30-s traffic volume and detailed sig-
nal timing parameters. By using high-resolution (second-by-second)
traffic signal events data (such as phase and timing changes) and
vehicle actuation data, Liu and Ma (8) construct “virtual” vehicle
trajectories that make it possible to estimate accurate dynamic arterial
travel times.

Most existing arterial models require, as a minimum, the knowl-
edge of traffic signal timing parameters and traffic volume to esti-
mate arterial travel times or delays. Collecting traffic signal data
for wide-area arterial streets is not trivial since historically traffic
signals have been operated and maintained by multiple agencies.
By using the vehicle reidentification technique, it has been shown
(9–11) that samples of intersection delays can be obtained directly.
In particular, Kwong et al. (12) propose a new scheme in which
wireless traffic sensors are deployed downstream (at a fixed distance
such as 12 m) of signalized intersections. Traffic volume is collected
at each sensor location together with vehicle signatures. A specially
designed vehicle reidentification algorithm is developed to match
vehicles from signatures (12). The algorithm is based on a statisti-
cal model of the signatures, with parameters estimated from data,
and no “ground truth” is required. If the algorithm is applied to two
consecutive sensor locations (one upstream and the other down-
stream of a signalized intersection), intersection travel times (or
delays) can be obtained directly. A unique feature of such a vehicle
reidentification method is that traffic signal information is not
required. It is further shown that signal phases can be derived from
the matched vehicles by looking at the start and end times of the first
vehicle in a queue (12).

The vehicle reidentification method provides a straightforward
way for estimating intersection delays without the requirement of
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Intersection delays are the major contributing factor to arterial delays.
Methods to estimate intersection delay patterns by using measured
travel times are studied. The delay patterns provide a way to estimate
the delay for any vehicle arriving at the intersection at any time, which
is useful for providing time-dependent intersection delay information to
the driving public. The model requires sampled travel times between
two consecutive locations on arterial streets, one upstream and the other
downstream of a signalized intersection, without the need to know sig-
nal timing or traffic flow information. Signal phases can actually be esti-
mated from the delay patterns, which is a unique feature of the proposed
method in this paper. The proposed model is based on two observations
regarding delays for signalized intersections: (a) delay can be approxi-
mately represented by piecewise linear curves due to the characteristics
of queue forming and discharging and (b) there is a nontrivial increase
in delay after the start of the red time that enables detection of the start
of a cycle. A least-squares–based algorithm is developed to match mea-
sured delays in each cycle by using piecewise linear curves. The pro-
posed model and algorithm are tested by using field experiment data
with reasonable results.

Travel time or delay is one of the most important roadway traffic
metrics. Providing travel times on freeway routes, for example,
via freeway changeable message signs, has now become a com-
mon practice in many states in the United States. Arterial travel
time information, however, is not widely available due to the dif-
ficulty of estimating arterial traffic conditions. Arterial traffic is
fundamentally different from freeway traffic. The difference in
traffic flow patterns is mainly due to the existence of traffic sig-
nals, stop signs, and cross traffic that introduces interruptions to
arterial traffic flow. These interruptions bring discontinuities to
quantities of interest such as travel times or delays. In addition,
distinct from freeways, in an arterial network there are usually
many possible routes from an origin to a destination. Providing
travel times for one or a few routes may not be sufficient for a 
driver to get a full picture of the arterial traffic conditions. There-
fore, providing time-dependent delay information for arterial
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signal information. Sampled travel times, however, only provide
discrete measurements in the time domain. Now the question is: Can
a time-dependent intersection delay pattern curve be constructed by
using sampled travel times for a given signalized intersection? An
intuitive answer is to assume travel times change linearly between
two neighboring sampled travel times. As shown below, such a
method may not be the most effective, especially when the penetra-
tion rate is relatively high. In this paper, a least-squares–based algo-
rithm is developed to estimate the delay patterns from sampled travel
times by recognizing the underlying characteristics of signalized
intersection delays.

The proposed algorithm can be applied to specially deployed fixed-
location sensors [such as loop detectors or wireless sensors (12)]
or the virtual trip line (VTL) technique based on global position-
ing system (GPS)–equipped cell phones (13, 14). VTLs are virtual
loop detectors without any requirement to deploy physical detectors
or other infrastructures. As a vehicle equipped with a GPS cell
phone passes by a VTL location, the location and speed of the vehi-
cle are sent to a secure server from which all vehicles’ information
is aggregated and transferred to traffic models. Deployment of
VTLs is flexible, with major considerations for privacy preserva-
tion (15). Arterial VTL data include individual vehicle speeds at
each VTL and travel times between consecutive VTLs for vehicles
equipped with GPS cell phones. Such data provide rich information
about arterial traffic states while maintaining privacy violations at a
minimal level.

The raw VTL travel time data can be processed to generate
samples of intersection delays. In this paper, methods are pro-
posed to estimate intersection delay patterns by using these sam-
ples. The authors show that delay patterns can be represented as
piecewise linear (PWL) curves. These curves are developed by
using well-developed traffic flow theory on queue forming and
discharging at signalized intersections. The authors then show
how to use collected VTL travel times to estimate the parameters
of pattern curves, without knowing either traffic signal parame-
ters or traffic volume. The estimation algorithm is a two-step
least-squares method that can be converted to solve multiple con-
vex quadratic programs in small dimensions. The estimated delay
patterns can also be directly used to derive signal phases. The
model and algorithm are tested in microscopic traffic simulation
and validated by using field experiment data obtained from wireless
sensors.

ARTERIAL VTL SYSTEM

For arterials, VTLs are deployed in a similar way as wireless traffic
sensors are deployed (12). In general, a VTL is placed downstream
of each outgoing approach of an intersection. The type of data gen-
erated by the VTL system for a pair of VTLs includes the time cross-
ing the first VTL, travel time between the two VTLs, and the average
speed when vehicles cross each VTL. Speeds are unlikely to be use-
ful because they are highly variable around intersections. Instead, the
travel time information will be used to measure delays through the
intersection. Given that there will be VTLs deployed to all sides of
an intersection, travel time information will be obtainable for any
turns of the intersection in addition to through traffic. The fully
deployed VTL system will collect updates and push them to a server
for processing. The time between pushes will be a consistent interval,
typically 1 min.
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APPROXIMATE INTERSECTION DELAY PATTERNS

PWL Intersection Delay Curves

Models are first derived for approximate patterns of intersection delays
under normal and oversaturation conditions. The results presented
here are based on well-established theories on queue forming and dis-
charging in front of a signalized intersection (16, 17). The first con-
dition occurs when the queue can be cleared completely during the
green phase of a cycle; the second condition refers to situations in
which the queue cannot be cleared within one cycle and the residual
queue must wait for extra time (i.e., more delays) to be cleared. These
two conditions are the most commonly observed in the field. Under
specific situations (e.g., heavy congestion), queues may spillover to
upstream intersections and cause further delays. This third condition
is not considered in this paper and will be studied in future research.

Figure 1a depicts a typical signalized intersection with VTLs
installed upstream (VTL1) and downstream (VTL2). To simplify
the discussion, assume that the queue never passes VTL1. The bold
solid triangles in the figure can be used to represent how the queue
forms and dissipates (these triangles show the waves where two dis-
tinct traffic states meet). The horizontal part of the triangles repre-
sents the duration of red time. If delays due to vehicle decelerations
and accelerations are ignored and the arrival rate is uniform within
one cycle, delays can be fully determined by the triangles. In the fig-
ure, dashed lines represent trajectories of vehicles, while dotted lines
are boundaries at which the discontinuities of delays occur.

The authors’ aim is to characterize vehicle delays as a function of
the time when a vehicle passes VTL1. In reality the measured delay
will not be recognized until the vehicle passes VTL2, but here it is
assumed that data have been collected and thus one can perform post-
processing to reconstruct a mapping from the time that a vehicle
passed VTL1 to its experienced delay at the intersection. Since it is
assumed that the queue never reaches VTL1, as shown by the trajec-
tories of vehicles (dashed lines), if a vehicle approaches the intersec-
tion in red time or if the queue length is not zero (e.g., trajectory a
in the figure), then the vehicle will join the end of the queue first and
thus be delayed. The delay encountered by the vehicle is the horizon-
tal part of trajectory a. Otherwise, if a vehicle arrives during green time
and there is no queue (e.g., trajectory b), the vehicle will pass the
intersection with no delay. The (red) delay curve at the bottom of Fig-
ure 1a will spike up at the time that allows a vehicle to travel to the
intersection in free flow just before the start of the red time. More
importantly, by analyzing the geometry of the triangles, one can
observe that if a vehicle passes by VTL1 at a time that would make
it get to the intersection just after the start of the red time, delay for
this vehicle will be the maximum for the specific cycle. After that,
delays will be reduced linearly until no delay is reached. This is rep-
resented by the line segments marked as “1” of the delay curve at the
bottom of Figure 1a. The slope of the delay reduction part, denoted
as delay reduction rate s, can be calculated analytically as

where

w = wave speed,
uf = free-flow speed,
uw = wave speed when a vehicle joins the queue,
kj = jam density, and
v = traffic flow.
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Traffic flow (v) is assumed to be constant within a cycle. The
parameters uf, w, and kj are specific to actual arterial locations, which
also determine the fundamental diagram of the location. Since w ≥ uw

always holds (refer to the fundamental diagram at the top of Figure 1a),
s is nonnegative: the delay always reduces from its maximum (when
traffic light turns red) to some minimum value (when light turns green
and no queue exists) for normal situations.

To illustrate how Equation 1 can be derived, see Figure 1b. In par-
ticular, it is assumed the delays for a vehicle passing VTL1 at time
t and t + Δt are d(t) and d(t + Δt), respectively. According to the
assumptions made in this paper, the delays at both time instants cor-
respond to the lengths of the horizontal lines as shown in Figure 1.
On the basis of the geometry of the triangles,
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and

and therefore

Equation 2 summarizes these equations:
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FIGURE 1 Theoretical delay patterns: (a) intersection delay patterns and (b) calculation of delay
reduction rate.



Since the delay reduction rate can be defined as

Equation 1 can be obtained via dividing both sides of Equation 2
by Δt.

The above analysis and Equation 1 work only for normal condi-
tions, that is, no oversaturation or spillover occurs. In case of over-
saturation, the residual queue from one cycle will have to wait for
the next green to be cleared, as shown by trajectory c in Figure 1a.
Under such situations, delay will still be reduced linearly from the
maximum value after the start of the red time. However, it will never
reach zero; instead, it will have a sudden increase from a nonzero
delay to another (local) maximum, indicating the vehicle will have
to wait for extra cycle(s) to be cleared. This is marked as “2” in the
delay curve in Figure 1a. After this stage, the delay will be reduced
linearly until the impact of the residual queue diminishes, as shown
by “3” in the delay curve. The delay will be further reduced in a nor-
mal way as marked by “4” in the curve. As a result, the delay curve
for oversaturation is still PWL, but with a more complicated pattern.
A distinct feature is that delay is never reduced to zero. The slope of
the curves can all be computed analytically by looking at the geom-
etry of the triangles in Figure 1b. It can be seen that the approximate
delay patterns for signalized intersections (by ignoring the acceler-
ation and deceleration delays) can be represented as PWL curves.
The curves are continuous in most cases, but contain discontinuities
( jumps) periodically. These discontinuities correspond to the start
of red times and are important features of intersection delays.

Estimation of Signal Phases from PWL
Intersection Delay Pattern

Knowing the PWL intersection delay pattern enables one to estimate
signal phases of the intersection. Here it is assumed a cycle always
starts with the red time, implying that the start of the red, the dura-
tion of the red, and the end time of a cycle (also the start time of the
next red) uniquely determine the cycle. Figure 1a shows a focus on
the translated signal phase timing (TSPT) at VTL1, which is differ-
ent from the actual signal phase timing at the intersection by a con-
stant (i.e., the free-flow travel time from VTL1 to the intersection).
In fact, TSPT reflects the times when a vehicle actually “feels” the
effect of the signal at VTL1 as if it were just at the intersection. The
procedure for estimating TSPT is described as follows.
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First, as shown in Figure 1a, there is a nontrivial increase in delays
right after the start of the red time in TSPT (for both normal and over-
saturation conditions), with the magnitude of the increase equal to the
duration of red time. As delay generally decreases over time within a
cycle after the start of red, such an increase is a unique feature of inter-
section delays that only happens at the time when the signal turns red
in TSPT. Detecting such an increase in measured delays will help to
identify the start of a new cycle. For example, under normal condi-
tions (e.g., the condition marked as “1” of the delay pattern in Figure
1a), the delay increases from 0 to r1 at t1, which indicates that t1 is the
start of a cycle (denoted as cycle “C1”) in TSPT. This cycle ends when
the next increase is detected at time t2, which also indicates that the
next cycle (C2) starts at t2. The duration of the red time is r1. For over-
saturation conditions, the start of red is also associated with such an
increase in delay, but needs further adjustment. For example, at t3 the
delay increases from a nonzero value rr3 to r3. As illustrated in Figure
1, the actual start of red (for cycle C3) in this case is not t3; rather, it is
t3 + rr3. Similarly, the duration of red is r3 − rr3 instead of r3.

In summary, it is assumed the delay pattern is given, which results
in n discontinuities at ti with delay being increased from rri to ri, 
i = 1, . . . , n. The start of red time is then ti + rri, and the duration of
red is ri − rri, i = 1, . . . , n. This simple procedure is used in later sec-
tions to derive signal phase information for both the simulation and
field experiment data. Notice that this way phase information in
TSPT is obtained, which can be easily translated to actual phase
information of the intersection by adding the free-flow travel time
from VTL1 to the intersection.

ESTIMATION ALGORITHM

The problem investigated in this article is to estimate intersection
delay patterns by using sampled travel times measured between
upstream and downstream locations of a signalized intersection. The
estimation method proposed is a simple curve fitting algorithm. First,
since delay curves are PWL, delay measurements can be fitted by
using linear forms, which significantly reduces the complexity of the
fitting algorithm. Second, there is a nontrivial increase in delays
right after the start of the red time; detecting such an increase can
help identify the start of a new cycle.

Two-Step Least-Squares Estimation Algorithm

The estimation algorithm contains cycle breaking and line fitting as
two major steps. Figure 2 shows how the above two observations
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FIGURE 2 Illustration of estimation algorithm.



can be used in these steps. It is assumed there are 16 measured
delays, represented by the 16 circles labeled “a” to “p” in Figure 2.
The values of the delays are denoted as {dr, 1 ≤ r ≤ 16}. Each delay
is associated with a time stamp, denoted as {tr, 1 ≤ r ≤ 16}. First, by
detecting the (nontrivial) increase of delays, the 16 measurements
can be broken into four groups: {a, b}, {c, d, e, f, g}, {h, i, j}, {k, l,
m, n, o, p}. In the figure, si, ei denotes the starting time and ending
time of a cycle, respectively, which may be defined as the middle
point of two consecutive time stamps (one in each cycle) or adjustable
on the basis of the calculated average cycle length information
(refer to the intersection delay estimation [IDE] algorithm in the
next subsection). Second, within each cycle, an attempt is made
to fit the measurements by using PWL curves. Figure 2 shows the
three typical delay patterns for normal and oversaturation condi-
tions, marked as 1, 2, and 3. Curve 1 is for normal conditions, in
which delay reduces linearly until it reaches zero. Therefore, the
delay curve consists of two lines, one with a negative slope and the
other with a zero slope (constant). Curves 2 and 3 are for oversatu-
ration conditions. Curve 2 is a single line with a negative slope rep-
resenting delay reduction (over time) for the first cycle of the
oversaturation, in which the minimum delay is positive. Curve 3
represents the delay reduction pattern caused by both cycles of the
oversaturation, which contains at least two lines and may or may not
reach zero delay in the end (depending on whether oversaturation
disappears in the second cycle).

In summary, although the shape of the delay curve within a cycle
may vary depending on actual traffic conditions, the fundamental
pattern of the curve can be identified as the three cases in Figure 2
for normal and oversaturation conditions. Furthermore, the number
of measurements in one cycle tends to be small. For example, con-
sider a three-lane arterial intersection with a total traffic volume of
1,800 vehicles per hour (veh/h). Assume the cycle length is 1 min,
which will result in about 30 (1,800/60) measurements under a
100% penetration rate. In reality, since the penetration rate is most
likely much smaller than 100%, the number of measurements with
a cycle will not exceed one or two dozen. Therefore, although more
advanced fitting techniques may be applied, instead a simplistic
method based on least-squares fitting is proposed in this paper.

The least-squares method starts with attempting to fit the measure-
ments within one cycle by using two straight lines. This is done by
enumerating all possible grouping scenarios of the measurements.
Denote {dr, r ∈ R} the set of measurements sorted by their time
stamps {tr, r ∈ R}, where⎟ R⎟ denotes the total number of measure-
ments. This set of measurements may then be divided into two
groups by breaking the set at m = 3, . . . ,⎟ R⎟ −1, where m is the start-
ing index of the second group. For each m, fitting can be solved by
using a convex quadratic program. To see this, it is assumed the
objective of fitting is to reduce the deviation of model-predicted and
actually measured delays, more specifically the mean square error
(MSE) of the predicted delays. It is further assumed the first line can
be represented as d = a1t + b1 and the second line as d = a2t + b2. Here
a1, b1 are parameters for the first line, and a2, b2 are parameters for
the second line; all need to be estimated. The quadratic problem can
then be formulated as follows:

such that

a t t b a t t bm m m m1 1 1 2 1 21 1 4−( ) +[ ] + = −( ) +[ ] +− −θ θ θ θ ( ))

min
, , ,a b a b

i i
i m

ia t b d a t b
1 1 2 2

1 1

2

1 1
2 2+ −( ) + +

≤ ≤ −
∑ −−( )

≤ ≤
∑ di

m i R

2
3( )

Ban, Herring, Hao, and Bayen 113

In the above model, the objective in Equation 3 is the summation
of MSE of the two groups. The first group contains data points 
1, . . . , m − 1, and the second group contains data points m, . . . ,⎟ R⎟ .
It is assumed m is given, and a1ti + b1 is the predicted delay at ti using
the first line whose actual delay is di for any 1 ≤ i ≤ m − 1. Similarly,
a2ti + b2 is for the delay predicted by the second line. The Equation
4 constraint is required because the two lines have to intersect at the
boundary of the two groups. Here it is assumed the boundary is at 0
≤ θ ≤ 1 from tm−1 with respect to the difference between tm and tm−1.
As a special case, if the boundary is at the middle point of tm and 
tm−1, then (tm−1 + tm)/2. The above model has only four variables and
is convex and quadratic, which can be solved very efficiently by
using standard quadratic program solvers.

The quadratic model (Equations 3 and 4) will be solved for any 
3 ≤ m ≤⎟ R⎟ − 1, resulting in⎟ R⎟ − 3 solves. The minimum objective
value of all solves is denoted as f2. The value for f2 is compared with
the objective value of fitting all measurements by using one line,
denoted as f1. If f2 < f1, the two-line fitting is accepted; otherwise, the
one-line fitting is accepted. If two-line fitting is accepted, the algo-
rithm will further test if the duration of either group is larger than a
threshold. If yes, the above process is repeated on the group, trying
to fit the group with two new lines. This process repeats itself until
either all groups are represented as a single line or the duration of the
group is below the threshold. The estimation algorithm is summarized
as follows, which is denoted as the IDE algorithm.

IDE Algorithm

Step 1. Initialization. Collect VTL travel time data and process
them to obtain intersection delays. Set two thresholds, th1 and th2.

Step 2. Cycle breaking. Scan all the delay measurements and
detect if the delay increase from one measurement to the next one
exceeds th1. If yes, break the cycle at the second measurement. This
step will produce groups of delay measurements.

Step 3. Curve fitting within a cycle. Denote {dr}, {tr}, ∀r ∈ R all
the measurements in a given cycle.

Step 3.1. Solve the convex quadratic program (Equations 3
and 4) for all 3 ≤ m ≤⎟ R⎟ − 1. Here θ = 0.5 is used, that is, the
boundary is at the middle point. Denote the minimum objective
value among all⎟ R⎟ − 3 solves as f2.

Step 3.2. Solve the least-squares fitting problem by using a
single line and denote its objective value as f1.

Step 3.3. If f2 > f1, fit the delay pattern by using the single line.
Otherwise, represent the delay curve by using two lines. If the
duration of either line is larger than th2, set {dr}, {tr}, ∀r ∈ R as
the measurements corresponding to this line and go to Step 3.1.
Go to Step 4 if Step 3 is done for all cycles.
Step 4. Cycle length adjustment (for pretimed or actuated coordi-

nated signals). Calculate the average cycle length by dividing the
total time period by the number of cycles detected. Using this aver-
age cycle length, adjust the boundaries of each cycle (i.e., the values
of θ) so that each cycle length is as close as possible to the obtained
average cycle length.

Step 5. Stop with an optimized delay pattern curve.

In the IDE algorithm, th1 is the threshold for the increase of delays
to detect the start of a new cycle, while th2 is the threshold of the
time window to break measurements within a group into possibly
more cycles. The value of th1 should be exactly the duration of the
red time in ideal situations. In reality, due to travel time variations



across individual vehicles and more importantly the fact that only
samples are available, one can set th1 = α1R, where R is the duration
of the red time and α1 is a coefficient. Similarly, th2 can be selected
as the cycle length in ideal cases. In practice, one can set th2 = α2R,
where C is the cycle length and α2 is another coefficient. The selec-
tions of α1 and α2 may be location specific and need further investi-
gations. In this paper, th1 and th2 are set as 15 and 35 s, respectively.
Step 4 is a fine-tuning step for pretimed or actuated coordinated sig-
nals. For these types of signals, cycle lengths are usually constants.
The average cycle length via the first three steps can hopefully pro-
vide an indication of what the fixed cycle length might be. This
information can then be used to adjust boundaries (i.e., θ) of each
cycle so that the cycle length is close to the average length.

The above discussions show that in order to appropriately estimate
the delay curves at least two measurements per cycle are needed for
normal conditions. For oversaturation conditions, this number will
be at least four. If the cycle length is 1 min, the required minimum
sample rate is 120 veh/h for normal conditions and 240 veh/h for
oversaturation conditions. If a two-lane arterial street with a traffic
volume of 1,200 veh/h is considered, this implies a minimum pene-
tration rate of 10% for normal conditions and 20% for oversatura-
tion conditions. It is worth noting that the IDE algorithm only uses
measured travel times as input, without assuming knowledge of sig-
nal timing parameters or traffic volume information. This is a fun-
damental difference between IDE and previous models based on
detector data.

Test of the Algorithm in Microsimulation

The performance of the IDE algorithm is assessed by using a simu-
lation model developed in Paramics (18). The left-turn movement of
a particular intersection with a free-flow travel time of 26.69 s is
considered. The simulation was run for 1 h. Figure 3a depicts the
simulated travel times between two VTLs deployed upstream and
downstream of the intersection for all vehicles making left turns. The
travel times look purely random at first glance. For comparison pur-
poses, the durations of red times for this left turn are displayed as the
horizontal bars at the bottom of Figure 3a. These durations are
“ground-truth” and are obtained directly from the simulation model.
The IDE algorithm was applied on the simulated travel times; the
identified delay patterns are shown in Figure 3b. In this figure, the
curves are actually for travel time patterns, which is exactly the same
as the delay patterns (with a constant difference). The estimated pat-
terns match very well with the measured travel times (represented as
asterisks in Figure 3); the estimation errors, that is, d̂ i − di, are indi-
cated by plus signs. Here d̂ i is the estimated delay. It is easy to see
that most estimation errors are close to zero, implying that the esti-
mation quality is high. To further quantify the estimation quality, a
quality measure is defined that is the percentage of estimates with
errors no more than 15% of the measured travel times. Denote this
quality measure as α, which can be defined as follows:

Here fftt denotes the free-flow travel time. Note that fftt is added
to the denominator of the right side of Equation 5 since di may be
zero. In this sense, Equation 5 is actually the error defined for travel
times. Clearly, the estimation quality becomes higher for larger α.
In this example, α = 99.32%, which indicates that the IDE algorithm
works well for estimating delay patterns. Notice that during this 
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1-h simulation, both normal conditions and oversaturation condi-
tions occur (Figure 3b). These conditions are verified in the actual
simulations. Also, by comparing the delay patterns with the ground-
truth red times on the bottom of the figure, it can be further verified
the patterns are associated with signal timing properly.

The good performance of the IDE algorithm in the above example
is largely due to the fact that all vehicle travel times are assumed to be
known. In other words, the penetration rate is 100%. The next ques-
tion to ask is: How will penetration influence the estimation quality?
To answer this question, the measured travel times for a given pene-
tration rate p are randomly sampled, and the sampled travel times are
used to estimate delay patterns. For this purpose, it is assumed the
probability of selecting a particular measurement is p. The sampling
results in two sets: the first set contains travel times that were selected,
and the second set consists of all unselected travel times. The first set
is used to estimate delay patterns via the IDE algorithm; the second
set is used for testing the estimation quality.

Figure 4a depicts the impacts of penetration rates on the estima-
tion quality; the penetration rate is varied from 6% to 100% using 2%
as the increment. For each penetration rate, the random sampling pro-
cedure was run 50 times. Each time, the sampled travel times were
used to estimate delay patterns, and the unselected travel times were
used to test the estimation quality, that is, to compute α. The plus
signs in Figure 4a represent the α’s and the solid line is the average
of the 50 runs. For comparison purposes, the estimation was also cal-
culated by pure linear interpolation. That is, for each sampling run,
the sampled travel times are treated as grid. The unselected travel
times can then be estimated by assuming travel times change linearly
between any two adjacent travel times. This linear interpolation rep-
resents a naive approach to estimate travel times based on sampled
ones. In Figure 4a, dots represent α’s for each sampling run under a
given penetration rate, and the dashed line is the average across all
50 runs, both for the linear interpolation approach.

At least for this particular example (Figure 4), if the penetration
rate is less than 20%, the linear interpolation approach is superior to
the IDE algorithm. However, as the penetration rate increases, the
IDE algorithm becomes more effective in estimating delay patterns.
If the penetration rate exceeds 40%, this difference is larger than
10%, indicating that the IDE algorithm is significantly better than
the linear interpolation approach. Such a trend remains pretty constant
as the penetration rate increases further.

The timing of the intersection signal phases was estimated by
using the procedure outlined above. This was conducted by using
penetration rates ranging from 25% to 100%. Figure 4b depicts the
estimated signal phases, with the solid horizontal bars representing
the duration of red times. On the top of the figure, the ground-truth
signal phases from the simulation are also shown for comparison
purposes. The solid vertical lines illustrate the start of red time from
the ground-truth signal phases, and the vertical dashed lines indicate
the end of red times. At high penetration rates (>60%), the estimated
phases are close to the true phases, in terms of both duration of
cycles (or red times) and the actual timing. The results, however,
deteriorate quickly as the penetration rate becomes smaller.

RESULTS OF FIELD EXPERIMENTS

The PWL intersection delay model and the estimation algorithm
were tested by using data from a field experiment. The test site is the
intersection of San Pablo Avenue and Solano Avenue in Albany,
California (Figure 5a). Data were obtained from two sets of wire-
less traffic sensors installed upstream and downstream of the sub-
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FIGURE 3 Microsimulation results for simulation data for (a) travel times and (b) intersection delay patterns.

ject intersection. The raw data collected from those sensors contain
traffic flow and vehicle signatures. A reidentification algorithm
was applied to match vehicles. Travel times between the two sets
of detectors were then obtained from the matched vehicles. For
detailed descriptions of the test site and the vehicle reidentification
algorithm, see Kwong et al. (12). In this article, travel times from

matched vehicles are used directly. In particular, the data contain
travel times of 140 vehicles for a 30-min period (1:00 to 1:30 p.m.).
Travel time data are shown as asterisks in Figure 5b.

The IDE algorithm described above is applied to the travel times
in Figure 5b. The estimated delay pattern curve is shown as thin
solid lines. The plus signs represent estimation errors (between
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[Source for (a): maps.google.com.]

asterisks and the delay pattern). For this data set, nearly 88% of
vehicles will have an estimation error of less than 15% if the esti-
mated delay pattern is used. This illustrates that the delay pattern
is a fairly good estimation to the ground-truth travel times. Three
cycles, C1, C2, and C3, during which oversaturation happened are
further highlighted in the figure. In fact, oversaturation occurred

during both C1 and C2 as marked. During C3 all queues were
cleared up. As a result, the delay pattern for C3 consists of three
line segments as indicated. In particular, the first line segment rep-
resents delays caused by all three cycles, the second line segment
represents delays caused by C2 and C3, and the third line is for
delays caused by C3 only.
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tions. The model and algorithm were tested by using microscopic
traffic simulation data and field experiment data. The results illus-
trated that the IDE algorithm is promising when the penetration rate
is relatively high (e.g., larger than 20%).

The proposed model and algorithm only require sampled travel
times obtained between consecutive locations in arterial streets. This
is in contrast to most previous intersection delay or travel time mod-
els that assume at least signal timing parameters and detector data.
As a result, the intersection delay model and algorithm have the
potential to be applied in large-scale arterial networks, especially if
integrated with the VTL technique designed for GPS-equipped cel-
lular phones. The work presented in this article is only the first step
in developing arterial delay models. Some future research directions
can be summarized as follows:

1. Only normal and oversaturation conditions were considered in
this article. The authors are now working on characterizing delay
patterns under other traffic conditions.

2. The least-squares–based IDE algorithm considers only the two
most significant features of intersection delays and currently works
well for relatively high penetration rates. The algorithm needs to be
refined by exploring more characteristics of arterial traffic flow, traf-
fic signal systems, and delay patterns.

3. The model and algorithm were tested by using microsimulation
and data from a field experiment. A series of field experiments is cur-
rently under way to collect arterial travel times that will be used to test
the proposed model. Results will be reported in subsequent articles.
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