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Abstract

In order to develop efficient control strategies to improve traffic conditions on freeways, it is neces-
sary to estimate the state of the traffic accurately in space and time. Using data collected from stationary
detectors –such as loop detector stations– the density field can be currently reconstructed to a certain
accuracy. Unfortunately, deploying this type of infrastructure is expensive, and its reliability varies
based on public funding. This article proposes and investigates new algorithms that make use of data
provided by mobile sensors, in addition to that collected by stationary detectors, to reconstruct traffic
flow. Two approaches are proposed and evaluated with traffic data. The first approach is based on data
assimilation methods (so-called nudging method or Newtonian relaxation) and the second is based on
Kalman filtering. These approaches are evaluated using traffic data. Results show that the proposed
algorithms appropriately incorporate the new data, improving significantly the accuracy of the estimates
that consider loop detector data only.
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1 INTRODUCTION

In order to develop efficient control strategies to improve traffic conditions on freeways, it is necessary to
estimate the state of the traffic accurately in space and time. In particular, the knowledge of the density field
or the velocity field is useful to determine bottleneck locations, physical extent of queues, and travel time.
Using data collected from stationary detectors –such as loop detector stations– these fields can be currently
reconstructed to a certain accuracy. Unfortunately, deploying this type of infrastructure is expensive, and its
reliability varies.

New technology developments such as the Global Positioning System (GPS) allow cellular phones to
broadcast their position and/or velocity in real time. If the cellular phone is located in a moving vehicle, the
information collected from the phone can be used –in addition to (or instead of) the information provided
by static sensors (e.g. loop detectors)– in traffic state estimation.

This new sensing technology has greatly impacted the transportation field, constituting a novel and rich
source of traffic data. Maintenance problems common with stationary sensors (loop detectors mainly) do
not appear with this technology. For public transportation agencies, there is no cost of deploying this new
sensing technology, which is market driven. Personal devices (cellular phones) that people already have
act as sensors, which has brought private companies into a field that has historically been monitored and
managed by public agencies (encouraging partnerships between the public and private sector). Given the
high penetration rate of cellular phones across the population –particularly in developing countries–, this
new sensing technology has the potential of being deployed almost everywhere.

The problem of interest consists of finding new algorithms to make use of the data obtained from mobile
sensors, in particular vehicles acting as probes –in addition to the data collected from stationary detectors–
to estimate traffic state on freeways. The goal of this article is to incorporate mobile sensing information
into traffic flow models so better estimates of traffic can be obtained.

The rest of the article is organized as follows. Background material is provided in Section 2, in which
studies making use of data from loop detectors or probe vehicles are presented. Section 3 describes the
proposed methods to address the problem of interest. These approaches were evaluated using traffic data,
and the results are discussed in Section 4. Finally, some preliminary conclusions are presented in Section 5.

2 BACKGROUND

Depending on the way data is collected, two types of measurements can be used in traffic flow estimation.
The first one consists in observing traffic flow at fixed locations (Eulerian measurements). This is the case
of data collected from loop detectors stations. The second way is by following specific vehicle trajectories,
which yields Lagrangian measurements (i.e. trajectory-based). Lagrangian data can be obtained using
GPS technology inside cellular phones, or any tracking device providing position and velocity of specific
vehicles.

Different methods are appropriate to reconstruct the density of vehicles on the freeway depending on the
nature of collected data (Eulerian or Lagrangian). Traffic models and data collected from loop detectors (i.e.
Eulerian data) can be used to reconstruct the density field in a fairly reasonable way. These models, however,
have no explicit way of incorporating Lagrangian data into the modeling. The next sections summarize how
Eulerian and Lagrangian sensors have been used in other studies to reconstruct traffic flow.
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2.1 Eulerian sensing

Numerous freeways around the world, in particular in the US, have loop detector stations embedded in
the pavement to collect traffic data. For each lane, these detectors aggregate information at a sample time
(usually 20 or 30 seconds) for each lane. Vehicle counts, occupancy are among the information that a
detector collects. This type of data has been used in different ways for several traffic applications and
studies. In particular, some studies have used this type of data to perform traffic state estimation.

Gazis and Knapp in [1] and Szeto and Gazis in [2] are among the first studies that make use of Kalman
filtering techniques to estimate the density on a section of freeway. The corresponding algorithms are based
on the conservation of vehicle principle and they use vehicle counts and speeds at the boundaries of the
section to perform the estimation.

Lin and Ahanotu in [3] validate the Cell Transmission Model (CTM) using data collected from loop
detectors. The CTM is a traffic flow model proposed by Daganzo in [4] and [5]. It is a discretization of the
Partial Differential Equation (PDE) proposed in the 1950’s by Lighthill and Whitham [6] and Richards [7]
(known as the LWR PDE) to describe the evolution of traffic flow over time and space. The CTM divides the
highway in “cells” of length ∆x and every ∆t units of time the number of vehicles on each cell is updated
according to the conservation of vehicles principle. The CTM transforms the nonlinear flux function into
a nonlinear discrete operator. Muñoz et al. in [8] propose the Switching-Mode Model (SMM), which is a
piecewise linearized version of the CTM. Using the framework of hybrid systems [9], the SMM combines
discrete event dynamics (mode identification) with nonlinear continuous dynamics (density estimation).
In [8] and [10], the authors test the proposed model using data collected from detectors on a stretch of
highway I-210W in Pasadena, California.

Treiber and Helbing in [11] propose and test a method that “filters” data from detectors (density or ve-
locities) to reconstruct traffic flow. In contrast with previous methods, this method does not take into account
information about the traffic dynamics (such as the LWR PDE). It only considers the main propagation di-
rection of the information to perform the estimation (downstream under free flow conditions and upstream
when congestion arises).

2.2 Lagrangian sensing

Unlike Eulerian sensors, the use of Lagrangian sensors to reconstruct traffic flow has not been widely studied
in transportation. Several studies have focused on technical and operational aspects of a probe system used
to estimate travel times. Other studies have dealt with methodological aspects of travel time estimation and
incident detection. Sanwal and Walrand in [12] propose an algorithm to estimate the average speed on a
given link from probe speeds using a Bayesian approach (i.e. local speed estimation using Lagrangian speed
measurement) in order to estimate travel time. The speeds estimated correlate well with the ones collected
by loop detectors. Westerman et al. in [13] discuss the idea of fusing infrastructure-based loop detector
data and non-infrastructure based probe vehicle data (i.e Eulerian and Lagrangian data) to obtain travel time
estimations and to detect incident automatically. Ygnace et al. in [14] present analytical and simulation
results to estimate travel time from individual speed measurements. Chu et al. in [15] use Kalman filtering
techniques to combine point detection data and probe vehicle data into the travel time estimation. They
propose an Adaptive Kalman Filter (AKF) based method that can dynamically estimate noise statistics of
the system model by adapting to the real-time data. The evaluation shows improvements in travel time
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estimation when compared with the case in which no probe data is available.
One of the first studies (to our best knowledge) which tried to incorporate Lagrangian data into the traffic

state estimation problem was done by Nanthawichit et al. in [16], where the authors use Kalman filtering
to improve estimations from traffic models that use only Eulerian data. Using Payne’s traffic flow model
and simulated data, they concluded that traffic state estimation improves when Lagrangian data is used. The
authors also used this approach to predict travel times.

The reconstruction of velocity fields using Lagrangian data is common in other areas such as meteo-
rology and oceanography. In these fields, the process of blending Lagrangian data and a dynamic model
of the system is known as data assimilation. Terpstra et al. in [17] claim that data assimilation is not lim-
ited to physical processes, but it can also be used for prediction and modeling of behavior-based processes
(car-drivers behavior in this case). Therefore, the extrapolation of these techniques to the transportation
engineering problems appears to be very promising.

Data assimilation methods range from simple, suboptimal techniques such as direct insertion, statistical
correction, and statistical interpolation to more sophisticated, optimal algorithms such as inverse modeling,
variational techniques and a family of methods based on the Kalman filtering [18]. One of the simpler
methods is the nudging (or Newtonian relaxation) method.

The nudging method relaxes the dynamic model of the system towards the observations. To this end,
a source term proportional to the difference between the predicted and observed state is included in the
constitutive equation f(z, x, t) = 0 of the model (in the present case the LWR PDE):

f(z, x, t) = λ(x, t) · (z − zo) (1)

where x is the space variable, t is time, z is the state vector (in the present case car density), and zo is the
observation vector (measurements). The term λ(x, t) is called nudging factor, which vanishes away from
the measurement location and after the measurement time. Therefore, λ(x, t) nudges the solution towards
the observations closer to (x, t) when the observation is made.

Most of the data assimilation methods use boundary conditions. They must be known at some specific
locations (usually at the boundaries of the computational domain). Thus, these methods make use of Eulerian
data as well.

3 PROPOSED METHODS

The problem of interest for the present study is the traffic state estimation when Lagrangian data is available.
This section describes the proposed approaches to address this problem.

Considering Eulerian data only, provided by loop detectors at the boundaries of the section under anal-
ysis, at time t the traffic flow model will provide a first estimate of the density field ρ(x, t), denoted by
ρ̂−(x, t). At time t, Lagrangian sensors will provide the observed local density at some specific location xi,
denoted by ρo(xi, t) (the superscript o denotes observation). For these specific locations, the first estimate
and the observed density will probably differ from each other. This difference (ρ̂−(xi, t)− ρo(xi, t)) will
be used to compute a second estimate of the density everywhere at time t, denoted by ρ̂(x, t).

The present study proposes to use data assimilation techniques such as nudging or Kalman filtering
techniques to obtain the second estimate ρ̂(x, t). The rest of this section is divided into three subsections.
Section 3.1 explains how the observed local density can be obtained from Lagrangian measurements. A
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more detailed description of both the nudging method and the Kalman filtering approaches is provided in
the next subsections.

3.1 Computation of observed local density from Lagrangian data

Regular error-free measurements of vehicle position and velocity (xj(t) and vj(t), respectively, where j
denotes a particular equipped vehicle) are assumed to be available from the sensing technology. Denoting
the velocity fields by v(x, t), individual measurements provide the knowledge of the observed velocity at
location xj(t) at time t is the velocity of the vehicle at that location and time, i.e. vo (xj(t), t) = vj(t),
where the superscript o denotes observation. This assumption may not be appropriate when dealing with
multi-lane freeways, where different lanes might have different speeds. As a first approach, however, we
treat the freeway as a single traffic stream.

Using the fundamental diagram, vo (xj(t), t) can be used to obtain the density at the point of mea-
surement, ρo (xj(t), t). In reality, ρo (xj(t), t) is not the observed density but an estimate based on the
fundamental diagram.

If a triangular fundamental diagram is used, there is a problem when vj(t) = vf , where vf is the free
flow speed. Same combinations of flow and density under free flow conditions have the same free flow
speed. That is, under free flow conditions it is not possible to observe the local density through speed
measurements. For these cases, we will not consider the observation. Since the traffic flow model behaves
well under free flow conditions, this should not be a significant issue. Therefore, if vj(t) = vf free flow
conditions are assumed and the density predicted by the model is assumed to be equal to the observed density
(and then the observation is dismissed).

3.2 Data assimilation: nudging method or Newtonian relaxation

For its simplicity and computational efficiency, the nudging method –briefly outlined in Section 2.2– is
appealing.

The dynamic traffic flow model is given by the LWR PDE. The boundary conditions will be provided
by loop detector stations (Eulerian data), while some equipped vehicles –i.e. the vehicles equipped with
tracking technology– will provide their position and velocity over time (Lagrangian data).

Traffic flow model. The traffic flow model is the LWR PDE:

∂ρ

∂t
+

∂q(ρ)
∂x

= 0 (2)

with the boundary conditions

ρ(a, t) = ρa(t) and ρ(b, t) = ρb(t), with t ∈ (0, T ) (3)

and the initial condition
ρ(x, 0) = ρ0(x), with x ∈ (a, b) (4)

ρ(x, t) represents the vehicle density in vehicles per distance and q(ρ) is the fundamental diagram (flux
function), which in this study will be assumed to be concave (triangular for the implementation). For a
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proper characterization of Equation (2), weak boundary conditions are required, and boundary conditions
in (3) cannot be used as such. Boundary conditions only apply on the boundary of the section where
characteristics are entering the computational domain. Weak boundary conditions for the specific case of
the LWR PDE can be found in [19]:





ρ(a, t) = ρa(t) or
q′ (ρ (a, t)) 6 0 and q′ (ρa (t)) 6 0 or
q′ (ρ(a, t)) 6 0 and q′ (ρa(t)) > 0 and q (ρ(a, t)) 6 q (ρa(t))

and 



ρ(b, t) = ρb(t) or
q′ (ρ (b, t)) > 0 and q′ (ρb (t)) > 0 or
q′ (ρ(b, t)) > 0 and q′ (ρb(t)) 6 0 and q (ρ(b, t)) 6 q (ρb(t))

In practice, these boundary conditions are implemented using ghost cells.

Nudging method in traffic flow. From Equation (1), the nudging method consists in adding a source term
to the dynamic model in Equation (2):

∂ρ

∂t
+

∂q(ρ)
∂x

= −
J∑

j=1

λ (x− xj(t), t) · (ρ (xj(t), t)− ρo (xj(t), t)) (5)

The summation over the index j in the RHS of Equation (5) accounts for the J different vehicles
equipped with Lagrangian sensors. A possible expression for the nudging factor λ (x, t) can be found
in [20] and is given by:

λ(x, t) =





1
Ta

exp
(
− x2

X2
nudge

)
exp

(
− t−to

Td

)
if x 6 αXnudge and t > to

0 otherwise
(6)

In Equation (6), Ta is the timescale and determines the strength of the nudging factor, and to is the
observation time. Td and Xnudge reflect how the effect of any observation decreases over time and space,
respectively (they determine how fast the two exponential terms go to zero). The coefficient α is a positive
number that depends on the application, and reflects the zone of influence of the measurements. In our
context, the nudging term “adds” or “removes” vehicles from the freeway depending on whether the model
underestimates or overestimates the number of vehicles on the freeway.

Implementation issues. For implementation purposes, the LWR PDE needs to be discretized. To this end,
the freeway section is divided into I cells (each one of length ∆x distance units, and denoted by i), and time
is divided into H time steps (each one of length ∆t time units, and denoted by h). In order to meet the
Courant-Friedrichs-Lewy (CFL) stability condition [21] –which states that no vehicle can travel more than
one cell in one time step– the condition ∆t ·vf 6 ∆x should be met. At every time step the model estimates
the density in each cell according to the following expression:

kh+1
i = kh

i − r
(
qh
i+1 − qh

i

)
i = 1, 2, . . . , I and h = 0, 1, . . . , H − 1. (7)
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kh
i is density in cell i at time h, qh

i is the flow into cell i between time h and h + 1, and r is the inverse
of the speed needed to travel one cell in exactly one time step (i.e. r = ∆t

∆x ). qh
i depends nonlinearly on

kh
i and kh

i−1. The Godunov scheme [22] will be used to solve (7), and qh
i = qG

(
kh

i−1, k
h
i

)
where qG is the

Godunov flux defined as follows:

qG(k1, k2) =





q(k2) if kc < k2 < k1,

q(kc) if k2 < kc < k1,

q(k1) if k2 < k1 < kc,

min(q(k1), q(k2)) if k1 6 k2.

kc is the critical density, and it corresponds to the point at which the flux reaches its only maximum (the
flux function is concave). The discretization of the nudging term needs to be added to Equation (7). The
final expression for the model is as follows:

kh+1
i = kh

i − r
(
qG

(
kh

i , kh
i+1

)
− qG

(
kh

i−1, k
h
i

))
−∆t

J∑

j=1

∑

tjp∈Sh
j

λ
(
xi − xj

(
tjp

)
, h∆t

) ·

[
ρ̂−

(
xj

(
tjp

)
, tjp

)− ρo
(
xj

(
tjp

)
, tjp

)]
i = 1, 2, . . . , I and h = 0, 1, . . . , H − 1. (8)

The notation introduced in Equation (8) is explained below:

− J : total number of equipped vehicles,

− xi: location of the beginning of cell i, xi = x0 + (i − 1) · ∆x, for i = 1, 2, . . . , I , where x0 is the
beginning of the section of interest,

− tjp: time when the p-th observation from vehicle j occurs (in time units),

− Sh
j : set of all the observations times of vehicle j that are less than or equal to the time elapsed until the
h-th time step, i.e. Sh

j = {tjp : 0 < tjp 6 h ·∆t}, and

− ρ̂−
(
xj

(
tjp

)
, tjp

)
=

(
1− θj

p

)
· khj

p

ipj
+ θj

p · khj
p

(ipj+1) , where:

· hj
p : time step when the p-th observation from vehicle j occurs (in time step units), i.e. hj

p = d tjp
∆te

(because of roundoff error of hj
p, the algorithm might exhibit some lag of duration less than ∆t

in sensing),

· ipj : cell where vehicle j is located at time tjp, ipj = dxj(t
j
p)−x0

∆x e, where xj(t
j
p) > x0, and

· θj
p =

xj(t
j
p)−xipj

∆x , where xipj 6 xj(t
j
p) 6 x(ipj+1).

The last term in the RHS of Equation (8) is the discrete version of the nudging factor times the difference
between estimated and measured density (terms inside the square brackets). The density estimate at location
xj(t

j
p) is based on linear interpolation between the density at the closest points –on the grid– to xj(t

j
p). The

nudging factor is given by Equation (6), after substituting x− xj(t) by xi − xj

(
tjp

)
and t by h∆t.
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As pointed out earlier on, weak boundary conditions are required for a proper characterization of the
solution of the LWR PDE in (2). For implementation purposes, one ghost cell is inserted at each boundary
of the section. The ghost cells contain the boundary conditions, and they allow the first and last cells of the
computational domain to be updated depending on the existing traffic conditions (free flow, congested, or a
mix of the two). This approach was successfully implemented and tested by Strub and Bayen in [19] with
traffic data collected from loop detectors. The equations for the ghost cells (i = 0 and i = I + 1) and for
the initial conditions (h = 0) are given by Equation (9) and (10), respectively:

kh
0 =

1
∆t

∫ h∆t

(h−1)∆t
ρa(t)dt and kh

I+1 =
1

∆t

∫ h∆t

(h−1)∆t
ρb(t)dt h = 0, 1, . . . ,H − 1 (9)

k0
i =

1
∆x

∫ xi

xi−1

ρ0(x)dx i = 1, 2, . . . , I. (10)

3.3 Kalman filtering

Kalman filtering is a recursive method to estimate the state of a discrete process governed by a linear stochas-
tic dynamical system. The estimate is such that its covariance is minimized. This section describes how
Kalman filtering techniques can be used for the purposes of this work.

State space representation. The state space representation of the system consists in two equations: the
dynamic (or state) equation and the measurement (or observation) equation. The dynamic equation de-
scribes how the state of the process (density in this case) evolves and is given by Equation (7), with
qh
i = qG

(
kh

i−1, k
h
i

)
. Since qG is nonlinear, the SMM is used. Depending on the mode detected, the dy-

namic equation is chosen. This constitutes one of the main differences with respect to the nudging method
described before, where no mode identification is performed (the method does not assume anything about
freeway conditions).

If only the situations in which the whole section is either under free flow or congested are considered,
the dynamic equation reads as follows (using the same notation as before):

kh+1
i =

{
kh

i−1 if free flow
(1− δ)kh

i + δkh
i+1 if congested

i = 1, 2, . . . , I and h = 0, 1, . . . ,H − 1. (11)

where δ = w/vf , and w is the backward shockwave speed. Equation (11) assumes that every cell has the
same length ∆x = vf∆t and the same fundamental diagram, and that there is no creation or loss of vehicles
at middle points (i.e. no ramps). For a more general formulation for these two cases (and three other cases
that consider a combination of free flow and congested modes), the reader is referred to [23]. In matrix
form, Equation (11) can be written as:

kh+1 = Ah · kh + Bh · uh + wh (12)

Bold letters represent vectors. The vector kh = [kh
1 kh

2 . . . kh
I ]T is the state vector at time step h,

and matrices Ah and Bh are time-varying in the sense that they depend on the mode m at time step h (for
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instance, m = 1 in free flow mode, m = 2 in congested mode). The term wh represents the error of the
state equation (caused by false or missed counts –because of lane changing manoeuvres for instance– at
boundaries). The input uh is a scalar and it is related to the measurements obtained at the boundaries of
the computational domain (used to compute the density on the first or last cell under free flow or congested
mode, respectively). In fact, if the whole section is either under free flow or congested mode:

uh =
{

kh
0 , if free flow (m = 1) on the section during h;

kh
I+1, if congested (m = 2) on the section during h.

(13)

where kh
0 and kh

I+1 come from Equation (9). Initial conditions k0
i are the same as in Equation (10).

The measurement or observation equation compares the observed values of the state variables with the
ones predicted by the model. This equation is as follows:

yh = Ch · kh + vh (14)

yh is the observed vector, and vh is the measurement error (which constitutes another difference with
respect to the nudging method, in which the observed density is assumed to be perfect or error free). Kalman
filtering also assumes that wh and vh are independent and normally distributed with zero mean. The matrix
Ch is time dependent. The size and elements of Ch depend on where the Lagrangian observations at h
are coming from, and it contains only zeros and ones (it is assumed that the local density can be observed
from Lagrangian sensors). Lagrangian observations are coming from different cells, and also the number
of observations between consecutive time steps might be different. Thus, the observed vector yh in Equa-
tion (14) will have different dimensions at different time steps. The latter implies that matrix Ch will also
have different dimensions at every time step.

In summary, the dynamic or state equation and the measurement or observation equation of the system
are given by Equation (12) and (14), respectively.

Solution method: Kalman filtering. Let us use the following notation:

− k̂
−
h : a-priori state estimate of kh,

− k̂h: a-posteriori state estimate of kh,

− P−
h : a-priori estimate error covariance, where e−h = kh − k̂

−
h is the a-priori estimate error,

− Ph: a-posteriori estimate error covariance, where eh = kh − k̂h is the a-posteriori estimate error.

Kalman filtering provides a set of recursive equations to estimate the vector state. The equations are as
follows:

k̂
−
h+1 = Ah · k̂h + Bh · uh (15)

P−
h+1 = Ah · Ph ·AT

h + Q (16)

Fh+1 = P−
h+1 · CT

h+1

[
Ch+1 · P−

h+1 · CT
h+1 + R

]−1
(17)

k̂h+1 = k̂
−
h+1 + Fh+1

(
yh+1 − Ch+1 · k̂−h+1

)
(18)

Ph+1 = (I − Fh+1 · Ch+1) P−
h+1 (19)
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Initial conditions k̂0 and P0 are assumed to be known. Q and R are the covariance matrix of the process
and measurement error, respectively. Fh is known as the Kalman filter gain at time step h. The matrix Ch

have different dimensions at every time step, which implies variable dimension of covariance matrix R.

Implementation issues. As before, the section is divided in I cells of length ∆x and the simulation period
is divided in H time steps of length ∆t each, such that ∆x and ∆t satisfy the CFL stability condition. The
state vector contains the density in each cell. At the beginning of each time step the traffic conditions on the
network need to be identified (in order to determine the set of matrices A and B to use).

Once the mode has been identified at the beginning of time step h + 1, Equation (15) and (16) are
used to obtain the a-priori density estimate and covariance, respectively (using the Eulerian data provided
from detector stations). At this point, Lagrangian data becomes available to the model, i.e. the observed
density at time h + 1 will be known for some cells (the quantity and position of the Lagrangian sensors at
h + 1 will determine how many and for which cells the density is observed). With this information, the
observed vector yh+1 and matrix Ch+1 can be constructed. Then, the Kalman filter gain is computed using
Equation (17). Finally, the a-posteriori density estimate and its covariance are obtained using Equation (18)
and (19), respectively. In case no observation is available at time h+1, the matrix Ch+1 is set equal to zero,
which implies that the Kalman gain is also zero, and therefore the a-posteriori density estimate is equal to
the a-priori density estimate.

4 RESULTS

The two approaches described in Section 3 are implemented with traffic data to evaluate their respective
performance. The performance is evaluated in terms of the ability of the models to estimate three variables
derived from the density field: number of vehicles between two points in space, density profile at middle
location, and travel time to travel through the entire section.

Traffic data from the Next Generation Simulation (NGSIM) project [24] is used to evaluate the proposed
approaches. The data consist of the trajectory for every vehicle that enter a stretch of US Highway 101S in
Los Angeles, CA, during 45 minutes (from 7:50am to 8:35am) . Figure 1 illustrates the location of interest.
The site is approximately 0.4 miles in length, with 5 mainline lanes. An auxiliary lane exists between the
on-ramp and the off-ramp. Transition from free flow to congested mode happens during the first 12-15
minutes (i.e. part of the section was in the free flow mode while the rest was in the congested mode).

For implementation purposes, only the two left-most lanes were considered. The whole section (2040
ft) has been divided into I = 17 cells of ∆x = 120 ft each, and the total simulation time (2634 sec) has
been divided into H = 2195 time steps of ∆t = 1.2 seconds each. Parameters of the fundamental diagram
were extracted from PeMS1.

For simplicity, no mode identification was performed in the Kalman filtering implementation. The
whole section was assumed to be congested all the time. Four different scenarios were tried depending on
how Lagrangian data is created. Some proportion p of the trajectories are chosen (randomly) as equipped
vehicles. These vehicles are reporting their position and speed every time interval T , and the reported speed

1Assuming a triangular shape: qmax = 2040 vphpl, kj = 205 vpmpl, kc = 30 vpmpl, vf = 68 mph, and w = −11.6 mph.
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Figure 1: NGSIM site.

is the average speed over the last τ seconds. The values chosen for p, T , and τ determine the total number
of Lagrangian measurements created for each of the four cases investigated (see Table 1).

Travel time for the section of interest is about 2 minutes under congested conditions. Thus, cases 1
and 3 assume that each equipped vehicle sends only one report while it is traveling the section. Continuous
tracking for equipped vehicles is assumed in cases 2 and 4. Because of privacy issues, these two cases might
not be a feasible solution in the future. They were investigated, however, to evaluate the potential of the
methods proposed.

For comparison purposes, a model that uses Eulerian data only (EDO) was also implemented according
to the numerical scheme proposed by Strub and Bayen in [19]. Figures 2, and 3 compare the true or observed
evolution of the number of vehicles on the section with the estimates from the approaches.

Figure 2 compares the results using EDO with those from the proposed approaches under case 4 (i.e
assuming that 20% of the vehicles are equipped and their speed is sampled continuously). The inclusion of
Lagrangian data in the estimation process improves the accuracy of the estimates, regardless of the method
used (Kalman filtering at the top and nudging method at the bottom). Both approaches appropriately incor-
porate the Lagrangian data into the model.

When both approaches use the same Lagrangian data, Kalman filtering yields more accurate estimates.
The same results are found when the approaches are compared under any of the other three cases. Since the
observed density has some error –as stated in Section 3.1, the observed density is actually an estimate, based
on the fundamental diagram–, Kalman filtering’s capability of handling an error in the observed density –
see Equation (14)– might explain its slightly better performance (the nudging method assumes that the
observed density is perfect, i.e. it has no error). However, the advantage of making no assumption about
the freeway state (i.e. no mode identification needs to be performed) makes the results from the nudging
method encouraging.

Figure 3 compares the Kalman filtering approach for the four different cases (i.e. assuming different
penetration rates and sampling rates). The top graph contains the estimation for cases 2 and 4. The graph
at the bottom contains the same curves but for cases 1 and 3. For low penetration rates (cases 1 and 2),
the estimates are accurate as long as the sampling rate is high. For low sampling rates (cases 1 and 3),
the estimates are not as accurate even when the penetration rate is high. As expected, the best results are
achieved under case 4, when the amount of Lagrangian data is the highest.

The fifth column in Table 1 shows the Root Mean Square Error2 (RMSE) of the estimation of the number

2The RMSE is defined as: RMSE =

√∑
h(ẑh−zh)2

H
where ẑh and zh are the estimator and its actual value at time step h,

respectively.
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Figure 2: Estimation improvement when Lagrangian data is available.

of vehicles for both approaches and the four cases used. The table is sorted according to the seventh column.

In terms of the density profile and travel time estimation, the qualitative results are the same as before.
Figure 4 shows the true or observed density profile at a middle point (extracted from vehicle trajectories
and then smoothed) and the estimated profile for three different cases. The sixth column in Table 1 presents
the RMSE’s in terms of the density profile at a specific point in the middle of the section. Again, high
penetration rates and high sampling rates achieve the best performance, and the use of Lagrangian data only
improves estimations.

Figure 5 compares the real travel times (each dot corresponds to one vehicle) with the ones computed
using the density field estimation. Travel time at time step h is the sum of each cell travel time at time step
h. To compute each cell travel time at h, the density of each cell at h is converted into velocity (using the
fundamental diagram). Knowing the velocity and the length of each cell, the travel time is computed.

Because of the time frame used and the short length of the section, the true or observed curves for the
number of vehicles, density profile, and travel time show a large amplitude oscillatory behavior. Neverthe-
less, the proposed approaches show good fidelity to the trend in this extreme case. It is expected that with
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Figure 3: Comparison of high vs. low penetration and sample rates.

Table 1: RMSE using both approaches and different penetration rates and sampling rates.
RMSE

Method Case p (%) T (sec) τ (sec) # of Lagrangian Number Density
measurements of vehicles profile

KF 4 20 10 10 2577 6.6 12.7
KF 2 5 10 10 773 9.8 24.4
NM 4 20 10 10 2577 9.8 19.3
KF 3 20 600 30 417 10.4 23.9
NM 2 5 10 10 773 11.6 31.5
NM 3 20 600 30 417 12.1 32.3
KF 1 5 600 30 117 15.7 43.5
NM 1 5 600 30 117 17.7 46.9
EDO N/A N/A N/A N/A N/A 21.3 57.8

less variability the results from both approaches should be at least as accurate as in this case. The results
when EDO is used should improve as well. Therefore, the gap between EDO and the proposed approaches
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should be smaller.

5 Final comments

Considering the limitations and special features of the NGSIM data set, results shown in Section 4 are
promising. From the graphs and tables shown in Section 4, the following preliminary conclusions can be
drawn:

• The use of Lagrangian data improves current estimations of the density field. As a result, more
accurate estimates for the number of vehicles on the section and for travel times can be obtained.

• Even though both approaches appropriately incorporate Lagrangian data in the model, the Kalman
filtering approach performs slightly better than the nudging method. However, the fact that no mode
identification is performed –and the good results obtained– makes the nudging method an attractive
method to be implemented in transportation.

• The more Lagrangian observations are available, the better accuracy can be achieved in the estimates.
Best results are obtained for case 4, while worst results are achieved for case 1 (regardless of the
approach used). Both approaches yield better results for case 2 than for case 3, implying that the
number of Lagrangian measurements determines the accuracy of the estimates.
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Figure 5: Travel time predictions.

• Some specific traffic features –like traffic oscillations or instabilities– are hard to capture with static
detectors, specially when the spacing between the detectors is big. Information collected from indi-
vidual vehicles over time and space can be helpful in this sense.

These conclusions are preliminary and more analysis needs to be done in order to draw some final
conclusions. To this end, an extension to this research is being performed, where vehicle trajectories will be
extracted from a microsimulation and then used to evaluate the proposed approaches (in the same manner
as in Section 4). The use of cellular phones broadcasting their position and velocity will constitute the last
level of evaluation of the proposed approaches.

Improvement in the computation of the observed density from Lagrangian data, and inclusion of error
or noise in the nudging method (for the observed density) are among future challenges this research poses.

Acknowledgements

The authors would like to thank NGSIM for providing the vehicle trajectories used in this study and Saneesh Apte from CCIT
for processing the data and computing sensor occupancies and speeds from the NGSIM vehicle trajectories. Also thanks to Issam
Strub, Eric Lew and Shuo Yang for their involvement on different stages of this study. Finally, JD Margulici is acknowledged for
providing CCIT support and fruitful discussion.

TRB 2008 Annual Meeting CD-ROM Paper revised from original submittal.



Juan C. Herrera and Alexandre M. Bayen 16

References

[1] D. Gazis and C. Knapp. On-line estimation of traffic densities from time-series of flow and speed data.
Transportation Science, 5(3):282–301, 1971.

[2] M. Szeto and D. Gazis. Application of Kalman filtering to the surveillance and control or traffic
systems. Transportation Science, 6(4):419–439, 1972.

[3] W-H. Lin and D. Ahanotu. Validating the basic cell transmission model on a single freeway link.
PATH Technical Note 95-3, Institute of Transportation Studies, University of California, Berkeley,
1994.

[4] C. Daganzo. The cell transmission model: a dynamic representation of highway traffic consistent with
the hydrodynamic theory. Transportation Research B, 28(4):269–287, 1994.

[5] C. Daganzo. The cell transmission model, Part II: Network traffic. Transportation Research B,
29(2):79–93, 1995.

[6] M.J. Lighthill and G.B. Whitham. On kinematic waves II. A theory of traffic flow on long crowded
roads. In Proceedings of the Royal Society, volume A 229, pages 317–345, 1955.

[7] P.I. Richards. Shock waves on the higway. Operation Research, 4:42–51, 1956.
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