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A hydrodynamic theory based statistical model of arterial traffic

A. Hofleitner∗, R. Herring† and A. Bayen‡

Abstract

In arterial networks, the dynamics of traffic flows are driven by the presence of traffic signals.
A comprehensive model of the dynamics of arterial traffic flow is necessary to capture the specifics
of arterial traffic and provide accurate traffic estimation. From hydrodynamic theory of traffic
flow, we model the dynamics of arterial traffic under specific assumptions which are standard
in transportation engineering. We use this flow model to develop a statistical model of arterial
traffic. First, we derive an analytical expression for the spatial distribution of vehicles. This
encompasses the fact that the average density of vehicles is higher close to the traffic signals
because of the delays experienced by the vehicles. Second, we derive the probability distribution
of total and measured delay (to be defined specifically in the document). The delays experienced
by vehicles traveling on a link of the network depend on the time (from the beginning of the
cycle) when they enter the link. We model the probability of delay for a path between two
arbitrary points on the link. The probability distribution of measured delay takes into account
the sampling scheme to derive the probability of the observed delay from probe vehicles sampled
uniformly in time. Finally, we use the probability distribution of delays and a model of driving
behavior to derive the probability distribution of travel times between any two arbitrary points
on a link. The analytical derivations are parameterized by traffic variables (cycle time, red time,
model of free flow speed, queue length and queue length at saturation). The models estimates
queue length (and thus congestion levels), signal parameters and variability of driving behavior.
We show that the probability distributions of travel times on an arterial links are quasi-concave.
The probability distributions of travel times between any arbitrary location on the link are
finite mixture distributions where each component represents a class of vehicles depending on
the characteristics of its delay. We prove that each component of the mixture distribution is
log-concave, which enables the use of specific optimization algorithm. The distributions derived
in this report are used as fundamental building block for arterial traffic estimation using sparse
travel time measurements from probe vehicles used in subsequent work.

∗Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,
aude@eecs.berkeley.edu, http://eecs.berkeley.edu/~aude
†Department of Industrial Engineering and Operations Research, University of California, Berkeley
‡Department of Civil and Environmental Engineering, Systems Engineering, University of California, Berkeley
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1 Introduction

In numerous parts of the world, traffic congestion comes with important external costs due to
added travel time, wasted fuel and increase in traffic accidents [23]. Numerous measures can be
taken to address problems due to traffic congestion. An essential step for operations and planning
is to create the ability to estimate and forecast traffic conditions with appropriate accuracy and
reliability.

Historically, the design of highway traffic monitoring systems mostly relied on dedicated sensing
infrastructure (loop detectors, radars, video cameras). When properly deployed, these data feeds
provide sufficient information to reconstruct macroscopic traffic variables (flow, density, velocity)
using traffic flow models developed in the literature [16, 21, 7]. However, for the secondary network
or highways not covered by this infrastructure, traffic estimation models face challenges associated
with probe vehicle data, which comes from various sources (fleet data, smartphones, RFID tags),
each of them with specific issues (bias, noise, coverage).

Proof of concept studies have demonstrated the feasibility of designing highway traffic moni-
toring systems relying on probe data only [13, 26]. Arterials come with additional challenges: the
underlying flow physics which governs them is more complex and highly variable (traffic lights
with unknown cycles in general, turn movements, pedestrian traffic). Microscopic models have
mainly focused on modeling single intersections (or a few intersections) relying on significant data
availability assumptions (including signal timing, vehicle counts or high penetration rate of travel
time measurements) [3]. While macroscopic flow models exist for the secondary network [11, 22],
their parameters require site-specific calibration experiments. In addition, even if they were known,
the complexity and statistical variability of the underlying flows make it challenging to perform
estimation of the full macroscopic state of the system at low penetration rates of probe vehicles
(which appears to be one of the few available data sources for arterial networks in the near future,
at a global scale).

An important challenge in arterial traffic estimation is the characterization of travel time distri-
butions. The study of speeds and travel time distributions is part of ongoing research that started
in the 1950s with the emergence of flow-based traffic engineering [4]. This research area has been
closely related to queuing theory and delay estimation for fixed cycle traffic lights. The arrival of
vehicles is often modeled as a Poisson Process and the mean average delay and queue length at the
end of the green time are derived using analytical expressions and numerical simulation [25, 17].
These results are generalized to arrival processes for which the number of arrivals per time interval is
a discrete random variable [8, 6, 15]. The probability generating function (pgf) of overflow queue [8]
was derived for general arrival distributions. The characterization of the stationary delay distri-
bution was derived under simplification assumptions [2, 12] and with computational methods [18].
These articles model queues at traffic signals under stationary assumptions and numerically char-
acterize the link delay distribution under specific assumptions. Analytical formulas of the mean
delay are given in the Highway Capacity Manual [1] and related work [10]. They rely on static
parameters of the road (number of lanes, average flow, cycle timing), rarely accessible on large scale
networks. Dynamic estimation of the average delay and its variance has been derived for vertical
queues [24], i.e. not modeling the location of where vehicles stop.
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In light of the challenges of arterial traffic estimation, a statistical approach for characterizing
the macroscopic state of traffic is well-suited toward designing a robust, scalable arterial traffic
monitoring system. To our knowledge, an analytical characterization of horizontal queue dynam-
ics and the corresponding travel time probability distributions between arbitrary locations on an
arterial network is still an emerging field, for which few contributions exist.

We use the physics of traffic flows as a basis for designing probability distributions on the
traffic variables. This work provides a hydrodynamic theory based statistical model of arterial
traffic. We formulate specific assumptions on the physics of traffic flow which make the problem
tractable, while keeping it realistic. From this theory, we derive the probability distribution of
vehicle locations on arterial links, delimited by signalized intersections. Because of the presence
of traffic signals, vehicles spend more time downstream of the links, where they experience delay.
The probability distribution of vehicle locations enables the estimation of queue lengths, which is
a measure of congestion. We use hydrodynamic theory to derive probability distributions of travel
times between arbitrary points of the network. These distributions are characterized by a small set
of parameters with direct physical interpretation (signal timing, queue length). When travel time
measurements are available, one can estimate these parameters and thus estimate the probability
distribution of travel times. Moreover, these parameters represent valuable information for traffic
management entities. We prove the quasi concavity of link travel time distributions for future
use in maximum likelihood estimator derivations. This feature is key to enable machine learning
algorithms used in a companion article [14]

The rest of this work is organized as follows. In Section 2, we present traffic theory results
derived from hydrodynamic models and queuing theory. We use these results in Sections 3 and 4
to derive probability distributions of vehicle measurement locations on an arterial link (Section 3)
and delay distributions between two points on an arterial link (Section 4). Noticing that the travel
time is the sum of the delay and the free flow travel time, we derive the probability distribution of
travel times in Section 5.

2 Modeling

2.1 Traffic model

In traffic flow theory, it is common to model vehicular flow as a continuum and represent it with
macroscopic variables of flow q(x, t) (veh/s), density ρ(x, t) (veh/m) and velocity v(x, t) (m/s).
The definition of flow gives the following relation between these three variables [16, 21]:

q(x, t) = ρ(x, t) v(x, t). (1)

We will use this property throughout our derivations of traffic models.
For low values of density, experimental data shows that the velocity of traffic is relatively

insensitive to the density; and all vehicles travel close to the so called free flow velocity of the
corresponding road segment vf . As density increases, there is a critical density ρc at which the
flow of vehicles reaches the capacity qmax of the road. As the density of vehicles increases beyond
ρc, the velocity decreases monotonically until it reaches zero at the maximal density ρmax. The
maximal density can be thought of as the maximum number of vehicles that can physically fit
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Figure 1: The fundamental diagram: empirically constructed relation between flow and density of
vehicles.

per unit length, and at this density, vehicles are unable to move without additional space between
vehicles. Experimental data indicates a decreasing linear relationship between flow and density, as
the density increases beyond ρc. The slope of this line is referred to as the congested wave speed,
noted w. This leads to the common assumption of a triangular fundamental diagram (FD) to model
traffic flow dynamics [7].

The triangular FD (illustrated in Figure 1) is thus fully characterized by three parameters: vf ,
the free flow speed (m/s); ρmax, the jam (or maximum) density (veh/m); and qmax, the capacity
(veh/m).

We note that ρc represents the boundary density value between (i) free flowing conditions for
which cars have the same velocity and do not interact and (ii) saturated conditions for which the
density of vehicles forces them to slow down and the flow to decrease. When a queue dissipates,
vehicles are released from the queue with the maximum flow—capacity qmax—which corresponds
to the critical density ρc = qmax/vf .

For a given road segment of interest, the arrival rate at time t, i.e. the flow of vehicles entering
the link at t, is denoted by qa(t). Conservation of flow relates it to the arrival density ρa(t) =
qa(t)/vf .

2.2 Traffic flow modeling assumptions

We make the following assumptions on the dynamics of traffic flow and discuss their range of
validity:
1. Triangular fundamental diagram: this is a standard assumption in transportation engineering.
2. Stationarity of traffic: during each estimation interval, the parameters of the light cycles (red

and cycle time) and the arrival density ρa are constant. Moreover, we assume that there is
not a consistent increase or decrease in the length of the queue, nor instability. With these
assumptions, the traffic dynamics are periodic with period C (length of the light cycle). The
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work is mainly focused on deriving travel time distributions for cases in which measurements
are sparse. Constant quantities (for a limited period of time) do not limit the derivations of the
model since we are here interested in trends rather than fluctuations.

3. First In First Out (FIFO) model: overtaking on the road network is neglected. When traffic
is congested, it is generally difficult or impossible to pass other vehicles. In undersaturated
conditions, vehicles can choose their own free flow speed, but we assume that the free flow speeds
are similar enough that the “no overtaking” assumption is a good approximation.

4. Model for differences in driving behavior : the free flow pace (inverse of the free flow speed) is not
the same for all vehicles: it is modeled as a random variable with vector of parameter θp—e.g.
the free flow pace has a Gaussian or Gamma distribution with parameter vector θp = (p̄f , σp)

T

where p̄f and σp are respectively the mean and the standard deviation of the random variable.

2.3 Arterial traffic dynamics

In arterial networks, traffic is driven by the formation and the dissipation of queues at intersections.
The dynamics of queues are characterized by shocks, which are formed at the interface of traffic
flows with different densities.

We define two discrete traffic regimes: undersaturated and congested, which represent different
dynamics of the arterial link depending on the presence (respectively the absence) of a remaining
queue when the light switches from green to red. Figure 2 illustrates these two regimes under
the assumptions made in Section 2.2. The speed of formation and dissolution of the queue are
respectively called va and w. Their expression is derived from the Rankine-Hugoniot [9] jump
conditions and given by

va =
ρavf

ρmax − ρa
and w =

ρcvf
ρmax − ρc

. (2)

Undersaturated regime. In this regime, the queue fully dissipates within the green time. This
queue is called the triangular queue (from its triangular shape on the space-time diagram of tra-
jectories). It is defined as the spatio-temporal region where vehicles are stopped on the link. Its
length is called the maximum queue length, denoted lmax, which can also be computed from traffic
theory:

lmax = R
wva
w − va

= R
vf
ρmax

ρcρa
ρc − ρa

. (3)

The duration between the time when the light turns green and the time when the queue fully
dissipates is the clearing time denoted τ . We have

τ = lmax

(
1

w
+

1

vf

)
. (4)

Replacing the lmax and w by their expressions derived in equations(3) and (2), we have

τ = R
ρa

ρc − ρa
. (5)

Congested regime. In this regime, there exists a part of the queue downstream of the triangular
queue called remaining queue with length lr corresponding to vehicles which have to stop multiple
times before going through the intersection.
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All notations introduced up to here are illustrated for both regimes in Figure 2.

Stationarity of the two regimes. Assumption 2 made earlier implies the periodicity of these
queue evolutions (see Figure 2). As indicated by the slopes of the trajectories in the figure, when
vehicles enter the link, they travel at the free flow speed vf . The distance between two vehicles is
the inverse of the arrival density 1/ρa. The time during which vehicles are stopped in the queue
is represented by the horizontal line in the queue. The length of this line represents the delay
experienced at the corresponding location. The distance between vehicles stopped in the queue is
the inverse of the maximum density 1/ρmax. When the queue dissipates, vehicles are released with
a speed vf and a density ρc. The trajectory is represented by a line with slope vf , the distance
between two vehicles is 1/ρc.

We next use these two discrete regimes to derive the pdf for the location of vehicles on a
link and for the travel time along a link. The estimation of the distribution of vehicle location
uses the individual measurement locations reported by the vehicles. The measurements being sent
uniformly in time, vehicles are more likely to report their location where their speed is lower, where
they experience delay. Because of the presence of traffic lights, vehicle are more likely to report
their location on the downstream part of the link than on the upstream part. Section 3 develops a
model for estimating vehicle distribution location. A probabilistic model based on the assumptions
formulated in this section provides the pdf of delays (Section 4) and travel times (Section 5) between
any two arbitrary locations on the network.

2.4 Notation

The list below summarizes the notation introduced earlier and to be used in the rest of the arti-
cle. The parameters are specific for each network link j. The index j is omitted for notational
simplicity.
• Model parameters:
� Free flow pace, pf (seconds/meter), inverse of the free flow velocity vf . The free flow pace is a

random variable. Its probability distribution function (p.d.f.) is denoted ϕp(p); it models the
different driving behavior by assuming a distribution of the free flow pace among the different
drivers,
� Cycle time, C (seconds),
� Red time, R (seconds),
� Length of the link, L (meters).
• Traffic state variables:
� Clearing time τ ,
� Triangular queue length,
� Remaining queue length, lr.
This set of variables is sufficient to characterize the model and the time evolution of the state of

traffic. The location x on a link corresponds to the distance from the location to the downstream
intersection. From these variables, we can compute the other traffic variables, including velocity,
flow, and density of vehicles at any x and time t and queue length. The remaining queue length lr is
specific to the congested regime (lr = 0 in the undersaturated regime). Similarly, the existence of a

9



Figure 2: Space time diagram of vehicle trajectories with uniform arrivals under an undersaturated
traffic regime (top) and a congested traffic regime (bottom).

10



clearing time is specific to the undersaturated regime (the clearing time is null and thus τ = C−R
in the congested regime).

The undersaturated and congested regimes are labeled u and c respectively. In the following,
we derive probability distribution of vehicle locations fs(x), s ∈ {u, c} based on statistical analysis
of queuing theory. We use the variable x to indicate the distance to the intersection, so the location
of the intersection is at x = 0 and the start of the link is at x = L. The function fs encodes the
probability of a vehicle to be at location x, which depends on x because of the spatial heterogeneity
of the density, due to the formation of queues at intersections, as can be seen in Figure 2. We also
derive probability distributions for the delay δx1,x2 and travel time yx1,x2 between two locations x1

and x2 on a link of the network, noted respectively h(δx1,x2) and g(yx1,x2). Using the stationarity
assumption, we define temporal averages of the traffic variables. These averages are then taken
over a light cycle C. For example, we define Z as the average number of vehicles present on a link,
with index u (resp. c) for the undersaturated (resp. the congested) regime.

Finally, given that the term density has a very specific meaning in traffic theory, we use the
term probability distribution to refer to a probability density function.

3 Modeling the spatial distribution of vehicles on an arterial link

In typical traffic monitoring systems relying on probe data, probe vehicles send periodic location
measurements, which provide two sources of indirect information about the arterial traffic link pa-
rameters. (i) As the location measurements are taken uniformly over time, more densely populated
areas of the link will have more location measurements. (ii) The time spent between two consecu-
tive location measurements provides information on the speed at which the vehicle drove through
the corresponding arterial link(s).

We use the traffic flow model presented in Section 2 to derive the probability distribution
of vehicle locations (averaged over time), which corresponds to the probability distribution of
measurement locations. The derivation relies on the computation of the average vehicle density
over a cycle.

3.1 General case

Using the stationarity assumption, the density at location x is time periodic with period C. We
define the average density d(x) at location x as the temporal average of the density ρ(x, t) at
location x and time t.

d(x) =
1

C

∫ C

0
ρ(x, t) dt

In practice, flow is never perfectly periodic of period C (even in stationary conditions), but we
will assume that the above averaging over a duration C is a good proxy of a longer average.

According to the model assumptions, the density at location x and time t takes one of the three
following values, numbered 1 to 3 for convenience: (1) ρ1 = ρmax, when vehicles are stopped, (2)
ρ2 = ρc when vehicles are dissipating from a queue, (3) ρ3 = ρa when vehicles arrive at the link
and have not stopped in the queue.
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The average density at location x is thus

d(x) =

3∑
i=1

αi(x)ρi

where αi(x) represents the fraction of time that the density is equal to ρi at location x.
The probability distribution f(x) of vehicle location at location x is proportional to the average

density d(x) at location x, with the proportionality constant given by Z =
∫ L

0 d(x) dx so that

f(x) =
d(x)∫ L

0 d(x) dx
.

In the undersaturated and the congested regime, the computation of the αi(·), i = 1 . . . 3 enables
the derivation of the probability distribution of vehicle locations.

3.2 Undersaturated regime

Upstream of the maximum queue length, the density remains constant at ρa throughout the whole
light cycle. Downstream of the maximum queue length, the value of the density varies over time
during the light cycle and takes one of the three density values ρ1, ρ2 and ρ3.

Using the assumption that the FD is triangular and that the arrival density is constant, the
average density increases linearly from ρa to the value it takes at the intersection, where x =
0. At the intersection, the density is ρmax during the red time R. The density is ρc when the
queue dissipates, i.e. during the clearing time τ = lmax( 1

w + 1
vf

). Replacing w and lmax by their

expressions, the time during which the queue dissipates is R ρa
ρc−ρa . The rest of the cycle has a

duration C − R ρc
ρc−ρa and it has density ρa. The average density at the intersection is the sum of

the arrival, maximum and critical densities, weighted by the fraction of the cycle during which each
of the density is experienced. The average density at the intersection is:

d(0) =
1

C


Rρmax︸ ︷︷ ︸

Red time R
at density ρmax

+ R
ρa

ρc − ρa
ρc︸ ︷︷ ︸

Clearing time τ
at density ρc

+

(
C −

(
R+R

ρa
ρc − ρa

))
ρa︸ ︷︷ ︸

Extra green-time C−(R+τ)
at density ρa


=

R

C
ρmax + ρa

Given that the density grows linearly between the end of the queue and the intersection, the density
at location x is given by

d(x) = ρa if x ≥ lmax

d(x) = ρa + R
C ρmax

lmax−x
lmax

if x ≤ lmax,
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Figure 3: Left: The estimation of vehicle spatial distribution on a link is derived from the queue
dynamics of the traffic flow model. The space-time plane represents the space-time domain in which
density of vehicles is constant. Domain 1 represents the arrival density ρa, domain 2 represents
the critical density ρc and domain 3 represents the maximum density ρmax. Right: Using the
stationarity assumption, we compute the average density at location x and normalize to derive the
probability distribution of vehicle locations on the link.

which can be summarized as

d(x) = ρa +
R

C
ρmax

max(lmax − x, 0)

lmax
.

We introduce the normalization constant Zu, which is defined by Zu =
∫ L

0 d(x) dx and represents
the temporal average of the number of vehicles on the link. Its explicit value is given by Zu =
Lρa + lmax

2
R
C ρmax. The normalized density of vehicles as a function of the position on the link,

defined by fu(x) = d(x)/Zu is thus equal to

fu(x) = ρa
Zu

if x ≥ lmax

fu(x) = ρa
Zu

+ R
C ρmax

lmax−x
lmaxZu

if x ≤ lmax
.

When vehicles report their location arbitrarily in time, this function represents the probability
of receiving a measurement at location x.

3.3 Congested regime

In the congested regime, the average density is constant upstream of the maximum queue length—
equal to ρa—and increases linearly until the remaining queue. In the remaining queue, it is constant
and equal to R

C ρmax + (1− R
C )ρc. The different spatio-temporal domains of the density regions are

illustrated Figure 3 (left). The probability distribution of vehicle locations is:
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f c(x) = ρa
Zc

if x ≥ lmax + lr

f c(x) = ρa
Zc

+

(
R
C ρmax +

(
1− R

C

)
ρc − ρa

)
−x+lmax+lr
lmaxZc

if x ∈ [lr, lmax + lr]

f c(x) = R
C
ρmax

Zc
+
(

1− R
C

)
ρc
Zc

if x ≤ lr

. (6)

where Zc is the normalizing constant that ensures that the integral of the function on [0, L]
equals 1. We have

Zc = Lρa +

(
lmax

2
+ lr

)(
R

C
ρmax +

(
1− R

C

)
ρc − ρa

)
.

Notice that the undersaturated regime is a special case of the congested regime, in which
the remaining queue length lr is equal to zero. In the remainder of this report, we consider the
congested regime as the general case for the spatial distribution of vehicle location. This distribution
is fully determined by three independent parameters. We choose the following parameterization:
the remaining queue length lr, the triangular queue length lmax and the normalized arrival density
ρ̃a = ρa/Zc to specify the distribution f c. Using this parameterization, the probability distribution
of vehicle location is illustrated in Figure 3 (right) and reads:

f c(x) = ρ̃a if x ≥ lmax + lr

f c(x) = ρ̃a + (lr+lmax)−x
lmax

∆ρ̃ if x ∈ [lr, lmax + lr]

f c(x) = ρ̃a + ∆ρ̃ if x ≤ lr
,

with ∆ρ̃ =
1− ρ̃aL

lmax/2 + lr
. (7)

The expression of ∆ρ̃ above, can be obtained easily by noticing that
∫ L

0 f c(x) dx = 1 or by
direct computation from Equation (6), by replacing Zc by its expression (Equation (7)) and ρa by
Zcρ̃a.

Remark: The undersaturated regime is a special case of the congested regime in which lr = 0.

4 Modeling the probability distribution of delay among the vehi-
cles entering the link in a cycle

The travel time experienced by vehicles traveling on arterial networks is conditioned on two factors.
First, the traffic conditions, given by the parameters of the network, dictate the state of traffic
experienced by all the vehicles entering the link. Second, the time (after the beginning of a cycle)
at which each vehicle arrives at the link determines how much delay will be experienced in the
queue due to the presence of a traffic signal and the presence of other vehicles. Under similar
traffic conditions, drivers experience different travel times depending on their arrival time. Using
the assumption that the arrival density (and thus the arrival rate) is constant, arrival times are
uniformly distributed on the duration of the light cycle. This allows for the derivation of the pdf of
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delay, which depends on the characteristics of the traffic light and the traffic conditions as defined
in Section 2.4.

In this work, we assume that we receive travel time measurements from vehicles traveling
on the network. The vehicles are sampled uniformly in time and they send tuples of the form
(x1, t1, x2, t2) where x1 is the location of the vehicle at t1 and x2 is the position of the vehicle at t2.
This is representative of taxi fleets or truck delivery fleets which typically send data every minute
in urban networks. We consider all the tuples sent by the vehicles independently. For example, we
assume that the sampling strategy is such that we cannot reconstruct the trajectories of vehicles
from the tuples (e.g. at each sampling time, the vehicles send tuples with a defined probability).

4.1 Total delay and measured delay between locations x1 and x2

We consider a vehicle traveling from location x1 to location x2 and sending its location x1 at time
t1 and its location x2 at time t2. We call measured delay from x1 to x2, experienced in the time
interval [t1, t2], in short “measured delay from x1 to x2”, the difference between the travel time
of the vehicle (t2 − t1) and the travel time that the vehicle would experience between x1 and x2

without the presence of other vehicles nor signals. For a vehicle with free flow pace pf , we call free
flow travel time between x1 and x2, the quantity yf ;x1,x2 = pf (x1 − x2), representing the travel
time between x1 and x2 if the vehicle is not slowed down or stopped on its trajectory. The delay
experienced between x1 and x2 is the difference between the travel time yx1,x2 of the vehicle between
x1 and x2—not necessarily at free flow speed—and the free flow travel time yf ;x1,x2 . In this model,
vehicles are either stopped or driving at the free flow speed. The measured delay from x1 to x2,
experienced in the time interval [t1, t2] is the cumulative stopping time between t1 and t2.

We call total delay from x1 to x2 the cumulative stopping time of the vehicle on its trajectory
from x1 (from the first time it joined the queue, if the vehicle was in the queue at x1) to x2 (until
the time it left the queue, if it was in the queue at x2). In particular, if the vehicle stops at x1 or at
x2 the total delay from x1 to x2 covers the full delay experienced during the stop, without taking
into account the sampling scheme. Note that for vehicles sampled at x1 and x2 that do not stop
at x1 nor at x2 the total delay is equal to the measured delay. For vehicles stopping in x1 or in x2,
the measured delay is less than or equal to the total delay experienced by the vehicle (Figure 4.2
(right)).

To gain more insight in the difference between measured and total delay, we can study a simple
case. Let a vehicle be sampled every 30 seconds. Assume that the vehicle stops at the traffic signal
(x = 0) and that the duration of the red time is 40 seconds. The vehicle sends its locations x1 at
t1 and x2 at t2 = t1 + 30. We do not receive additional information on the trajectory prior to t1 or
past t2. The measured delay is at most 30 seconds (sampling rate); the total delay is 40 seconds.
As a general remark, a vehicle reporting its delay during a stop reports a delay that is less than or
equal to the total delay experienced on the trajectory, it represents the delay experienced between
the two sampling times.

Using the modeling assumptions defined in Section 2.1, we derive the pdf of the measured
and the total delay between any two locations x1 and x2. Given two sampling locations x1 and
x2, the probability distribution of the total (resp. measured) delay δx1,x2 is denoted ht(δx1,x2)
(resp. hm(δx1,x2)). We use the stationarity and constant arrival assumptions to derive the speed of
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Figure 4: (Left) The proportion of delayed vehicles ηux1,x2 is the ratio between the number of
vehicles joining the queue between x1 and x2 over the total number of vehicles entering the link
in one cycle. The trajectories highlighted in purple represent the trajectories of vehicles delayed
between x1 and x2. (Right) The vehicles reporting their location during a stop at x2 experience a
delay δ ∈ [0, δu(x2)] in the time interval [t1, t2]. This delay is less than or equal to the total delay
(δu(x2)) experienced on the trajectory.

formation and dissolution of the queue, respectively denoted va and w (2). Under the stationarity
assumption, the traffic variables are periodic with period C. For each arrival time, we compute the
delay corresponding to the trajectory of the vehicle (Figure 2). The arrivals being uniform, we can
compute the probability distribution of delays.

4.2 Probability distribution of the total and measured delay between x1 and x2

in the undersaturated regime

Pdf of the total delay between x1 and x2: In the undersaturated regime, we call ηux1,x2 , the
fraction of the vehicles entering the link during a cycle that experience a delay between x1 and x2.
The remainder of the vehicles entering the link in a cycle travels from x1 to x2 without experiencing
any delay. The proportion ηux1,x2 of vehicles delayed between x1 and x2 in a cycle, is computed as
the ratio of vehicles joining the queue between x1 and x2 over the total number of vehicles entering
the link in one cycle (Figure 4.2, left). The number of vehicles joining the queue between x1 and
x2 is the number of vehicles stopped between x1 and x2:

(
min(lmax, x1)−min(lmax, x2)

)
ρmax. The

number of vehicles entering the link is vfCρa. The proportion of vehicles delayed between x1 and
x2 is thus:

ηux1,x2 = (min(x1, lmax)−min(x2, lmax))
ρmax

vfCρa
.

The total stopping time experienced when stopping at x is denoted by δu(x) for the undersatu-
rated regime. Because the arrival of vehicles is homogenous, the delay δu(x) increases linearly with
x. At the intersection (x = 0), the delay is maximal and equals the duration of the red light R. At
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the end of the queue (x = lmax) and upstream of the queue (x ≥ lmax), the delay is null. Thus the
expression of δu(x):

δu(x) = R

(
1− min(x, lmax)

lmax

)
.

Given that the arrival of vehicles is uniform in time, the distribution of the location where
the vehicles reach the queue between x1 and x2 is uniform in space. For vehicles reaching the
queue between x1 and x2, the probability to experience a delay between locations x1 and x2 is
uniform. The uniform distribution has support [δu(x1), δu(x2)], corresponding to the minimum
and maximum delay between x1 and x2.

The total delay experienced between x1 and x2 is a random variable with a mixture distribution
with two components. The first component represents the vehicles that do not experience any
stopping time between x1 and x2 (mass distribution in 0), the second component represents the
vehicles reaching the queue between x1 and x2 (uniform distribution on [δu(x1), δu(x2)]). We note
1A the indicator function of set A,

1A(x) =

{
1 if x ∈ A
0 if x /∈ A

We note Dir{a}(·) the Dirac distribution centered in a, used to represent the mass probability. The
pdf of total delay between x1 and x2 (Figure 6, left) reads:

ht(δx1,x2) = (1− ηux1,x2)Dir{0}(δx1,x2) +
ηux1,x2

δu(x2)− δu(x1)
1[δu(x1),δu(x2)](δx1,x2)

The cumulative distribution function of total delay Ht(·) reads:

Ht(δx1,x2) =


0 if δx1,x2 < 0
(1− ηux1,x2) if δx1,x2 ∈ [0, δu(x1)]

(1− ηux1,x2) + ηux1,x2
δx1,x2−δ

u(x1)

δu(x2)−δu(x1) if δx1,x2 ∈ [δu(x1), δu(x2)]

1 if δx1,x2 > δu(x2)

Pdf of the measured delay between x1 and x2: because of the sampling scheme, the measured
delay differs from the total delay experienced by the vehicles.

In the following, i refers to the upstream or the downstream measurement locations (i ∈ {1, 2}).
When sending their location xi, some vehicles are stopped at this location. These vehicles may not
report the full delay associated with location xi (Figure 4.2, right). In particular, a vehicle stopped
at x1 when sending its location at time t1 will only report the delay experienced after t1. Similarly,
a vehicle stopped at x2 when sending its location at time t2 will only report the delay experienced
before t2.
• For a measurement received at xi, the probability that it comes from a vehicle stopped in the

queue is δu(xi)
C , which is the ratio of the time spent by the stopped vehicle at xi over the duration

of the cycle.
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Figure 5: Classification of the trajectories depending on the stopping location. We consider vehicles
traveling between the two measurement points x1 and x2, sampled uniformly in time.

• For a vehicle stopped at x2, observed at t2 coming from a previous observation point x1 (at t1),
the probability of a stopping time experienced by the vehicle until t2 is uniform between 0 and
δu(x2), since the vehicle is sampled arbitrarily during its stopping phase.
We classify the vehicles traveling from x1 to x2 (where x1 and x2 are measurement points)

depending on the locations of their stop with respect to x1 and x2. This classification of the tra-
jectories is also illustrated in Figure 5:

A) Vehicles do not experience any delay between the measurement points x1 and x2.
B) Vehicles reach the queue at x with x ∈ (x2, x1). These vehicles are not stopped when they send

their location at x1 and x2.
C) Vehicles reach the queue at x1, where they report their location at time t1. At t1, the vehicle

was already stopped (or was just stopping) and the measurement only accounts for the delay
occurring after t1, which is less than or equal to δu(x1). Because of the uniform sampling in
time, the reported delay has a uniform distribution on [0, δu(x1)]

D) Vehicles reach the queue at x2, where they report their location at time t2. At t2, the vehicle
is still stopped and the measurement only represents the delay occurring up to t2, which is less
than or equal to δu(x2). Because of the uniform sampling in time, the reported delay has a
uniform distribution on [0, δu(x2)]
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Figure 6: (Left) Probability distribution of the total delay between x1 and x2 in the undersatu-
rated regime. (Right) Probability distribution of the measured delay between x1 and x2 in the
undersaturated regime. Vehicles are assumed to be sampled uniformly in time.

We denote by sxi the event “vehicle stops at location xi”. Denoting by P(A) the probability of

event A, we have P(sxi) = δu(xi)
C . The notation s̄xi represents the event “vehicle does not stop at

location xi”. The notation (s̄x1 , s̄x2) represents the event “vehicles do not stop at location x1 nor
x2”. We assume that the events s̄x1 and s̄x2 are independent. The probability of event (s̄x1 , s̄x2)
reads:

P(s̄x1 , s̄x2) = P(s̄x1)P(s̄x2) Independence assumption
= (1− P(sx1))(1− P(sx2)) Complementary events

The event (s̄x1 , s̄x2) corresponds to trajectories of type A (vehicles do not stop between x1 and
x2) and trajectories of type B (vehicles stop strictly between x1 and x2 but neither in x1 nor in
x2). Among the vehicles stopping at none of the measurement points, a fraction ηux1,x2 is delayed
between x1 and x2 (trajectories of type B) and a fraction 1 − ηux1,x2 does not experience delay
between x1 and x2 (trajectories of type A). Given that we receive a delay measurement between
locations x1 and x2, the probability that it was sent by a vehicle with a trajectory of type A is
P(s̄x1 , s̄x2)(1− ηux1,x2). Similarly, the probability that it was sent by a vehicle with a trajectory of
type B is P(s̄x1 , s̄x2)ηux1,x2 .

Given that a measurement is received at location xi, the probability that this measurement is
sent by a vehicle that joined the queue at xi is proportional to the delay experienced at location
xi. Given successive measurements at locations x1 and x2, the probability that a vehicle reports
its location xi (i ∈ {1, 2}) while being stopped at this location is denoted ζxi . From this definition
and given that we receive a delay measurement between locations x1 and x2, the probability that
it was sent by a vehicle with a trajectory of type C is ζx1 . The probability that it was sent by a
vehicle with a trajectory of type D is ζx2 . Note that vehicles cannot stop both at x1 and x2 (they
stop only once in the queue); thus P(sx1 , sx2) = 0. Given that a vehicle was sampled at x1 and x2,
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we have:

ζx1︸︷︷︸
Prob. that the veh
stopped at x1 only

+ ζx2︸︷︷︸
Prob. that the veh
stopped at x2 only

+ P(sx1 , sx2)︸ ︷︷ ︸
Prob. that the veh

stopped neither at x1 nor at x2

+ P(sx1 , sx2)︸ ︷︷ ︸
Prob. that the veh

stopped both at x1 and at x2
(= 0)

= 1

The probability of stopping either at x1 or at x2 is 1 − P(s̄x1 , s̄x2) (complementary of stopping
neither at x1 nor at x2). Among these vehicles, the proportion that stops in x1 is proportional to
the delay experienced in x1. We have:{

ζxi ∝ δu(xi), i ∈ {1, 2}
ζx1 + ζx2 = 1− P(s̄x1 , s̄x2)

⇒ ζxi =
(
1− P(s̄x1 , s̄x2)

) δu(xi)

δu(x1) + δu(x2)
i ∈ {1, 2}

The probability distribution of measured delay is a finite mixture distribution, in which each
component is a mass probability or a uniform distribution. The theoretical probability distribution
function is illustrated Figure 6, right. It is the sum of the following terms that also refer to
Figure 5:

(A) a mass probability in 0 with weight (1− ηux1,x2)P(s̄x1 , s̄x2), representing the vehicles that do not
reach the queue between x1 and x2,

(B) a uniform distribution on (δu(x1), δu(x2)) with weight ηux1,x2P(s̄x1 , s̄x2), representing the vehicles
that reach the queue strictly between x1 and x2,

(C) a uniform distribution on [0, δu(x1)] with weight ζx1 , representing the vehicles that stop in x1,
(D) a uniform distribution on [0, δu(x2)] with weight ζx2 , representing the vehicles that stop in x2.

The pdf of the measured delay is related to the pdf of the total delay as:

hm(δx1,x2) = P(s̄x1 , s̄x2)ht(δx1,x2) +
ζx1

δu(x1)
1[0,δu(x1)](δx1,x2) +

ζx2
δu(x2)

1[0,δu(x2)](δx1,x2)

4.3 Probability distribution of the measured delay between x1 and x2 in the
congested regime

In the congested regime, the delay distribution can be computed using a similar methodology as for
the undersaturated regime, by deriving the delay experienced between x1 and x2 for each arrival
time. We call ns the maximum number of stops experienced by the vehicles in the remaining queue
between the locations x1 and x2. The delay experienced at location x when reaching the triangular
queue at x is readily derived from the expression of the delay in the undersaturated regime. The
delay experienced when reaching the remaining queue is the duration of the red time R. The
expression of the delay at location x is then

δc(x) =


R if x ≤ lr

R lr+lmax−x
lmax

if x ∈ [lr, lr + lmax]

0 if x ≥ lr + lmax
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The details of the derivation are given in Appendix A and illustrated in Figures 8–11. Note
that to satisfy the stationarity assumption, the distance traveled by vehicles in the queue in the
duration of a light cycle is lmax.

We summarize the derivations, classified depending on the location of the positions x1 and x2

with respect to the remaining and triangular queue lengths:

1. x1 Upstream – x2 Remaining (Figure 8): The location x1 is upstream of the queue and the
location x2 is in the triangular queue. We define the critical location xc by xc = x2 + nslmax.
Vehicles reaching the triangular queue upstream of xc stop ns times in the remaining queue.
On the road segment [x1, x2], vehicles reaching the triangular queue downstream of xc stop
ns − 1 times in the remaining queue. The vehicles experience a delay uniformly distributed on
[δmin, δmax] with δmin = (ns− 1)R+ δc(xc) and δmax = nsR+ δc(xc) = δmin +R. The probability
distribution of total delay reads:

ht(δx1,x2) =
1

δmax − δmin
1[δmin,δmax](δx1,x2),

δmin = δc(xc) + (ns − 1)R
δmax = δc(xc) + nsR

2. x1 Triangular – x2 Triangular (Figure 9): Both locations x1 and x2 are upstream of the remain-
ing queue (in the triangular queue or upstream of the queue). Given that the path is upstream
of the remaining queue, this case is similar to the undersaturated regime, where derivations
are updated to account for the fact that the triangular queue starts at x = lr. We adapt the
notation from Section 4.2 and denote by ηcx1,x2 the fraction of the vehicles entering the link in a
cycle that experience delay between locations x1 and x2.

ηcx1,x2 =
min(x1 − lr, lmax)−min(x2 − lr, lmax)

lmax

This delay is uniformly distributed on [δc(x1), δc(x2)]. The reminder do not stop between x1

and x2. The probability distribution of total delay reads:

ht(δx1,x2) = (1− ηcx1,x2)Dir{0}(δx1,x2) +
ηcx1,x2

δc(x2)− δc(x1)
1[δc(x1),δc(x2)](δx1,x2)

3. x1 Remaining – x2 Remaining (Figure 10): Both locations x1 and x2 are in the remaining queue.
We define the critical location xc by xc = x2 + (ns − 1)lmax. The vehicles reaching the queue
between x1 and xc stop ns times in the remaining queue between x1 and x2, their stopping time
is nsR. The reminder of the vehicles stop ns−1 times in the remaining queue and their stopping
time is (ns − 1)R. The probability distribution of total delay reads:

ht(δx1,x2) =
x1 − xc
lmax

Dir{nsR}(δx1,x2) +

(
1− x1 − xc

lmax

)
Dir{(ns−1)R}(δx1,x2)

4. x1 Triangular – x2 Remaining (Figure 11): The upstream location x1 is in the triangular queue
and the downstream location x2 is in the remaining queue. We define the critical location xc by
xc = x2 + nslmax.
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� If x1 ≥ xc, a fraction (x1 − xc)/lmax of the vehicles entering the link in a cycle join the
triangular queue between x1 and xc. They stop once in the triangular queue and ns times
in the remaining queue. Among these vehicles, the stopping time is uniformly distributed on
[δc(x1) + nsR, δ

c(xc) + nsR]. A fraction (xc − lr)/lmax of the vehicles entering the link in a
cycle join the triangular queue between xc and lmax. Among these vehicles, the stopping time
is uniformly distributed on [δc(xc) + (ns− 1)R, nsR]. The remainder of the vehicles reach the
remaining queue between lr and x1 − lmax and their stopping time is nsR. The probability
distribution of total delay reads:

ht(δx1,x2) = x1−xc
lmax

1[δc(x1)+nsR, δ
c(xc)+nsR](δx1,x2 )

δc(xc)−δc(x1)
Vehicles stopping between x1 and xc

+ xc−lr
lmax

1[δc(xc)+(ns−1)R,nsR](δx1,x2 )

R−δc(xc)
Vehicles stopping between xc and lr

+
(

1− x1−lr
lmax

)
Dir{nsR}(δx1,x2) Vehicles stopping between lr and x1−lmax

� If x1 ≤ xc, a fraction (x1 − lr)/lmax of the vehicles entering the link in a cycle join the
triangular queue between x1 and lr. They stop once in the triangular queue and ns − 1 times
in the remaining queue. Among these vehicles, the stopping time is uniformly distributed on
[δc(x1) + (ns − 1)R, nsR]. A fraction 1− (xc − lr)/lmax of the vehicles entering the link in a
cycle join the remaining queue between lr and xc− lmax. The stopping time of these vehicles is
nsR. The remainder of the vehicles experiences a stopping time of (ns−1)R. The probability
distribution of total delay reads:

ht(δx1,x2) = x1−lr
lmax

1[δc(x1)+(ns−1)R,nsR](δx1,x2 )

R−δc(x1)
Vehicles stopping between x1 and lr

+
(

1− xc−lr
lmax

)
Dir{nsR}(δx1,x2) Vehicles stopping between lr and xc−lmax

+ xc−x1
lmax

Dir{(ns−1)R}(δx1,x2) Vehicles stopping between xc−lmax and x1−lmax

These cases represent the pdf of total delay. From the results derived in Section 4.2, we derive
the pdf of measured delay. From the previous derivations, we have:

P(s̄x1 , s̄x1) = (1− P(s̄x1))(1− P(s̄x2))

ζxi =
(
1− P(s̄x1 , s̄x2)

) δu(xi)
δu(x1)+δu(x2) i ∈ {1, 2}

It is the sum of the following terms:
(i) the delay distribution given that the vehicles stop neither in x1 nor in x2, with weight P(sx1 , sx2),
(ii) the delay probability distribution given a stop in x1, with weight ζx1 ,
(iii) the delay probability distribution given a stop in x2, with weight ζx2 .

We summarize the different components of the delay distribution, described as a mixture dis-
tribution for all the different cases in Table 1.
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Case Trajectories Weight Dist. Support

Case 1
x1 ≥ lr + lmax,
x2 ≤ lr,
xc = x2 + nslmax

Does not stop at x2 P(s̄x1 , s̄x2) Unif.
[(ns − 1)R+ δc(xc),
nsR+ δc(xc)]

Stop at x2 ζx2 = 1− P(s̄x1 , s̄x2) Unif.
[(ns − 1)R+ δc(xc),
nsR+ δc(xc)]

Case 2
x1 ≥ lr,
x2 ≥ lr

No stop between x1 and x2
P(s̄x1 , s̄x2)×
(1− ηcx1,x2)

Mass {0}

Reach the (triangular)
queue between x1 and x2

P(s̄x1 , s̄x2)×
ηcx1,x2

Unif. [δc(x2), δc(x1)]

Stop at x1 ζx1 Unif. [0, δc(x1)]
Stop at x2 ζx2 Unif. [0, δc(x2)]

Case 3
x1 ≤ lr,
x2 ≤ lr,
xc = x2 + (ns − 1)lmax

Reach the (remaining)
queue between x1 and xc

P(s̄x1 , s̄x2)×
x1 − xc
lmax

Mass {nsR}

Reach the (remaining)
queue between xc and
x1 − lmax

P(s̄x1 , s̄x2)×
xc − x1 + lmax

lmax

Mass {(ns − 1)R}

Stop at x1 ζx1 Unif. [(ns − 1)R, nsR]
Stop at x2 ζx2 Unif. [(ns − 1)R, nsR]

Case 4a
x1 ∈ [lr, lr + lmax],
x2 ≤ lr,
xc = x2 + nslmax,
xc ≤ x1

Reach the (triangular)
queue between x1 and xc

P(s̄x1 , s̄x2)×
x1 − xc
lmax

Unif.
[nsR+ δc(x1),
nsR+ δc(xc)]

Reach the (triangular)
queue between xc and lr

P(s̄x1 , s̄x2)×
xc − lr
lmax

Unif.
[(ns − 1)R+ δc(xc),
nsR]

Reach the (remaining)
queue between lr and
x1 − lmax

P(s̄x1 , s̄x2)×
lr − x1 + lmax

lmax

Mass {nsR}

Stop at x1 ζx1 Unif. [nsR, nsR+ δc(x1)]

Stop at x2 ζx2 Unif.
[(ns − 1)R+ δc(xc),
nsR+ δc(xc)]

Case 4b
x1 ∈ [lr, lr + lmax],
x2 ≤ lr,
xc = x2 + nslmax,
xc ≥ x1

Reach the (triangular)
queue between x1 and lr

P(s̄x1 , s̄x2)×
x1 − lr
lmax

Unif.
[(ns − 1)R+ δc(x1),
nsR]

Reach the (remaining)
queue between lr and
xc − lmax

P(s̄x1 , s̄x2)×
lr − xc + lmax

lmax

Mass {nsR}

Reach the (remaining)
queue between xc − lmax

and x1 − lmax

P(s̄x1 , s̄x2)×
xc − x1
lmax

Mass {(ns − 1)R}

Stop at x1 ζx1 Unif.
[(ns − 1)R,
(ns − 1)R+ δc(x1)]

Stop at x2 ζx2 Unif. [(ns − 1)R, nsR]

Table 1: The pdf of measured delay is a mixture distribution. The different components and their
associated weight depend on the location of stops of the vehicles with respect to the queue length
and sampling locations.
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5 Probability distributions of travel times

On a path between x1 and x2, the travel time yx1,x2 is a random variable. It is the sum of two
random variables: the delay δx1,x2 experienced between x1 and x2 and the free flow travel time of
the vehicles yf ;x1,x2 . The free flow travel time is proportional to the distance of the path and the
free flow pace pf such that yf ;x1,x2 = pf (x1 − x2). We have yx1,x2 = δx1,x2 + yf ;x1,x2 .

In the following, we assume that the delay and the free flow pace are independent random
variables, thus so are the delay and the free flow travel time.

We model the differences in traffic behavior by assuming a prior distribution on the free flow
pace pf . The free flow pace is modeled as a random variable with distribution ϕp and support Dϕp .
For convenience, we define for a pdf ϕ with support Dϕ, its prolongation by zero of out of Dϕ.
With a slight abuse of notation, we call this new function ϕ.

Using a linear change of variables, we derive the probability distribution ϕyx1,x2 of free flow
travel time yf ;x1,x2 between x1 and x2:

pf ∼ ϕp(pf )⇒ ϕyx1,x2(yf ;x1,x2) = ϕp
(
yf ;x1,x2

x1 − x2

)
1

x1 − x2

To derive the pdf of travel times we use the following fact:

Fact 1 (Sum of independent random variables). If X and Y are two independent random variables
with respective pdf fX and fY , then the pdf fZ of the random variable Z = X + Y is given by
fZ(z) = fX ∗ fY (z)

This classical result in probability is derived by computing the conditional pdf of Z given X
and then integrating over the values of X according to the total probability law.

For each regime s, the probability distribution of travel times reads:

gs(yx1,x2) =
(
hs ∗ ϕyx1,x2

)
(yx1,x2)

We notice that the delay distributions are mixtures of mass probabilities and uniform distribu-
tions. We derive the general expression of the travel time distributions when vehicles experience a
delay with mass probability in ∆ and when vehicles experience a delay with uniform distribution
on [δmin, δmax].

5.1 Travel time distributions

Travel time distribution when the delay has a mass probability in ∆
The stopping time is ∆. This corresponds to trajectories with ns stops (ns ≥ 0) in the remaining

queue. This includes the non stopping vehicle in the undersaturated regime, when the remaining
queue has length zero. The travel time distribution is derived as

g(yx1,x2) = Dir{∆} ∗ ϕyx1,x2(yx1,x2)

= ϕyx1,x2(yx1,x2 −∆). (8)
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Travel time distribution when the delay is uniformly distributed on [δmin, δmax].
Vehicles experience a uniform delay between a minimum and maximum delay respectively denoted
δmin and δmax. The probability of observing a travel time yx1,x2 is given by

g(yx1,x2) =
1

δmax − δmin

∫ +∞

−∞
1[δmin,δmax](yx1,x2 − z) ϕyx1,x2(z) dz. (9)

The integrand is not null if and only if yx1,x2 − z ∈ [δmin, δmax], i.e. if and only if z ∈ [yx1,x2 −
δmax, yx1,x2 − δmin]. Since ϕyx1,x2(z) is equal to zero for z ∈ R \ Dϕ, the integrand is not null if and
only if z ∈ [yx1,x2 − δmax, yx1,x2 − δmin]

⋂
Dϕ.

As an illustration, we derive the probability distribution of travel times on an entire link in the
undersaturated regime, for a pace distribution with support on R+ (Figure 7 (left)). The length of
the link is denoted L. A fraction 1−ηuL,0 of the vehicles entering the link in a cycle has a delay with
mass probability in 0 (vehicles do not stop on the link). The probability distribution of travel times
of these vehicles is computed via Equation (8) with ∆ = 0. The reminder of the vehicles (fraction
ηuL,0) experiences a delay that is uniformly distributed on [0, R]. The probability distribution of
travel times of these vehicles is computed via Equation (9) with δmin = 0 and δmax = R. The
probability distribution of travel times on an undersaturated arterial link reads:

gu(yL,0) =



0 if yL,0 ≤ 0

(1− ηuL,0)ϕyL,0(yL,0) +
ηuL,0
R

∫ yL,0

0
ϕyL,0(z) dz if yL,0 ∈ [0, R]

(1− ηuL,0)ϕyL,0(yL,0) +
ηuL,0
R

∫ yL,0

yL,0−R
ϕyL,0(z) dz if yL,0 ≥ R

, (10)

In the more general case of a travel time distribution on an undersaturated partial link between
locations x1 and x2, we write the delay distribution as a mixture of mass probabilities and uniform
distributions. We use the linearity of the convolution to treat each component of the mixture
separately and sum them with their respective weights to derive the probability distribution of
travel times.

The derivations are similar in the congested regime. For the different cases described in Sec-
tion 4.3, the delay is a mixture of mass probabilities and uniform distributions. For example, the
probability distribution of link travel times (Case 1) is illustrated in Figure 7 (right)). When the de-
lay is uniformly distributed on [δmin, δmax], the probability distribution of travel times is computed
via Equation (9) and reads

gc(yL,0) =


0 if yL,0 ≤ δmin

1
δmax−δmin

∫ yL,0−δmin

0 ϕyL,0(z)dz if yL,0 ∈ [δmin, δmax]
1

δmax−δmin

∫ yL,0−δmin

yL,0−δmax
ϕyL,0(z) dz if yL,0 ≥ δmax

(11)
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Figure 7: Probability distributions of link travel times. Left: Undersaturated regime. The figure
represents pdf for a traffic light of duration 40 seconds when 80% of the vehicles stop at the light
(ηuL,0 = .8). Right: Congested regime. The figure represents the pdf for a traffic light of duration
40 seconds when all the vehicles stop in the triangular queue and 50% of the vehicles stop once
in the remaining queue. Both figures are produced for a link of length 100 meters. The free flow
pace is a random variable with Gamma distribution. The mean free flow pace is 1/15 s/m and the
standard deviation is 1/30 s/m. We recall that the probability distribution γ of a Gamma random
variable x ∈ R+ with shape α and inverse scale parameter β is given by γ(x) = βα

Γ(α)x
α−1e−βx,

where Γ is the Gamma function defined on R+ and with integral expression Γ(x) =
∫ +∞

0 tx−1e−t dt.
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5.2 Quasi-concavity properties of the probability distributions of link travel
times

The pdf of travel times depend on a set of parameters that must be estimated to fully determine
the statistical distribution of the travel times. A parameter with true value θ0 is estimated via
an estimator θ̂. We require this estimator to have some optimality properties—extremum point
based on an objective function, e.g. least square estimator, maximum likelihood estimator. In
particular, the maximum likelihood estimator is widely used in statistics for its convergence prop-
erties. Its computation requires the maximization of the likelihood (or log-likelihood) function,
which represents the probability of observing a set of data points, given the value of a parameter.

In this work, the function to maximize is the probability distribution of travel times. Properties
on the concavity of this function are important for designing efficient maximization algorithms
with guaranties of global optimality. In this section, we present the proof of the quasi-concavity of
the link travel time distributions in both the undersaturated and the congested regimes. We also
prove the log-concavity of the different components of the distribution of travel times, considered
as mixture distributions.

Definition 1 (Quasi-concavity (Boyd)). [5] A function f : Rn → R is called quasi-concave if its
domain is convex and if ∀α ∈ R, the superlevel set Sfα (Sfα = {x ∈ Df |f(x) ≥ α}) is convex.

From this definition, one can derive equivalent characterization of quasi-concavity, when f has
first (and second) order derivatives. The reader should refer to [5] for further references on quasi-
concavity. In particular, we use the characterization of continuous quasi-concave functions on R
(Lemma and the second order characterization:

Lemma 1 (Characterization of continuous quasi-concave functions on R). [5] A continuous func-
tion f : Df → R is quasi-concave if and only if at least one of the following conditions holds:
• f is nondecreasing
• f is nonincreasing
• there is a point xc ∈ Df such that for x ≤ xc (and x ∈ Df ), f is nonincreasing, and for x ≥ xc
(and x ∈ Df ), f is nondecreasing

Lemma 2 (Second order characterization of quasi-concave functions). [5] f ∈ C2 is quasi-concave
if and only if ∀(x, y) ∈ Df 2, yT∇f(x) = 0 ⇒ yT∇2f(x)y ≤ 0. If f is unidimensional, f is quasi-
concave if and only if f ′(x) = 0⇒ f ′′(x) ≤ 0.

Note that for probability distributions, we are interested in the properties of the log of the proba-
bility function.

Definition 2 (Log-concavity (Boyd)). [5] A function f : Rn → R+
∗ is log-concave if and only if

ln(f) is concave. The second order characterization is as follows:
f ∈ C2 is log-concave is and only if ∀x f(x)f ′′(x)− (f ′(x))2 ≤ 0.
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Fact 2. For f a twice differentiable function taking values in R+
∗ , f is quasi-concave ⇔ ln(f) is

quasi-concave.

Proof. We have ∇ ln f(x) =
∇f(x)

f(x)
and ∇2 ln f(x) =

f(x)∇2f(x)−∇f(x)∇f(x)T

f(x)2
.

• We assume that f is quasi-concave, we want to show that ln(f) is quasi-concave:

We assume ∀(x, y), yT∇f(x) = 0⇒ yT∇2f(x)y ≤ 0.
Let x and y be such that yT∇ ln(f(x)) = 0, i.e. yT∇f(x) = 0. From the quasi-concavity of f ,
we have yT∇2f(x)y ≤ 0

yT∇2 ln(f(x))y =
f(x) yT∇2f(x)y − yT∇f(x)∇f(x)T y

f(x)2

=
f(x) yT∇2f(x)y

f(x)2
since yT∇f(x) = 0

≤ 0 using the quasi-concavity of f

So yT∇ ln(f(x)) = 0⇒ yT∇2 ln(f(x))y ≤ 0 and ln(f) is quasi-concave.
• We assume that ln(f) is quasi-concave, we want to show that f is quasi-concave:

We assume ∀(x, y), yT∇ ln(f(x)) = 0⇒ yT∇2 ln(f(x))y ≤ 0. Using the expression of ∇ ln(f(x))
and ∇2 ln(f(x)), this condition can be rewritten as follows:

∀(x, y), yT∇f(x) = 0⇒ yT∇2f(x)y ≤ 0

And this proves that f is quasi-concave.

In the following, we assume that the pdf ϕp of the free flow pace is strictly log-concave, and thus
so is the pdf ϕyx1,x2 of the free flow travel time between location x1 and x2. Note that most common
probability distributions (e.g. Gaussian or Gamma with shape greater than 1) are log-concave.

Fact 3. In one dimension, a strictly log-concave probability distribution function ϕ defined on
Dϕ ⊂ R has a unique critical point yc ∈ Dϕ. On its domain, ϕ is strictly increasing for y ≤ yc and
strictly decreasing for y ≥ yc

This result comes from the fact that log-concavity implies quasi-concavity (see [5]). Note that
we allow yc to be at the bounds of the domain Df . If ∃a such that ∀x ∈ (a,+∞), ϕ(x) > 0, then
ϕ is either strictly decreasing or has a unique critical point (reasoning by contradiction and using
the integrability of ϕ). Similarly, if ∃b such that ∀x ∈ (−∞, b), ϕ(x) > 0, then ϕ is either strictly
increasing or has a unique critical point.

5.2.1 Proof of the quasi-concavity of the travel time probability distribution in the
undersaturated regime

The goal of this section is to prove that the undersaturated travel time probability distribution
function is a quasi-concave function. Let ∆ denote the maximum delay experienced (i.e. the red
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time R) and η the fraction of delayed vehicles (previously denoted ηuL,0). The length of the link L
is a scale parameter that does not change the concavity properties of the function. For notational
simplicity, we denote ϕ the pdf of travel times and omit the locations x1 = L and x2 = 0 in this
section. Recall the travel time distribution on an undersaturated link:

gu(y) = (1− η)ϕ(y) +
η

∆

∫ y

y−∆
ϕ(z) dz

with the convention ϕ(z) = 0 for z ≤ 0.
The function gu is continuously differentiable on R+ and ∀ y ∈ R+ we have:

(gu)′(y) = (1− η)ϕ′(y) +
η

∆
(ϕ(y)− ϕ(y −∆)). (12)

The function (gu)′ is continuously differentiable on R+ and ∀ y ∈ R+ we have:

(gu)′′(y) = (1− η)ϕ′′(y) +
η

∆
(ϕ′(y)− ϕ′(y −∆)) (13)

Using the expression of (gu)′(y), we have

(gu)′(y) = 0⇔ (1− η)ϕ′(y) =
η

∆
(ϕ(y −∆)− ϕ(y)). (14)

Our goal is to prove that (gu)′(y) = 0⇒ (gu)′′(y) ≤ 0, so let y be such that (gu)′(y) = 0.
• Case 1: ϕ′(y) > 0

Using Fact 3, we know that ϕ is strictly increasing on (−∞, y]. Thus ϕ(y−∆) < ϕ(y). Plugging
back into (12), we prove that ϕ′(y) > 0 ⇒ (gu)′(y) > 0 which contradicts the hypothesis
(gu)′(y) = 0.
• Case 2: ϕ′(y) ≤ 0

From (13) and the log concavity of ϕ we have

(gu)′′(y) ≤ (1− η)
(ϕ′(y))2

ϕ(y)
+
η

∆
(ϕ′(y)− ϕ′(y −∆))

Using (14), we replace (1− η)ϕ′(y) by
η

∆
(ϕ(y −∆)− ϕ(y))

=
η

∆

(
(ϕ′(y))

ϕ(y)

(
ϕ(y −∆)− ϕ(y)

)
+ ϕ′(y)− ϕ′(y −∆)

)
=

η

∆

(
(ϕ′(y))

ϕ(y)
ϕ(y −∆)− ϕ′(y −∆)

)
Moreover, equation (14) and the condition ϕ′(y) ≤ 0 imply that ϕ(y − ∆) ≤ ϕ(y). Reasoning
by contradiction, we assume that ϕ′(y − ∆) ≤ 0. From Fact 3, we know that ϕ′(y − ∆) ≤ 0
implies ϕ(y−∆) > ϕ(y), which contradicts the assumption of Case 2. Thus necessarily, we have
ϕ′(y −∆) ≥ 0 and plugging into (13), (gu)′′(y) ≤ 0.
We conclude that (gu)′(y) = 0⇒ (gu)′′(y) ≤ 0. From the definition of quasi-concavity (Defini-

tion 1), we conclude that gu(y) is quasi-concave.

29



5.2.2 Proof of the quasi-concavity of the travel time probability distribution in the
congested regime

The goal of this section is to prove that the congested travel time probability distribution function
is a quasi-concave function1. Let δmin (resp. δmax) denote the minimum (resp. maximum) delay
experienced. Recall the travel time probability distribution on a congested link:

gc(y) =
1

δmax − δmin

∫ y−δmin

y−δmax

ϕ(y) dy

The function gc is continuously differentiable on R+ and ∀ y ∈ R+ we have:

g′c(y) =
1

δmax − δmin

(
ϕ(y − δmin)− ϕ(y − δmax)

)
.

We prove that there exists an interval I such that y /∈ I ⇒ g′c(y) 6= 0. From the characterization
of quasi-concave function given in Lemma 1, we conclude that gc is quasi-concave.

Referring to Fact 3, we note yc the critical point of the pace distribution ϕ. We have:
• For y ∈ [0, yc + δmin], we have y − δmax < y − δmin ≤ yc. Thus ϕ(y − δmax) < ϕ(y − δmin) and
g′c(y) > 0.
• For y ∈ [yc + δmax, +∞], we have yc ≤ y− δmax < y− δmin. Thus ϕ(y− δmax) > ϕ(y− δmin) and
g′c(y) < 0.
• For y ∈ [yc + δmin, yc + δmax], we have y− δmax ≤ yc ≤ y− δmin. For all y ∈ [yc + δmin, yc + δmax],
y−δmax ≤ yc and thus the function y 7→ ϕ(y−δmax) is strictly increasing on [yc+δmin, yc+δmax].
Similarly, for all y ∈ [yc+δmin, yc+δmax], y−δmax ≥ yc and the function y 7→ ϕ(y−δmin) is strictly
decreasing on [yc + δmin, yc + δmax]. The function g′c is strictly decreasing on [yc + δmin, yc +
δmax]. Moreover g′c(yc + δmin) > 0 and g′c(yc + δmax) < 0. Using the monotonicity of g′c on
[yc + δmin, yc + δmax] and the theorem of intermediate values, we show that g′c is equal to zero in
a unique point on [yc + δmin, yc + δmax].

The function gc has a unique critical point (unique point where g′c equals zero). From the charac-
terization of quasi-concavity given in Lemma 1, we conclude that gc(y) is quasi-concave. Note that
we have also proven strict quasi-concavity, the critical point of gc is unique.

5.3 Log-concavity properties of the different components of the mixture model

For any locations x1 and x2 and any regime (undersaturated or congested) the probability distribu-
tion of travel times is a mixture distribution. Each component of the mixture, denoted ψi(yx1,x2), is
the probability distribution of travel times associated with a delay with either a mass or a uniform
probability. In this section, we prove that each of the component is log-concave. For each of the
component ψi, one of the following statement is true:
• ∃∆ ≥ 0 such that ψi(yx1,x2) = 1{∆} ∗ ϕ

y
x1,x2(yx1,x2),

• ∃δmin ≥ 0, δmax > δmin such that ψi(yx1,x2) = 1
δmax−δmin

1[δmin, δmax] ∗ ϕ
y
x1,x2(yx1,x2),

1We will show in Section 5.3 that the pdf is log-concave, but this involves results on log-concave functions that
are not trivial to prove.
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To conclude on the log-concavity of each component, we use the following facts:

Fact 4 (Integration of log-concave functions [19, 20]). If f : Rn×Rm → R is a log-concave function,
then g(x) =

∫
Rm f(x, y) dy is a log-concave function of x on Rn.

In particular, log-concavity is closed under convolution.

Fact 5 (Log-concavity is closed under convolution [5]). If f and g are log-concave on Rn, then
so is the convolution h of f and g, h(x) =

∫
Rn f(x − y)g(y) dy. Indeed the function (x, y) 7→

f(x−y)g(y) is log-concave as the product of two log-concave functions (log-concavity is closed under
the multiplication since concavity is closed under summation). The result follows from Fact 4.

We have written each component of the mixture distribution as a convolution between (i) a
Dirac distribution and the pdf of free flow travel time or (ii) a Uniform distribution (constant
function on a convex interval) and the pdf of free flow travel times. Under the assumption that the
probability distribution of pace is log-normal, so is each component of the mixture.

Remark that when the delay distribution has a mass probability, this result can also be derived
by noticing that the probability distribution of travel times is a translation of the probability dis-
tribution of free flow travel times.

For any locations x1 and x2 on a link and any congestion regime (undersaturated or congested),
we have derived an expression for the probability distribution of travel times. These probabil-
ity distributions are mixture distributions. Each of the component is the convolution between
the probability distribution of free flow travel time and either a mass probability or a uniform
probability distribution. We have proven that the link travel times are quasi-concave for both
the undersaturated and the congested regime. Moreover, for any locations x1 and x2 on a link
and any congestion regime, the probability distribution of travel times is a mixture of log-concave
probability distributions.

6 Conclusion

This report presents the application of traffic flow theory to the construction of a statistical model
of arterial traffic conditions based on standard assumptions in transportation engineering. In
particular, we assume that time can be discretized into periods of stationary conditions and we
then study the traffic dynamics for the duration of one period.

The model validates the intuition that the average density of vehicles is higher close to the end
of the links because of the presence of traffic signals. We provide analytical derivations for the
average density and spatial distribution of vehicles on a link, parameterized by traffic parameters.
When probe vehicles send their location periodically in time, this model is used to learn traffic
conditions via the estimation of queue length.

Under similar traffic conditions, the delay experienced by vehicles depends on the time at which
they enter the link. Assuming uniform arrivals, we compute the probability distribution of delays
among the vehicles entering the link in a cycle to model the differences in delay experienced by the
vehicles. We show that the delay distribution is a finite mixture distribution, where each mixture
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corresponds to an interval of arrival times. Each mixture distribution corresponds to a delay with
either a mass or a uniform distribution.

Under free-flow conditions, vehicles may have different driving behavior. We model this fact by
considering the free flow pace as a random variable with a specific distribution. We use the model
of driving behavior and the probability distribution of delays to derive the probability distribution
of travel times between any two locations on an arterial link. We show that the probability density
functions of link travel times are quasi-concave and that the probability distributions of travel
times between any two arbitrary location on the link are mixtures of log-concave distributions.
The probability distributions of travel times between arbitrary locations are parameterized by the
traffic signal parameters (red time and cycle time), the driving behavior, the queue length and the
queue length at saturation. When probe vehicles send pairs of successive locations, we can compute
their travel times to go from one location to the next. As we receive data from different probes,
we can estimate the parameters that maximize the probability of receiving the observations. This
modeling approach is used and developed further in subsequent work to produce accurate arterial
traffic estimates and short-term forecast [14]. It can also be used with historical data to estimate
the parameters of the network (parameters of the traffic signals, queue length at saturation). The
concavity properties of the travel time distributions are used to guarantee global optimality of a
sub-problem of the estimation algorithm.
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A Derivation of the probability distribution of total delay between
arbitrary locations in the congested regime

We derive the probability distribution of travel times for vehicles traveling from a location x1 to a
location x2 on the link. As in the previous notations, x represents the distance to the intersection.

We call ns the maximum number of stops in the remaining queue experienced by the vehicles
between the locations x1 and x2, and omit the indices x1 and x2 for notational simplicity. In the
duration of a light cycle, the distance traveled by vehicles stopped in the queue is lmax. Thus, the
maximum number of stops in the remaining queue, between x1 and x2,

ns =

⌈
min(x1, lr)−min(x2, lr)

lmax

⌉
.

The delay experienced when reaching the triangular queue is readily derived from the expression
of the delay in the undersaturated regime. The delay experienced when reaching the remaining
queue is the duration of the red time R. The expression of the delay at location x is then

δc(x) =


R if x ≤ lr

R lr+lmax−x
lmax

if x ∈ [lr, lr + lmax]

0 if x ≥ lr + lmax

Case 1: x1 is upstream of the total queue and x2 is in the remaining queue
(Figure 8)

Condition 1: x1 ≥ lr + lmax x2 ≤ lr
Since x1 is upstream of the total queue and x2 is in the remaining queue, all the vehicles stop

once in the triangular queue between x1 and x2. We define the critical location xc as the location
in the triangular queue such that
• Vehicles reaching the triangular queue upstream of xc stop ns times in the remaining queue.

They represent a fraction lr+lmax−xc
lmax

of the vehicles entering the link in a cycle.
• Vehicles reaching the triangular queue downstream of xc stop ns − 1 times in the remaining

queue. They represent a fraction xc−lr
lmax

= 1 − lr+lmax−xc
lmax

of the vehicles entering the link in a
cycle.

The location xc is given by xc = x2 + nslmax.
The values of the minimum and maximum delays are given by δmin = (ns − 1)R + δc(xc) and

δmax = nsR+δc(xc). The delay experienced by the vehicles is uniformly distributed on [δmin, δmax].
We note that ns ≥ 1 since x2 ≤ lr.
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Figure 8: Case 1: All the vehicles stop in the triangular queue. A fraction stops ns times in the
remaining queue, the other ones stop ns − 1 times.

Case 2: x1 and x2 are upstream of the remaining queue (Figure 9)

Condition 2: x1 ≥ lr x2 ≥ lr
Given that x2 is upstream of the remaining queue, this case is similar to the undersaturated

regime. A fraction of the vehicles does not experience delay between x1 and x2. The vehicles
reaching the queue between x1 and x2 experience a delay in the triangular queue. This delay is a
random variable, uniformly distributed on [δc(x1), δc(x2)].

The fraction of vehicles experiencing delay is ηcx1,x2 = min(lmax+lr,x1)−min(lmax+lr,x2)
lmax

Figure 9: Case 2: Some vehicles stop in the triangular queue. The others do not experience delay.

Case 3: x1 is in the remaining queue, and thus so is x2 (Figure 10)

Condition 3: x1 ≤ lr (which implies x2 ≤ lr)
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The path starts downstream of the triangular queue. Some vehicles stop ns times and experience
a delay nsR and the other vehicles stop ns − 1 times and experience a delay (ns − 1)R.

We define the critical location xc as the location in the remaining queue such that
• Vehicles joining the queue between x1 and xc stop ns times between x1 and x2. Their stopping

time is nsR and they represent a fraction (x1 − xc)/lmax of the vehicles entering the link in a
cycle.
• Vehicles joining the queue between xc and xc− lmax stop ns− 1 times between x1 and x2. Their

stopping time is (ns−1)R and they represent a fraction 1−(x1−xc)/lmax of the vehicles entering
the link in a cycle.
The critical location xc is given by xc = x2 + (ns − 1)lmax.

Figure 10: Case 3: A fraction of the vehicles stop ns times in the remaining queue. The rest stop
ns − 1 times in the remaining queue.

Case 4: x1 is in the triangular queue, x2 is in the remaining queue

We distinguish two different cases to derive the probability distribution of travel times. We define
the critical location xc as xc = x2 + nslmax and derive probability distributions of travel times for
the two subcases 4a (xc ≤ x1, Figure 11 (top)) and 4b (xc ≥ x1, Figure 11 (bottom)).

Case 4a. xc ≤ x1. The delay patterns are the following:

– One stop in the triangular queue and ns stops in the remaining queue. The queue is first
reached between x1 and xc. The delay is a random variable with uniform distribution
with support [δc(x1) +nsR, δ

c(xc) +nsR]. The vehicles following this pattern represent
a fraction x1−xc

lmax
of the vehicles entering the link in a cycle.

– One stop in the triangular queue and ns− 1 stops in the remaining queue. The queue is
first reached between xc and lr. The delay is a random variable with uniform distribution
with support [δc(xc)+(ns−1)R, δc(lr)+(ns−1)R]. Noticing that δc(lr) = R, we derive
that the support of the delay distribution is [δc(xc) + (ns − 1)R, nsR]. The vehicles
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following this pattern represent a fraction xc−lr
lmax

of the vehicles entering the link in a
cycle.

– No stop in the triangular queue and ns stops in the remaining queue. The queue is first
reached between lr and x1− lmax. The delay is nsR. The vehicles following this pattern
represent a fraction lr−(x1−lmax)

lmax
of the vehicles entering the link in a cycle.

We can check that the weights of the different components sum to 1:

x1 − xc
lmax

+
xc − lr
lmax

+
lr − (x1 − lmax)

lmax
= 1

We remark that, x2 ≤ lr implies that ns ≥ 1. Then using the definition of xc, xc = x2 +nslmax

and the fact that x1 ≥ xc, we prove that x1 − lmax ≥ x2 and all vehicles reach the queue
between x1 and x1 − lmax.

Case 4b. xc ≥ x1. The delay patterns are the following:

– One stop in the triangular queue and ns− 1 stops in the remaining queue. The queue is
first reached between x1 and lr. The delay is a random variable with uniform distribution
on [δc(x1) + (ns − 1)R, δc(lr) + (ns − 1)R], i.e. uniform distribution on [δc(x1) + (ns −
1)R, nsR]. The vehicles following this pattern represent a fraction x1−lr

lmax
of the vehicles

entering the link in a cycle.

– No stop in the triangular queue and ns stops in the remaining queue. The queue is first
joined between lr and xc − lmax. The delay is nsR. The vehicles following this pattern
represent a fraction lr−(xc−lmax)

lmax
of the vehicles entering the link in a cycle.

– No stop in the triangular queue and ns − 1 stops in the remaining queue. The queue is
first joined between xc− lr and x1− lmax. The delay is (ns−1)R. The vehicles following
this pattern represent a fraction xc−x1

lmax
of the vehicles entering the link in a cycle.

We can check that the weights of the different components sum to 1:

lr − (xc − lmax)

lmax
+
x1 − lr
lmax

+
xc − x1

lmax
= 1.
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Figure 11: Case 4: (Top) Case 4a: a fraction of the vehicles stop in the triangular queue and ns
times in the remaining queue, a fraction of the vehicles stop in the triangular queue and ns times in
the remaining queue, the rest stop ns times in the remaining queue. (Bottom) Case 4b: a fraction
of the vehicles stop in the triangular queue and ns − 1 times in the remaining queue, a fraction
of the vehicles stop ns times in the remaining queue, the rest stop ns − 1 times in the remaining
queue.
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