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a b s t r a c t

This article presents a hybrid modeling framework for estimating and predicting arterial
traffic conditions using streaming GPS probe data. The model is based on a well-established
theory of traffic flow through signalized intersections and is combined with a machine
learning framework to both learn static parameters of the roadways (such as free flow
velocity or traffic signal parameters) as well as to estimate and predict travel times through
the arterial network. The machine learning component of the approach uses the significant
amount of historical data collected by the Mobile Millennium system since March 2009 with
over 500 probe vehicles reporting their position once per minute in San Francisco, CA.

The hybrid model provides a distinct advantage over pure statistical or pure traffic the-
ory models in that it is robust to noisy data (due to the large volumes of historical data) and
it produces forecasts using traffic flow theory principles consistent with the physics of traf-
fic. Validation of the model is performed in two different ways. First, a large scale test of the
model is performed by splitting the data source into two sets, using the first to produce the
estimates and the second to validate them. Second, an alternate validation approach is pre-
sented. It consists of a 3-day experiment in which GPS data was collected once per second
from 20 drivers on four routes through San Francisco, allowing for precise calculation of
actual travel times. The model is run by down-sampling the data and validated using the
travel times from these 20 drivers. The results indicate that this approach is a significant
step forward in estimating traffic states throughout the arterial network using a relatively
small amount of real-time data. The estimates from our model are compared to those given
by a data-driven baseline algorithm, for which we achieve a 16% improvement in terms of
the root mean squared error of travel time estimates. The primary reason for success is the
reliance on a flow model of traffic, which ensures that estimates are consistent with the
physics of traffic.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction and background

In numerous parts of the world, traffic congestion has a significant impact on economic activity. An essential step towards
active congestion control is the creation of accurate, reliable traffic monitoring systems. Historically, these systems have
been mostly limited to highways and have relied on public or private data feeds from dedicated sensing infrastructure, which
often includes loop detectors, radars and video cameras.
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For highway networks, it has become common practice to perform both system identification of highway parameters
(free flow speed, traffic jam density and flow capacity) and estimation of traffic state (flow, density, length of queues, bulk
speed and shockwave location) at a fine spatio-temporal scale (Work et al., 2010; Bickel et al., 2007) using dedicated infra-
structure. These approaches heavily rely upon both the availability of data and highway traffic flow models developed over
the last half century (Lighthill and Whitham, 1955; Richards, 1956; Daganzo, 1994). These models and data assimilation
algorithms have been used to transform this data into usable traffic information (see Work et al. (2010), Thiagarajan
et al. (2009), Horvitz et al. (2005), and Krause et al. (2008) for a discussion specific to highways). These highway traffic mon-
itoring systems leverage Kalman filtering (Sun et al., 2004) (or other analogous techniques) and system identification meth-
ods to estimate both the macroscopic state of the highways (flow, density, length of queues, bulk speed and shockwave) as
well as highway parameters (free flow speed, traffic jam density and flow capacity).

For arterials (the secondary network), traffic monitoring is more challenging: probe vehicle data is the only significant
data source with the prospect of global coverage in the future. It comes from various sources with specific challenges:

� Fleet data (FedEx, UPS, taxis, etc.) provides information from one minute sampled GPS data (the current standard in the
United States) but with specific spatio-temporal travel patterns (fleets avoid congestion).
� Participatory sensing (GPS enabled smartphone or aftermarket device data or 2-way navigation device), for example Gar-

min, INRIX, Google, Nokia or Waze. This data is unpredictable, sparse, and no single company has ubiquitous coverage.
� Vehicle re-identification (e.g. RFID, magnetic signature (Kwong et al., 2009), Bluetooth readers, Automated Plate Recogni-

tion Cameras) is also used for traffic monitoring, with deployment of readers along some small portion of the transpor-
tation network.

The aforementioned features of probe vehicle data, including the lack of ubiquity and reliability, the variety of data types
and randomness of the corresponding spatio-temporal coverage, make it challenging for fully characterizing macroscopic
traffic model parameters and doing state estimation with these models for large arterial networks. The accuracy of GSM posi-
tioning makes it challenging to use this data source for arterial traffic estimation, even though it provides accurate travel
time estimates on highways (Liu et al., 2008).

Microscopic models have mainly focused on single intersections (or a small number of intersections) using important
data availability assumptions (including signal timing, vehicle counts or high penetration rate travel time measurements
(Ban et al., 2009)). Wireless technology provides travel time measurements of a high proportion of the flow of vehicles
(Kwong et al., 2009) through vehicle magnetic signature re-identification. This information remains limited to the equipped
road which represents, today, a marginal fraction of the arterial network. Geroliminis and Daganzo (2008) developed
macroscopic flow models for the secondary network, but the parameters require site-specific calibration experiments.
The physics of arterial flows is governed by the presence of traffic lights, often with unknown cycles, intersections, stop signs,
and parallel queues. Collecting these detailed parameters is tedious and hence only documented for some sections of few
cities.

In light of these challenges, a statistical approach for characterizing the macroscopic state of traffic is well-suited toward
designing a robust, scalable arterial traffic monitoring system. Such an approach makes it possible to account for the high
variability of arterial traffic while learning the distinct patterns from past data. Real-time data is then fused with the learned
patterns to identify the current state of traffic. Following this approach, neural networks and state-space neural networks
(Van Lint et al., 2005; Liu et al., 2006), graphical networks (Bayesian networks and Markov Random Fields) (Herring et al.,
2010; Park and Lee, 2004; Sun et al., 2006; Furtlehner et al., 2007), regression techniques and time series analysis
(Geroliminis and Skabardonis, 2006; Herring et al., 2010) have been introduced to produce short-term traffic predictions
for both freeway and arterial traffic with promising results. These articles model the spatio-temporal dependencies of the
links of the network which provides more robustness when little or no data is available on some parts of the network. How-
ever, none of these articles present a comprehensive modeling approach of arterial traffic flow.

Zhang and Taylor (2007) successfully applied Bayesian networks to automated incident detection. Our approach is based
on the similar idea that traffic theory can be formulated in a statistical framework to improve estimation capabilities while
leveraging prior information on the model. The fundamental flow conservation laws governing the physics of traffic can be
used as a basis for designing a statistical inference framework for learning key traffic parameters. To our knowledge, inte-
gration of traffic flow theoretic models into machine learning algorithms is still an emerging field, for which few contribu-
tions exist. The efficient use of such models in a statistical inference framework is precisely the contribution of this article.

In this article, we use well-established traffic flow modeling approaches relying on hydrodynamic theory (Lighthill and
Whitham, 1955; Richards, 1956; Daganzo, 1994) as the basis for a Bayesian network formulation. First, we recall how
analytical probability distribution of travel times between arbitrary locations can be derived from kinematic wave theory,
following the derivations performed by Hofleitner et al. (2012) and Zheng and Van Zuylen (2010). The probability distribu-
tion of travel times are parameterized by a minimal set of link parameters (signal timing, link capacity and characteristics of
the free flow speed) and conditioned on the state variable of that link (queue length, i.e. location of the last vehicle stopping in
the queue on the link). The dynamic evolution of the queue length of each link is parameterized by intersection parameters
(turn movements and arrival of vehicles in the network). The algorithm presented in this article enables the learning of the
link and intersection parameters characterizing the traffic dynamics, even under low penetration rates of probe vehicles
characteristics of today’s technology in the United States. Estimating these static model parameters is particularly important
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as they are often difficult or impractical to measure directly for an entire network (consisting of many thousands of links).
This statistical description of the dynamics of the network enables the estimation of traffic conditions with missing data (no
or too little data available on a set of links of the network) in real time, as well as the short term prediction of traffic evo-
lution. Distributions over travel times between points in the network are computed from these estimated parameters. We
focus on travel times because they represent one of the most important metrics for drivers.

Our experiments show that even with limited amounts of data (representative of today’s data availability), we can obtain
accurate travel time estimates. We use data collected by one of the feeds of Mobile Millennium Bayen et al. (2011), a fleet of
500 vehicles sampled every minute. The system receives an average of 500,000 data points per day (see Fig. 1) for the San
Francisco vicinity. As a basis for comparison, we also develop a simple model and algorithm for processing probe data, de-
noted baseline model and described in Section 5. The improvement of our statistical model over this baseline model is
substantial.

The remainder of the article is organized as follows. In Section 2, we present the traffic model and the underlying assump-
tions. We summarize how probability distributions of travel time between any two locations are derived from this model
and model the spatio-temporal statistical dependencies between the links of the network (Section 3). In Section 4, we de-
scribe the algorithm developed to learn the parameters of the network and then infer and predict traffic conditions and dis-
tributions of travel time across the network (EM Algorithm using particle filtering). In Section 5, we present the results of the
model on a subset of the data collected to date.

2. Traffic modeling

2.1. Traffic model and assumptions

We make the following standard assumptions on the dynamics of traffic flow, commonly made in the transportation
engineering literature:

1. Hydrodynamic fluid assumption: Following classical traffic flow theory, we model vehicular flow as a continuum and
represent it with macroscopic variables of flow q(x, t) (veh/s), density q(x, t) (veh/m) and velocity v(x, t) (m/s). The defi-
nition of flow gives the following relation between these three variables: q(x, t) = q(x, t)v(x, t). We make the assumption

Fig. 1. Mobile Millennium system, Left: cumulated raw probe vehicle data collected on a typical day, for one of the feeds of Mobile Millennium. Each dot
corresponds to a point where a probe vehicle emitted its position data. Center: traffic monitoring system output displayed on a phone. Right: web interface
of real time monitoring system.

Fig. 2. The fundamental diagram: empirically constructed relation between flow and density of vehicles.
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of a triangular fundamental diagram (Fig. 2), as used for arterial traffic estimation and control in different contributions
(Geroliminis and Skabardonis, 2010; Zhang and Kim, 2005), some of which are validated with experimental data. More-
over, the differences in fundamental diagram do not change significantly the dynamics of traffic on a large scale (Blan-
din et al., 2011). The triangular fundamental diagram is parameterized by vf, the free flow speed (m/s), qmax, the jam (or
maximum) density (veh/m) and qmax, the capacity (veh/m). From these parameters, we can derive the critical density
qc = qmax/vf and the congested wave speed w = qmax/(qmax � qc). For a given road segment of interest, the vehicles arrive
into the link with a specific spatial spacing: this incoming arrival spatial spacing corresponds to the arrival density qa.
These quantities will appear with indices later in the text when required.

2. Characterization of the state of traffic assumption: For each link of the network, traffic conditions are characterized by a
traffic state variable. This state variable represents the number of vehicles that stop on the link per light cycle. It is
denoted n (generically) and will appear with indices later in the text when required.

3. Time discretization assumption: We model arterial traffic as a discrete time dynamical system and denote by Dt the time
discretization (typically Dt is in the order of five to fifteen minutes). Let t0 denote the initial time, we assume that the
state and flow entering each link is constant on time intervals [t0 + tDt, t0 + (t + 1)Dt] for t 2 {0, . . . , T}. For a specific time
of day (e.g. Mid-week evening rush hour), the parameters of traffic signals (red time, R and cycle time, C) do not change.
According to the time discretization. This work is mainly focused on deriving travel time distributions for cases in
which measurements are sparse. Thus, considering the state of the system as piecewise constant does not prevent esti-
mation, as we are interested in trends more than in fluctuations. Under these assumptions, for intersections signalized
by a traffic light, the system exhibits a periodic behavior, in each time interval, dictated by the period of the traffic light.
Note that this assumption allows the queue length to change over time, but the fundamental characteristics of the
queue (e.g. the maximum length reached during a cycle and thus the number of vehicles stopping in the queue per
cycle) remain constant within a time interval. In particular, the number of vehicles stopping per cycle is constant for
a link i and a time interval t and is denoted ni,t.

4. Transition modeling assumption: According to the time discretization assumption, the state variables ni,t are piecewise
constant, with possible discontinuities at the end of each interval. These transitions model the information propagation
on the road network by taking into account the spatio-temporal dependencies of the state of the links. Based on the
conservation of vehicles, we model these transitions using an approach derived from the Cell Transmission Model (Dag-
anzo, 1994). The state of a link during a time interval depends on the state of this link and the adjacent links during the
previous time interval, to represent the constraint of supply and demand of downstream and upstream links respec-
tively. The dynamic evolution of the traffic state of each link is probabilistic and parameterized by turn movement prob-
abilities from and to neighboring links and arrival rates of vehicles in the network. The parameters of the turn
movements can be learned historically.

5. Conditional independence assumption: We consider a graphical model representing the conditional independence
assumptions between the state variables (representing traffic conditions) and the observations. A graphical model is
a graph in which the nodes represent random variables. The edges denote the conditional independence structure
between the random variables. For more background on graphical models, please refer to Jordan (1999). The random
variables represented by the present graph are (i) the state variables ni,t, number of vehicles stopping on a link per light
cycle, on each link i at each time interval t and (ii) the set of travel times yi,t measured on each link i at each time interval
t. The conditional independence assumptions between the random variables can be formulated as follows:

(a) Travel time measurements on link i for time interval t are independent and identically distributed given the state ni,t

(number of vehicles stopping on a link per light cycle) of this link at this time interval. This means that given the state
ni,t, a travel time on link i during time interval t does not depend on the realization of the other travel time measure-
ments on link i during time interval t. Note that the conditional independence assumption is much less strong than
assuming independence between travel times.

(b) Travel time measurements on link i for time interval t are independent from all the other random variables given the
state ni,t of this link at this time interval. This means that given the state ni,t, a travel time on link i during time interval
t does not depend on the realization of the other random variables. It does not depend on the states of the other links
at any time intervals nor on the state of link i during time intervals previous or posterior to time interval t nor on the
realization of other travel time measurements.

(c) Conditioned on the state of the adjacent links (including itself) at the previous time interval t, the state ni,t+1 of link i at
time interval t + 1 is independent from the travel time measurements from anterior time periods and all other ante-
rior state variables. This means that given the states nj,t of the adjacent links of link i (including link i), the state of link i
during time interval t + 1 does not depend on the realization of the anterior random variables. It does not depend on
the states of the non adjacent links at time interval t nor on the state of any link at time intervals anterior to t � 1 nor
on the realization of travel time measurements during time intervals interior to t. In the following, the set of adjacent
links of link i (including link i) is referred to as the neighbors of link i.

6. Data availability assumption: We receive streaming data in real-time. The data consists of point to point travel time
measurements from a small subset of vehicles traveling on the network. Measurements from the past are stored
and accessible in real time. The Mobile Millennium system, developed by UC Berkeley and Nokia (Bayen et al., 2011) pro-
vides such data (see Fig. 1).
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2.2. Arterial traffic dynamics

In arterial networks, traffic conditions are driven by the formation and the dissipation of queues at intersections. The
dynamics of queues are characterized by shocks, which are formed at the interface of traffic flows with two different den-
sities. In arterial networks, the dynamics of the flow are dependent on the characteristics of the traffic signal. The duration of
the red time and the cycle time of a traffic light are respectively noted R and C (see Section 2.1, Assumption 3). The following
derivations are based on classical horizontal queuing theory and have been known by the traffic engineering community for
many years. We present these standard derivations for completeness as they constitute a basis for the model developed in
the present article. For notational simplicity, the reference to the link i and the time interval t are omitted in this section.

We define two discrete traffic regimes: undersaturated and congested, which represent different dynamics of the arterial
link depending on the presence (respectively the absence) of a remaining queue when the light switches from green to red.
At the transition between the two regimes the number of vehicles that stop in the link per cycle is the maximum number of
vehicles that can exit the link in the duration of a cycle. We call this number of vehicle, the saturation number of vehicles ns. As
Kimber and Hollis (1979) pointed out, there is a smooth transition between these regimes. The distinct regimes are intro-
duced for the mathematical derivations of the travel time distributions, in particular because of the presence of a remaining
queue in the congested regime. Fig. 3 illustrates these two regimes under the assumptions made in Section 2.1. The assump-
tion of a triangular fundamental diagram and the constant arrival density imply the constant speed of formation and disso-
lution of the queue (respectively denoted va and w), computed with the Rankine-Hugoniot jump conditions (Evans, 1998) as

va ¼
qav f

qmax � qa
and w ¼ qcv f

qmax � qc
: ð1Þ

2.2.1. Undersaturated regime
The queue fully dissipates within the green time. This queue is called the triangular queue (from its triangular shape on

the space–time diagram of trajectories). It is defined as the spatio-temporal region where vehicles are stopped on the link. Its
length is called the maximum queue length, denoted lmax. The number of vehicles stopping during a light cycle is denoted n.
From traffic theory, we derive:

lmax ¼ R
wva

w� va
¼ R

v f

qmax

qcqa

qc � qa
: ð2Þ

Fig. 3. Space time diagram of vehicle trajectories with uniform arrivals under an undersaturated traffic regime (top) and a congested traffic regime
(bottom).
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The duration between the time when the light turns green and the time when the queue fully dissipates is the clearing
time denoted s, sometimes also referred to as saturation green time. The maximum number of vehicles that can go through
the intersection during a light cycle is the saturation number of vehicles, introduced earlier, denoted ns. Recalling that n de-
notes the number of vehicles which stop in the queue per cycle, the relation with the clearing time is given by

s ¼ ðC � RÞ n
ns
; ð3Þ

and we notice that n = ns when the clearing time reaches C � R, i.e. when the queue fully dissipates as the signal turns red
(limit of the undersaturated regime).

2.2.2. Congested regime
In this regime, there exists a part of the queue downstream of the triangular queue called remaining queue with length lr

corresponding to vehicles which must stop multiple times before going through the intersection. The number of vehicles
which stop in the queue per cycle is denoted n. It is the sum of the number of vehicles which stop in the triangular queue
(ns vehicles) and in the remaining queue (lr/qmax).

All notations introduced up to here are illustrated for both regimes in Fig. 3, except n and ns which represent number of
vehicles (and are related to the corresponding queue lengths through the maximum density qmax).

2.2.3. Stationarity of the two regimes
Assumption 2 made earlier implies the periodicity of these queue evolutions for each time interval Dt (see Fig. 3). As indi-

cated by the slopes of the trajectories in the figure, vehicles travel at the free flow speed vf. The distance between two vehi-
cles is the inverse of the arrival density 1/qa. The time during which vehicles are stopped in the queue is represented by the
horizontal line in the queue. The length of this line represents the delay experienced in the corresponding queue. The dis-
tance between vehicles stopped in the queue is the inverse of the maximum density 1/qmax. When the queue dissipates,
vehicles are released with a speed vf and a density qc, the distance between two vehicles is 1/qc.

We next use these two regimes to derive probability distribution functions for the travel time along a link (Hofleitner
et al., 2012; Zheng and Van Zuylen, 2010).

2.2.4. Model for differences in driving behavior
We define the free flow pace pf as the inverse of the free flow speed vf. To account for differences in driving behavior, we

model the free flow pace as a random variable, distributed among the different drivers according to a probability distribution
u. If we choose a family of distributions, it is parameterized by a vector hp. In this article, we assume that the free flow pace is
distributed according to a Gamma distribution1 parameterized by hp = (a,b). This variability also takes into account small
errors in the model such as the ones due to a choice of fundamental diagram, the existence of stochastic overflow queues (Viti
and Van Zuylen, 2009) or to non-uniform arrival rates.

2.3. Network model and associated notation

In the derivations, we define a set of independent parameters to characterize the probability distribution of travel times
for each link of the network. First, we learn these parameters from historical data. Then, we perform estimation of traffic
conditions in real-time from sparse streaming data. The parameters are specific for each link i but we omit the indices i
in this section for notational simplicity. We summarize here the variables that are learned historically by the model and that
are sufficient to characterize the travel time distribution on each link of the network, conditioned on the number of vehicles
in the queue (dynamic state variable).

� Static model parameters (learned historically): cycle time, C, red time, R, saturation number of vehicles, ns, parameters of
the free flow pace distribution, hp.
� Traffic state (estimated dynamically), n (number of vehicles in the queue).

The model only uses two parameters derived from the fundamental diagram (pf and ns). These two parameters allow for
the computation of the critical density and the capacity but not the maximum density qmax. However, the maximum density
(effective length of the vehicles) may be estimated off-line with other means (e.g. The Highway Capacity Manual (Trans Res
Board, 2000)). It may remain constant over time and be the same for links with similar properties. Assuming that the max-
imum density has been estimated, we can estimate the probability distribution of the other traffic variables, including flow
and density of vehicles at any location x and time interval t, where x denotes the distance to the downstream intersection.

The time evolution of the state of traffic depends on the probabilistic assignment of vehicles to the links of the network. We
denote Lk

in (resp. Lk
out) the set of incoming (resp. outgoing) links of intersection k. We allow for dummy links representing

sinks, kout and sources, kin that model vehicles arriving or leaving the network at intersection k (parking, residential roads,

1 The probability distribution c of a Gamma random variable x 2 Rþ with shape a and inverse scale parameter b is given by cðxÞ ¼ ba

CðaÞ x
a�1e�bx , where C is the

Gamma function defined on Rþ and with integral expression CðxÞ ¼
Rþ1

0 tx�1e�t dt.

1102 A. Hofleitner et al. / Transportation Research Part B 46 (2012) 1097–1122



Author's personal copy

etc.). At time interval t, we define ni;t
in (resp. ni;t

out) the number of vehicles arriving (resp. leaving) link i during a cycle and Ni;t
in

(resp Ni;t
out) the total number of vehicles arriving (resp. leaving) the link during the duration Dt of time interval t. In the der-

ivations at time interval t, for two adjacent links i and j (with i upstream of j), we call ni;j;t
in (resp. Ni;j;t

in ) the number of vehicles
arriving to link j from link i during a cycle (resp. during time interval t). These notations are summarized in Fig. 4.

The dynamics of the state of traffic are fully characterized by the turn movements on the network. For an incoming link

i 2 Lk
in and an outgoing link j 2 Lk

out [ kout of intersection k, the probability of going from link i to link j is called a turn prob-
ability and denoted mi,j. These variables are non negative and satisfy

P
j2Lk

out[kout
mi;j ¼ 1. The presence of a source at the inter-

section is modeled for each outgoing link of the intersection j 2 Lk
out via a Poisson process with intensity kj.

In the following, we summarize the derivation of probability distributions giðyx1 ;x2
jni;tÞ for the travel time yx1 ;x2

between
two locations x1 and x2 on a link i of the network, conditioned on its state ni,t at time interval t. Zheng and Van Zuylen
(2010) first introduced these derivations for travel time distributions on an arterial link with stochastic queues. Hofleitner
et al. (2012) also studied these analytical derivations, focusing on the distribution of travel times between arbitrary locations.
The set of travel time measurements received for link i during time interval t is denoted yi,t. We also derive transition prob-
abilities for the number of stopped vehicles per cycle on a link i at time t + 1 given the number of stopped vehicles of the
neighboring links at time t. The full set of notation used in this article is available in Appendix A for convenience.

3. Probabilistic model of traffic dynamics

3.1. Modeling the travel time distributions between any two points on a link

Previous work on the characterization of travel time distributions derives the mean average delay and queue length at the
end of the green time using analytical expressions and numerical simulation under different arrival processes (Webster,
1958; Van Den Broek et al., 2006; Leeuwaarden, 2006). Other work studies the influence of the stochasticity of overflow
queues (Viti and Van Zuylen, 2009) on the probability distribution of travel times. In the present article, we focus our atten-
tion on specific aspects of stochasticity which represent significant factors for the variability of travel times among vehicles
traveling on an arterial link at the same time: the entrance time with respect to the beginning of the cycle which determines
the duration of the delay. This choice is motivated by the desire of identifying analytically the effects of the aforementioned
specific stochastic patterns on the behavior of the system. Compared to previous work related to deriving travel time distri-
butions in arterial networks, Hofleitner et al. (2012) presented analytical derivations between arbitrary locations, a feature
which is required to incorporate measurements from probe vehicles which send their locations at random places, not nec-
essarily at the beginning and end of links. The details of the derivations are out of the scope of this article and are fully doc-
umented in (Hofleitner et al., 2012; Hofleitner and Bayen, 2011) and we summarize the different steps of the derivations:

� Derive the probability of delay dx1 ;x2 experienced between the two locations x1 and x2 on the link, parameterized by the
network parameters and the traffic state.
� Model the differences in driving behavior, as presented in Section 2.2. Considering a free flow pace pf with probability

distribution u, the probability distribution of free flow travel times yf ; x1 ;x2
between locations x1 and x2 is computed by

scaling u since yf ;x1 ;x2
¼ pf ðx1 � x2Þ.

� Derive the probability distribution of travel times yx1 ;x2
between locations x1 and x2 as the sum of two independent ran-

dom variables: the delay dx1 ;x2 and the free flow travel time yf ;x1 ;x2
.

We illustrate graphically (Fig. 5) the probability distribution of travel times on a congested link. The pdf of travel times is
the convolution between the pdf of free flow travel times and the pdf of delay. On an undersaturated arterial link, some
vehicles do not experience delay, their delay can be considered as a random variable with mass probability at 0. The

Fig. 4. Schematic representation of an intersection k with incoming links Lk
in ¼ fi1; i2; i3; i4g and outgoing links Lk

out ¼ fj1; j2; j3; j4g. The figure also represents
the vehicle assignment during time interval t.
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remainder of the vehicles experience delay because of the presence of a traffic light. This delay is uniformly distributed on
[0,R]. The fraction of stopping vehicles is derived from traffic theory as g ¼ R

C þ 1� R
C

� �
n
ns

. The pdf of delays on an arterial link
is thus given by

huðd0;LÞ ¼ ð1� gÞDirf0gðd0;LÞ þ g
1
R

1½0;R�ðd0;LÞ;

where 1[0,R](�) is the indicator function of the interval [0,R] and Dir{0}(�) is the Dirac Delta distribution. The probability dis-
tribution of delays, and, because of the linearity of the convolution, the probability distribution of travel times is a mixture
distribution in which each component represents a class of vehicles (stopping or not stopping). Each component of the mix-
ture is computed as the convolution between the probability distribution of delay and the probability distribution of free
flow travel times. Fig. 6 shows the probability distribution of travel times for an undersaturated arterial link.

In both the undersaturated and the congested regime, the analytical expression and the shape of the probability distri-
bution of travel times depends on the locations x1 and x2 and can be expressed as a finite mixture distribution, illustrating
the different delays experienced by the vehicles.

In the following, quantities are indexed by i (and sometimes t) to indicate that they refer to link i (and to time interval t).
For a link i and a time interval t, the resulting travel time probability distribution between any two points on the link are
parameterized by the network parameters ðRi;Ci; ni

s; p
i
f ; h

i
pÞ and the points on the link (x1 and x2). The probability distribution

of travel time yx1 ;x2
between x1 and x2 is conditioned on the traffic state ni,t and denoted giðyx1 ;x2

jni;tÞ. The dependency on the
network parameters Ri;Ci; ni

s and hi
p is implicit and only reminded by the indexing of g by i.

3.2. Modeling the spatio-temporal dependencies: transition probabilities

The spatio-temporal dependencies between the links of the network are modeled with a transition probability on the
state of each link i at time t + 1 given the state of the neighbors at time t. For link i, this transition probability is

Fig. 5. The pdf of travel times is computed from the pdf of free flow travel times and the pdf of delays. On a congested arterial link, vehicles experience a
delay due to the presence of the traffic light. When arrivals are uniform, the delay is uniformly distributed between a minimum value dmin and a maximum
value dmax. The convolution of the probability distribution of delays (dotted line) with the probability distribution of free-flow travel times (dashed line)
gives the probability distribution of travel times on an arterial link (solid line). The illustration is computed for dmin = 20 s, dmax = 60 s, the free flow pace is
taken to be a random variable with Gamma distribution, a mean of 1/8 s/m and a standard deviation of 1/30 s/m.

Fig. 6. On an undersaturated link, the probability distribution of travel times (solid line) is a mixture distribution with two components. The first
component (dashed line) represents the vehicles that do not stop on the link (zero delay), the second component (dotted line) represents the vehicles that
experience delay on the link. Because of the uniform arrivals, the delay is uniform between 0 s and the duration of the red time R. The illustration is
computed for g = 0.7, R = 40 s, the free flow pace is taken to be a random variable with a Gamma distribution, a mean of 1/8 s/m and a standard deviation of
1/30 s/m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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parameterized by the turn probabilities and intensities of the Poisson processes for the arrival vehicles, as presented in the
following sections.

In this article, we assume that all the lanes of a link follow the same dynamics. In particular, each lane of link i is in state
ni,t during time interval t. The red time Ri, the cycle time Ci, the saturation number of vehicles ni

s and the parameters of the
free flow pace hi

p are the same for each lane of the link. We denote by ji the number of lanes of link i. Note that the deriva-
tions can readily be extended if we consider different queue lengths for each lane, corresponding, for example, to dedicated
lanes for turn movements. Similarly, a straightforward generalization of the model would consider that the link and inter-
section parameters (excepted the cycle time) are lane-dependent and would more accurately model the different phases of
the signal and turning movements.

3.2.1. Number of vehicles leaving a link in a cycle
The derivations in this section are valid for any link i of the network at any time interval t.
In a congested regime, there are more vehicles on the link than can exit during a cycle. The number of vehicles that exit the

link during a cycle within time interval t is ni;t
out ¼ jini

s.
In an undersaturated regime, we define the red phase during which the light is red and no vehicle goes through the inter-

section (duration Ri), the clearing phase (introduced in Section 2.2, with duration si,t) and the free-flowing phase during which
the vehicles go through the intersection without stopping. Note that the duration of the clearing time (and of the free flowing
phase) depends on the time interval t since it depends on the state of the link ni,t.

The duration of the free flowing phase is the remaining duration of the cycle after the red phase and the clearing phase,
with duration Ci � (Ri + si,t). The number of vehicles exiting the link during a cycle is the sum of the vehicles exiting the link
after stopping in the triangular queue (jini,t) and the vehicles exiting during the free-flowing phase. For an arrival density qi;t

a ,
we have

ni;t
out ¼ ji ni;t þ qi;t

a v i
f ðC

i � ðRi þ si;tÞÞ
� �

: ð4Þ

In each lane, ni,t vehicles stop in the triangular queue. They exit during the clearing time (si,t) at the maximum flow
ðqi

max ¼ v i
f q

i
cÞ, so we have

ni;t ¼ v i
f q

i
cs

i;t : ð5Þ

Using Eq. (2), we derive the ratio between the arrival and the critical density for each lane of the link

qi;t
a

qi
c
¼ si;t

si;t þ Ri
: ð6Þ

Combining Eqs. (5) and (6) in Eq. (4), the number of vehicles that leave a link in a cycle Ci is

ni;t
out ¼ ji ni;t þ qi

cv i
f

si;t

si;tþRi ðCi � ðRi þ si;tÞÞ
� �

using Eq: ð6Þ;

ni;t
out ¼ jini;t Ci

si;tþRi using Eq: ð5Þ:
ð7Þ

The number of vehicles leaving the link during time interval t (of duration Dt) is derived from (7) as Ni;t
out ¼ ni;t

out
Dt

Ci . Incor-
porating the equation of si,t from (3), we have for both regimes,

Ni;t
out ¼ ji min ni;t; ni

s

� � Dt

Ri þ ðCi � RiÞmin ni;t ;ni
sð Þ

ni
s

: ð8Þ

3.2.2. Dynamic evolution of the state
Each vehicle arriving from link i at an intersection k is assigned to an outgoing link j 2 Lk

out [ kout with probability mi,j (pos-
sibly leaving the network through the sink kout). Each vehicle is assigned independently from the other ones. According to

this model, the random vector Ni;j;t
in

� �
j2Lk

out[kout

of vehicles assigned to the different outgoing links of the intersection has a

multinomial distribution with parameters Ni;t
out and ðmi;jÞj2Lk

out[kout
such that,

P Ni;j;t
in : j 2 Lk

out [ kout

� �
¼

Ni;t
out !Y

j2Lk
out[kout

Ni;j;t
in

!

Y
j2Lk

out[kout

ðmi;jÞN
i;j;t
in if

X
j2Lk

out

Ni;j;t
in ¼ Ni;t

out;

0 otherwise:

8>>><
>>>:

If the intersection has a source kin, we assume that vehicles arrive to the outgoing links j of the intersection according to a
Poisson process of intensity kj. The probability that Nkin ;j;t

in vehicles arrive to link j from the source during Dt is
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P Nkin ;j;t
in

� �
¼

Dtk
j

� �N
kin ;j;t
in e�Dtk

j

Nkin ;j;t
in !

:

Given the number of vehicles arriving to link j from the incoming links of intersection k Ni;j;t
in

� �
i2Lk

in[kin

� �
, and the state of

link j at time t (nj,t), we can compute the state nj,t+1 of link j at time t + 1: (i) we compute the balance of vehicles between the
incoming and the outgoing vehicles at time t and (ii) we update the state of the link for time t + 1 accordingly. The details of
this transition are as follows:

� Balance of vehicles on link j at time interval t: During a time interval Dt, there are Nj;t
out vehicles exiting link j and Nj;t

in vehicles
arriving in link j, which corresponds to a balance of DNj;t ¼ Nj;t

in � Nj;t
out additional vehicles. Note that a negative number

represents a decrease in the number of vehicles on the link. We assume that if link j has several lanes, the increase or
decrease in the number of vehicles is the same for all lanes. This can be adapted for a model with lane-specific link
and intersection parameters.
� Update of the state at time interval t + 1:

– Undersaturated regime with arrival flow inferior to the capacity: At time t, link j is undersaturated ðnj;t
6 nj

sÞ and the num-

ber of vehicles arriving per cycle is less than the maximum throughput per cycle ðnj;t
in 6 jjnj

sÞ. These two conditions
imply undersaturated conditions for link j during time intervals t and t + 1. The queue fully dissipates by the end of

each light cycle and the outflow at time t + 1 equals the inflow at time t ðNj;tþ1
out ¼ Nj;t

inÞ. We can invert Eq. (8) to have
the expression of the state at t + 1. Note that in this case, Eq. (8) is simplified since the number of vehicles in the queue

is less than the saturation number of vehicles min nj;tþ1; nj
s

� �
¼ nj;tþ1

� �
.

nj;tþ1 ¼ Nj;tþ1
out Rjnj

s

jjDtn
j
s � ðC

j � RjÞNj;tþ1
out

¼ Nj;t
in Rjnj

s

jjDtn
j
s � ðC

j � RjÞNj;t
in

– Other transitions: If the regime was congested or if the number of vehicles arriving on the link per cycle is greater than
the maximum throughput of the link, there is a constant increase (or decrease) in the number of vehicles on the link
through the time period t. The number of vehicles stopping in the queue for time interval t + 1 is given by the balance
of vehicles:

nj;tþ1 ¼ nj;t þ DNj;t

jj
:

3.3. Statistical modeling framework

Arterial traffic conditions vary dynamically over space and time. We represent the conditional independencies assump-
tions of Section 2.1 using a probabilistic graphical model known as a Dynamic Bayesian Network (DBN). In this article, the
DBN model the stochastic dynamics of the traffic states (number of vehicles stopping in a cycle) of each link in the arterial
network. Since we do not observe the state directly, these variables are considered hidden. On each link, the travel time

Fig. 7. Spatio-temporal model of arterial traffic evolution represented as a Dynamic Bayesian Network. The circular nodes represent the (hidden) discrete
states ni,t of traffic for each link i at each time interval t. The rectangular nodes represent the Ii,t travel time observations (denoted Yi,t) of each link i at each
time interval t. The doted arrows represent the stochastic spatio-temporal dependencies between the states. The plain line arrows represent the
dependency of the travel time distributions on the hidden traffic state.
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distribution is conditioned on the (hidden) state of the link. The travel time of the probe vehicles traveling through the arte-
rial network provide sparse observations of the state variables. Fig. 7 illustrates the model representation of link states and
probe vehicle observations. Each circular node in the graph represents the state of a link in the road network. The forward
arrows indicate the local spatial dependency of links from one time period to the next. Each square node in the graph rep-
resent probe vehicle observations on the link to which it is attached. The number of observations for a time interval t and a
link i is denoted Ii,t From the observable sequence of outputs (path travel time observations) we want to infer the most likely
distribution of the state variables (queue lengths) as well as their dynamical evolution. For more background on DBNs, please
refer to Murphy (2002).

The observations are successive GPS measurements of vehicle trajectories (approximately one per minute). The issues of
filtering the noise of the GPS to estimate the most likely location of the vehicle when the measurement was generated and
inferring the path taken by the vehicle are not addressed in this article. There are multiple approaches to solving this prob-
lem including using statistical filtering (Hunter et al., 20111; Thiagarajan et al., 2009). In the remainder of this article, we
assume that we are given the most likely measurement locations on the road network as well as the most likely path of
the vehicle. To completely specify the DBN model, we have to estimate:

� The probability of the state n at the start of the experiment. For each link, it is denoted pi(n). It represents the probability
that link i has n stopping vehicles at the initial time.
� The transition probability distribution functions (Section 3.2 and assumption 5c), parameterized by the turn probabilities

mi,j and intensities of the Poisson processes kj.
� The distribution of travel time gi on each link i of the network, parameterized by the link parameters ðRi; Ci; ni

s; h
i
pÞ and

conditioned on the state of the link.

The traffic state is constant during each time intervals of duration Dt, typically chosen between 5 and 15 min (time dis-
cretization assumption), and the link and intersection parameters may be assumed constant for several of these time inter-
vals representing specific times of day (e.g. morning rush hour, mid-day, afternoon rush hour, evening, night). The present
article focuses on the estimation of the parameters for a given traffic period and the dynamic evolution of the state within
this traffic period. Future work will address the automatic detection of changes in the network parameters but is not ad-
dressed in this article.

We also assume that, given the state of a subset of links, the travel time distributions on these links are independent ran-
dom variables. In general, travel time distributions across links are not independent (due to light synchronization, platoons,
and other factors), although it is a reasonable approximation in many cases. Future work will specifically address the chal-
lenge of using correlated distributions, which have the potential to capture more complex dynamics in the arterial road
network.

4. Maximum likelihood estimation of the parameters

There is a complex pattern of dependencies among the travel times sent by the probe vehicles, which we want to learn
off-line, from historical data, to perform estimation and prediction in real-time. Modeling the dependency between the
observations directly is a difficult task because it does not exploit the underlying structure of the dynamical system provided
by the conditional independence assumptions. To simplify the learning and estimation task, we introduce the variables (ni,t),
representing the number of vehicles in the queue of each link at each time interval, and model their stochastic dynamic evo-
lution. Since these variables are not observed directly, they are called latent or hidden variables. The probe vehicle travel
times are noisy, sparse observations of these variables. We introduce an Expectation Maximization algorithm (EM algorithm)
to learn the dependencies among the observations while exploiting the structure of the stochastic dynamic evolution. This
choice is supported by the following two realizations: (1) given the parameters of the model and the path observations, we
can estimate the most likely state of each link at each time interval and (2) given the state of each link at each time interval,
we can compute the parameters of the model (turn probabilities, intensities of the Poisson processes and parameters of the
network) which maximize the likelihood of the observations. The EM algorithm iteratively leverages these two realizations
and is guaranteed to converge to a local optima of the likelihood function. More detailed information on the EM algorithm
can be found in the literature (Dempster et al., 1977) and a short introduction is given in Section 4.2. One challenge of our
graphical model approach is that we do not observe link travel times directly, since the probe observations we receive can
span several links of the network between two consecutive measurements. This difficulty is addressed by computing the
most likely link travel times that make up the path of the probe vehicle (travel time allocation), which is described in Section
4.1. We introduce the EM algorithm (Section 4.2) and detail its two iterative steps: Expectation step (E step) in Section 4.3
and Maximization step (M step) in Section 4.4 in the case of traffic estimation.

4.1. Travel time allocation

An observation consists of a travel time over a path consisting of multiple (potentially partial) links. In order to use the
graphical model presented in Section 3.3, the total travel time must be decomposed into a travel time for each (partial) link
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on the path. The formalization of the intuitive idea that vehicles are more likely to experience delays close to intersections
(Hellinga et al., 2008; Hofleitner and Bayen, 2011) shows significant improvements compared to an allocation proportional
to the free flow travel time, even though some experiments do not agree with this statement (Zheng and Van Zuylen, 2009).
The modeling of vehicle dynamics on an arterial network is promising in order to accurately solve the travel time allocation
problem and is recommended by traffic data collection guidelines (Van Zuylen et al., 2010). Given the model of travel time
distributions used in this article, we perform optimal travel time allocation by maximizing the log-likelihood of the (partial)
link travel times for each observation given the model parameters (Hofleitner and Bayen, 2011).

For a vehicle traveling from an origin (first measurement point) xo to a destination (second measurement point) xd

through M intersections, we decompose the travel time yxo ;xd
as the sum of travel times on each of the links (Fig. 8).

yxo ;xd
¼
XM

m¼0

yxm ;xmþ1
; ð9Þ

For m 2 {1 . . . M}, the point xm represents the most upstream location on the mth link on the paths, x0 = xo and xM+1 = xd.
For m 2 {0 . . . M}, we note im the mth link of the path between xm and xm+1. The function gim is the probability distribution of
travel times on link im. It is parameterized by the link parameters ðRim ;Cim ; nim

s ; h
im
p Þ and conditioned on the state of the link at

time interval t; nim ;t . The formulation of the travel time allocation problem at time interval t reads:

maximize
ðyxm ;xmþ1

Þm¼0...M

:
XM

m¼0

lnðgim ;tðyxm ;xmþ1
ÞÞ ð10Þ

s:t: : yxo ;xd
¼
XM

m¼0

yxm ;xmþ1
;

The optimization problem in Eq. (10) is solved by computing the solution of a small number of small scale convex opti-
mization programs by using the structure of the travel time distributions, as shown in Hofleitner and Bayen (2011). We de-
note by yi,t the set of travel times allocated to link i at time interval t.

4.2. Introduction on EM algorithm

The EM algorithm allows us to exploit the underlying structure of the dynamical model, even though the latent variables
(ni,t) are not observed. It is an iterative algorithm consisting in two steps:

� The expectation step (E step) computes the joint probability distribution of the latent variables ni,t (number of vehicles in
the queue for each link i and each time interval t) given the observed variables yi,t (allocated travel times for each link i
and each time interval t) and the current values of the parameters (signal parameters, turn ratios, driving behavior, sat-
uration number of vehicles). In the Bayesian approach to dynamic state estimation, this computation is known as a
smoothing step. In practice, the smoothing is replaced by filtering: estimation of the probability distribution of the state
at time interval t based on all available measurements up to and including time interval t. Such a filtering step consists of
essentially two stages: prediction and update. The prediction uses the transition probabilities to predict the state prob-
ability distribution from one time interval to the next. The update operation uses the latest available measurements to
modify the state probability distribution using Bayes theorem.

Fig. 8. Illustration of the travel time allocation: decomposition of the path travel time into (partial) link travel times. Along its trajectory, the vehicle sends
location measurements successively at xo and xd for a travel time yx0 ;xd

. This path spans five links (numbered i1 to i5). The path only spans a fraction of the
first and last links (partial links). We decompose the total travel time yx0 ;xd

into five (partial) link travel time ðyxm ;xmþ1
Þm¼0...4. These (partial) link travel times

correspond to the most likely time spent on each (partial) link given the parameters of the network and the state of traffic. These travel times sum to the
total travel time yx0 ;xd

.
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� The maximization step (M step) optimizes the parameters (signal parameters, turn ratios, driving behavior, saturation
number of vehicles) based on the estimation of the joint probability distribution of the latent variables. This step has
the same complexity as if the latent variables were observed.

As illustrated Fig. 7, a dynamic Bayesian network is a directed graphical model, in which each random variable is repre-
sented by a node of the graph. Each generic random variable xi has a set of parents, denoted xpi

such that the joint probability
p(x1, . . . , xn) of x1, . . . , xn can be factored as

pðx1; . . . ; xnÞ ¼
Yn

i¼1

pðxijxpi
Þ;

where pðxijxpi
Þ is the probability of xi given that its parents (in the directed graph) have the realization xpi

. In this article, the
random variables represent the number of vehicles ni,t and the travel time observations yi,t on each link of the network at
each time interval. The conditional independence assumptions and the associated directed graphical model representation
provide a compact, factored, representation of the joint distribution of these random variables:

Pðn; yÞ ¼
YT�1

t¼0

Y
i2I
P Ni;j;t

in : j 2 Lki
outjn

i;t
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Probability of the assignment of the vehicles from link i to the outgoing links of the intersection; for each

link and each time interval excepted the last one which corresponds to the end of the experiment:

�
YT

t¼0

Y
i2I
Pðyi;t jni;tÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Probability of the travel time observations yi;t conditioned on the state of
the link ni;t ; for each link i and eachtime interval t:

�
Y

i2I
piðni;0Þ

� �
;|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Probability that link i is in state ni;0 at the initial
time interval; for each link i:

Note that given the state of the links at a time interval, the number of vehicles from link i assigned to the outgoing links j
and the number of vehicles entering or exiting the network through the sources and sinks determine the state evolution for
all the links of the network. For convenience, we use these probabilities in the expression of Pðn; yÞ instead of referring di-
rectly to the probability of the number of vehicles in the queue of link i at time interval t + 1 given the number of vehicles in
the queue of the neighboring links.

If the hidden variables ni,t were observed, the likelihood optimization would amount to maximizing Pðn; yÞwith respect to
the link and intersection parameters. More commonly, we consider the logarithm of Pðn; yÞ, referred to as the complete log-
likelihood because it corresponds to the log-probability of the complete set of random variables for a given value of the
parameters. Given that the variables ni,t are in fact not observed, the complete log-likelihood is a random quantity, and can-
not be maximized directly. Given a distribution, denoted q(njy), we define a deterministic function of h, denoted hlc(y,n)iq and
called expected complete log-likelihood: It corresponds to the average of the complete log-likelihood, over the realizations of n,
when q(njy) is chosen as the averaging distribution:

lcðn; yÞh iq ¼
X

n

qðnjyÞ lnðPðn; yÞÞ

Using Jensen’s inequality, we can show that the log-likelihood can be maximized by iteratively (1) choosing the proposal
distribution q(njy) as the joint distribution of the state variables computed by the E step and (2) maximizing on the param-
eters of the observations Ri;Ci; ni

s; h
i
p; i 2 I

� �
and of the dynamics (mi,j,ki, for i 2 I and for j outgoing link of i).

4.3. E step: particle filtering

The E step performs filtering given the current values of the parameters and the travel time observations collected from
historical data. The dimension of the state space (number of possible configurations of the number of vehicles in the queue in
each of the link) grows exponentially with the number of links in the network, making an explicit representation of the
probability distributions intractable (Cooper, 1990). To maintain a compact approximation of the state probability distribu-
tion, we use particle filtering (also known as bootstrap filtering or the condensation algorithm) (Russell and Norvig, 1995;
Arulampalam et al., 2002). Other approximations algorithm include variational methods (Jordan et al., 1999) and belief state
simplification (Boyen and Koller, 1998). Particle filtering is a technique for implementing a recursive Bayesian filter algo-
rithm by Monte Carlo Simulations. The idea is to represent the distribution by a set of random samples with associated
weights (importance weights). As the number of samples becomes very large, this Monte Carlo approximation tends to
the exact optimal Bayesian estimate.

We simulate V particles, where each particle v represents an instantiation of the time evolution of the traffic state of the
network, i.e. a possible succession of traffic states for each link of the network and each time interval. A particle v at time
t is represented by a vector of the states of each link and each time interval up to t (denoted ni;t0

v

� �
i2I ;t02f0;...;tg

) and a weight
(or importance weight) xt

v , proportional to the probability of having this instantiation of the state evolution of the network
given the available data up to time t. We simulate a high number of particles that evolve through the graphical model and
explore the possible state space.
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4.3.1. Sufficient statistics to compute the expected complete log-likelihood
At time t, the spatio-temporal instantiations Nt

v ¼ ni;t0
v

� �
i2I ;t02f0;...;tg

of the particles and their associated importance weight

xt
v form an approximation of the joint probability distribution of the state of the links. We denote by yi,t, the set of travel

time observations received on link i during time interval t. Given the travel time observations yi;t0
� �

i2I ;t2f0...t0g, the probability

of observing a state Nt ¼ ðni;t0 Þi2I ;t02f0...tg on the network throughout its time evolution is approximated as follows:

PðNtjyi;t0 ;Ri;Ci; ni
s; h

i
p : i 2 I ; t0 2 f0 . . . tgÞ �

XV

v¼1

xv1Nt ðNt
vÞ:

where 1Nt Nt
v

� �
is equal to 1 if the particle has the state instantiation Nt and to zero otherwise. To derive the expected com-

plete log-likelihood, we introduce ai,t(ni,t) and bi;tðNi;tÞ; cj;t Nkin ;j;t
in

� �
and di(ni,0), referred to as sufficient statistics and defined as

follows.

� The probability that link i is in state ni,t at time t, conditioned on the observations received up to time interval t is approx-
imated using the particles and denoted ai,t(ni,t). It is computed by summing the weights of all the particles that represent a
state instantiation with link i in state ni,t:

ai;tðni;tÞ ¼
XV

v¼1

xt
v1ni;t ni;t

v

� �
; 8t 2 f0; . . . ; Tg; 8i 2 I : ð11Þ

� For an incoming link i and an outgoing link j of intersection k, we note Ni;j;t
in

� �
v

the number of vehicles going from link i to

link j during time interval t for the particle v. We approximate the probability that Ni,t = (Nin
i,j,t,j 2 Lout [ kout) vehicles

from link i are assigned to the outgoing links Lk
out and the sink kout using the particles and denote it by bi,t(Ni,t). It is com-

puted by summing the weights of all the particles that represent an instantiation of the dynamics in which the assign-
ments of the vehicles from link i to the outgoing links (and the sink) is Ni,t:

bi;tðNi;tÞ ¼
XV

v¼1

xt
v 1Ni;t Ni;j;t

in

� �
v
; j 2 Lk

out [ kout

� �
; 8t 2 f0; . . . ; T � 1g; 8i 2 I : ð12Þ

� For an intersection k with a source, Nkin ;j;t
in

� �
v

is the number of vehicles from the source assigned to each outgoing link j of

the intersection. We approximate the probability that Nkin ;j;t
in vehicles from the source are assigned to link j as cj;t Nkin ;j;t

in

� �
. It

is computed by summing the weights of the particles for which Nkin ;j;t
in vehicles originating from the source were assigned

to link j:

cj;t Nkin ;j;t
in

� �
¼
XV

v¼1

xt
v 1

N
kin ;j;t
in

Nkin ;j;t
in

� �
v

� �
; 8t 2 f0; . . . ; T � 1g; 8j 2 I : ð13Þ

� We also define di(ni,0) the probability of the state of link i at the initial time, and approximate it using the particles as

diðni;0Þ ¼
XV

v¼1

x0
v 1ni;0 ðni;0

v Þ: ð14Þ

4.3.2. Filtering using a particle filter
The filtering step consists in successive prediction and update steps which lead to the computation of ni;t

v and xt
v for all

the particles v, all the links i and all the time intervals t. The prediction and update steps are performed as follows:

� Update of the state posterior probability distribution at time interval t. We compute the posterior state distribution using the
measurements available at time interval t. The weight xt

v of each particle is multiplied by the probability of each travel
time measurement received at time interval t given the state ni;t

v of the particle. The weights of the particles are normal-
ized so that they sum to one.
� Prediction of the state at time interval t + 1. We predict the state distribution using the parameters of the turn movements

and of the Poisson processes of the sources. For each incoming link i and each particle v, we compute the number of vehi-
cles leaving link i. Using sampling, these vehicles are randomly assigned to the outgoing links of the intersection (includ-
ing the sink) according to a multinomial distribution parameterized by the turn probabilities. Similarly, a random number
of vehicles (coming from the source of the intersection) is assigned to the outgoing links according to the corresponding
Poisson process. This allows for the computation of Ni;j;t

in

� �
v

and for the simulation of the state of the particle at time inter-
val t + 1 according to the dynamic evolution described in Section 3.2.2. This algorithm is known a Sequential Importance
Sampling (SIS) particle filter.
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� Improvement to prevent degeneracy: the Sequential Importance Resampling (SIR) algorithm. A common issue of the SIS par-
ticle filter is the degeneracy phenomenon, where after a few iterations, all but one particle have negligible weights. It
implies that a large computational effort is devoted to updating particles whose contribution to the posterior distribution
is almost zero. To reduce the effects of degeneracy, we use resampling in the SIS algorithm after computing the importance
weights for time interval t. The modified algorithm is known as Sequential Importance Resampling (SIR) or Sampling
Importance Resampling. The idea of resampling is to eliminate particles that have small weights at time interval t. To
resample the particles, V particles are successively chosen randomly (with replacement) from the original set of particles.
Particle v is chosen with probability xt

v (the weights sum to 1). Each resampled particle has a weight equal to 1/V. This set
of re-sampled particles is used to perform the prediction step of the state probability distribution at time interval t + 1.

Algorithm 1. Maximum likelihood estimation of the parameters of the model with an EM algorithm.

Initialize the parameters (Ri;Ci; ni
sh

i
p; mi;j and kj) and the initial state probabilities pi(n)

while The algorithm has not converged do

E Step [Computation of ai;tðni;tÞ; bi;tðNi;tÞ; cj;t Nkin ;j;t
in

� �
and di(ni,0)] (Section 4.3)

Initialize the E Step: Simulate samples representing the state of the network at the initial time given the initial state
probabilities pi(n). Each sample has initial weight xv = 1/V
for Time interval t = 0:T do

Allocate the travel times by solving (10) for each probe vehicle path

Update the weight of the particles according to the observations yi;t : xv ¼ xv
Q

yx1 ;x2
2yi;t gi yx1 ;x2

jni;t
v

� �
Normalize the weights of the particles: Compute the sum X of the weights of the particles and normalize the

weight of each particle, xv = xv/X

Compute ai;tðni;tÞ; bi;tðNi;tÞ; cj;t Nkin ;j;t
in

� �
and di(ni,0) using Eqs. (11)–(14)

Re-sample the particles (Arulampalam et al., 2002)
For each link i, randomly assign the vehicles leaving link i to the outgoing links and the vehicles coming from the

sources of the network according to the turn probabilities and intensities of the Poisson processes
Update the state of the particles according to the number of vehicles that left and arrived on the link during time

interval t. Each particle now represents an instantiation of the state of the network at t + 1
end for

M Step [Maximization of the expected complete log-likelihood.] (Section 4.4)
Update the initial state probabilities pi(n) (17), the turn probabilities mi,j (15), the vehicle creation rates ki (16) and the

link parameters Ci;Ri; ni
s; h

i
p

� �
(18)

end while

4.4. M step: update of the parameters

For each link i, the travel time distribution gi is conditioned on the state of the link and parameterized by the red time Ri,
the cycle time Ci, the number of vehicles in the queue at saturation ni

s and the parameters of the driving behavior hi
p. To fully

characterize the model, we also need to learn the parameters of the dynamics i.e. estimate the turn probabilities mi,j and the

intensities of the Poisson processes kj. The M step uses the sufficient statistics ai;tðni;tÞ; bi;tðNi;tÞ; cj;t Nkin ;j;t
in

� �
and di(ni,0) to up-

date the value of these parameters by maximizing the expected complete log-likelihood, with respect to these parameters.
The factored expression of the complete log-likelihood implies a similar structure for the complete log-likelihood:

lðn; yÞh i ¼
XT�1

t¼0

X
i2I

X
Ni;t b

i;tðNi;tÞ lnðPðNi;tÞÞ
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Assignments of vehicles exiting link i to the outgoing links of the intersection

ðand the sinkÞ for each link i and each time interval t ðexcepted the last oneÞ:

þ
XT�1

t¼0

X
j2I

X
N

kin ;j;t
in

cj;tðNkin ;j;t
in Þ lnðPðNkin ;j;t

in ÞÞ
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Arrival of vehicles in link j from the source of the intersection;

for each link j and each time interval tðexcepted the last oneÞ:

þ
XT

t¼0

X
i2I

Xni
max

ni;t¼0
ai;tðni;tÞ

X
yx1 ;x2

2yi;t ln giðyx1 ;x2
jni;tÞ

� �� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Travel time measurements; for each travel time yx1 ;x2
received on each link i at each time interval:

þ
X

i2I

Xni
max

ni;0¼0
diðni;0Þ lnðpiðni;0ÞÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Initial state of each link i:

:

where PðNi;tÞ represents the probability (multinomial distribution) of the assignment Ni,t of the vehicles leaving link i to the

outgoing links of the intersection (including the sink) and P Nkin ;j;t
in

� �
is the probability (Poisson distribution) of the arrival of

Nkin ;j;t
in vehicles in link j from the source of the intersection. The factored structure of the complete log-likelihood, and thus of

the expected complete log-likelihood allows the learning of the parameters to be performed independently for the turn
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probabilities, the intensities of the Poisson processes, the initial state probabilities and for each set of link parameters. We
use the values of ai,t,bi,t,cj,t and di computed by the E step (Eqs. (11)–(14)) to update the link and intersection parameters. We
detail the derivations of the update of the parameters in the following (Eqs. (15)–(18)).

� The update of the turn probabilities from the incoming link i of intersection k is the solution of the following optimization
program:

maximize :
mi;j

PT�1
t¼0

X
Ni;t

bi;tðNi;tÞ
X

j2Lk
out[kout

Ni;j;t lnðmi;jÞ

0
@

1
A

subject to :

mi;j P 0 8 j 2 Lk
out [ kout;X

j2Lk
out[kout

mi;j ¼ 1:

8><
>:

where we have ignored the constants that arise when we take the logarithm of the multinomial distribution. It is solved in
closed form by writing the Karush Kuhn Tucker (KKT) conditions. The values of mi,j which maximize the expected complete
log-likelihood are given by

mi;j ¼

XT�1

t¼0

X
Ni;t

bi;tðNi;tÞNi;j;t

XT�1

t¼0

X
Ni;t

bi;tðNi;tÞ
X

j02Lk
out[kout

Ni;j0 ;t

: ð15Þ

� For each intersection k with a source kin, the update of the intensities of the Poisson processes for the outgoing links
j 2 Lk

out is done independently for each link j by solving the following optimization program:

maximize :
k;jP0

XT�1

t¼0

X
N

kin ;j;t
in

cj;t Nkin ;j;t
in

� �
Nkin ;j;t

in lnðDtk
jÞ � Dtk

j
� �

This optimization problem is solved in closed form as follows:

kj ¼ 1
Dt

XT�1

t¼0

X
N

kin ;j;t
in

cj;t Nkin ;j;t
in

� �
Nkin ;j;t

in

XT�1

t¼0

X
N

kin ;j;t
in

cj;t Nkin ;j;t
in

� � : ð16Þ

� For each link i, we update the initial state probability as

piðnÞ ¼
XV

v¼1

xv1ni;0
v
ðnÞ: ð17Þ

To learn this initial state probability, it is important to run the EM algorithm on several days of data (to reduce overfitting
due to fitting the initial state probabilities based on a single day of data). In general, it is advised to run the EM algorithm
over several days (weeks or months) of data to improve the learning of all the parameters of the model.
� We update the link parameters by maximizing the log-likelihood of the travel time observations yi,t with respect to these

parameters. The travel time allocation enables the optimization problem to decouple into smaller optimization problems,
one for each link of the network. The optimization problem for link i is

maximize
Ci ;Ri ;ni

s ;h
i
p

XT

t¼0

Xni
max

ni;t¼0

ai;tðni;tÞ
X

yx1 ;x2
2yi;t

lnðgiðyx1 ;x2
jni;tÞÞ

0
@

1
A; ð18Þ

where giðyx1 ;x2
jni;tÞ represents the probability of observing a travel time yx1 ;x2

between x1 and x2 on link i given that the
state of the link is ni,t.
Decoupling the optimization problem for each link of the network (instead of solving a large optimization program over
the parameters of the entire network) makes it highly scalable as each of the optimization subproblems can be performed
in parallel. If the travel time allocation method is not used, then the resulting optimization problem is coupled across the
entire network, resulting in a large optimization problem that may not scale well. Physical constraints may be imposed on
parameters of incoming links at an intersection (e.g. cycle time is the same for all incoming links of an intersection, the
sum of green times of intersecting flows is less than the cycle time). For each intersection k, these constraints couple the
optimization problems on the parameters of the incoming links of the intersection, but retains the decoupling of the
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network optimization problem into jKj small optimization problems. We have denoted by K the set of intersections on
the network and jKj is the number of intersections.

4.5. Real-time estimation and forecast

Estimating and forecasting traffic conditions in real-time can be achieved after the model parameters and turn probabil-
ities have been learned, i.e once the Expectation Maximization algorithm has been run on large amounts of historical data. In
real time we use the parameters learned by the EM algorithm (which characterize the stochastic dynamics of traffic) to per-
form inference using data available up to the time when the estimate is produced. This is done by running the particle filter
to determine the distribution of traffic states given the available data and the learned value of the parameters. Forecast is
done by propagating the particle filter forward from the current time interval. Since there is no available data, the filter only
performs prediction steps (no update). For both estimation and forecast, the particle filter runs in real time on large-size net-
works (our implementation considers a network with over 800 links). However, the EM algorithm needs to run both the par-
ticle filter (E step) and the optimization algorithms (M step) for several iterations on large amounts of historical data. For this
reason, the EM algorithm is run offline and the model parameters and turn probabilities can be updated periodically (e.g.
every week or every month).

5. Experimental results

The model presented in this article relies on assumptions made on the dynamics of traffic flows on each link of the net-
work. From these assumptions, we derive an analytical expression of the probability distribution of travel times, parameter-
ized by traffic variables (Section 3.1). The model also relies on assumptions made on the statistical dynamics of traffic flows
at intersections and derives a probabilistic model of the traffic dynamics on the network (Section 3.2). Our experimental re-
sults first validate the use of the traffic travel time distributions (Section 5.1) and then assess the real-time estimation and
short-time prediction capabilities of our model from sparsely sampled probe data. We present the validation methodology of
our network estimation model in Section 5.2.1 and report our results that validate the historical learning capabilities (Section
5.2.2) and the real-time estimation and prediction capabilities (Sections 5.2.3 and 5.2.4). We compare our results to a model
that estimates only the mean travel time for each link and report that our model shows a 16% improvement over this base-
line model to estimate mean link travel times. Our model also possesses several advantages over the baseline model that
only estimates mean link travel times. These advantages include the ability to predict traffic conditions into the short-term
future, the ability to estimate probability distributions of travel times between arbitrary points on the network (instead of
just mean link travel time values), as well as the ability to estimate traffic parameters including signal timing and conges-
tions states (queue lengths).

Fig. 9. Routes of the network used for field test validation. The drivers drove around two distinct loops consisting in Van Ness Ave. South bound and
Franklin St. north Bound for the first routes and Van Ness Ave. North bound and Gough St. South bound for the second route. Signalized intersections are
indicated with a circle.
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5.1. Validation of the traffic travel time distributions

To validate the use of the traffic travel time distributions, we use data collected during a field test experiment performed
during three consecutive days, from the 29th of June to the 1st of July 2010. Twenty drivers, each carrying a GPS device,
drove for 3 h (3:15–6:15 pm) around two distinct loops in San Francisco (Fig. 9). The experiments were designed to capture
the evening rush-hour congestion. The GPS devices recorded the location of the vehicles every second and provided detailed
information on the trajectories of the drivers. Using Virtual Trip Lines (Hoh et al., 2008), we down-sample this detailed data a
posteriori to extract link travel times.

For each link of the network, we compute the maximum likelihood estimates of the traffic parameters using 70% of the
link travel times of the drivers, selected randomly. We test the hypothesis H0: the link travel times are distributed according to
the traffic distributions on the validation link travel times using the Kolmogorov–Smirnov (K–S) test (Massey, 1951). The K–S
test is a standard non-parametric test to state whether samples are distributed according to an hypothetical distribution (in
opposition to other tests like the T-test that tests uniquely the mean, or the chi-squared test that tests the normality of the
data). The test is based on the K–S statistic which is computed as the maximum difference between the empirical and the
hypothetical cumulative distributions. The test provides a p-value which informs on the goodness of the fit. Low p-values
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Fig. 10. Empirical and hypothetical probability distribution of travel times on two links of the network. The empirical pdf is computed using a kernel
smoothing density estimator on the full data set. The estimated distribution is the traffic travel time distribution learned from 70% of the available data. The
remaining 30% are used for validation (histograms and empirical pdf and cdf). (Top, Example 1) The link passes the K–S test with average p-value and
represents how well the distribution of travel times is captured by the traffic model. (Bottom, Example 2) The link passes the K–S test for a = 0.01 but fails the
K–S test for a = 0.05. This link illustrates the limitations of the uniform arrivals assumption and the need to extend the model to take into account platoon
arrivals. However the uniform arrivals assumption does not prevent the model from estimating the traffic parameters representing the cycle timing and the
driving behavior.
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indicate that the data does not follow the hypothetical distribution. We reject hypothesis H0 for p-values inferior to the sig-
nificance level a. The significance level a corresponds to the percentage of Type-I error allowed by the test (rejecting the null
hypothesis when it is actually true). The parameter a is commonly set to 0.05 or 0.01. We find that 95% of the links of the
network have a link travel time distribution that follows the traffic assumption when the significance level is set to 0.01 and
84% of the links follow this assumption when the significance level is set to 0.05.

The result of the tests validate the use of the traffic travel time distributions in this article. We show in Fig. 10 the hypo-
thetical and empirical distributions of travel times on two links of the network, one that passes the K–S test with an average
p-value (top, Example 1) and another one that fails the K–S test (bottom, Example 2).

Important insight on the limitations and possibilities of improvement of the model is gained by looking into the empirical
and hypothetical distributions directly. In Fig. 10 (bottom), we show the empirical and hypothetical travel time distributions
for a link that passes the test for a = 0.01 and fails the test for a = 0.05 (the p-value is 0.028). The estimation of the traffic
parameters captures the traffic conditions on the link (e.g. the mean free flow travel time is 23 s and the red time is
55 s). However, the traffic distribution fails to explain why so few vehicles have a travel time between 45 and 65 s, and
why more vehicles have a travel time between 25 and 45 s. A strong hypothesis of the model is the assumption of uniform
arrivals, which leads to delays uniformly distributed among the stopping vehicles (Hofleitner and Bayen, 2011). Due to light
synchronization, some links have arrivals with platoons. On these links, delays are not uniformly distributed among the stop-
ping vehicles and the derivations of the queuing model have to be adapted. The derivations of traffic travel time distributions
with platoon arrivals is the subject of our current research, and a preliminary approach is developed in Bails et al. (2012). In
the case of this link, the platoon arrivals lead to more vehicles with short delays (travel times between 25 and 45 s) while
fewer vehicles have average delays (travel times between 45 and 65 s).

5.2. Validation of the traffic flow dynamic Bayesian network model

5.2.1. Experiment setup
Beginning in March of 2009, data has been collected from probe vehicles in the San Francisco Bay Area, as part of the Mo-

bile Millennium project. One of the available data feeds available through the Mobile Millennium system comes from a fleet of
over 500 taxis which report their location every minute, along with an identifier and a status (carrying a passenger or not).
The status flag allows for the filtering of the taxi stops to load or unload passengers. When a change of status occurs, the

Fig. 11. The subnetwork of San Francisco, CA used for the validation of this model. The network consists of 769 links representing 126 km of roadway.
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measurements directly anterior and posterior to this change of status are discarded. In its raw form, the data cannot be used
by the algorithm. This is due to several issues.

� Between successive measurements, the vehicle may travel more than one link and we need to reconstruct the path.
� The measurements provide the location of the vehicles and we need to compute the direction of travel.
� The GPS measurement may be noisy and must be mapped onto the road network.

To overcome these difficulties, Hunter et al. (20111) developed a map-matching and path-inference algorithm which pro-
vides accurate measurement locations and paths followed by the vehicles. The duration between two successive measure-
ments represents the travel time of the vehicle on its path. The latency in the communication of the location data to our
servers is generally less than a minute.

For our study, we focus on a sub-network of San Francisco shown in Fig. 11. This network consists of 769 links represent-
ing 126 km of roadway. We validate the performance of our model using error metrics computed on previously unseen data.
We report the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE) and the Mean Percentage Error (MPE).2

The Root Mean Squared Error is one of the most widely used metrics to quantify the difference between an estimator and
the true value of the quantity being estimated. It measures the average of the squared error. As a result of the squaring of
each term, Mean Squared Error heavily weights outliers. For this reason, we also compute the Mean Absolute Error, a com-
mon measure of forecast error in time series analysis. Using the convexity of the square function, it is easy to prove that the
RMSE is always greater than or equal to the MAE. The Mean Percentage Error computes the average of the percentage error.
When the actual values of the process to be estimated vary, this metric allows an equal weighting between the terms, as it is
normalized by the actual value of the process.

For comparison, we created a baseline model that estimates mean link travel time. For each measurement in the training
data set, the pace of the path is allocated to the links of the path with a weight equal to the proportion of the link that was
traveled (1 if the full link is traveled, 0 if the link is not traveled at all). The mean pace of a link in the baseline model is com-
puted as the weighted average of the paces on the paths of the training data set. Note that the baseline model does not pro-
vide a statistical distribution of travel times but rather a mean pace. This baseline model was chosen because standard time
series statistical techniques (weighted moving average, exponential decay, ARMA) are not applicable to the data source that
we receive because the measurement locations are not fixed and the time at which we receive measurements at a particular
location is unknown in advance. Thus, it was necessary to develop our own comparison model that we found to be an intu-
itive method for processing the type of data we receive. In the remainder of this article, we refer to the model developed in
this article as the traffic model. We refer to the model for comparison as the baseline model.

Both models run in a hybrid Matlab/Java environment and takes advantage of the Mobile Millennium system infrastructure
which provides simple interfaces for accessing a simplified network representation of the roadway. The internal represen-
tation of the road network is built using NAVTEQ maps, which provide detailed geometry and attributes of the road network.
The system also provides an interface for accessing the data feeds stored in the databases (which are map-matched and fil-
tered in separate processes), and writing the outputs of the model to databases for future use (visualization, air quality re-
lated to traffic conditions, routing and so on). The historical learning of the parameters and the real time estimation and
forecast run on a laptop for moderate size networks.

5.2.2. Validation of the learning capabilities
The model was trained using data collected on the three first Tuesdays of February 2010 from 3 pm to 6 pm. We use a

time discretization Dt of fifteen minutes. From all the data collected on these days, we train the model on a randomly chosen
subset representing 70% of the data. The training data set is used to estimate the network parameters (cycle time C, red time
R, saturation number of vehicle ns and turn proportions) of each link of the network. At each time interval t, the model also
estimates the a posteriori most likely state of the link ni,t using training measurements available up to (and including) time
interval t.

The performance of the learning capabilities is assessed using the validation data set of the training days. The validation
data (30% of the full dataset) was previously set aside and not used to train the model. For each path in the validation dataset,
we compute the travel time estimation according to the estimated parameters and a posteriori states. We compare this tra-
vel time to the true value experienced by the vehicle to compute the error metrics. The results are reported in Table 1. Our
model shows an improvement of 16% in terms of RMSE compared to the baseline model. Moreover, the model learns param-
eters of the network (signal timing, saturation number of vehicles) for which it provides realistic estimates. For example, the
duration of signal timings (cycle length) has a mean of 86 s over the network, with a standard deviation of 17 s, a minimum
value of 45 s and a maximum value of 120 s.

2 For a vector of E estimations x̂ ¼ ðx̂eÞe¼1...E of the true value x = (xe)e=1. . .E, the error metrics are defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPE
e¼1ðxe � x̂eÞ2

E

s
; MAE ¼

PE
e¼1jxe � x̂ej

E
and MPE ¼ 1

E

XE

e¼1

jxe � x̂ej
xe
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5.2.3. Validation of the real time estimation and prediction capabilities
In real time, the model uses the network parameters and turn probabilities learned historically to estimate and predict

the state ni,t of each link i at each time interval t. At time interval t, we define the estimation process as the computation
of the most likely state of the network at time interval t given data received up to and including time interval t. We define
the prediction at q time steps as the computation of the most likely state of the network at time interval t + q given data re-
ceived up to and including time interval t. The prediction at 1 time step is also known as a priori state estimation. The pre-
diction at 0 time step is identical to the estimation process.

The most likely state of the network is computed by performing the E step of the algorithm (particle filter) given the his-
torical values of the network parameters (red time, cycle time, saturation number of vehicles) for each link of the network.
For the prediction at time interval t + q, no data is available for time intervals posterior to time interval t. The filter is run
forward, without weighting the particles (since future data is unobservable). The prediction process is a particular case of
missing data in which the data is missing for all the links and all the time intervals after t.

The prediction of the most-likely state at time t + q and the historic values of the link parameters allow for the compu-
tation of the travel time distributions of each link of the network at time interval t + q. From the travel time distribution, we
can extract various information including a mean travel time, a variance, confidence intervals and so on.

The assessment of estimation and prediction capabilities is performed on Tuesday, February 22nd 2010 (Tuesday follow-
ing the training period) from 3 pm to 6 pm. We report the error metrics for prediction steps ranging from 1 time step (a priori
estimation) to 4 time steps (1 h). We compare our estimates with the estimates of the baseline model. For the baseline mod-
el, the real-time prediction is computed as the historical average of the pace for each link during the time interval of interest.
This means that our prediction for Tuesday, February 22 at 3 pm is the average pace observed at 3 pm from the training data
set (the three previous Tuesdays). Therefore, the estimates of the baseline model do not depend on the horizon of prediction.
The results are reported in Fig. 12.

For the a priori estimation (prediction at one time step), the error metrics of both the traffic model and the baseline model
slightly increase compared to the results presented in Section 5.2.2. This increase in the error metrics accounts for the dif-
ferences in traffic conditions on a new day and the loss of accuracy between the a posteriori and the a priori estimates. The

Table 1
Error metrics representing the estimation capabilities of the model. The metrics are reported on a validation dataset
collected during the training days.

RMSE MAE MPE

Traffic model 25.41 20.23 37.67%
Baseline model 31.56 25.69 46.20%
Improvement (%) 16.32 17.34 16.29

0 20 40 60
20

25

30

M
AE

 (s
ec

on
ds

)

0 20 40 60
0.35

0.4

0.45

0.5

M
PE

 (%
)

Horizon of prediction (minutes)

Evolution of the error metrics with the horizon of prediction

0 20 40 60
25

30

35

R
M

SE
 (s

ec
on

ds
)

Error in model prediction
Error of baseline model

0 20 40 60
10

15

20

25

Im
pr

ov
em

en
t

on
 th

e 
M

AE
 (%

)

Improvement

0 20 40 60
10

15

20

25

Im
pr

ov
em

en
t

on
 th

e 
M

PE
 (%

)

Horizon of prediction (minutes)

Evolution of the percentage of improvement with the horizon of prediction

0 20 40 60
15

20

25

Im
pr

ov
em

en
t

on
 th

e 
R

M
SE

 (%
)

Fig. 12. Error metrics assessing the prediction capabilities of the model. The results show accurate prediction capabilities of the traffic model up to 45 min
ahead. The baseline estimates are computed using historical estimates of the mean travel time, computed during the training. The baseline model does not
provide prediction capabilities based on the current state of traffic and thus produces the same estimates for all horizons of prediction.
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improvement of the traffic model is higher and shows the capabilities of the model to adapt to slightly different traffic con-
ditions and perform short-term prediction.

As the number of prediction steps increases, the estimation error of the traffic model increases. The modeling of the traffic
dynamics ensures a certain regularity in the traffic estimates, and the prediction capabilities of the model remain accurate
and represent a significant improvement to the baseline model. The Root Mean Squared Error shows the greatest improve-
ment, which indicates that the traffic model has fewer estimates that differ in a significant way from the true values of the
travel times than the baseline model does.

5.2.4. Field test experiment
We use data collected during the field test experiment in San Francisco to provide another validation of the capabilities of

the model. We extract route travel times on four different routes of the network (Fig. 9). The north and south end of the
routes are respectively California St and Grove St. The four routes consist of Van Ness Ave. north bound, Van Ness Ave. south
bound, Franklin St. and Gough St.

In order to assess the validity of the model, we down-sampled the driver data to mimic the kind of data generally avail-
able in real-time. The model runs over this sparsely sampled data and we then perform validation by comparing our esti-
mates of the route travel times with the actual route travel times of our drivers. The comparison of the model estimates
and the ground truth route travel times are presented in Fig. 13. This data highlights the variability of travel times
experienced by vehicles. The travel time estimates closely follow the trend of traffic dynamics. The RMSE of the traffic model
on the route travel times of our drivers is 74.42 s, the MAE is 63.62 s and the MPE is 33.24%. The travel times on the routes
are significantly higher than the travel times used for validation in Section 5.2.3, hence higher values of the RMSE and MAE.
In the computation of the MPE, each estimation error is normalized with the travel time on the path. The MPE is better on
longer stretches, as the relative variability of travel times is relatively smaller.

6. Conclusion and discussion

This article presented a statistical model based on the dynamics of arterial traffic flow. These results indicate that the
model provides a substantial improvement over a ‘‘simple’’ baseline approach. Besides the improvement of the mean travel
time estimation, our model possesses several advantages over the comparison model. It improves the estimation of mean
link travel times compared to a baseline model. It estimates the probability distribution of travel times (rather than only
the mean) between any two location on the network. It learns parameters with a physical interpretation (such as fundamen-
tal diagram and signal parameters) and also learns turn movement probabilities within the arterial network. Using the
learned parameters, real-time estimation and prediction of traffic conditions is performed using a customized particle filter.
The model also leverages historical data to estimate traffic conditions in real-time throughout the network even where little or
no real-time data is received. This is due to the model’s ability to accurately track flows through the network as well as the
relative recurrence of arterial traffic dynamics.
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Fig. 13. Comparison of the model estimates with the ground truth route travel times for the north and south bound routes on Van Ness Ave. The red curve
represent the average travel time estimate of the traffic model. The blue crosses represent the driver data collected during the field test experiment. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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This article presents a general framework to model arterial traffic as a stochastic dynamical system. The presented model
can be adapted depending on the sparsity, the noise and the amount of available data. The model could take into account the
fact that delays are dependent upon the turn movement through the intersection. The model currently assumes that travel
times are independent of the turn movements and this is not true in general. This generalization of the model can be imple-
mented by considering a multi-dimensional state on each link of the network. The dimension of the state on a link of the
network would be equal to the number of lanes and each dimension of the state would correspond to the queue length
on that lane. Similarly, we can consider several traffic parameters per link representing the different phases of the signal cy-
cle. In a statistical model, one needs to find a compromise in the level of detail and number of parameters chosen for the
model depending on the type and the amount of data available. Indeed, a more precise model with numerous parameters
is able to fit the training data more accurately and explain more details in the dynamics of the model. However, such a model
is more likely to over-fit the data when the amount of training data is not sufficient to learn all the parameters. Over-fitting
the training data decreases the performance on testing data and thus the capabilities of real time estimation and short-term
prediction of the model. In this paper, we consider sparsely sampled probe vehicles (vehicles report their location every min-
ute). The type of data leads us to focus on estimating trends of traffic (estimation every fifteen minutes) rather than fluctu-
ations (variations of queue length and travel time within a traffic cycle). We also decided not to estimate signal phases and
lane by lane queue length (even though it can be a natural extension of the model) because we do not have information on
protected turn movements. Our information is limited to the number of lanes per link and we assume that all the lanes of a
link are in the same state at a given time.

Note that the results presented on this article rely on arterial traffic modeling assumptions that can limit the applicability
of the model. In particular, the model assumes uniform arrivals on each link of the network. On controlled arterials, where
signal synchronization is important, this hypothesis does not hold and the model does not capture travel time distributions
as accurately. We are working on a generalization of the traffic travel time distributions that take into account platoon arriv-
als and capture more accurately the travel time distributions on these arterials.

This article presents the fundamental concepts needed for performing large-scale estimation of arterial traffic conditions
using only low penetration rate GPS probe data. For the next decade, only a small number of municipalities will have the
financial resources to equip their entire arterial network with dedicated infrastructure. At the same time, the market of
probe data will remain too fragmented to be used in high penetration rate models, forcing traffic engineers to design traffic
information systems capable of handling sparse data. The present article is a first step towards this goal, which shows prom-
ising results.
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Appendix A. Summary of the notations used in the article

1. Traffic model parametersThe traffic model parameters represent the characteristics of the network. They are specific to a
link i of the network. For notational simplicity, the subscript i is omitted when the derivations are valid for any link of the
network.

qi
max Maximum density of link i

qi
max Capacity (maximum flow) on link i

qi
c

Critical density of link i
wi Backward shockwave speed of link i

ni
max

Maximum number of vehicles that can physically be on link i. This is the number of vehicles when the density is

the maximum density. For a link of length Li, we have ni
max ¼ qi

maxLi

v i
f

Free flow speed of link i

pi
f Free flow pace (inverse of free flow speed) of link i. We have pi

f ¼ 1=v i
f

2. Traffic signal parameters
The traffic signal parameters characterize the properties of the traffic signal that condition the traffic dynamics. In this
model, we only consider traffic signals in the form of traffic lights. The extension of the model to stop signs will be
the subject of future work. As for the traffic model parameters, these variables are specific to a link i of the network. How-
ever, the subscript may be omitted.
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Ci Duration of a light cycle on link i
Ri Duration of the red time on link i

ni
s

Maximum number of vehicles that can exit link i during a light cycle. This variable is related to the ratio of green
time and the traffic model parameters

3. Traffic state variables
The traffic state variables describe the conditions of traffic that characterize the traffic dynamics on the network. The vari-
ables are specific to a link i and a time interval t and represent the dynamic evolution of the traffic state in the different
time intervals t 2 {0 . . . T}. The reference to the link or to the time interval may be omitted when the derivations are not
link or time specific.

qi;t
a

Arrival density on link i during time interval t

v i;t
a

Arrival shockwave speed on link i during time interval t (speed of growth of the queue due to additional vehicles
arrival)

si,t Duration of the clearing time on link i during time interval t

li;tmax
Length of the triangular queue on link i during time interval t

ni,t Number of vehicles that stop during each light cycle

4. Network variables and parameters
The network variables and parameters characterize the architecture of the road network and describe the flow of vehicles
at intersections.

I Set of the links of the network
K Set of the intersections of the network
Li Length of link i
i,j Indices of links of the network ði; j 2 IÞ. When we refer to an intersection, i refer to a link upstream of the

intersection whereas j refers to a link downstream of the intersection
k Index of an intersection of the network

Lk
in

Set of incoming links of intersection k

Lk
out

Set of outgoing links of intersection k

kin Source (if existing) of intersection k
kout Sink (if existing) of intersection k

ni;t
in

Number of vehicles that arrive in link i during a light cycle for time interval t

ni;t
out

Number of vehicles that leave link i during a light cycle for time interval t

Ni;t
in

Cumulative number of vehicles that arrive in link i during time interval t

Ni;t
out

Cumulative number of vehicles that leave link i during time interval t

Ni;j;t
in

Cumulative number of vehicles that leave link i and are assigned to link j during time interval t

ji Number of lanes of link i

5. Particle filter and E Step
The inference of traffic states on the network given the parameters of the network, of the turn movements and given
observed path travel time data is computed using an approximation (for tractability reasons). This approximation relies
on particle filtering.

V Number of particles
v Index of the particle

ni;t
v

State of particle v on link i during time interval t

xv Importance weight of particle v
ai,t(ni,t) Expected probability that link i is in state ni,t at time interval t, computed from the

approximation of the joint distribution given by the particles and their importance weight

bi;j;t ni;t ;Ni;j;t
in : j 2 Lk

out

� �
Expected probability that link i is in state ni,t at time interval t and that Ni;j;t

in vehicles get
assigned to the outgoing links of the intersection. It is computed from the approximation of the
joint distribution given by the particles and their importance weight
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6. Probabilities
The model relies on a probabilistic description of the traffic network dynamics, whose notations are summarized in the
following table.

ui Probability distribution function of the free flow pace on link i. This function is defined on Rþ and for
pf 2 Rþ;uiðpf Þ is the probability density that vehicles drive with a free flow pace pf

hi
p

Parameters of the probability distribution function ui

c(�) Probability distribution function of a random variable with Gamma distribution
(ai,bi) In the case of a gamma distribution on the free flow pace, the parameters of the distribution are the shape ai and

inverse scale parameter bi. The Gamma distribution reads cðxÞ ¼ ba

CðaÞ x
a�1e�bx, where C is the Gamma function

defined on Rþ and with integral expression CðxÞ ¼
Rþ1

0 tx�1e�t dt, when i is omitted for simplicity
yx1 ;x2

Observation of the random variable representing the travel time between locations x1 and x2

yi,t Set of travel time observations received on link i during time interval t
Ii,t Number of travel time observations received on link i during time interval t
gi,t(�) Probability distribution function of travel times on link i during time interval t. The function is parameterized by

the traffic model and signalization parameters. It changes over time with the state of the link. The function also
takes into account the location of the measurements x1 and x2 on link i such that gi;tðyx1 ;x2

Þ is the probability
density of the travel time observation yx1;x2

mi,j Probability that a vehicle leaving link i is assigned to link j
kj

Intensity of the Poisson process of vehicles arrival on an outgoing link j 2 Lk
out of intersection k, coming from a

source kout

pi(n) Probability that link i is in state n at the beginning of the experiment. These probabilities represent probabilistic
initial conditions for the state of link i

7. Other variables

t Index of the time interval
T Index of the last time interval. By convention, the first interval is numbered 0 so T + 1 is the number of time

intervals
Dt Duration of a time interval
1S Indicator function of set S

8. Probability distributions

P Njyi;t;Ri;Ci; ni
s; h

i
p : i 2 I ; t 2 f0 . . . Tg

� �
Probability of observing a state evolution N given the travel time observations

Pðn; yÞ Likelihood of the state evolution of the system, with observations y

Pðyi;tjni;tÞ Conditional probability of the travel time observations yi,t, given that link i is
in state ni,t during time interval t

PðNi;j;t
in : j 2 Lk

out [ koutÞ Probability that Ni;j;t
in

� �
j2Lk

out[kout

vehicles leave link i and are assigned to link j

during time interval t
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