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A B S T R A C T   

On-demand mobility services such as bikesharing, scooter sharing, and transportation network 
companies (TNCs, also known as ridesourcing and ridehailing) are changing the way that people 
travel by providing dynamic, on-demand mobility that can supplement public transit and 
personal-vehicle use. Adoption of on-demand mobility has soared across the United States and 
abroad, driven by the flexibility and affordability that these services offer, particularly in urban 
areas where population density and land use patterns facilitate a reliable balance of supply and 
demand. The growth of app-based ridesharing, microtransit, and TNCs presents a unique op-
portunity to reduce congestion, energy use, and emissions through reduced personal vehicle 
ownership and increased vehicle occupancy, the latter of which is largely dependent on the de-
cisions of individual travelers to pool or not to pool. This research provides key insights into the 
policy levers that could be employed to reduce vehicle miles traveled and emissions by incen-
tivizing the use of pooled on-demand ride services and public transit. We employ a general 
population stated preference survey of four California metropolitan regions (Los Angeles, Sac-
ramento, San Diego, and the San Francisco Bay Area) to examine the opportunities and challenges 
for drastically expanding the market for pooling, taking into account the nuances in emergent 
travel behavior and demand sensitivity across on-demand mobility options. Although high-fre-
quency TNC users – those that use TNCs once a week or more - are more likely to consider pooling 
than less frequent users and reflect more multimodal travel behavior than other travelers, we find 
that the most captive and price sensitive TNC users are often the most vulnerable. Heavy TNC 
users – those using TNCs more than three days per week - are disproportionately low income, 
more likely not to own or lease a car and more likely to use TNCs for essential trip purposes than 
are less frequent users. Pooling demand sensitivity varies significantly across trip contexts, 
metropolitan regions, socio-demographics, travel behavior, and attitudes and perceptions toward 
sharing. We estimate the time and price tradeoffs in choosing between ride alone and shared on- 
demand service options, finding significant differences across values that travelers place on each 
component of travel time (wait time, access/egress walking time, and in-vehicle time) by geog-
raphy and income level. We discuss the potential to leverage these insights to develop policies 
that combine pricing, curb management, and promotional strategies to increase the pooling 
market share.   
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1. Introduction 

In recent years, the transportation ecosystem in most urban areas across the globe has swelled to include a suite of technology- 
enabled, shared mobility services such as carsharing, bikesharing, scooter sharing, and transportation network companies (TNCs, 
also known as ridesourcing and ridehailing). These innovative services are changing the way that people travel by providing dynamic, 
on-demand mobility that can supplement public transit and personal-vehicle use. However, the broader impacts of innovative mobility 
services are highly uncertain and largely dependent on the ubiquity of riders willing to share their rides, particularly when using TNCs 
such as Lyft and Uber. There is growing evidence that TNCs are contributing large sums of additional vehicle miles traveled (VMT) in 
large dense metropolitan areas of the United States (U.S.) (Schaller, 2017; SFCTA, 2017; Schaller, 2018), with an estimated 20% to 
45% of TNC VMT consisting of “deadheading” miles—miles driven without a passenger in the vehicle (Henao and Marshall, 2018; 
Cramer and Krueger, 2016; SFCTA, 2017; Schaller, 2017). Pooling rides can increase the average vehicle occupancy of TNC trips and 
thus reduce VMT, energy use, and GHG emissions (Viegas et al., 2016; WEF and BCG, 2018; Greenblatt and Saxena, 2015). Yet, there is 
limited understanding of the sensitivity for pooling demand, particularly within the context of on-demand ride services. Knowledge of 
individual travel behavior and decision-making processes for choosing between the growing number of on-demand mobility services is 
critical for devising equitable and effective incentive mechanisms for increasing vehicle occupancy while maintaining the affordability 
and mobility provided by such services. 

Carpooling, or ridesharing, is the grouping of multiple travelers into a car or van to complete a common trip. Carpooling has a long 
history as a TDM tool in North America, with large employers historically playing a central role in the incentivization and facilitation of 
commuter carpooling programs. In addition, casual carpooling has thrived for decades in the metropolitan regions of Houston, Texas, 
Washington, D.C. and Northern Virginia, and the San Francisco Bay Area, where access to High Occupancy Vehicle (HOV) lanes has 
maintained an active community of carpoolers that meet up at established public pickup and dropoff locations to save time and money 
commuting to and from central employment centers (Shaheen and Cohen, 2019). Recently, socio-economic forces coupled with 
technological innovation have given rise to a new wave of pooling enabled by app-based services that reserve, match, and process 
payments for rides on-demand. Several mobility companies have launched app-based ridesharing services (e.g., Waze Carpool, Scoop), 
although some pilots have been discontinued due to low match rates (e.g., Lyft Carpool) (Shaheen and Cohen, 2019). 

TNCs offer pooled on-demand ride options (e.g., uberPOOL and Lyft Shared Rides) in which users may choose to share a ride with 
another passenger traveling along a similar path for a reduced fare. In 2017, just 20% and 40% of all Uber and Lyft rides, respectively, 
were pooled rides (Shaheen and Cohen, 2019). In New York City, where data on matching rates are available, only about 22% to 23% 
of requested Lyft Line (now Lyft Shared rides) and uberPOOL (now UberPool) rides in 2018, respectively, resulted in matched trips 
(Schaller, 2018). In 2017, both major TNC companies launched modified versions of their pooled on-demand ride services, called Uber 
Express POOL and Lyft Shared Ride Saver, which require that passengers walk a short distance to/from their pickup/dropoff location 
(Lyft, 2017; Uber, 2017). These services resemble microtransit services, which offer flexible- or fixed-route rides with fixed-schedule or 
on-demand service in shuttles or vans (Shaheen and Cohen, 2019). 

Several strategies to mitigate the negative impacts of TNC use have emerged across North America at both the state and local levels. 
These include vehicle and driver licensing and registration fees, access fees and restrictions to specific pickup or dropoff locations (e.g., 
airports, stadiums, etc.) or areas (e.g., downtown zones) and pricing policies that apply a flat, percentage-based, or per-mile surcharge 
to TNC trips within a jurisdiction. In some cases, discounts are provided for pooled TNC trips. Examples include the: 1) New York State 
Congestion Surcharge, which applies a $2.75 fee to all ride-alone TNC trips and $0.75 to all pooled TNC trips that start, end, or pass 
through Manhattan south of 96th Street; 2) San Francisco Rideshare Tax, which applies a 3.25% and 1.5% surcharge to all ride-alone 
and pooled TNC trips, respectively, that start in San Francisco; and 3) City of Chicago congestion pricing, which applies a $3 and $1.25 
surcharge to all ride-alone and pooled TNC trips, respectively, that start or end in a designated downtown zone during weekday peak 
hours (between 6 AM and 10PM) and applies a $1.25 and $0.65 surcharge on all other ride-alone and pooled TNC trips, respectively. 
The disposition of funds from state and local TNC taxes and fees includes general funds to congestion mitigation funds and even public 
school funds. 

Although there is a growing literature focused on characterizing the socio-demographics, travel behavior, and mode shifts of TNC 
users, there remains a limited understanding of the differentiation between pooled and ride-alone TNC demand. It is not clear whether 
the enacted strategies provide efficient disincentives to curb TNC use nor whether the established discounts are sufficient to incentivize 
pooling. Moreover, it remains to be seen whether the effects of pricing policies are distributed equitably across the population. It is 
imperative to develop a deeper understanding of which population segments are most likely to be affected by pricing policies as well as 
the magnitude of VMT and emission reductions that may be achieved by various strategies. 

This article investigates the opportunities and challenges for expanding the market for pooling by incentivizing TNC users to pool. 
Using a stated preference survey of the general population in four California metropolitan regions (Los Angeles, Sacramento, San 
Diego, and the San Francisco Bay Area) in 2018, we examine the nuances in travel behavior and demand sensitivity across on-demand 
and pooled ride options. High-frequency TNC users—those that use TNCs at least once a week—pose a notable opportunity, as they are 
more likely to consider pooling and reflect more multimodal travel behavior than other travelers. However, we observe that the most 
captive and price sensitive TNC users are often the most vulnerable: heavy TNC users—those using TNCs more than three days per 
week—are disproportionately low income, more likely not to own or lease a car, and more likely to use TNCs for essential trip purposes 
than are less frequent users. A discrete choice analysis of stated preferences across ride alone, door-to-door shared (e.g., Lyft Shared 
rides, UberPool), and indirect shared (e.g., Uber Express POOL, Lyft Shared Saver) rides reveals that females, travelers aged 18 to 30 
years old, travelers with an annual income less than $35,000, car owners/leasers, and public transit users are among the most likely to 
share an on-demand ride. However, likelihood to share varies significantly by the origin, destination, and time sensitivity of a trip. The 
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relative demand sensitivity to estimated wait times, in-vehicle times, and walking access/egress times reveals significant opportunities 
to shift deadheading and passenger vehicle miles to walking miles by incentivizing indirect shared rides. In addition to direct price 
incentives and indirect operational incentives that reduce wait times and in-vehicle times, we quantify the impact that promotional 
offers can have on a traveler’s choice to pool or not to pool. 

The remainder of this article is organized into five key sections. First, the authors present literature and prior research on pooling. 
The survey design and methodology for discrete choice analysis are presented next, followed by a presentation of results. Finally, the 
authors discuss the broader implications of the study and provide policy recommendations and conclusions. 

2. Background 

Pooling—the shared use of a vehicle for multiple passengers to complete journeys of similar origin and destination—exists in 
numerous forms today. From traditional ridesharing (e.g., carpooling and vanpooling) to on-demand ride services such as microtransit, 
taxi sharing, and shared ride TNC services, pooling offers travelers a cheaper alternative to private-vehicle use that generates 
important societal and environmental benefits through the reduction of VMT and GHG emissions. In this section, we provide an 
overview of the state of the knowledge of different forms of pooling. 

3. Traditional ridesharing (carpooling and vanpooling) 

Traditional ridesharing includes acquaintance-based and organization-based carpools (groups of two to six traveling together in a 
car) and vanpools (groups of seven to 15 commuting together in one van) as well as casual carpooling, also known as “slugging” 
(Shaheen and Cohen, 2019). Ridesharing can be recognized by many names, including liftsharing or car sharing in the UK, and 
carpooling or vanpooling in North America. However, it differs from for-hire vehicle services such as taxis, jitneys, and TNC services in 
that ridesharing payments, when collected, are not intended to result in financial gain and typically only partially cover the driver’s 
cost (Chan and Shaheen, 2011). In addition, ridesharing drivers share a common origin and/or destination with their passengers. 

Ridesharing has a long history as a transportation demand management (TDM) tool in North America. It first emerged in the U.S. 
during World War II as a result of a 1942 federal regulation that sought to conserve rubber for the war effort (Chan and Shaheen, 2011). 
Carpooling and eventually, vanpooling, have since continued to have a role in congestion and parking supply management, partic-
ularly at large employment sites and during periods of economic stress. HOV and High Occupancy Toll (HOT) lanes have historically 
encouraged the adoption of ridesharing in regions where they provide significant time and cost savings (Shirgaokar and Deakin, 2005; 
Neoh et al., 2017). The phenomenon of casual carpooling, or slugging, began in the 1970s and has maintained prominence in the 
regions of Houston, Texas, Washington, D.C. and Northern Virginia, and the San Francisco Bay Area, where participation is driven by 
significant driver and passenger travel-time savings from gaining access to HOV lanes, as well as passenger cost savings and perceived 
convenience over driving alone or taking other alternative transportation modes (Shaheen and Cohen, 2019). 

While individual likelihood to carpool has been found to increase for lower income groups, younger age groups, and minority 
groups (typically Hispanics and African Americans), these factors are all highly correlated with a lack of car ownership, the strongest 
internal predictor of carpooling (Correia and Viegas, 2011; Neoh et al., 2017, Shaheen and Cohen, 2019). Attitudinal factors, such as 
perceptions of the convenience and reliability of ridesharing, coupled with situational factors influencing the: 1) quality of public 
transit alternatives to driving, 2) flexibility of work schedules, and 3) availability of workplace incentives have a stronger positive 
influence on the propensity to rideshare than do socio-demographic factors (Neoh et al., 2017; Vanoutrive et al., 2012; Koppelman 
et al., 1993). In the San Francisco Bay Area and Washington, D.C., casual carpooling is most heavily used during the morning commute, 
as many passengers opt to use public transit for their commute home when there is generally more travel-time flexibility (Shaheen and 
Cohen, 2019). 

The commute mode share of ridesharing in the U.S. has declined over the past decade, from 10.4% in 2007 to 8.9% in 2017 (U.S. 
Census Bureau, 2018a). In California, the commute mode share of ridesharing has declined as well, from 11.9% in 2007 to 10% in 
2017. The nation’s most populous metropolitan regions have also experienced declines in ridesharing commute mode share, although 
many saw a lower rate of decline than the national average, particularly between 2015 and 2017. Although a new era of smartphone 
enabled ridesharing emerged in North America during this period, it is yet to be determined whether this has had an impact on 
ridesharing rates. Several mobility companies have launched app-based ridesharing services including: Waze Carpool, Scoop, Carzac, 
and Ride (Shaheen and Cohen, 2019). In March 2016, Lyft piloted a traditional ridesharing service in partnership with the Metro-
politan Transportation Commission in the San Francisco Bay Area. The pilot was discontinued after six months due to low match rates 
(Shaheen and Cohen, 2019). 

3.1. Pooled on-demand ride services 

On-demand ride services provide for-hire rides to travelers through smartphone applications that facilitate reservations, driver 
dispatching, and payment. They include TNC services, which offer both ride-alone (e.g., uberX, Lyft Classic) and pooled ride options (e. 
g., uberPOOL, Lyft Shared Rides), also known as ridesplitting. Ridesplitting also encompasses taxi sharing services, which enable 
multiple unacquainted users with similar routes to split the fare of a shared ride in a taxi (Shaheen and Cohen, 2019). Lastly, on- 
demand transit services, called microtransit, frequently provide rides in a van or bus with flexible service in terms of pickup and 
dropoff times and/or locations. 

Pooled TNC services are typically provided within the same smartphone app-based user interface as ride-alone TNC options, 
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allowing passengers to choose to share their ride with a stranger traveling along a similar path. TNC users are usually quoted a dis-
counted price and a longer estimated total travel time for a pooled ride compared to the ride-alone option. When Lyft and Uber first 
launched in 2012 and 2013, respectively, only private on-demand ride services were offered (Shaheen and Cohen, 2019). Both TNCs 
introduced shared-ride services in August 2014, originally called uberPOOL and Lyft Line (now called Lyft Shared Rides). As of 
December 2017, 20% and 40% of all Uber and Lyft rides, respectively, were pooled rides (Shaheen and Cohen, 2019). In 2017, both 
TNC companies started piloting modified versions of their pooled on-demand ride services, called Uber Express POOL and Lyft Shared 
Saver, which require that passengers walk a short distance to/from their pickup/dropoff location (Lyft, 2017; Uber, 2017). This newest 
iteration of pooled on-demand ride services resemble microtransit services, which offer flexible- or fixed-route rides with fixed- 
schedule or on-demand service in shuttles or vans (Shaheen and Cohen, 2019). 

3.2. Microtransit 

The recent growth in microtransit service is in part a renewal of the core pooled service provided by jitneys that have offered rail 
feeder, circulator, and high-frequency areawide service in metropolitan regions such as: the San Francisco Bay Area, San Diego, 
Atlantic City, and Miami (Cervero, 1997). Chariot, which launched in San Francisco in 2014 offered rides in 14-person passenger vans 
along fixed routes that were ‘crowdsourced’ by users in Austin, Columbus, London, New York City, San Antonio, San Francisco, and 
Seattle (Shaheen and Cohen, 2019). Another microtransit service called Bridj emerged in 2014, which promised on-demand, flexibly 
routed service similar to the indirect pooled rides offered by Uber Express POOL and Lyft Shared Ride Saver, through 14-seater 
passenger vans. A study during six-months of a pilot of Bridj in Kansas City found that the majority of riders used the service to 
commute and for work-related travel, with price affordability and convenience being the key motivating factors for use (Shaheen et al., 
2016). While both Bridj and Chariot ended their operations in 2017 and 2019, respectively, a third prominent microtransit service 
called Via operates in Arlington (Texas), Chicago, London, New York City, Washington D.C., West Sacramento, and Los Angeles 
(Shaheen and Cohen, 2019). 

3.3. Early understanding of pooled on-demand ride services 

Overall, TNC users tend to be younger and more highly educated than the general population (Circella et al., 2018; Henao and 
Marshall, 2018; Smith, 2016; Clewlow and Mishra, 2017; Gehrke et al., 2018; Rayle et al., 2016; Schaller, 2018). Findings on the 
income and racial/ethnic distributions of TNC users have been mixed, with some studies suggesting that TNC users have higher in-
comes (Clewlow and Mishra 2017; Schaller, 2018) and are more likely to be white/Caucasian (Hampshire et al., 2017; Henao and 
Marshall, 2018), while others have found that these distributions of TNC users are closely aligned with those of the general population 
in the study area (Rayle et al., 2016; Feigon and Murphy 2018; Gehrke et al. 2018). Brown (2018) found that, on average, Lyft users 
living in low-income neighborhoods in Los Angeles County make more trips per capita, and they are more likely to pool than those 
living in neighborhoods with a higher median income.1 This study also found that users living in majority-black and majority-white 
neighborhoods of Los Angeles County take more trips and are less likely to pool than those living in more diverse neighborhoods. 

TNC services have been found to contribute large sums of additional VMT in large dense metropolitan areas of the U.S. (Schaller, 
2017; SFCTA, 2017; Schaller, 2018). The total VMT produced by TNCs includes the miles driven by drivers en-route to their market of 
choice, as well as those driven while roaming and unreserved, driving to pickup a passenger, and driving with a passenger in tow. The 
former three phases of service represent ‘deadheading’ or miles driven without a passenger in the vehicle. Studies estimating the 
percent of VMT caused by deadheading typically focus on miles driven while awaiting a ride request and driving to the passenger 
pickup point. These studies have estimated that 20% to 45% of miles driven by TNC vehicles are accounted for by deadheading (Henao 
and Marshall, 2018; Cramer and Krueger, 2016; SFCTA, 2017; Schaller, 2017; CARB, 2019). 

To the authors’ knowledge, there are six studies of TNC services that measure vehicle occupancies, five of which explicitly consider 
pooled-ride services. An intercept survey of TNC users in the San Francisco Bay Area prior to the launch of pooled rides found that half 
of ride-alone TNC trips had more than one passenger, with an average occupancy of 2.1 passengers per trip (Rayle et al., 2016). 
Intercept surveys conducted in Denver, Colorado during Fall 2016 and Boston, Massachusetts during Fall 2017 observed average 
occupancies of 1.36 and 1.52 passengers per trip, respectively (Henao and Marshall, 2018; Gehrke et al., 2018). The Boston study 
found that pooled rides comprised about a fifth of trips surveyed, while in the Denver study, about 13% of all rides were requested as 
pooled services, about 85% of which were not matched with another rider. A survey distributed across California in 2018 found that 
the average occupancy of respondents’ most recent trips was about 1.9 passengers per trip, with lower occupancy observed on 
weekends and greater occupancy observed during nighttime trips (Circella et al., 2019). The California Air Resources Board analyzed 
records from trip diaries collected from 31 TNC drivers in Spring 2019, finding time-weighted occupancies of 1.57 and 1.54 for pooled 
and non-pooled rides, respectively. About 15% and 12% of trips from the 2018 and 2019 California studies, respectively, were pooled 
trips. Finally, using a dataset of all Lyft trips that occurred in Los Angeles County from September to November 2016, Brown (2018) 
found that Lyft Line was used for 29.2% of all Lyft trips and 32% of all peak-hour trips during that period. 

As with traditional ridesharing, a critical mass of ridership is necessary to facilitate efficiency gains from pooled on-demand ride 
services. Based on data from TNC trips in New York City in February 2018, only about 22% to 23% of requested Lyft Line and 

1 Due to data limitations, the findings by Brown (2018) are based on the census tract median household income corresponding to the zip code of 
residence for the rider of each trip. 
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uberPOOL rides, respectively actually resulted in a matched trip (Schaller, 2018). In contrast, about 60% of Via trips in New York City 
are shared (Schaller, 2018). Simulation-based studies focused on shared automated vehicle (SAV) fleets have projected the impacts of 
on-demand pooling, finding that the potential of SAVs to reduce VMT is highly dependent on the percent of trips that are shared and 
the rate of replacement of single occupant trips by pooled trips (Viegas et al., 2016; WEF and BCG, 2018; Greenblatt and Shaheen, 
2015; Greenblatt and Saxena, 2015). 

4. Methodological approach 

This study analyzes data from a general population stated preference (SP) online survey of residents from four CA metropolitan 
regions conducted from August to December 2018: Los Angeles, Sacramento, San Diego, and the San Francisco Bay Area. The survey 
design and analysis are informed by a large body of literature on travel demand modeling (Ben-Akiva and Lerman, 1985: Train, 2009), 
particularly for estimation of the value of time (VOT) and a traveler’s willingness to pay for travel time reductions (Brownstone and 
Small, 2005; Wardman, et al., 2016; Zamparini and Reggiani, 2007). The estimation of a discrete choice model for the choice of TNC 
ride options enables the investigation of the significant factors influencing a TNC user’s choice to pool or not to pool, as well as the 
explicit estimation of a traveler’s VOT across different time segments of a TNC trip. VOT is calculated as the ratio of the sensitivity of 
demand to a particular travel time component (e.g., walking time to/from a pickup/dropoff location, waiting time, in-vehicle time) to 
the sensitivity of demand to travel cost. The VOT for driving has been found to vary from about 50% to 100% of the mean hourly wage 
for the population of interest (Brownstone and Small, 2005; Wardman et al., 2016; Zamparini and Reggiani, 2007; United States 
Department of Transportation (USDOT), 2016). While historical VOT waiting time estimates for public transit have varied from about 
1.5 to 2 times the VOT for in-vehicle time, a recent SP survey of Dutch citizens regarding pooled on-demand ride services similar to 
microtransit found that the waiting time VOT was about 1 to 1.5 times the VOT for in-vehicle time (Alonso-Gonzalez, et al., 2020). 
While this SP survey stipulated a constant one minute walk time estimate, our study includes walking time as an additional travel time 
component. In addition, we explore the regional variation in travel behavior and demand sensitivity for on-demand rides across four 
California metropolitan regions. This section details the methods used for data collection, survey analysis, and discrete choice analysis. 

4.1. Survey design 

The online survey included multiple-choice questions regarding respondents’ socio-demographic characteristics, travel profiles, 
typical TNC use, attitudes and perceptions toward TNCs and pooling, and a series of four to five stated preference mode-choice 
experiments. 

Respondents were asked to indicate their familiarity with TNC services such as Lyft and Uber. Respondents who had never used 
TNCs were presented with a brief explanation of such ride services. All respondents were then presented with instructions explaining 
that the following set of questions would present hypothetical travel scenarios in which the respondent would be asked to choose a 
transportation option based on the information provided. Respondents were asked to imagine that they were traveling alone and could 
choose from the following options, as presented:  

• Ride-alone TNC: a service such as uberX/ Lyft Classic where you request a direct, door-to-door ride for yourself.  
• Door-to-door shared ride: a service such as uberPOOL/ Lyft Shared Rides (formerly Lyft Line) where you request a door-to-door 

ride for yourself and your route may deviate to pickup or dropoff one to three additional passengers riding along a similar route.  
• Indirect shared ride: a service such as Uber Express POOL that is identical to a door-to-door shared ride, except you are assigned 

pickup and dropoff locations that may require you to walk several minutes to and from the origin and destination locations you 
designate in the ride request. Indirect shared rides may have one to five additional passengers. 

In each of the first four scenarios, respondents were asked to imagine that they were making a trip with a specified context provided 
by the trip origin, destination, and a time constraint. The trip purpose was indicated by the destination, which was selected randomly 
from the following possibilities: home; a restaurant/bar; an event (e.g., sports event, theater, concert); the airport; a recreational/social 
activity (e.g., a park, the beach, etc.); or a public transit station. Further context regarding the location in which the hypothetical mode 
choice occurred was randomly generated to be either ‘from home’ or ‘from somewhere other than home.’ Finally, the time constraint 
was randomly generated to provide the context that the trip would be made with plenty, some, or no time to spare. Respondents that 
self-identified as being employed (either full- or part-time) or a student were presented with a fifth scenario in which they were asked 
to consider that they were planning a commute trip to work (or school). In the commute scenario, the time constraint variable was not 
presented and the trip origin and destination were home and work/school, respectively. 

As shown in Fig. 1 below, the alternative-specific attributes for each transportation option were presented in a table format 
including: 1) estimated wait time, 2) estimated walking time to or from the pickup or dropoff locations, 3) estimated in-vehicle time, 4) 
estimated total time, 5) estimated cost, and 6) expected range of additional passengers. Only the indirect shared-ride option included 
the estimated walking access/egress time attribute, as the other two ride options provide door-to-door service. As with a typical shared 
TNC ride quote, respondents were not given an estimate of the exact number of additional passengers that may join the ride. The 
indirect shared ride was specified to include up to five additional passengers to account for a ride experience similar to dynamic 
microtransit in which a larger vehicle such as a van or shuttle may be used for this service type, whereas the door-to-door shared ride 
was specified to include up to three additional passengers to differentiate it as a trip that would typically be served by a smaller vehicle 
such as a sedan. 
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All other alternative-specific attributes were generated randomly from pre-specified distributions of discrete values that were 
purposefully chosen to cover a range of possible scenarios.2 The estimated wait times for each shared-ride option and the estimated 
walking time for indirect shared rides were independently and randomly generated. The estimated in-vehicle times and costs of each 
alternative were generated in a cascading fashion, starting with the random generation of the estimated in-vehicle time for the ride- 
alone TNC option, which was assumed to travel the most direct path among all options. The range of possible values of the estimated 
in-vehicle times for door-to-door shared rides were specified to be greater than or equal to that of the ride-alone option to allow for the 
possibility that the rider is at best the last to be picked up and first to be dropped off in the shared ride. For the indirect shared ride, the 
range of possible in-vehicle times also included values that were slightly faster than the ride-alone option to reflect the potential 
efficiency gains from dispatching rides for passengers that do not have to be directly picked up or dropped off from their requested 
origin and destination. In order to constrain the scope of the experiments to trip distances for which most people would not choose to 
walk or bike, the minimum estimated in-vehicle time across all scenarios and transportation options was seven minutes. 

The estimated total cost for the travel options were also chosen based on the estimated in-vehicle time of the ride-alone TNC option 
to reflect the time- and distance-based pricing of TNC services (Uber, 2018; Lyft, 2018). The range of cost estimates was amplified to 
test the sensitivity of respondents to prices that may be cheaper or more expensive than contemporary TNC pricing. In doing so, the SP 
experiment design and resulting discrete choice analysis enables consideration of policy scenarios in which the proliferation of SAV 
ride services have drastically reduced the prices of on-demand rides, as well as scenarios in which pricing policies are enacted to 
increase the prices of certain on-demand services. The estimated costs for the door-to-door shared TNC were randomly generated from 
values ranging from 90% to 65% of the ride-alone cost. The estimated cost for the indirect shared TNC was then randomly generated 
from values ranging from 90% to 65% of the door-to-door shared TNC cost. 

In the third and fourth scenarios, a promotional offer was included as an additional alternative-specific attribute for the shared TNC 

Fig. 1. Example Stated Preference Experiments.  

2 The distributions of the time and cost attribute levels are presented in Table A1. All other attribute levels were generated using a uniform 
distribution. 
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options, as demonstrated by the example in Fig. 1b above. Three types of promotions were tested, one of which would only appear if 
the randomly generated trip destination was ‘to a public transit station,’ while the other two were eligible to appear for any trip 
purpose. The public transit-focused promotion stated: ‘Take a door-to-door (indirect) shared ride to public transit and get $2 (or $5 or 
$7) off your transit fare,’ where the public transit discount offered was randomly generated from those three values. The second 
promotional type offered: ‘Take 2 (5, 7, or 10) door-to-door (indirect) shared rides and get one door-to-door (indirect) shared ride free.’ 
Finally, the third promotion offered: ‘Take one door-to-door (indirect) shared ride and get 5% (7%, 10%, 12%, 15%, or 20%) off your 
next door-to-door (indirect) shared ride.’ The promotional values for each of the two latter offers were also randomly generated from 
the values listed. 

4.2. Survey analysis 

In total, 2,538 respondents completed the survey. A number of response quality checks were applied to filter out incomplete re-
sponses, resulting in a final sample size of 2,434. The survey results were analyzed for the purposes of understanding the socio- 
demographic and travel profiles of California residents that use TNC services, the nature of TNC use, and the extent to which TNC 
users share rides. Furthermore, the analysis focused on characterizing high frequency TNC users to provide insights into which 
population segments represent the most captive demand for TNCs and other on-demand ride services, including app-based carpooling 
and future SAV services. When applicable, analysis of the responses from TNC users and nonusers are provided. 

The primary test of significance used in the analysis is the two-proportions z-test in which the null hypothesis is that the two 
distributions are equal. Unless otherwise noted, all results that are stated to be ‘significant’ have failed the null hypothesis of the two- 
proportions z-test at a 99% significance level. 

4.3. Discrete choice analysis 

In order to investigate the significant factors in an individual’s choice to pool when using TNC services, a discrete choice analysis 
(DCA) was performed using the SP survey data. DCA is a method used to model the choice from an exhaustive, finite set of mutually 
exclusive alternatives, based on the principles of utility maximization (Ben-Akiva and Lerman, 1985; Train, 2009). The objective is to 
estimate a parameterized random utility model for each of the alternatives, composed of a deterministic and a random component. As 
defined in Equation (1), the utility of alternative j to individual n, denoted as Unj, is the sum of the linear combination of observable 
independent variables, Xnj, multiplied by corresponding coefficients, βnj (the deterministic component), plus an error term repre-
senting unknown factors, εnj (the random component). 

Equation (1). A Random Utility Model 

Unj = βnjXnj + εnj (1) 

The probability that a particular individual chooses any one of the alternatives, defined by the logit model in Equation (2), is the 
probability that the chosen alternative provides that individual with the greatest utility across all available alternatives. In the 
multinomial logit model, the scale parameter μ is conveniently constrained to a value of one, following the assumption that the 
variances of the error terms are homoscedastic (Ben-Akiva and Lerman, 1985). More refined models, such as the nested multinomial 
logit, relax this assumption by allowing different scale parameters across alternatives. The maximum likelihood approach for esti-
mating the parameters is used (Ben-Akiva and Lerman, 1985). 

Equation (2). The Probability That Decision Maker n Chooses Alternative j 

Pnj = Prob
(

Unj > max
i∈Cn ,i∕=j

(Uni)

)

=
eμβnjXnj

∑
i∈Cn

eμβniXni
(2) 

A total sample of 10,912 SP choice experiments from 2,398 individual respondents was included in the DCA to produce a TNC mode 
choice model that predicts the preferred ride option of a particular traveler in a given trip context. Responses to multiple SP choice 
experiments from each respondent are included as independent observations in the model. 

4.4. Model estimation 

The TNC choice model is a multinomial logit model estimated from the responses to the SP choice experiments, in which re-
spondents indicated which one of three TNC-ride options they preferred given the trip context and attributes of each alternative. The 
model was specified using a backward elimination procedure. Table 1 below provides the full list of variables considered as candidate 
model parameters. All trip context and alternative-specific attributes were included in the candidate parameter set. An additional set of 
individual characteristics, including socio-demographic, travel profile, and attitudinal variables were chosen as candidates for the 
model based on the survey analysis. Ordinal variables (e.g., education and all attitudinal variables) were treated as continuous var-
iables for model simplicity. 

In addition, a nested multinomial logit specification was estimated to test for correlation between the shared-ride options. The 
estimated nest-scale parameter failed the null hypothesis test of being equal to one with a 90% confidence level. Moreover, the model 
was rejected by the likelihood ratio test comparing it to the multinomial logit specification with a 90% confidence level. 

With the exception of the estimated cost parameter, all parameters were initially specified as alternative-specific, with the ride- 
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alone TNC option as the base. In other words, the initial model specification included separate coefficients for the door-to-door shared 
rides and indirect shared rides for each alternative-specific parameter. The first step in the backward elimination involved consoli-
dating parameters using the likelihood ratio test to determine if a significant3 improvement in the goodness-of-fit of the model could be 
achieved by restricting each parameter from two alternative-specific parameters (one for each shared-ride option) to one generic 
parameter for both shared-ride options. First, the parameters for which the confidence intervals of the unrestricted parameters 
overlapped were tested for consolidation, which was followed by the remainder of the parameters in order of decreasing p-value. As a 
result, only parameters with a significant difference in their relationship to the likelihood that an individual chooses one shared-ride 
option over another remained as two separate model parameters. In the next step of the backward elimination, parameters were tested 
for removal from the model specification (in order of decreasing p-value), again using the likelihood ratio test for improvement in 
goodness-of-fit with a significance level of 95%. 

Next, variables were tested for their correlation to the metropolitan region of the decisionmaker’s residence. Naturally, each 
metropolitan region surveyed has unique cultural, land use, and geographic characteristics that can influence the significance of 
various factors in an individual’s transportation mode choices. While specification of four separate region-specific models was an 
undesirable final outcome of the DCA due to the necessary sacrifice in predictive power from reduced sample sizes, four such models 
were estimated as an intermediary step in the model specification process to identify parameters that could improve the core model by 
being specified for each metropolitan region. Parameters for which the confidence intervals of the estimated coefficients overlapped 
across multiple region-specific models were then interacted in the full model and tested using the likelihood ratio test with a signif-
icance level of 95%. Following this process, the resulting region-specific parameters were tested once more on the basis of 
improvement in goodness-of-fit from either the generic or alternative-specific specification. For example, although the final model 
estimation suggests a significant difference in the relationships between the utility of door-to-door shared rides and indirect shared 
rides for weekly TNC users in the San Francisco Bay Area, there is no such difference in utilities across the two shared ride options for 
weekly TNC users in the remaining three metropolitan regions. Finally, the same process was undertaken for socio-demographic 
variables to check for the significance of additional interactions. 

4.5. Study limitations 

This study focuses on the self-reported socio-demographics, travel behavior, attitudes and perceptions, and stated preferences of a 
sample of residents from four California metropolitan regions. The survey sampling strategy was designed to capture a representative 
sample from each metropolitan region surveyed based on regional univariate distributions of each socio-demographic variable (see 
Table 2 and Table A2). Some of the socio-demographic targets were relaxed during the survey distribution process in order to reach the 
sample target size, resulting in differences of about 10% between the sample income distribution and the population across the four 
metropolitan regions surveyed. Analyses of TNC travel behavior and demand sensitivity are disaggregated by income to explicitly 
account for this small discrepancy in the socio-demographic representativeness of the study sample. Moreover, we note that the 

Table 1 
Candidate Parameters for DCA.  

Contextual Variables Alternative-Specific Attributes Individual Characteristics 

Origin 
Destination (trip purpose)  
Time sensitivity 

Estimated wait time 
Estimated in-vehicle time 
Estimated walking time 
Estimated cost 
Promotion: % off next shared ride 
Promotion: number of shared rides to 
get one free 
Promotion: $ off of public transit fare  

Metropolitan region 
Gender 
Age 
Education 
Racial/Ethnic group 
Employment 
Income 
Medical condition/handicap 
Car ownership 
TNC tenure (years since started using)  
TNC trip frequency 
Drive-alone trip frequency 
Public bus trip frequency 
Rail trip frequency 
Carpool/Vanpool trip frequency 
Taxi trip frequency 
Shared micromobility trip frequency 
Comfortable being driven 
Comfortable sharing rides 
Enjoy chatting with driver 
Enjoy chatting with passengers 
Believe shared rides are more environmentally friendly 
than ride-alone TNCs  

3 A significance level of 95% was used in for the likelihood ratio test. 
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multivariate distributions of socio-demographic variables were not explicitly accounted for, further limiting the similarity between the 
sample and the population in any particular region.4 

While all four metropolitan regions examined reside in California, there are distinct differences in the land use, culture, and 
transportation systems that are reflected in the survey results. All survey analysis results are disaggregated by metropolitan region and 
the significance of findings are noted separately for each region, when applicable. Since the sample from the Los Angeles region is 
about five times the size of the other three regions, the margin of error for results from Los Angeles is about 2%, while the margin of 
error of the remaining regions is about 6%. In addition, the TNC choice model produced by the DCA includes region-specific parameter 
estimates, which reflect the heterogeneity in demand sensitivity across the regions. 

Both TNC users and nonusers are included in the DCA. As a result, the TNC choice model may be used to understand demand 
sensitivity with respect to TNC-ride options across the full population in any of the metropolitan regions studied, both at present and in 
hypothetical scenarios in which various circumstances (e.g., the proliferation of SAVs, fuel price changes, etc.) or policies (e.g., TNC 
surcharges, road pricing, targeted subsidies, etc.) have an impact on the price and time tradeoffs in choosing between TNC-ride op-
tions. However, it is important to note that the TNC mode choice model alone does not predict the likelihood that an individual will 
choose to use a TNC over other modes – it merely predicts which TNC-ride option would be preferred in the event that a traveler is 
considering using a TNC for a particular trip. 

Finally, we note that SP surveys are limited in their ability to predict the actual choices of individuals in their day-to-day travel. In 
the absence of reservation-level data from on-demand mobility providers or costly travel diary survey data, SP surveys provide a means 
of understanding individuals’ choices through controlled experiments. The trip context and alternative-specific variables in the SP 
experiments were designed to control for as many pertinent factors in the decision-making process of choosing between on-demand 
ride options as possible. With the exception of the attitudes and perception variables, all parameters in the model are routinely 
captured by household travel surveys, which are commonly used for regional travel demand modeling. 

5. Results 

In this section, the results of the survey analysis and DCA are presented, with an emphasis on developing an understanding of the 
opportunities and challenges to increasing the pooling market. 

5.1. Respondent demographics 

By design, the survey sample is close to socio-demographically representative of the populations in the Los Angeles, Sacramento, 
San Diego, and San Francisco Bay Area metropolitan regions, as reported by the 2017 five-year American Community Survey (ACS) 
estimates (United States Census Bureau, 2018). As shown in Table 2 below, the sample distributions of gender and age most closely 
match those of the general population, across all metropolitan regions surveyed. Across all of the regions, the lowest and highest 
income groups are over- and undersampled, respectively, with respondents earning less than $35,000 annually making up about 6% to 
10% more of the sample than the population and those earning $100,000 or more annually making up about 6% to 12% less than the 
population. 

The sample distributions of educational attainment and race/ethnicity (see Table A2) are similar to those of the general population, 
with a few exceptions: 1) the respondent samples from the Los Angeles metropolitan region with less than a high school degree and 
those with a Bachelor’s degree are undersampled, while the remaining two educational attainment groups are oversampled, and 2) 
White/Caucasian respondents are oversampled by up to 8% compared to the population across the Sacramento, San Diego, and San 
Francisco Bay Area metropolitan regions. 

5.2. TNC trip frequency 

Active TNC users comprise just over one half of the population in all metropolitan regions except in Sacramento, where only 44% of 
the population has used TNCs locally in the past year. Henceforth, we refer to respondents that have used TNCs (e.g., Lyft, Uber) in 
their metropolitan region at least once in the year prior as TNC users and those that have not as nonusers. The distributions of age, 
education, and income (see Table 2 and Table A2) suggest that active TNC users are generally younger and wealthier than nonusers, 
across all of the metropolitan regions surveyed. Interestingly, we found no significant difference in the likelihood of being an active 
user based on vehicle ownership across all regions except for the San Diego region, where active TNC users were about half as likely as 
nonusers to not own a vehicle but twice as likely as nonusers to own three or more vehicles. Respondents that have a medical condition 
or handicap that makes it challenging to travel outside of the home make up about 10% to 12% of the sample across all of the 
metropolitan regions. Respondents with a medical condition/handicap are significantly less likely to be active TNC users in the Los 
Angeles and Sacramento metropolitan regions, while they are slightly more likely to be active TNC users in the San Francisco Bay Area, 
where 60% of respondents with a medical condition/handicap are active TNC users. 

Heavy TNC users – those that use TNCs more than three times per week—pose the largest opportunity for achieving policy objectives 
through TDM strategies that incentivize pooling. Although heavy TNC users constitute a relatively small portion of the overall 

4 The correlations between socio-demographic variables are presented in the Appendix, Table A3. 
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Table 2 
Distribution of Socio-Demographics of the Population and the Survey Sample by Metropolitan Region.   

LOS ANGELES SACRAMENTO SAN DIEGO SAN FRANCISCO BAY AREA 

GENDER Populationa N =
10,271,191 

Survey N =
1,541 

TNC Users n 
= 808 

Populationb N =
1,300,405 

Survey N =
294 

TNC Users n 
= 128 

Populationc N =
2,555,203 

Survey N =
297 

TNC Users n 
= 155 

Populationd N =
6,026,055 

Survey N =
292 

TNC Users n 
= 162 

Male 49% 49% 47% 48% 46% 47% 50% 50% 47% 49% 47% 46% 
Female 51% 51% 53% 52% 53% 52% 50% 50% 53% 51% 52% 54% 
Other n/a 0.3% 0.1% n/a 0.7% 1.5% n/a 0% 0% n/a 0.7% 0.6% 
AGE (years old) N = 10,271,191 N = 1,549 n = 810 N = 1,300,405 N = 295 n = 130 N = 2,555,203 N = 298 n = 155 N = 6,026,055 N = 292 n = 162 

18 to 29 23% 26% 31%* 24% 22% 23% 25% 22% 26% 20% 23% 31%* 
30 to 49 36% 40%* 42% 35% 30% 40%* 35% 39% 45% 37% 31% 39%* 
50 to 69 29% 26% 22%* 30% 36% 32% 29% 29% 23% 31% 33% 22%* 
70 and over 11% 8%* 4%* 11% 13% 5%* 11% 10% 6% 12% 13% 8%* 
INCOME N = 4,315,854 N = 1,505 n = 793 N = 604,895 N = 289 n = 127 N = 1,112,851 N = 294 n = 153 N = 2,700,986 N = 281 n = 156 

Less than $35,000 28% 36%* 35% 29% 36% 33% 24% 34%* 25%* 20% 26% 27% 
$35,000 - $99,999 40% 42% 41% 43% 41% 40% 41% 44% 47% 34% 39% 36% 
$100,000 - 

$199,999 
23% 18%* 19% 22% 18% 20% 25% 19% 23% 29% 26% 24% 

$200,000 or more 10% 5%* 5% 6% 4% 7% 9% 4%* 5% 18% 9%* 13% 
VEHICLE 

OWNERSHIP 
N = 4,320,174 N = 1,549 n = 810 N = 604,895 N = 295 n = 130 N = 1,111,739 N = 298 n = 155 N = 2,700,986 N = 292 n = 162 

0 8% 11%* 12% 7% 10% 10% 6% 12%* 8% 10% 15%* 15% 
1 33% 41%* 41% 34% 43%* 45% 31% 40%* 40% 31% 38% 38% 
2 37% 34% 35% 37% 35% 33% 40% 38% 38% 36% 32% 32% 
3 14% 8%* 8% 15% 9%* 8% 16% 8%* 9% 15% 8%* 7% 
4 or more 8% 5%* 5% 7% 3% 5% 8% 2%* 5% 8% 7% 7% 

Asterisks in the: 1) survey and 2) TNC user columns denote a 99% confidence level in the difference in proportions of each socio-demographic variable between the: 1) population and survey sample and 2) 
survey sample and TNC users, respectively. 
a. Los Angeles-Long Beach-Anaheim, CA Metro Area 
b. Sacramento and Yolo Counties, CA 
c. San Diego-Carlsbad, CA Metro Area 
d. Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma Counties, CA 
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population across the four metropolitan regions surveyed (see Fig. 2 above), they represent a cohort of TNC users that will be among 
the most impacted by any such policies, as they have incorporated on-demand ride services into their weekly routine beyond just 
weekend travel and are likely to consider on-demand rides in their mode choice decisions on a daily basis. In particular, a majority of 
daily TNC users are making more than one TNC trip per day, across all of the regions surveyed. 

Heavy TNC users are disproportionately young, low income, and are more likely to not own or lease a car. Fig. 3 below shows the 
percent of respondents in different age groups that use TNCs one to three days a week, four to six days a week, and once a day or more 
in each metropolitan region. The heavy TNC user segment is particularly young in the San Francisco Bay Area, where roughly one in 
four respondents under the age of 30 use TNCs more than three days a week, while about one in six use TNCs on a daily basis. Re-
spondents under the age of 30 are about twice as likely as those aged 30 to 49 years old to use TNCs more than three days a week in the 
San Francisco Bay Area, and they are about 1.7 times as likely in the Los Angeles and San Diego metropolitan regions. 

Respondents in the lowest income group—those earning less than $35,000 a year – are the most likely to use TNCs on a weekly and 

Fig. 3. Distribution of TNC Trip Frequency by Age and Metropolitan Region. 
*Heavy TNC Users. 

Fig. 2. Distribution of TNC Trip Frequency by Metropolitan Region. 
*Heavy TNC Users. 
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daily basis, across all metropolitan regions. Although respondents with $35,000 or less of annual income comprise about one third of 
TNC users in the Los Angeles and Sacramento samples and about one quarter of TNC users in the San Diego and San Francisco samples, 
about 70% of daily TNC users in San Diego and Sacramento and about 55% and 40% of daily TNC users in San Francisco and Los 
Angeles, respectively, have an annual income of less than $35,000. Across the Los Angeles, Sacramento, and San Francisco Bay Area 
metropolitan regions, respondents that do not own or lease a vehicle are more likely to use TNCs on a weekly basis than are vehicle 
owners. One in four non-vehicle owners from these three metropolitan regions uses TNCs once a week or more (see Fig. A1). Inter-
estingly, cross-tabulations of income and the frequency of TNC use suggest that frequent TNC use among the lowest income group in 
the Los Angeles and Sacramento regions may be similarly linked to a lack of vehicle ownership. In contrast, in the San Diego and San 
Francisco regions, low-income vehicle owners are more likely to use TNCs on a daily basis than low-income earners that do not own a 
vehicle. 

Heavy TNC use also varies notably across race and ethnicity, reflecting the differences in socio-economic disparities across racial 
and ethnic groups in each metropolitan region studied (see Fig. A2). In aggregate, Caucasians/Non Hispanics are significantly less 
likely to be heavy TNC users than all other racial/ethnic groups in both the San Diego and Sacramento regions, while Asians are the 
least likely to be heavy TNC users in the Los Angeles region. In the San Francisco Bay Area, African Americans are significantly more 
likely to be heavy TNC users compared to Asians and Caucasians/Non Hispanics. This is due to a particularly high rate of heavy TNC 
use (44%) among African Americans earning less than $35,000 a year in the San Francisco Bay Area. Among this income group, African 
Americans are about twice as likely as Caucasians and Hispanics and four times as likely as Asians to be heavy TNC users. African 
Americans are also the most likely to be heavy TNC users among those earning less than $35,000 in the Los Angeles and Sacramento 
metropolitan regions, followed by Hispanics in Los Angeles and both Hispanics and Asians in Sacramento. In San Diego, Asians in this 
lowest income group are the most likely to be heavy TNC users with a rate of 20% followed by Hispanics with a rate of 10%, while no 
Caucasian/Non Hispanics nor African Americans in this region were heavy TNC users. In the middle income group (earning $35,000 to 
$50,000 annually), Hispanics were the most likely to be heavy TNC users in both the Sacramento and San Diego regions, while few to 
no individuals in the other racial/ethnic groups earning the same amount in those two regions were heavy TNC users. In Los Angeles, 
Caucasians/Non Hispanics followed closely by African Americans are the most likely to be heavy TNC users among the middle income 
group. 

The general TNC use trends with respect to age hold across each racial/ethnic group, although the confluence of age, income, and 
race/ethnicity become apparent when focusing on the distribution of heavy TNC users across race ethnicity in each age group. In 
particular, heavy TNC use among young people reflects higher usage among: (1) higher income young Caucasian/Non Hispanics and 
(2) lower income African Americans. About 30% of African Americans and 25% of Caucasian/Non Hispanics aged 18 to 29 years old 
use TNCs more than three days a week, compared to about 15% of Hispanics and about 10% of Asians in this same age group. 

5.3. TNC user travel profiles 

The travel profiles of respondents vary significantly across the regions surveyed, reflecting regional differences in the availability of 
public transit and shared mobility services. Public transit use is highest in the San Francisco Bay Area and Los Angeles metropolitan 
regions, where about one third and one quarter of all respondents use some form of public transit once a week or more, respectively. In 
contrast, only about 15% of respondents in the Sacramento and San Diego regions use public transit on a weekly basis. Both the San 
Francisco Bay Area and the Los Angeles metropolitan regions have rapid transit systems (e.g., Bay Area Rapid Transit (BART) District, 
Los Angeles Metro Rail Purple and Red lines) in addition to light rail systems, which are available in all four of the regions studied. 
While about 5% of respondents use their local light rail system on a weekly basis across all regions, about 15% and 20% of respondents 
in the Los Angeles region and the San Francisco Bay Area use the Metro Rail and BART systems, respectively. Only about one percent of 
respondents in the Los Angeles, San Diego, and San Francisco Bay Area regions use their local commuter rail systems on a weekly basis, 
while there were no weekly commuter rail users among the respondents from the Sacramento region. The rate of public bus use follows 
a similar trend to that of rail, with weekly bus users making up about 27%, 20%, 16%, and 11% of respondents in the San Francisco Bay 
Area, Los Angeles, San Diego, and Sacramento metropolitan regions, respectively. 

Across all metropolitan regions surveyed, frequent TNC users reflect more multimodal travel behavior than other respondents. 
Table 3below presents the distribution of transportation modes used at least once a week by respondents that use TNCs once a month to 
once every other week (monthly TNC users) and those that use TNCs at least once a week (weekly TNC users) in each of the four 
metropolitan regions. It is important to note that these results do not imply causality between increased TNC use and the use of other 
modes or vice versa. 

While there is little to no significant difference in the weekly drive alone rate across respondents with varying TNC use frequencies, 
weekly TNC users are significantly more likely than monthly TNC users to use the public bus and shared micromobility (i.e., shared 
docked and dockless bikes and scooters) on a weekly basis across all four of the metropolitan regions except Sacramento, where there 
were no weekly shared micromobility users among monthly and weekly TNC users. Only about 1% to 3% of all respondents in each 
metropolitan region used shared micromobility services on a weekly basis, and in the Sacramento region, all weekly shared micro-
mobility users were using the JUMP dockless electric bikesharing system. Please note that Uber invested $170 million in Lime and 
transfered the JUMP division to Lime in May 2020. Shared dockless electric scooters, which were not available in the Sacramento 
region at the time of the survey, accounted for about 40% of weekly shared micromobility use in the San Francisco Bay Area and about 
50% and 75% in the Los Angeles and San Diego metropolitan regions, respectively. Again, it is important to note that weekly shared 
micromobility use is quite low among total respondents, at just 1% to 3% in each of the four metropolitan areas surveyed. Taxi use was 
similarly low across all metropolitan regions, with weekly taxi users making up less than 2% of all respondents and about 6% to 10% of 
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weekly TNC users. 
Across all metropolitan regions, weekly public transit users are significantly more likely to use TNCs on a weekly basis than are less 

frequent public transit users. About 40% of weekly public transit riders in the San Francisco Bay Area and Los Angeles regions use TNCs 
on a weekly basis, while only about 25% of those in the Sacramento and San Diego regions do so. Interestingly, the rate of weekly TNC 
use is about the same across weekly riders of bus and rail systems, with the exception of weekly light rail riders in the San Francisco Bay 
Area, who are significantly less likely than weekly bus and rapid transit riders to use TNCs on a weekly basis. These results are 
consistent with the findings from previous research using a convenience sample of public transit riders of four agencies, including 
BART, which found that about half of weekly TNC users also rode public transit on a weekly basis (Feigon and Murphy, 2018). 

Finally, we observe that in the Los Angeles and San Diego regions, weekly TNC users were significantly more likely than monthly 
TNC users to carpool/vanpool on a weekly basis. With the exception of the Los Angeles region, the weekly carpool/vanpool rates in the 
respondent samples were about 50% lower than the corresponding ACS 2017 estimated ridesharing commute mode shares for the 
study regions (U.S. Census Bureau, 2018a). Interestingly, we observe significantly higher rates of weekly carpool/vanpool use among 
weekly TNC users across all regions, with about half of weekly TNC users in the Los Angeles and San Francisco Bay Area metropolitan 
regions and about 30% and 25% of weekly TNC users in the Sacramento and San Diego metropolitan regions, respectively, carpooling/ 
vanpooling on a weekly basis. 

5.4. TNC trip purpose 

To further the understanding of TNC utility to different population segments, TNC trip purpose is examined. TNC users were asked 
to identify what trip purposes they use TNCs for in their metropolitan region. Consistent with previous TNC studies of user behavior, 
the most popular trip purposes among active TNC users across all metropolitan regions include: 1) traveling to or from restaurants or 
bars, 2) other social or recreational activities, and 3) airport travel. Weekly TNC users are significantly more likely to use TNCs to: 1) 
commute to or from work or school, 2) attend work-related meetings, 3) go grocery shopping, and 4) visit friends or relatives than are 
less frequent users. In addition, weekly TNC users in the Los Angeles and San Francisco Bay Area regions are significantly more likely 
to: 1) pickup or dropoff children and 2) go to or from healthcare services. About 40% of weekly TNC users in the San Diego metro-
politan region, about 30% in the Los Angeles and San Francisco Bay Area regions, and about 20% in the Sacramento region use TNCs to 
commute to or from work or school, and about 15% to 20% of weekly users use TNCs for work-related travel during the day, across all 
metropolitan regions. 

The portion of monthly and weekly TNC users that use TNCs to connect to/from public transit stations is notably lower than the 
portion of those that use public transit on a weekly basis, across the four metropolitan regions studied. Only about one quarter of all 
weekly public transit users report using TNCs to go to/from public transit stations, with little variation across weekly users of public 
bus and rail services. One exception is commuter rail riders in the Los Angeles metropolitan region, who are more likely to report using 
TNCs to connect to public transit than other public transit users in their region. In the Sacramento and San Francisco Bay Area, there is 
no significant difference between the portion of monthly and weekly TNC users that use TNCs to go to/from public transit stations, 
with only about 10% and 20% of these users doing so in each region, respectively. In contrast, about 10% of monthly TNC users in the 
Los Angeles and San Diego regions use TNCs to connect to public transit stations, while about 20% and 30% of weekly TNC users do so 
in each region, respectively. In future research, the authors plan to investigate the contextual and operational factors in traveler choice 
between TNCs and public transit. 

Table 3 
Distribution of Modes Used at Least Once a Week by TNC Trip Frequency and Metropolitan Region.   

LOS ANGELES SACRAMENTO SAN DIEGO SAN FRANCISCO BAY AREA  

Monthly TNC 
Users n = 258 

Weekly TNC 
Users n =
252 

Monthly TNC 
Users n = 45 

Weekly TNC 
Users n = 19 

Monthly TNC 
Users n = 60 

Weekly TNC 
Users n = 30 

Monthly TNC 
Users n = 41 

Weekly TNC 
Users n = 48 

Drive alone 83% 84% 82% 74% 92%* 87% 78% 69% 
Carpool/ Vanpool 9% 25%*** 9% 21% 3% 17%** 10% 17% 
Public bus 16%** 55%*** 16% 42%** 10% 40%*** 29% 69%*** 
Rail 14%* 49%*** 9%** 16% 10%* 7% 32% 52%* 
Walk (to a destination) 50% 73%*** 62%*** 74% 60%** 77% 63%* 71% 
Personal bicycle 5% 6% 11% 5% 5% 3% 2% 4% 
Shared micromobility (i. 

e., shared bikes and 
scooters) 

2% 5%** 0% 0% 0% 10%** 0% 17%*** 

Asterisks in the 1) Monthly TNC Users and 2) Weekly TNC Users columns denote a significant difference in the proportions of weekly mode use 
between: 1) monthly TNC users and respondents that use TNC less than once a month and 2) monthly and weekly TNC users, respectively. 
* : p-value < 0.1; ** : p-value < 0.05; *** : p-value < 0.01 
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5.5. Propensity to consider pooling 

Next, TNC pooling is examined. TNC users were asked how often they consider using the shared ride options (e.g., UberPool, Uber 
Express POOL, or Lyft Shared rides (formerly Lyft Line)) when using TNCs. Across all metropolitan regions in which shared ride options 
were available at the time of the survey, about 30% of TNC users consider using shared-ride options more than half of the time that they 
use TNCs, while about 60% say they consider sharing less than half of the time. Across all metropolitan regions with shared TNC ride 
services,5 infrequent TNC users are the least likely to consider shared-ride options when using TNCs. The majority of respondents that 
use TNCs less than once a month consider sharing their rides less than half the time. As displayed in Fig. 4 above, heavy TNC users are 
significantly more likely to consider sharing TNC rides than less frequent users. Across all metropolitan regions, the portion of users 
that never consider pooling when using TNCs decreases with trip frequency. 

5.6. Discrete choice analysis 

This section explores the mode choice model estimation. The model has a null log likelihood value of − 10,897.14. The log like-
lihood of the final model is – 9,237.41, with pseudo r-squared and r-bar-squared values of 0.152 and 0.145, respectively. 

The final model specification is presented in Table 4 below. The estimated time and cost parameters are all generic across alter-
natives, thus the coefficient estimates of those variables are the same across all three TNC alternatives (i.e., ride-alone, door-to-door 
shared ride, and indirect shared ride). The remaining parameters are specified with the ride-alone TNC alternative as the base (the ride- 
alone coefficients for these parameters are set equal to zero), and they are either generic across the shared ride options (e.g., the 
promotional offer parameters) or alternative-specific, with a separate coefficient estimated for door-to-door and indirect shared rides. 
Where applicable, region-specific parameter coefficients are shown side-by-side in the table, spanning the columns that correspond to 
the metropolitan region for which the parameter is specified. For example, the trip destination parameter for public transit station- 
bound trips is specified for each metropolitan region separately, while the 30 to 50 years of age group parameter is specified using 
three coefficients for each shared-ride alternative according to three regional groupings: 1) Los Angeles metropolitan region, 2) 
Sacramento and San Diego regions, and 3) San Francisco metropolitan region. The latter parameter specification indicates that there is 
a significant difference in the demand sensitivity for shared TNC rides across the three metropolitan region groupings, but no sig-
nificant difference across the Sacramento and San Diego metropolitan regions. 

The coefficient estimates for the alternative specific constant (ASC) parameters indicate that, all else equal, individuals have a 
large, highly significant preference for the ride-alone TNC option over either shared ride option. There is also a slight preference for the 
door-to-door over the indirect shared ride option. 

5.7. The sensitivity of pooling demand to travel time, cost, and promotional offers 

The TNC demand sensitivities with respect to travel time and cost provide invaluable insight into the tradeoffs of travelers when 

Fig. 4. Distribution of How Often TNC Users Consider Using Shared TNC Options by Frequency of TNC Use. 
*Heavy TNC Users. 

5 Note: pooled TNC services were not available in the Sacramento metropolitan region at the time of the survey. 
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Table 4 
TNC Mode Choice Model Results.  
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choosing between TNC ride options for a particular ride. In the Los Angeles metropolitan region, TNC mode choices are most 
sensitive to estimated wait time, whereas travelers in the Sacramento and San Diego metropolitan regions are most sensitive to 
walking time. In contrast, those in the San Francisco Bay Area are almost indifferent between walking and wait time. The model 
reflects a significant difference in the sensitivity of demand to in-vehicle time across income groups in all metropolitan regions 
surveyed, except for San Diego. In the other three regions, travelers earning $100,000 or more annually were about twice as sen-
sitive to in-vehicle time as those earning less than $100,000. The alternative-specific specifications for the in-vehicle time pa-
rameters were also tested to investigate the potential that individuals value their time in a shared vehicle differently than when 
riding alone. These tests failed, indicating that other explanatory variables in the model capture the sensitivity of preferences across 
ride options (i.e., trip origin and destination, time sensitivity, socio-demographic and mobility profiles, and attitudes toward sharing 
and chatting with other passengers). 

Fig. 5 below displays the estimated values of different components of TNC travel time. Estimating the same model specification 
presented in Table 4 without the interaction terms for income and in-vehicle time produced the following estimates of the average 
values of in-vehicle time for each metropolitan region: $29.18, $27.27, $25.98, and $34.50 for the Los Angeles, Sacramento, San 
Diego, and San Francisco Bay Area metropolitan regions, respectively. These values are fairly close to the 2018 mean hourly wages in 
the Los Angeles, Sacramento, San Diego, and San Francisco Bay Area metropolitan regions of $27.83, $27.13, $27.93, and $34.81, 
respectively (U.S. Bureau of Labor Statistics, 2019). When the in-vehicle time parameter is interacted with income, we observe 
significantly different values of in-vehicle time for travelers earning above $100,000 per year compared to those earning less, across 
the Los Angeles, Sacramento, and San Francisco Bay Area metropolitan regions. 

In the Los Angeles metropolitan region, the estimated value of walking time is about half the value of wait time. This means that, 
when choosing between TNC ride options, a traveler in Los Angeles would be indifferent between three additional minutes of walking 
time and two extra minutes of estimated wait time. In other words, if everything else about two ride options is equal, a traveler in Los 
Angeles would rather spend their time walking to a pickup or dropoff location than waiting to be picked up. This suggests that the 
efficient operation of indirect on-demand pooled ride services could play a role in increasing average TNC vehicle occupancy and 
decreasing total VMT from TNC use, while fostering greater pooling demand. However, this strategy alone may not be successful 
across all markets, as demonstrated by the very high estimated value of walking time for the Sacramento metropolitan region. 

Promotions that offer travelers discounts for future TNC or public transit trips can significantly increase the likelihood that an 
individual chooses to use a pooled on-demand ride service. Among the three promotional types tested, the offer of a percent discount 
on a future ride in return for choosing a shared ride resulted in the most significant impact on TNC mode choices. The second pro-
motion type was specified as 1/ # of rides that had to be taken to get one free ride, so the estimated coefficient represents the added 
utility from an offer of ‘take one shared ride get one free.’ As one might expect, the positive influence of the promotion on the choice to 
pool diminishes as more rides are needed to get one free. The third promotion type, which offered a discount off of a public transit fare 
for choosing to pool to a public transit station, represents an attractive TDM strategy for promoting public transit ridership through 
improved first mile/last mile connectivity using pooled on-demand rides. Moreover, offering a dollar off of a public transit fare is about 
twice as effective at increasing the likelihood to pool as taking a dollar off of the estimated cost of a trip. 

Fig. 5. TNC Mode Choice Model Value of Time Estimates.  
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5.8. Sensitivity of pooling demand to trip context 

The origin and destination of a trip can influence a traveler’s preference when choosing between TNC ride options. Travelers are the 
least likely to choose to pool when starting or ending a trip from their home. When considering TNC options for a trip that starts 
somewhere other than home, travelers are significantly more likely to choose indirect shared rides, indicating that people may be more 
willing to walk to a pickup location when they are already away from home. When requesting a ride from home, TNC users are more 
likely to be better able to use their wait time in a productive manner and thus may be less willing to choose a ride option that requires 
them to leave their home earlier to walk to a pooled ride. 

Compared to all other trip destinations, travelers are generally most likely to prefer to ride alone when making a trip destined for 
home, and they are most likely to pool when considering TNC options for a commute trip. Travelers in the San Francisco Bay Area are the 
most likely to choose shared-ride options when linking to a public transit station, whereas linking to transit has no significant influence 
on preferences for shared rides for those in the San Diego region. While travelers in the Los Angeles and Sacramento metropolitan regions 
are about as likely to choose a door-to-door shared ride to get to a public transit station as they are for an airport trip, travelers in the 
Sacramento region have a significant aversion to the indirect shared TNC ride option for transit-linking trips. This result may be dually 
affected by the lack of exposure to indirect shared rides in the Sacramento region at the time of the survey, as well as important 
exogenous factors related to the distribution of public transit stations and the surrounding land use in the Sacramento region. 

In comparison to home-bound trips, travelers are significantly more likely to share their rides when traveling to a restaurant or bar, 
although they prefer to use the door-to-door over the indirect shared ride option for such trips. Similarly, there is a significant pref-
erence for door-to-door over indirect shared rides for airport trips in which the prospect of carrying luggage while walking to or from a 
pickup or dropoff location is predictably less attractive than a door-to-door service. Although the coefficient for indirect shared rides to 
the airport is not significant at a 90% confidence level, the coefficient estimate is relatively large and positive. This might reflect that 
airport-bound trips tend to be longer in distance than trips to other destinations, which was accounted for in the SP experiment design. 
Thus, estimated airport trip times and travel costs were greater, on average, than those of other trip purposes, resulting in a greater 
absolute cost difference between the three TNC ride options. When considering an airport trip, travelers may be particularly sensitive 
to travel costs as an added expense to airfare and thus be attracted to the large cost savings provided by shared TNC ride options in 
comparison to the ride-alone TNC option. 

The inclusion of the time sensitivity variable in the trip context for each choice experiment allows for the interpretation of the trip 
purpose coefficient estimates in the model to be independent from assumptions regarding a traveler’s relative time sensitivity across 
trip destinations. The corresponding coefficient estimates reflect the significance of time sensitivity in TNC mode choices by exhibiting 
a strong preference to ride alone for trips in which there is no time to spare in contrast to those in which there is some or plenty of time 
to spare. Not surprisingly, travelers are significantly less likely to choose an indirect shared ride over a door-to-door shared ride when 
they have no time to spare. These results likely reflect exogenous factors corresponding to a traveler’s beliefs about the reliability of 
estimated travel times across shared-ride services. 

5.9. Socio-demographic factors in pooling demand sensitivity 

The TNC mode choice model enables examination of the differences between individuals presented with identical TNC options 
under the same trip context. Across all metropolitan regions, females, unemployed or retired individuals, and people with an annual 
income of less than $35,000 are the most likely to choose a shared ride. In addition, female and low-income travelers are more likely to 
choose an indirect shared ride, while individuals with an annual income of $100,000 or more are even less likely to choose an indirect 
shared ride than they are to choose a door-to-door shared ride. In the San Francisco Bay Area, the youngest age group (18 to 29 years 
old) is the most likely to share an on-demand ride, while the oldest age group (70 years or older) is the most likely to do so in the San 
Diego metropolitan region. In all metropolitan regions surveyed, except for San Diego, travelers 70 years or older are significantly less 
likely to choose an indirect shared ride. In San Diego, however, travelers in the oldest age group are even more likely to choose an 
indirect shared ride than they are to choose a door-to-door shared ride or to ride alone. Investigation of the interaction of income with 
the age group parameters revealed that the affinity for shared rides among the eldest age group in San Diego is primarily driven by 
respondents earning less than $35,000 in this age category. 

People with a medical condition or handicap are significantly more likely than others to choose a door-to-door shared ride over 
riding alone. However, they would rather ride alone than take an indirect shared ride, as the need to walk to or from a pickup or dropoff 
location is particularly burdensome for this population segment. In all metropolitan regions surveyed, except for Sacramento, vehicle 
owners have a greater preference for pooling than non-vehicle owners, although vehicle owners prefer door-to-door shared rides over 
indirect shared rides across all metropolitan regions. 

The majority of parameters representing race/ethnicity in the mode choice model were found to be insignificant as measured by the 
asymptomatic t-test. Only the variable for Asians was significant for the Los Angeles and Sacramento regions. These variables indicated 
that Asians in these regions prefer ride alone over shared TNC services. However, when jointly testing the significance of race/ethnicity 
variables, the likelihood ratio test is rejected in favor of an unrestricted model without these variables. Thus, the parameters were 
removed from the model for simplicity and ease of interpretation of the final results. 

It is important to note that the discrete choice model represents a linear utility function of the corresponding coefficients for a 
particular individual in a particular trip context with certain ride options. Thus, an employed 30 to 50 year old who owns one or more 
cars and has an annual income of $100,000 or more in Los Angeles or San Diego is still more likely to prefer a ride-alone option than 
would their counterpart (e.g., unemployed 30 to 50 year old vehicle owner earning less than $100,000/year). 
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5.10. Pooling demand sensitivity across mobility profiles and TNC use 

While vehicle owners are generally more likely to choose a shared ride over riding alone in a TNC, those that drive alone in their 
vehicle on a weekly basis are significantly less likely to share compared to other people, across all metropolitan regions except for 
Sacramento. When considering the coefficient estimates for vehicle ownership and weekly drive alone behavior together, it appears 
across all metropolitan regions that weekly auto drivers have a significant preference for door-to-door shared rides over riding alone in 
a TNC. 

Weekly users of other shared modes are generally more likely to share a ride in a TNC than other travelers. Across all of the 
metropolitan regions, weekly public bus users are slightly more likely to choose shared rides over riding alone. Weekly rail users, on 
the other hand, have a significantly large preference for indirect shared rides over either riding alone or using a door-to-door shared 
ride, across all of the metropolitan regions except for Los Angeles, where weekly rail users have a significant and comparatively large 
aversion to indirect shared rides. Weekly carpool and/or vanpool use, as well as the use of shared micromobility services on a weekly 
basis are both strong positive factors in an individual’s likelihood to pool. Weekly taxi use did not result in a significant difference in 
preferences for pooling in TNCs, though we note that the coefficient was slightly negative, as expected. 

Likelihood to choose shared rides increases with a traveler’s tenure as a TNC user, although it varies with respect to TNC trip 
frequency. The trend in pooling demand sensitivity with respect to TNC trip frequency suggests that, while TNC weekly users are the 
most likely to choose a door-to-door shared ride over riding alone, travelers that use TNCs more than three times per week are less 
likely to do so and actually prefer to ride alone over using indirect shared rides, across all of the metropolitan regions. In the San 
Francisco Bay Area, where TNC users are likely to have had the most experience with indirect shared rides, weekly TNC users are 
significantly less likely to choose indirect shared rides compared to riding alone or choosing a door-to-door shared ride. Finally, 
monthly TNC users do not exhibit a large preference across TNC ride options, although less frequent TNC users have a significant 
preference for shared rides compared to inactive TNC users and nonusers. 

5.11. Pooling demand sensitivity and traveler attitudes and perceptions 

The underlying attitudes and perceptions that both TNC users and nonusers have about interactions with drivers and other pas-
sengers and the environmental impact of shared-ride TNC services are a significant factor in the sensitivity of demand for pooling. The 
attitude and perception variables were included in the mode choice model using a Likert scale from zero to four corresponding to 
responses ranging from ‘never’ to ‘almost always.’ There were no significant differences in demand sensitivities to attitudes and 
perceptions regarding TNC driver and passenger interaction across the door-to-door and indirect shared ride options. Although TNC 
users are significantly more likely than nonusers to have positive attitudes about chatting with TNC drivers, driver interaction is not a 
significant factor in their TNC mode choices. On the other hand, nonusers, 40% of whom say they would never or rarely enjoy chatting 
with TNC drivers, are significantly less likely to pool the more they expect to enjoy chatting with drivers. When it comes to interacting 
with other passengers, a positive attitude toward sharing a ride and chatting with other passengers has a significant positive effect on 
pooling preference across TNC users and nonusers. Although there was not a significant difference in pooling demand sensitivity with 
respect to how comfortable users and nonusers feel about sharing rides with strangers, experience with on-demand rides dampens the 
increased likelihood for sharing with respect to how much someone enjoys chatting. 

TNC user perceptions of the positive environmental impact of shared-ride options significantly increases their likelihood to pool. 
The impact of these perceptions is stronger for indirect shared rides across all of the metropolitan regions. In the San Francisco Bay 
Area, the demand sensitivity for pooling is significantly more sensitive to perceptions about the environmental impact of shared rides 
than in any of the other regions. 

6. Policy recommendations and conclusions 

Opportunities to expand pooling are diverse and vary across the four metropolitan regions explored in this article. TDM strategies 
that leverage an understanding of the time and price tradeoffs of travelers under various trip contexts have the potential to increase 
systemwide vehicle occupancy by incentivizing multiple forms of pooling including: on-demand pooling, app-based ridesharing, 
microtransit, and traditional public transit. However, careful consideration must be made of regional variations in demand sensitivity 
to on-demand rides as well as the disparate impacts that such policies may have on marginalized population groups, who are among 
the most heavy TNC users. 

Heavy TNC users (those that use TNCs more than three times per week) are disproportionately young, low-income, and non-vehicle 
owners compared to less frequent TNC users and nonusers. Across all metropolitan regions, the majority of daily TNC users are making 
multiple TNC trips per day. While heavy TNC users are the most likely to consider a shared ride option when using TNC services, they 
are less likely than weekly users to choose a shared ride when trading off comparable ride-alone, door-to-door shared ride, and indirect 
shared ride options. Based on their greater propensity to use TNCs for essential trip purposes, there is a sizable opportunity to increase 
pooling rates among heavy TNC users through promotional offers for pooling to public transit stations, employment centers, and 
healthcare services. In particular, subsidized pooled rides for travelers that are low-income, unemployed, or have a medical condition/ 
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handicap could greatly increase mobility and accessibility for these groups. 
However, it is vital to consider the travel time reliability of shared-ride services when targeting pooling incentives at margin-

alized population groups and highly time sensitive trip purposes. As demonstrated by the history of ridesharing, a critical mass of 
riders willing to pool is needed to foster convenience and reliability to retain ridership. While the necessary density of pooling 
ridership may be achieved over time with increased adoption of on-demand mobility and successful TDM strategies, special 
consideration is necessary for supporting the earliest group of targeted adopters, particularly those who rely the most on shared 
services and cannot afford the consequences of an unreliable service. Several shared micromobility permit programs have 
demonstrated a framework for regulating the level of service provided on a geographic basis, typically with the aim of ensuring 
spatial equity by mandating minimum vehicle availability standards in historically underserved or public transit-poor neighbor-
hoods. Analogous strategies may be developed for on-demand ride services by regulating wait times for particular geographic re-
gions or user groups. The California Public Utilities Commission recently implemented such a regulation for the level of service 
provided by TNC wheelchair accessible vehicles by establishing response time standards specific to each geographic area of the state 
(California Public Utilities Code § 5440.5, 2018.). 

Indirect shared rides offered by TNCs and microtransit providers pose a substantial opportunity to reduce congestion from single- 
occupant vehicle use and deadheading. Since indirect pooled rides are designed to minimize deviations from the common path be-
tween multiple passengers by requiring that riders walk to and/or from a pickup and/or dropoff location, they can decrease the total 
travel time of on-demand trips. Moreover, able travelers in some metropolitan regions would rather walk a minute than wait a minute. 
Thus, by converting waiting time to walking time and reducing in-vehicle time, indirect pooled rides can be a significantly more 
attractive shared-ride option with co-benefits for society and the environment. 

Both curb access management and mileage-based road pricing could serve as effective TDM strategies to increase indirect 
pooling. In residential and commercial zones, dedicated pickup and dropoff locations for on-demand rides can aid in aggregating 
demand for indirect ride services, while providing a mechanism for pricing and/or enforcement of desirable curb access re-
strictions. While mileage-based road pricing can incentivize pooling in general, it can create a particularly large incentive for 
indirect shared rides, which not only distribute the cost per mile across a larger number of riders but also reduce VMT for any 
particular trip. In particularly congested conditions that arise frequently in central business districts during peak commute hours, 
the combination of mileage-based congestion charging with time-dynamical curb access restrictions offers a promising strategy to 
manage congestion from on-demand rides while incentivizing pooling. Travelers departing from a congested area may be able to 
save considerable amounts of in-vehicle and wait times by walking to/from a strategically placed pickup/dropoff location that 
minimizes VMT through congested streets as well as the resulting congestion charges accrued from such a trip. Moreover, on- 
demand service providers may achieve higher pooling rates by allowing riders to request a hybrid indirect and door-to-door ride. 
Travelers are more willing to choose an indirect ride when starting a trip from outside their home, but they are least willing to share 
when taking a trip destined to home. Thus, offering the option to request an indirect ride with a direct dropoff can attract additional 
pooling demand. 

Simple promotions can also provide effective pooling incentives. Offering a discount off of a future ride in return for choosing a 
pooled ride can be an impactful strategy for reducing VMT during periods of peak or abnormal congestion, such as during rush hour or 
during a major event. Travelers can also be incentivized to pool across multiple trips by offering a free ride in return for a number of 
shared rides. This strategy could be particularly effective for incentivizing heavy TNC users to try pooling, as there is less risk of 
inducing additional on-demand rides, while ample opportunities exist for these already captive users to make a shift in their on- 
demand ride choices. Finally, offering a discount on a public transit fare in return for pooling to a public transit station poses an 
attractive strategy for increasing public transit ridership through pooled first/last mile connections. Similar incentive policies may be 
effective for other forms of on-demand shared mobility, such as bikesharing and scootersharing. 

However, we observed that the majority of weekly TNC users are not using TNCs in conjunction with public transit. Although public 
transit use is greatest among high frequency TNC users, the share that access public transit using TNCs is comparatively small. In the 
Los Angeles and San Francisco Bay Area regions, where about half of weekly TNC users are also weekly rail riders (mostly rapid transit 
riders) and about 55% and 70% are bus riders, respectively, only about 20% of weekly TNC users in these regions use TNCs to get to/ 
from public transit stations. Previous research has found that faster travel times and reduced wait times are among the top reasons that 
travelers choose TNCs over public transit (Feigon and Murphy, 2018). More research is needed to discern the trip purposes and 
contexts in which travelers choose to use a TNC in contrast to a public transit service. Nevertheless, it is clear that there are travelers 
who regularly access public transit for certain trips and choose to use TNCs for others. Thus, strategies targeted at incentivizing pooled 
on-demand rides must strike a delicate balance that effectively shifts demand from ride alone to pooled on-demand options, while 
minimizing further substitution of on-demand rides for public transit. This will be particularly important following the 2020 COVID-19 
pandemic in which travelers likely have heightened hygiene and physical distancing concerns associated with shared mobility ve-
hicles, pooling, and public transit use. 

Finally, there is tremendous untapped potential to increase the market share of pooling among commuters. We found that the 
likelihood to pool is greatest for work trips in all metropolitan regions studied except for the San Francisco Bay Area, where trips to 
public transit have a slightly higher likelihood for pooling. The commuting choice experiments were posed as plan ahead scenarios in 
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which respondents were asked to consider they were planning a trip to work for the following morning. Thus, the increased likelihood 
to pool for commute trips may also reflect the increased willingness of travelers to pool for trips in which they can reserve a reliable 
shared ride in advance. This option is currently provided by app-based carpooling services, microtransit services, and TNCs in some 
pilot areas. 

This research suggests that there are key differences in the demand for pooling reflected by the four geographic regions examined in 
this article, the range of socio-demographic factors, and TNC-service options. Policies should be crafted to reflect the geospatial and 
socio-demographic differences across regions to encourage pooling and more efficient TNC routing to reduce deadheading and excess 
VMT. Careful experimentation with pricing strategies and incentives would provide key insights in how to best maximize the societal 
and environmental benefits of these services and to better prepare for SAV services in the future. 
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Appendix 

(See Figs. A1 and A2. And Tables A1-A3) 

Fig. A1. Distribution of TNC Trip Frequency by Vehicle Ownership and Metropolitan Region. 
*Heavy TNC Users. 
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Table A1 
Distribution of Alternative-Specific Attribute Levels in the SP Choice Experiments.   

Minimum Maximum Mean Standard Deviation 

Estimated wait time (min)  
Ride Alone 2 9 5.7 2.8 
Door-to-Door Shared Ride 2 9 5.7 2.9 
Indirect Shared Ride 2 9 5.7 2.9 
Estimated in-vehicle time (min)  
Ride Alone 7 74 34 22.1 
Door-to-Door Shared Ride 7 126 47 32.2 
Indirect Shared Ride 7 126 47 32.2 
Estimated walking time (min)  
Indirect Shared Ride 2 10 6 2.9 
Estimated Cost ($)  
Ride Alone 2.0 173.0 43.5 39.8 
Door-to-Door Shared Ride 1.5 157.4 34.1 31.4 
Indirect Shared Ride 1.1 143.2 26.7 24.7  

Fig. A2. Distribution of TNC Trip Frequency by Racial/Ethnic Group and Metropolitan Region. 
*Heavy TNC Users. 
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Table A2 
Distribution of Educational Attainment and Race/Ethnicity of the Population and the Survey Sample by Metropolitan Region.   

LOS ANGELES SACRAMENTO SAN DIEGO SAN FRANCISCO BAY AREA 

EDUCATIONAL 
ATTAINMENT 

N =
10,271,191 

N =
1,536 

n =
804 

N =
1,300,405 

N =
291 

n =
129 

N =
2,555,203 

N =
296 

n =
155 

N =
6,026,055 

N =
287 

N =
159 

High School 
Diploma or less 

40% 33%* 32% 36% 32% 30% 33% 32% 32% 29% 26% 29% 

Some College/ 
Associate’s 
Degree 

30% 36%* 36% 36% 41% 40% 33% 35% 37% 28% 32% 31% 

Bachelor’s Degree 20% 15%* 15% 18% 17% 15% 21% 21% 19% 26% 24% 19% 
Graduate/ 

Professional 
Degree 

10% 16%* 17% 10% 11% 15% 12% 11% 12% 17% 17% 20% 

RACE/ETHNICITY N =
13,261,538 

N =
1,532 

n =
800 

N =
1,708,005 

N =
296 

n =
128 

N =
3,283,665 

N =
295 

n =
155 

N =
4,641,820 

N =
292 

n =
162 

Caucasian/Non 
Hispanic 

30% 29% 25%* 46% 54%* 54% 46% 53% 48% 40% 45% 38%* 

African American 6% 7% 7% 9% 5% 7% 5% 5% 4% 6% 9% 10% 
Asian 16% 16% 16% 15% 11% 12% 11% 8% 8% 25% 21% 24% 
Hispanic 45% 45% 50%* 24% 24% 23% 33% 32% 36% 24% 20% 23% 
Two or more 1% 2%* 1% 5% 2% 2% 0% 3%* 0% 4% 0%* 0% 
Other 2% 1%* 2% 2% 5%* 2% 2% 1% 4% 1% 4%* 4% 

Asterisks in the: 1) survey and 2) TNC users columns denote a 99% confidence level in the difference in proportions of each socio-demographic 
variable between the: 1) population and survey sample and 2) survey sample and TNC users, respectively. 
a. Los Angeles-Long Beach-Anaheim, CA Metro Area 
b. Sacramento and Yolo Counties, CA 
c. San Diego-Carlsbad, CA Metro Area 
d. Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma Counties, CA 

Table A3 
Correlations Between Respondents’ Socio-Demographic Characteristics.    

Female Age Income Education African 
American 

Asian Cauc- 
asian 

Hisp- 
anic 

Employed Student Retired Vehicles 

Los Angeles Age − 0.12             
Income − 0.21 0.29            
Education − 0.20 0.25 0.48           
African American 0.08 0.09 − 0.09 − 0.09          
Asian − 0.05 0.11 0.17 0.27 n/a         
Caucasian − 0.24 0.29 0.29 0.32 n/a n/a        
Hispanic 0.21 − 0.39 − 0.35 − 0.47 n/a n/a n/a       
Employed − 0.03 − 0.40 0.02 − 0.02 − 0.06 0.01 − 0.10 0.12      
Student 0.13 − 0.31 − 0.19 − 0.13 − 0.01 − 0.07 − 0.11 0.15 − 0.41     
Retired − 0.03 0.63 0.09 0.10 0.08 0.03 0.18 − 0.23 − 0.82 − 0.12    
Vehicles − 0.10 0.16 0.40 0.17 − 0.06 0.04 0.07 − 0.08 0.03 − 0.12 0.05   
Handicap/Medical 
Condition 

− 0.05 − 0.03 − 0.02 0.04 − 0.01 − 0.05 0.16 − 0.10 − 0.03 − 0.03 0.04 0.04 

San Deigo Age 0.19             
Income 0.06 0.27            
Education 0.21 0.42 0.50           
African American − 0.05 − 0.06 − 0.06 − 0.09          
Asian 0.01 − 0.08 0.04 0.09 n/a         
Caucasian 0.30 0.46 0.21 0.34 n/a n/a        
Hispanic − 0.33 − 0.42 − 0.29 − 0.44 n/a n/a n/a       
Employed − 0.03 − 0.51 − 0.07 − 0.22 0.02 0.08 − 0.25 0.25      
Student − 0.05 − 0.31 − 0.11 − 0.10 − 0.06 0.04 − 0.16 0.12 − 0.22     
Retired 0.06 0.65 0.10 0.26 0.00 − 0.10 0.32 − 0.29 − 0.90 − 0.16    
Vehicles 0.01 0.14 0.40 0.21 − 0.08 − 0.08 0.19 − 0.14 − 0.05 − 0.03 0.07   
Handicap/Medical 
Condition 

− 0.02 0.02 − 0.07 − 0.13 0.13 − 0.02 − 0.16 0.08 − 0.09 0.05 0.08 − 0.19  

(continued on next page) 
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