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Abstract—Traffic monitoring using probe vehicles with GPS receivers promises significant improvements in cost, coverage, and

accuracy over dedicated infrastructure systems. Current approaches, however, raise privacy concerns because they require

participants to reveal their positions to an external traffic monitoring server. To address this challenge, we describe a system based on

virtual trip lines and an associated cloaking technique, followed by another system design in which we relax the privacy requirements to

maximize the accuracy of real-time traffic estimation. We introduce virtual trip lines which are geographic markers that indicate where

vehicles should provide speed updates. These markers are placed to avoid specific privacy sensitive locations. They also allow

aggregating and cloaking several location updates based on trip line identifiers, without knowing the actual geographic locations of

these trip lines. Thus, they facilitate the design of a distributed architecture, in which no single entity has a complete knowledge of

probe identities and fine-grained location information. We have implemented the system with GPS smartphone clients and conducted a

controlled experiment with 100 phone-equipped drivers circling a highway segment, which was later extended into a year-long public

deployment.

Index Terms—Algorithms, design, experimentation, security, privacy, GPS, traffic, data integrity.
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1 INTRODUCTION

PERSONAL navigation services in vehicles enable the
effective delivery and presentation of high-resolution

traffic information to drivers. At the same time, there is an
increased need for data collection on currently unmonitored
roadways, and traffic estimation algorithms to process this
data. Traditionally, traffic data collection mechanisms have
relied on fixed sensor networks, including inductive loop
detectors, wireless magnetometer sensors, and microwave
radar sensors. Because these dedicated sensing systems are
expensive to install and maintain, their deployment has been
limited largely to highways. As a result, traffic information
on many of the major arterial roads is sorely lacking.

GPS probe vehicle-based systems promise to significantly
improve coverage and timeliness of traffic information [6],
[7], [8]. Systems relying on probe data estimate traffic
conditions with GPS measurements fused with traditional
sources of traffic information such as loop detectors, camera,
and human reports. With sufficient penetration (fraction of
total traffic), this approach could potentially enable the
collection of real-time traffic information over the complete
road network at minimal cost for transportation agencies.

Several studies have demonstrated the feasibility of
probe-based traffic estimation through analysis, simula-
tions, and experiments [12], [14], [28]. Yet several challenges
must be addressed for successful deployments. First, a
probe-based system requires that cars reveal their positions
to a traffic monitoring organization, raising privacy con-
cerns. Hoh et al. [27] have proposed privacy enhancing
technologies that can alleviate concerns. These solutions,
however, still require users to trust centralized privacy
servers. In addition, the system must be bootstrapped with
other sources of information, since accurate estimates can
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only be achieved when sufficient users participate. While it
remains possible to leverage existing telematics platforms
or navigation systems, these platforms are not openly
programmable and thus hard to retrofit for this purpose.
Third, the collected data for the system should be as
accurate as possible. The accuracy of data could be
degraded by GPS positioning inaccuracy and bogus data
injected by malicious users.

To address these challenges, we propose a novel traffic
monitoring system design based on the concept of virtual
trip lines (VTLs) and experimentally evaluate its feasibility.
Virtual trip lines are geographic markers stored in the
mobile phone client, which trigger a position and speed
update when a probe vehicle trajectory intersects a trip line.
Through privacy-aware placement of these trip lines, clients
need not rely on a trustworthy server. The system is
designed for GPS-enabled cell phones to enable rapid
software deployment to a large and increasing number of
programmable smart phones. As an extended version of our
earlier paper [25], key contributions of this work include:

. Arguing that spatial sampling (through virtual trip
lines) rather than temporal sampling leads to
increased privacy because it allows omitting location
samples from more sensitive areas.

. Describing a privacy-aware placement approach that
creates the virtual trip line database.

. Demonstrating that the virtual trip line concept can
be implemented on a GPS-enabled cellular phone
platform.

. Evaluating accuracy and privacy through more
extensive data sets from a large-scale field experiment
(Mobile Century [22]) in the San Francisco Bay Area.

. Developing a light-weight trip line crossing detec-
tion algorithm against inaccurate GPS readings and
intermittent wireless connectivity.

The remainder of this paper is organized as follows:
Section 2 describes the challenges in probe vehicle-based
traffic monitoring. Section 3 introduces the virtual trip line
concept and discusses its potential uses in the domain of
traffic monitoring. Section 4 describes the use of VTLs in
two different traffic monitoring architectures and discusses
the privacy features of each system. We implement and
evaluate proposed architectures in Sections 5 and 6. Then,
we discuss limitations and outlooks in Section 7, and
propose some conclusions.

2 TRAFFIC MONITORING CHALLENGES IN PROBE

VEHICLE SYSTEMS

In this section, we describe two challenges faced by probe
monitoring systems, and our design goals to overcome
these challenges through the implementation of traffic
monitoring with virtual trip lines.

2.1 Privacy Risks

Traffic monitoring using GPS-equipped vehicles raises
significant privacy concerns, because the external traffic
monitoring entity acquires fine-grained movement traces of
the probe vehicle drivers. These location traces might reveal
sensitive places that drivers have visited, from which, for
example, medical conditions, political affiliations, traffic

violations, or potential involvement in traffic accidents
could be inferred.

Threat model and assumptions. This work assumes that
adversaries can compromise any single infrastructure
component to extract information and can eavesdrop on
network communications. We assume that different infra-
structure parties do not collude. We believe that this model
is useful in light of the many data breaches that occur due to
dishonest insiders, hacked servers, stolen computers, or lost
storage media (see [4] for an extensive list, including a
dishonest insider case that released 4,500 records from
California’s FasTrak automated road toll collection system).
These cases usually involve compromised log files or
databases in a single system component and motivate our
approach of ensuring that no single infrastructure compo-
nent can accumulate sensitive information.

We assume that a handset (i.e., a client application) itself
is trustworthy but its owner can be malicious. Thus, an
owner cannot reverse engineer the client code, so that he or
she cannot intentionally manipulate a GPS reading, speed,
time stamp of measurements, or cryptographic keys.
However, as we will consider in Section 7.1, an owner can
use the client application for malicious purposes within the
legitimate use of a handset. We call this situation
compromised phones. For example, a company competing
for the same service (e.g., traffic monitoring services) can
hire multiple users and ask them to intentionally drive slow
in noncongested roads.

We label sensitive information any information from
which the precise location of an individual at a given time
can be inferred. Traffic monitoring does not need to rely on
individuals or personal information, only on the aggregated
statistics from a large number of probe vehicles. Thus, an
obvious privacy measure is to anonymize the location data
by removing identifiers such as network addresses. This
approach is insufficient, however, because drivers can often
be reidentified by correlating anonymous location traces
with identified data from other sources. For example, home
locations can be identified from anonymous GPS traces [26],
[31] which may be correlated with address databases to infer
the likely driver. Similarly, records on work locations or
automatic toll booth records could help identify drivers.
Even if anonymous point location samples from several
drivers are mixed, it is possible to reconstruct individual
traces because successive location updates from the same
vehicle inherently share a high spatiotemporal correlation. If
overall probe vehicle density is low, location updates close
in time and space likely originate from the same vehicle.
This approach is formalized in target tracking models [36].

As an example of tracking anonymous updates, consider
the following problem: given a time series of anonymous
location and speed samples mixed from multiple users,
extract a subset of samples generated by the same vehicle.
To this end, an adversary can predict the next location
update (x̂tþ�t) based on the prior reported speed x̂tþ�t ¼
vt ��tþ xt of the actual reported updates, where xt and
xtþ�t are locations at time t and tþ�t, respectively, and vt
is the reported speed at t. The adversary then associates
the prior location update with the next update closest to the
prediction, or more formally with the most likely update,
where likelihood can be described through a conditional
probability P ðxtþ1jxtÞ that primarily depends on spatial and
temporal proximity to the prediction. The probability can be
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modeled through a probability density function of distance
(or time) differences between the predicted update and an
actual update (under the assumption that the distance
difference is independent of the given location sample).

Privacy metrics. As observed in [27], the degree of
privacy risk depends on how long an adversary successfully
tracks a vehicle. Longer tracking increases the likelihood
that an adversary can identify a vehicle and observe it
visiting sensitive places. We, thus, adopt the time-to-
confusion [27] metric and its variant distance-to-confusion,
which measures the time or distance over which tracking
may be possible. Distance-to-confusion is defined as the
travel distance until tracking uncertainty rises above a
defined threshold. Tracking uncertainty is calculated sepa-
rately for each location update in a trace as the entropy
H ¼ �

P
pi log pi, where the pi are the normalized prob-

abilities derived from the likelihood values described in [21].
These likelihood values are calculated for every location
update generated within a temporal and spatial window
after the location update under consideration.

These tracking risks and the observations regarding
increased risks at certain locations further motivate the
virtual trip line solution described next. Compared to a
periodic update approach, in which clients provide location
and speed updates at regular time intervals, virtual trip lines
can be placed in a way to avoid updates from sensitive areas.

Goal. We aim to achieve privacy protection by design so
that the compromise of a single entity, even by an insider at
the service provider, does not allow individual users to be
tracked or reidentified.

2.2 Lack of Guaranteed Accuracy of Sensor Data

The quality of traffic monitoring is contingent on the
accuracy of the sensor data. In turn, the accuracy of this data
is affected by technical limitations of sensor and the potential
for maliciously injected bogus data. Thus, a key strategy to
provide high-quality traffic monitoring is to ensure accurate
speed and location measurements in the presence of GPS
error and to prevent malicious injection attacks.

To address the issue of GPS position errors, some level of
client-side or server-side data filtering is required. If a light-
weight algorithm running on the client can manage this job
efficiently, it not only reduces user privacy concerns by
avoiding data transmission, but also reduces the server-side
computational burden, thereby achieving better scalability.
To prevent bogus measurements from entering the data
stream, some security countermeasures can be introduced
to validate data authenticity. However, device authentica-
tion conflicts with user anonymity desired for privacy, and
authentication alone cannot prevent fraudulent updates.
Recent studies have presented a trusted platform module
(TPM) [18], [38] for preventing fraudulent updates.

Goal. The client software must cope with the resource
constraints of current cell phone platforms where the use of
computationally expensive algorithms such as map match-
ing and Kalman filtering is limited. We mainly focus on
designing a light-weight component that detects trip line
crossings accurately while suppressing false positives in the
presence of noisy GPS readings and intermittent wireless
connectivity (which affects A-GPS performance). Addition-
ally, the system should not allow adversaries to insert
spoofed data, which would compromise the data quality

and thus traffic information. This is especially challenging
because it conflicts with the desire for anonymity.

3 VIRTUAL TRIP LINES

To address these challenges, our proposed traffic monitor-
ing system builds on the novel concept of virtual trip lines
and the notion of separating the communication and traffic
monitoring responsibilities (as introduced in [26]). A virtual
trip line is a line segment in geographic space that, when
crossed, triggers a client’s location update to the traffic
monitoring server. More specifically, it is defined by

½vtlid; x1; y1; x2; y2; d�;

where vtlid is the virtual trip line ID, x1, y1, x2, and y2 are

the ðx; yÞ coordinates of two line endpoints, and d is a

default direction vector (e.g., N-S or E-W). The default
direction vector encodes the valid direction in which the

virtual trip line can be crossed. This directionally specific

attribute can be used to reject location updates from

vehicles crossing VTLs in the opposite direction, which
can occur due to GPS errors and dense road networks. Also,

in case that a single VTL covers both directions on

highways if it is long enough (to cover both northbound

and southbound, or westbound and eastbound), the clients
detect the direction from two successive coordinates and

simply code the direction into 0 or 1 based on default

direction vector.
When a vehicle traverses the trip line, its measurement

update includes the time, trip line ID, speed, and the
direction of crossing. The trip lines are pregenerated,
downloaded, and stored in clients. To check any crossings,
we set the sampling period of a single-chip GPS/A-GPS
module in each smartphone and retrieve the position
readings. Since our setup did not provide speed informa-
tion, we calculate the mean speed using two successive
location readings (in our implementation, every 3 seconds).
The client software registers the task for checking the
traversal of trip lines as an event handler for GPS module
location updates, which is automatically invoked whenever
a new position reading becomes available. As an example of
required storage and bandwidth consumption, consider the
San Francisco Bay Area, the total road network of which
contains about 20,000 road segments, according to the
Digital Line Graph 1:24K scale maps of the San Francisco
Bay Area Regional Database managed by USGS. Assuming
that the system on average places one trip line per segment,
this results in 166 KB of storage.

Virtual trip lines control disclosure of location updates

by sampling in space rather than sampling in time, since
clients generate updates at predefined geographic locations

(compared to sending updates at periodic time intervals).

The rationale for this approach is that at specific locations,
traffic information is more valuable and certain locations

are more privacy sensitive than others. Through careful

placement of trip lines, the system can thus better manage

data quality and privacy than through a uniform sampling
interval. In addition, the ability to store trip lines on the

clients can reduce the dependency on trustworthy infra-

structure for coordination.
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3.1 Strengths

The VTL concept can be extended to provide several
additional benefits. First, as will be discussed throughout
the paper, it allows system designers to choose several
different options for privacy protection. The levels of
privacy protection range from forcing the location sam-
pling in sensitive areas to achieving guaranteed privacy via
k-anonymous cloaking. Second, for a given number of
location updates from drivers, the VTL paradigm allows
system designers to predefine measurement locations for
high-value updates. For example, location updates from
low-priority residential streets can be avoided. Third, the
use of VTLs removes the need for map matching the
measurement update to road segments, since each VTL is
already associated with a road segment. Fourth, system
designers can embed traffic alerts or warnings on VTLs by
piggybacking on the system’s acknowledgment packet
which responds to a user’s location update. For example,
VTLs may be defined with location descriptors associated
with school zones, construction zones, or icy roads. Fifth,
we can define a timer attribute for each VTL which
specifies the allowable latency for each measurement.
Thus, increasing the timer on a VTL allows users to delay
the measurement report time, which aids in the prevention
of adversarial tracking. Sixth, we can dynamically turn on/
off VTLs depending on the time of day and congestion
levels. Also around construction sites or detours, one can
dynamically place more VTLs.

3.2 Virtual Trip Line Measurements

Noisy GPS readings can be filtered either on the client side
or the server side. Server side processing can allow for a
computationally expensive algorithm to filter out noisy GPS
readings, for example, using map-matching algorithms.
However, it requires clients to send detailed traces to a
server, which incurs increased network bandwidth con-
sumption and privacy concerns. Instead, we address
filtering on the client, with the specific goals of subsampling
GPS readings to reduce the frequency of trip line measure-
ment computations (i.e., checking whether the line between
two GPS readings intersects with any trip lines), and
removing the need of any client side or server side map-
matching algorithm, which is a computationally expensive
algorithm for resource constrained devices.

We have observed that GPS position error can create
false VTL crossings and inaccurate VTL velocity measure-
ments in the following cases:

. GPS position error. When a vehicle stops near a trip
line, error in the GPS position can create successive
position measurements with a zigzag pattern over
the VTL, which can lead to multiple false trip line
crossings. These crossings can be eliminated by
requiring a minimum distance between successive
GPS readings.

. Intermittent GPS. When the time interval between
two GPS positions becomes large (e.g., due to lost
GPS signal), the inferred trajectory connecting these
two location measurements no longer describes the
actual movement of a vehicle. To eliminate false trip
line crossings by this type of unrealistic trajectory, an
upper bound of time gap between successive GPS
samples is required.

. Infeasible speed. In areas prone to high GPS position
error (e.g., urban areas with high-rise buildings), the
speed computed from a finite difference approxima-
tion of the successive positions (required by the GPS
receiver in our implementation) becomes infeasible.
We refer to these errors as speed glitches in the
remainder of the paper.

Algorithm 1 below describes in detail our implementa-
tion of a light-weight client filtering algorithm to treat the
common situations above. The algorithm proceeds as
follows: First, if the GPS sample l is the first update, it is
simply saved to CurrLocationFiltered (lines 4-7). Without a
previous update, we cannot compute the speed or heading
of the current update or confirm it as valid. Assuming a
previous update exists, the validity of the next update can
be determined based on the computed speed and the
temporal/spatial gap from previously filtered GPS reading
called PrevLocationFiltered. We consider the current location
invalid if it is updated long after the previous update
(lines 10-14), if it has not traveled a minimum distance
(lines 16-18, e.g., stopped at the traffic signal), or if has a
speed glitch (lines 19-30).

Algorithm 1. Tripline Crossing Detection Algorithm

1: � ¼ thresholdToSwitchBadToGood

2: T ¼ subsampling interval

3: for all GPS sample l do

4: if PrevLocationFiltered is null then

5: CurrLocationFiltered ¼ LastGoodRefPoint ¼ l;
6: LastLocationUpdateTimestamp ¼ l:t; goto

TripLineChecking;
7: end if

8: TimeGap = l:t - LastLocationUpdateTimestamp;

9: LastLocationUpdateTimestamp ¼ l:t;
10: if TimeGap is too large then

11: LastGoodRefPoint = l; LastBadRefPoint ¼ null;

n ¼ 0;

12: CurrLocationFiltered ¼ l; PrevLocationFiltered ¼
null;

13: goto TripLineChecking;

14: end if

15: Calculate speed against LastGoodRefPoint;

16: if a vehicle has not moved far enough then

17: LastBadRefPoint ¼ null; n ¼ 0;

CurrLocationFiltered ¼ null;

18: goto TripLineChecking;

19: else if speed glitch is true then

20: Re-calculate speed against LastBadRefPoint;

21: if speed glitch is false then

22: if þþn is greater than � then

23: n ¼ 0; LastBadRefPoint ¼ null;

LastGoodRefPoint = l;

24: filteredLoc ¼
SmoothingFilter(LastBadRefPoint, l);

25: CurrLocationFiltered ¼
checkReportingInterval(filteredLoc, T );

26: end if

27: goto TripLineChecking;

28: end if

29: LastBadRefPoint = l; goto TripLineChecking;
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30: end if

31: n ¼ 0; filteredLoc ¼
SmoothingFilter(LastGoodRefPoint, l);

32: LastBadRefPoint ¼ null; LastGoodRefPoint ¼ l;
33: CurrLocationFiltered ¼

checkReportingInterval(filteredLoc, T );

34: // TripLineChecking

35: if both CurrLocationFiltered and

PrevLocationFiltered not null then

36: traj ¼ SetTrajectory(PrevLocationFiltered,

CurrLocationFiltered);

37: for all tripline j in each tile(i) do

38: if tile(i).status is valid then

39: triplineCrossed ¼ CheckCrossing(tripline j,

traj);

40: if triplineCrossed is true then

41: Compute speed and heading with traj for
triplineMeasurement;

42: end if

43: end if

44: end for

45: end if

46: if CurrLocationFiltered is not null then

47: PrevLocationFiltered = CurrLocationFiltered;

48: end if

49: end for

Additionally, we maintain two reference points, Last-

GoodRefPoint and LastBadRefPoint. If a series of locations
have speed glitches against LastGoodRefPoint, but do not
have speed glitches against LastBadRefPoint, we consider
LastBadRefPoint and the most recent location in the series as
valid (lines 22-26). Next, the location update after the
validity check is injected to a smoothing filter (called
SmoothingFilter in algorithm 1), which is implemented by
an exponentially weighted moving average low-pass filter
(lines 24, 31). The smoothing filter produces a smoothed
version of speed profile by cutting off abrupt speed
changes. The final step is used to reduce the computational
overhead created by the frequent checking of virtual trip
line crossings on the output of Algorithm 1. Instead of
returning a location update at the maximal rate allowed by
the GPS receiver, we return a location update only after
every T seconds, which is encoded by the function
checkReportingInterval (lines 25, 33). A larger T makes
computation of trip line crossings more efficient, but if it
becomes too large, valid trip line crossings can be missed
and false trip line crossings can be computed.

The output returned from the Algorithm 1 is then used
by the software routine that computes virtual trip line
crossings from consecutive filtered GPS positions (lines
34-48). We check if any line defined by two end positions
of each trip line intersects with a trajectory (built by two
consecutive filtered GPS positions) in a two dimensional
space. If crossed, the algorithm returns a trip line
measurement including trip line ID, speed, heading, and
time stamp information. All trip lines in downloaded tiles
are tested, but limited to valid trip lines. Validity of trip
lines can be subject to a combination of trip line’s
expiration time and user’s privacy guidelines.

Discussion. The most challenging situation potentially
experienced by the above algorithm occurs when the
sampling frequency is too slow given the road geometry,
and the route driven. The following example of a missed
virtual trip line at an intersection illustrates this challenge.
During a right turn maneuver at an intersection, if the
position is sampled infrequently, then the two consecutive
location updates may occur on two different roads, with
one update occurring in the middle of the road before the
right turn, and one update occurring in the middle of the
road after the right turn. Then, the straight line segment
connecting these two points does not follow the road
geometry, and any virtual trip lines placed near the
intersection on either road segment will be missed. More-
over, if the sampling interval becomes large enough, the
line segment between two consecutive location updates
may intersect with virtual trip lines on the road segments
not driven by the reporting vehicle, generating false
measurements. This problem arises because of our removal
of the computationally intensive map-matching algorithm.

4 ARCHITECTURE DESIGNS

We present two different architectures, one focused more
on traffic estimation accuracy with probabilistic privacy
preservation and an improved version that achieves
guaranteed privacy using a k-anonymous temporal cloak-
ing. The main purpose of temporal cloaking is to prevent an
adversary from compromising anonymity, even in a very
low user participation scenario. First, Section 4.1 describes
the common parts for both architectures, then particular
changes for each architecture follow in Sections 4.2 and 4.3.

4.1 Achieving Authenticated but Anonymous Data
Collection

In order to achieve the anonymization of measurement
uploads from clients while authenticating the sender of the
measurements, we split the actions of authentication and
data processing into two different entities, which we call the
ID proxy server and the traffic monitoring server. By
separately encrypting the identification information and the
sensing measurements (i.e., trip line ID, speed, and direction)
with different keys, we prevent each entity from observing
both the identification and the sensing measurements.

Fig. 1 shows the resulting system architecture. It includes
four key entities: probe vehicles with the cell phone
handsets, an ID proxy server, a traffic monitoring service
provider, and a VTL generator. Each probe vehicle carries a
GPS-enabled mobile handset that executes the client
application. This application is responsible for the following
functions: downloading and caching trip lines from the VTL
server, detecting trip line traversal, and sending measure-
ments to the service provider. To determine trip line
traversals, probe vehicles check if the line between the
current GPS position and the previous GPS position
intersects with any of the trip lines in its cache. Upon
traversal, handsets create a VTL measurement including
trip line ID, speed readings, time stamps, and the direction
of traversal, and encrypt it with the VTL server’s public key.
Handsets then transmit this measurement to the ID proxy
server over an encrypted and authenticated communication
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link setup for each handset separately. The handset and the
ID proxy server share an authentication key in advance.

The ID proxy server’s responsibility is to first authenti-
cate each client to prevent unauthorized measurements and
then forward anonymized measurements to the VTL server.
Since the VTL measurement is encrypted with the VTL
server’s key, the ID proxy server cannot access the VTL
measurement content. It has knowledge of which phone
transmitted a VTL measurement, but no knowledge of the
phone’s position. The ID proxy server strips off the
identifying information and forwards the anonymous VTL
measurement to the VTL server over another secure
communication link.

The VTL server aggregates measurements from a large
number of probe vehicles and uses them for estimating
traffic conditions. The VTL generator determines the
position of trip lines, stores them in a database, and
distributes trip lines to probe vehicles when any download
request from probe vehicles is received. Similar to the ID
proxy server, each handset and the VTL generator share an
authentication key in advance. The VTL generator first
authenticates each download requester to prevent unauthor-
ized requests and can encrypt trip lines with a key agreed
upon between the requester and the VTL generator.1 Both
the download request message and the response message
are integrity protected by a message authentication code.

Discussion. The above architecture improves location
privacy of probe vehicle drivers through several mechan-
isms. First, the VTL server must follow specific restrictions
on trip line placements that we will describe in Section 5.2.
This means that a handset will only generate measurements
in areas that are deemed less sensitive and not send any
information in other areas. By splitting identity-related and
location-related processing, a breach at any single entity
would not reveal the precise position of an identified
individual. A breach at the ID proxy would only reveal
which phones are generating measurements (or are mov-
ing) but not their precise positions. Similarly, a breach at the
VTL server would provide precise position samples but not
the individual’s identities. Separating the VTL server from
the VTL generator prevents active attacks that modify trip

line placement to obtain more sensitive data. This is,
however, only a probabilistic guarantee because tracking
and eventual identification of outlier trips may still be
possible. For example, tracking would be straightforward
for a single probe vehicle driving along on empty roadway
at night. The outlier problem in sparse traffic situations can
be alleviated by changing trip lines based on traffic density
heuristics. Trip lines could be locally deactivated by the
client based on time of day or the clients speed. They could
also be deactivated by the VTL generator based on traffic
observations from other sources such as loop detectors. At
the cost of increased complexity, the system can also offer k-
anonymity guarantees regardless of traffic density. We will
describe this approach next.

4.2 Guaranteeing K-Anonymity at Low Density
Using Temporal Cloaking

We now demonstrate how virtual trip lines can help
computing k-anonymous VTL measurements via temporal
cloaking without using a single trusted server. Motivated
by a well-known concept called a secret splitting scheme,
we distribute secret information through multiple parties so
that no central entity has complete knowledge of all three
types of information: location, time stamp, and identity
information. In doing so, we focus on minimizing any
possible degradation of traffic information quality intro-
duced by the information splitting scheme.

We propose a distributed VTL-based temporal cloaking
scheme that reduces time stamp accuracy to guarantee a
degree of k-anonymity in the data set accumulated at the
VTL server. This provides a stronger privacy guarantee than
probabilistic privacy, since it prevents the tracking or
reidentification of an individual phone even when user
participation is very low. The key challenge in applying
temporal cloaking is to conceal the locations of the probe
vehicles from the cloaking entity. To calculate the time
interval for probe vehicles at the same location, the cloaking
entity typically needs access to the detailed records of each
data subject [20], [40], which itself can raise privacy concerns.

Using virtual trip lines, however, it is possible to
execute the cloaking function without access to precise
location information. The cloaking entity can aggregate
measurements by trip line ID, without knowing the
mapping of trip line IDs to locations. It renders each
measurement k-anonymous by replacing the measurement
time stamp with a time window during which at least
k measurements were generated from the same VTL (i.e.,
k� 1 other phones passed the VTL). In effect, k VTL
measurements are aggregated into a new measurement
ðvtlid; s1...sk

k ;maxðt1 . . . tkÞÞ, where si denotes the speed
reading of each VTL measurement i. Since now k-phones
generate the same measurement, it becomes harder to track
one individual phone. The cloaking function can be
executed at the ID proxy server, if handsets add a VTL
ID to the measurement that can be accessed by the ID
proxy server.

Beyond the cloaking function at the ID proxy server, two
further changes are needed in the architecture to prevent an
adversary from obtaining the mapping of VTL IDs to actual
VTL locations. The system uses two techniques to reduce
privacy leakage in the event of phone database compro-
mises. First, the road network is divided into tiles, and
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1. While VTL positions are not highly sensitive, encryption reduces the
possibility of timing analysis (see Section 7.1).

Fig. 1. Virtual trip line: Privacy-preserving traffic monitoring system
architecture.



phones can only obtain the trip line ID to location mapping
for the area in which the phone is located. This assumes that
the approximate position of a phone can be verified (for
example, through the cellular network). Second, the VTL
server periodically randomizes the VTL ID for each trip line
and updates phone databases with the new VTL IDs for
their respective location.

This leads to the extended distributed architecture
depicted in Fig. 2, in which again no central entity has
knowledge of all three types of information: location, time
stamp, and identity information. As before, VTL measure-
ments from phones to the ID proxy server are encrypted, so
that network eavesdroppers do not learn position informa-
tion. It first checks the authenticity of the message and limits
the upload rate per phone to prevent spoofing of measure-
ments. It then strips off the identification information and
forwards the anonymous measurement to the traffic server.
With knowledge of the mapping of VTL IDs to locations, the
traffic server can calculate road segment travel times. In this
architecture, the ID proxy server cloaks anonymous mea-
surements with the same VTL ID before forwarding to the
traffic server. It also requires a location verification entity,
which can coarsely verify phone location claims (e.g., in
range of a cellular base station) and distribute the VTL ID
updates to only the phones that are actually present within a
specified tile. Table 1 summarizes the roles of each entity
and how information is split across them.

The temporal cloaking approach can be vulnerable to
spoofing attacks unless it is equipped with proper protec-
tion mechanisms. For instance, malicious clients can send a
large number of measurements to shorten the cloaking time
window. To prevent this denial of service attack, the ID
proxy server limits the upload rate per phone.

To reduce network bandwidth consumption of the
periodic VTL updates, clients can independently update
the VTL IDs based on a single nonce per geographic area
(tile). The VTL generator generates the nonces using a
cryptographically secure pseudorandom number generator
and distributes each nonce and its expiration time to the
clients currently in the tile area. Both clients and server can
then compute V TLIDnew ¼ hðnonce; V TLIDoldÞ, where h is
a secure hash function such as SHA. Then, clients update
the ID and the expiration time of each VTL in the current
tile. In case that clients do not know the old ID (for example,
as they have missed some updates or are new to a tile), the

VTL generator still allows clients to download the set of
whole VTLs with their new IDs in the tile. Each VTL has an
expiration time beyond which its ID becomes invalid. If the
connection is accidentally lost during downloading VTLs or
the nonce, clients retry n times more until a successful
downloading. The incomplete downloading can be easily
checked by the header that includes the total number of
VTLs in the corresponding tile (in our implementation). The
expiration time of each VTL is used to synchronize the
traffic server and clients. Clients decide whether or not to
apply the ID update (using the nonce currently downloaded
from the VTL generator), depending on whether the current
ID of VTLs expires or not. Thus, the synchronization based
on the expiration time prevents clients from reapplying the
ID update to VTLs that are already updated, so that it helps
the procedure for calculating V TLIDnew idempotent.

Temporal cloaking fits well with the travel time estima-
tion method used in the VTL system because the mean
speed calculation does not depend on accurate time stamp
information. To estimate the travel time, the traffic server
calculates the mean speed for a trip line only based on the
speed information in the VTL measurements. Typically, the
travel time would be periodically recomputed. The use of
temporal cloaking adaptively changes this mean speed
calculation interval so that at least k phones have crossed
the trip line. If k is chosen large, it reduces the update
frequency. The rationale for temporal cloaking is that real-
time traffic incident information such as congestion, pot-
holes, and accidents requires more accurate location
accuracy than time stamp accuracy. Since temporal infor-
mation can be relaxed to provide enhanced user privacy as
long as the monitoring events change relatively slowly,
temporal cloaking can be generally applicable to other
kinds of incident reports.

4.3 Balancing Privacy and Accuracy Requirements

The temporal cloaking architecture has several drawbacks
in terms of real-time traffic estimation. First, since the ID
proxy server needs to wait until it receives k VTL
measurements, the system may fail to reflect brief events
and incur unavoidable delay. This impact increases when a
larger k is chosen. Second, in order to offer k-anonymity
guarantees regardless of user participation rates, the system
complexity is increased. Third, when the k measurements
are averaged over a large period of time, the resulting
measurement cannot be directly integrated into traffic
estimation algorithms relying on the dynamics of traffic
flow, which are commonly used in the transportation
engineering community. To overcome these limitations,
we propose an alternative architecture which focuses on
real-time traffic monitoring accuracy by relaxing the
privacy requirements down to probabilistic privacy guar-
antee. The main idea is to remove k-anonymous temporal
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Fig. 2. Distributed architecture for VTL-based temporal cloaking.

TABLE 1
Splitting of Roles and Sensitive Information across Entities



cloaking to allow the traffic server to receive k individual
anonymous VTL measurements. Thus, at the cost of
sacrificing a privacy guarantee, we alleviate system com-
plexity, and enable the use of flow-based traffic estimation
algorithms, described next.

Traffic estimation algorithm. We briefly outline the
velocity estimation algorithm developed in [42] and im-
plemented in our accuracy-centric architecture. The estima-
tion algorithm combines VTL measurements with a traffic
flow model to produce an estimate of the average velocity
field along the roadway. The flow model is based on the
seminal Lighthill-Whitham-Richards (LWR) [32], [37] partial
differential equation (PDE), which is given by

@�ðx; tÞ
@x

þ @Qð�ðx; tÞÞ
@x

¼ 0; ð1Þ

where �ðx; tÞ is the vehicle density (so that
R b
a �ðx; tÞdx

expresses the total number of vehicles on the roadway
between a and b), and Qð�Þ is the vehicle flux as a function of
the density. By exploiting a relationship between the
density of vehicles and their average velocity, this model
can be transformed into a discrete, nonlinear, nondifferenti-
able velocity evolution equation. In state space form, the
model becomes

vn ¼M vn�1; �n�1
� �

þ �n; ð2Þ

where vn 2 IRm is the vector of average velocity at time n
on each of the m discrete road segments in the transporta-
tion network, Mð�; �Þ is the discrete velocity evolution
equation with model parameters �n, and �n represents the
process noise.

The observation model is as follows:

yn ¼ Hnvn þ �n; ð3Þ

where yn is the vector of VTL measurements at time n, Hn is
a linear observation operator which maps the location of the
virtual trip line measurements to the corresponding
elements in the velocity vector vn, and �n is the error
introduced due to sampling errors and GPS errors.

The estimation problem is then solved using an exten-
sion of Kalman filtering known as ensemble Kalman filtering
[13], to overcome the nonlinearity and nondifferentiability
of Mð�; �Þ.

5 EXPERIMENTAL EVALUATION

We have fully implemented the probabilistic privacy archi-
tecture with ensemble Kalman filtering (in Sections 4.1 and 4.3)
and used this implementation for a one day field experiment
called Mobile Century. The data collected during the experi-
ment were used to reevaluate our k-anonymous temporal
cloaking and its privacy-relaxed version for accuracy
improvement. A detailed description regarding the system
implementation can be found in the earlier work [25].

5.1 The Mobile Century Experiment

A large-scale experiment was conducted to demonstrate the
feasibility of cell phone-based travel time estimation in
practice. The event, named Mobile Century was a one-day
field experiment which included 100 vehicles continuously

driving a stretch of freeway in northern California. A
complete description of the experiment and an analysis of
the data collected during the experiment is described in
[22]. We summarize the important features of the experi-
ment here, and the data are available for download at [1].

The vehicles were equipped with cell phones running a
mobile client which allowed virtual trip line measurements
to be collected from the devices. Additionally, log files
stored locally on the phones recorded the position and
speed of the vehicles for analysis after the experiment. The
100 vehicles were split into three groups; each group drove
overlapping segments of an 11 mile stretch of I880 near
Hayward, California as shown in Fig. 3, but each group
used separate entrance and exit ramps. The stretch of
roadway was selected because of a recurring bottleneck
which causes severe afternoon congestion in the north-
bound direction. In order to capture the travel times of
vehicles not participating in the experiment, high-definition
video cameras were setup on several overpasses to record
northbound traffic. From this video data, we used license
plate reidentification to measure the travel times across a
6.5 mile subsection of the experiment. The travel times
ranged between 7 and 20 minutes during the day.

After the experiment concluded, it was identified that 77
of the cell phones running the experimental software were
able to properly record the probe vehicles’ positions and
velocities, which generated 2,200 vehicle trajectories across
the experiment site during the eight hour experiment.
These trajectories make up between 0 and 5 percent of the
total traffic flow depending on the time of day [22]. Using
the data obtained from these vehicles, we were able to
assess the impact of virtual trip line spacing and the
number of participating vehicles on the accuracy of
computing travel times.

5.2 Trip Line Placement

We use the combination of the following techniques to
determine the positions of VTLs.

Exclusion area via road category. Privacy can be
significantly improved by restricting trip line placement to
high traffic roadways, such as highways and arterials,
which are also typically less sensitive areas. We extend the
concept of exclusion area in our earlier work by restricting
placement to these roadways. To determine our placement,
we use the road category information provided by the
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Fig. 3. Test road segment in mobile century.



Navteq street database, which classifies each road segment
from 1 (highest capacity roads) to 5 (the lowest capacity
roads). We only place VTLs on road categories 1 to 3, which
avoids trip line placement in residential areas. Figs. 4a and
4b show examples of virtual trip lines placements in Palo
Alto and San Francisco, respectively. This approach pre-
vents an adversary from identifying the precise origin and
destination of the tracked user in many situations, but it
cannot deliver guaranteed privacy protection when sensi-
tive locations are on high-capacity road segments.

Equidistant spacing with data obfuscation. This ap-
proach takes as input a network graph of road segments in
the category of our interest as explained above. For each
road segment, defined by stretches of roadway between
intersections or merges/diverges, the algorithm places
equidistant trip lines orthogonally to the road. A large
spacing makes it harder to track anonymous users as we
demonstrated in our earlier study [25]. In the study, we
focus the minimum spacing constraint on straight highway
scenarios, in which more regular traffic flows increase the
tracking risks. Minimum spacing for longer road segments
is determined based on a tracking uncertainty threshold.
Recall that to prevent linking compromises, an adversary
should not be able to determine with high confidence that
two anonymous VTL measurements were generated by the
same handset. Tracking uncertainty defines the level of
confusion that an adversary encounters when associating
two successive anonymous VTL measurements to each
other. We define tracking uncertainty as the entropy
H ¼ �

P
pi log pi, where pi denotes the probability (from

the adversary’s perspective) that anonymous VTL measure-
ment i at the next trip line was generated by the same phone
as a given anonymous VTL measurement at a previous trip
line. The probability pi is calculated based on an empirically
derived pdf model that takes into account the time
difference between the predicted arrival time at the next
trip line and the actual time stamp of VTL measurement i.
We fit an empirical pdf of time deviation with an
exponential function, p̂i ¼ 1

� e
�ti� , where we obtain the values

of � and � by using unconstrained nonlinear minimization.
Higher penetration rates lead to more VTL measurements
around the projected arrival time, which decreases cer-
tainty. As spacing increases, the likelihood that speeds and
the order of vehicles remain unchanged decreases, leading
to more uncertainty.

We empirically validate these observations through
simulations using the PARAMICS vehicle traffic simulator

[3]. Fig. 5 depicts the minimum spacing required to achieve
a minimum mean tracking uncertainty of 0.2 for different
penetration rates and different levels of congestion (or mean
speed of traffic). We choose a reasonably low uncertainty
threshold, which ensures to an adversary a longer tracking
that could have privacy events such as two different places
(e.g., origin and destination). Two recent studies [31], [26]
observe about 15 minutes as a median trip time. The
uncertainty value of 0.2 corresponds to an obvious tracking
case in which the most likely hypothesis has a likelihood of
0.97. The penetration rates used were 1, 3, 5, and 10 percent.
To evaluate different levels of congestion, we used traces
from seven 15 min time periods distributed over one day.
We also used three different highway sections (between the
junction of CA92 and the junction of Tennyson Rd., between
the junction of Tennyson Rd. and the junction of Industrial
Rd., and between the junction of Industrial Rd. and the
junction of Alvarado-Niles Rd.) to reduce location-depen-
dent effects. The simulations show that the needed
minimum spacing decreases with slower average speed
and higher penetration rate. The clear dependency of the
tracking uncertainty on the penetration rate and the average
speed allows creating a model that provides the required
minimum spacing for a given penetration rate and the
average speed of the target road segment.

6 RESULTS

This section first evaluates the performance of the trip line
crossing detection algorithm presented in Section 3. Then,
we analyze the travel time estimation accuracy and privacy
preservation of our spatial sampling approaches using
virtual trip lines. Spatial sampling approaches to be
evaluated here include k-anonymous temporal cloaking
and its privacy-relaxed version where we strip off the
requirement of guaranteed privacy via temporal cloaking.
The former is the proposed scheme but the latter is still
meaningful in that it is a baseline technique to be compared
with the proposed scheme and a less complex system with
an acceptable privacy protection in the real world.

6.1 VTL Measurement Accuracy

Trip line crossing detection. We observed that GPS position
error creates false VTL crossings and drops the detection
performance in experimental GPS traces collected in San
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Fig. 4. Example of virtual trip lines placements.

Fig. 5. Minimum spacing constraints for straight highway section.



Francisco downtown, as shown in Fig. 6a. Collected traces
cover Market st., Mission st., Pine st., Bush st., and
Washington st., where the worst GPS positioning accuracy
is expected, due to highrise buildings and cloudy weather.
Fig. 6b illustrates the filtered GPS trace, a smoothed version
of original GPS trace after intermittent GPS samples, zigzag
GPS samples, and speed glitches are removed by Algo-
rithm 1. Table 2 summarizes the number of removed
samples corresponding to each case. The number of “Good
GPS samples” are reported 894 samples in our algorithm,
but its definition is based on whether the speed of two
successive filtered locations lies within a valid range. Thus,
if a map-matching algorithm is additionally applied to the
collected trace, the number of “Good GPS samples” should
be larger. To observe the dependency of the presented
algorithm on GPS positioning accuracy and wireless
connectivity, we collected traces in San Jose downtown
and measured the detection probability and false alarm
probability of VTL crossings for both cities (Table 3). In San
Jose (where better GPS accuracy is expected than San
Francisco), the presented algorithm detects 98 percent of
VTLs placed on the route; only 3.6 percent of reported
crossings were false. However, the detection probability was
significantly degraded to 47 percent in San Francisco, and
the false alarm probability increased up to 11 percent. Dense
road network in San Francisco downtown makes the
situation worse even with a few meter GPS error. In this
experiment, there was a very slight change in the number of
false alarms and detections for the two different situations
(with the algorithm and without the algorithm) since
removals of GPS samples do not coincide with the VTL
locations in the collected traces. However, the benefit of
these removals should be observed if more traces are tested.
To see how many false crossings, these removals would
potentially save in unfiltered GPS traces, we count the
number of crossings that unfiltered and filtered GPS traces

create on wrong road segments and compare with the
counts. Unfiltered GPS traces create 17 crossings on wrong
road segments while filtered GPS traces have nine crossings.
If we consider these wrong road segment crossings into false
alarm probability assuming that VTLs are placed dense
enough to coincide with these wrong crossings, unfiltered
GPS traces have almost two times false alarm probability
compared to filtered GPS traces. We find that the presented
algorithm has two major benefits; it removes potential false
alarms by removing GPS position errors and removing
samples (almost 50 percent of GPS samples removed in this
experiment) helps reduce the frequency of trip line crossing
checking, thereby relieving the computation overhead.

GPS speed accuracy. Another field test was run to
estimate the speed accuracy of a single cell phone carried
onboard a vehicle. The experiment route consisted of a
single 7 mile loop on I-80 near Berkeley, CA, and VTLs were
placed evenly on the highway every 0.2 miles. Speed and
position measurements were stored locally on the phone
every 3 seconds, and speed measurements were sent over
the wireless access provider’s data network every time a
VTL was crossed. The speed measurements were computed
using two consecutive position measurements. In order to
validate this calculation, the vehicle speed was also
recorded directly from the speedometer on a laptop with
a clock synchronized with the N95. In Fig. 7, the speed
measured directly from the vehicle speedometer is com-
pared to the speeds measured by the VTLs and the speed
stored in the phone log. Time stamp of each record denotes
the elapsed time since midnight (of the experiment day). On
average, the vehicle odometer reported a speed 3 mph
slower than the GPS.

6.2 Guaranteed Privacy via VTL-Based Temporal
Cloaking

To evaluate the performance of VTL-based temporal
cloaking, we compute its travel time estimation accuracy
in offline mode with the collected traces from Mobile
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Fig. 6. In the right figure, red colored lines denote VTLs placed in
downtown while blue lines denote detected VTL crossings.

TABLE 2
Removals of GPS Sample Errors
Help Reduce the Frequency of

Trip Line Crossing Checks

TABLE 3
The Worst GPS Accuracy in SF

Approximately Degrades the
Performance of Trip line Crossing

Detection Algorithm by Half

Fig. 7. Comparison of the speed measurements recorded from the N95
(dots), the VTLs (boxes), and the vehicle speedometer (circles) as a
function of time.



Century. The procedure for computing travel time consists of
three steps. First, we divide the I-880 northbound highway
segment (used in the experiment) into multiple sections,
putting one VTL in the middle of each section. Second, we
compute the speed profile for each section, where the speed
profile denotes the change of mean speed over time. The
mean speed is updated when the VTL on the section receives
k-anonymous VTL measurements. Lastly, we compute the
time taken to traverse each section and compute the sum
from the first section to the last one. To compute the travel
time for each section, we read the initial speed of the vehicle
at the moment of entering the section from the speed profile
of the section and let the vehicle follow the speed profile of
the section until the vehicle exits the section.

To see the effect of k on travel time estimation accuracy,
we vary k up to 10. In order to see the sensitivity of travel
time estimation accuracy on penetration rates, we control the
penetration rate by, respectively, using the full set of probe
vehicles (about 137.5 veh/hr), half of them, and one fourth of
them. Fig. 8 shows that temporal cloaking achieves less than
18 percent travel time error using k ¼ 5 and a probe rate of
137.5 veh/hr, which corresponds to about 2 percent
penetration rate in the morning and about 1 percent in the
afternoon [22]. The cases for k ¼ 1 can be considered periodic
sampling techniques with the same number of VTL
measurements collected as temporal cloaking. Compared
to a periodic sampling, the proposed scheme sacrifices about
5 percent accuracy to achieve the guaranteed privacy (k ¼ 5).

6.3 Reconstructing VTLID-Location Mapping

Concealing the mapping between each VTL ID and its
location is a key enabler of temporal cloaking. However, the
mapping can be partially reconstructed by an active attack
at the level of the compromised ID proxy server. For
example, let us consider a scenario in which a malicious ID
proxy server performs an active attack with a small fraction
of handsets and the VTL generator refreshes each VTL ID
every 10 minutes. Each compromised handset sends VTL
measurements associated with random VTL identifiers and
time stamps to the ID proxy server. Later, all VTL
measurements can be cross checked against GPS logs
(containing GPS position with timestamp) collected sepa-
rately by a compromised vehicle.

To evaluate the difficulty of reconstructing the VTL ID and
location mapping that is randomly changed by a secure hash
function and a nonce, we use the VTL database that contains

all virtual trip lines placed over the US. To build the database,
we ran the automated algorithm explained in Section 5.2 with
an average spacing of 1,000 ft. The 90 percentile of tiles in SF
Bay area have about 500 VTLs as shown in Fig. 9, so that the
total length of roads covered by VTLs would be 500;000 ft ’
94 miles. Following the attack described above, an ID proxy
server would require about 14 vehicles (assumed to run
40 mph) per tile to reveal the mapping of all VTLs. As more
frequent VTL ID updates are used to randomize the
mapping, the number of compromised vehicles required
per tile should increase linearly for reconstruction. In Los
Angeles metro and New York, for example, more number of
compromised vehicles (equipped with handsets) are re-
quired to cover larger number of VTLs due to their more
dense road networks.

6.4 Accuracy-Centric Architecture

In order to compute travel times from VTL data with
temporal cloaking relaxed, we use a highway traffic
estimation algorithm which estimates the average velocity
field along the roadway as described in Section 4.3. This
algorithm ran live during the Mobile Century experiment,
and has run live in northern California for now more than
two years since it has been implemented in a traffic
estimation engine at UC Berkeley. Travel times are then
computed using this velocity field estimate, by considering
the travel time a vehicle would experience by driving the
velocity estimated by the algorithm.

For the numerical experiments presented next, a subset of
virtual trip lines and a subset of the participating vehicles are
selected for northbound I880 and the resulting measure-
ments are fed into the velocity estimation algorithm. The
impact of the virtual trip line spacing and the number of
participating vehicles on the travel time accuracy are shown
in Fig. 10. Each curve corresponds to a different number of
equipped vehicles, ranging from 13.75 veh/hr (10 percent of
the 2,200 trajectories) to 137.5 veh/hr (100 percent of the
2,200 trajectories). Similarly, we adjusted the number of trip
lines deployed on the experiment site, from nine trip lines to
99 trip lines in increments of 10. Fig. 10 shows how
improvements in accuracy can be achieved either by
increasing the number of vehicles sending measurements
or by increasing the number of locations where measure-
ments are obtained from a fixed number of vehicles. In the
case in which numerous vehicles are participating and the
virtual trip line spacing is sparse, the experiment shows that
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Fig. 8. Travel time accuracy versus anonymity level using 10 VTLs/mile. Fig. 9. The CDFs of number of virtual trip lines per tile (8 km by 8 km) in
different major cities in US.



it is possible to reconstruct travel times with less than
10 percent error while maintaining a high degree of
anonymity for the participating users. Furthermore, the
travel times can be computed without measurements of the
travel times of the equipped vehicles, which would have
required disclosure of the full vehicle trajectories.

Compared to temporal cloaking (at best when k ¼ 2
and full probe vehicles used), the accuracy centric
architecture enhances the travel time estimation error by
almost 10 percent (achieving about 5 percent travel time
estimation error when more than two VTLs are place per
mile), which is again even better than periodic sampling
techniques. For example, 2.5 VTLs per mile has about
2,100 ft spacing, which easily meets the minimum spacing
constraint of 1,750 ft that maintains the tracking uncer-
tainty less than 0.2 for roads where 1 to 10 percent
penetration rates of probe vehicles run at the average
speed of 0 to 60 mph as shown in Fig. 5. The comparison
between the accuracy centric architecture and temporal
cloaking architecture demonstrates the price the system
designer pays for privacy, which is about 10 percent
accuracy reduction. Moreover, even when the penetration
rate of probe vehicles for the accuracy centric architecture
is 1/10 that of the temporal cloaking architecture, the
accuracy centric architecture produces travel time esti-
mates with lower error. So, the guaranteed privacy comes
at the cost of significantly more vehicles required to
achieve the same level of accuracy.

In Fig. 11, we show a comparison of the mean travel time
obtained from our video data compared to the mean travel
time computed using our spatial sampling approaches using
virtual trip lines. This comparison corresponds to a mean
absolute percent error of about 5 percent for the accuracy
centric architecture, which was achieved using 100 percent
of our equipped vehicles and about 8.6 VTLs per mile. The
largest error in this simulation occurs in the morning around
10:40 AM, with an error of about 6 minutes. The high travel
times experienced by drivers at this time are caused by a five
car accident. The estimation algorithm performs poorly here
for two reasons. First, the traffic model used in the
estimation algorithm does not predict accidents. Second,
because the accident occurred at the beginning of the
experiment, some of the equipped vehicles had not yet been
deployed resulting in few measurements to correct the
model. Throughout the rest of the day, the estimated travel

times are significantly closer to the mean travel times. The
Temporal cloaking approach used for the comparison
achieves about 15 percent travel time error, where k is set
to 2 and 100 percent of our equipped vehicles upload VTL
measurements from 8 VTLs per mile.

7 DISCUSSION

We now discuss limitations and outlooks of our presented
approaches as well as share lessons learned from the field
operational deployment.

7.1 Security

The proposed architecture significantly improves privacy
protection over earlier proposals, by distributing the traffic
monitoring functions among multiple entities, none of
which have access to location, time stamp, and identity
records at the same time.

The system protects privacy against passive attacks
under the assumption that only a single infrastructure
component is compromised. One passive attack that
remains an open problem for further study is timing
analysis by the ID Proxy server or by network eavesdrop-
pers between the Location verifier and the ID Proxy server.
For the case of an adversary at the ID Proxy server, the
adversary can hire multiple handsets (their IDs known to
the adversary) and ask them to move around a target area.
By comparing the GPS traces driven by those handsets with
their trip line updates, the adversary can learn the exact trip
line locations. In addition,the adversary could estimate the
time needed to travel between any two trip lines from
public travel time information on the road network. Then,
the adversary could attempt to match a sequence of
observed VTL update message interarrival times to these
trip line locations. This attack can be also conducted by
network eavesdroppers passively observing the channel
between the Location verifier and the ID Proxy server. One
may expect that the natural variability of driving times
provides some protection against this approach. Protection
could be further strengthened against network eavesdrop-
pers by inserting random message delays on the handset
(client application) side. Under the temporal cloaking
scheme, however, the ID proxy server also obtains trip line
identifier information. If trip line identifier information is
used for extended durations, an adversary may match them
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Fig. 10. Tradeoffs between number of virtual trip lines per mile and the
travel time error for different values of the number of equipped vehicles
sending measurements per hour.

Fig. 11. Comparison between mean travel time obtained from video
data, mean travel time obtained from temporal cloaking, and mean travel
time obtained from the accuracy centric architecture.



to actual VTL positions based on the sequence in which
probe vehicles have passed them. This threat can be
alleviated through frequent VTL ID updates. Quantifying
these threats and choosing exact tile size and update
frequency parameters to balance privacy and network
overhead concerns remain open research problems.

The system also protects the privacy of most users
against active attacks that compromise a single infrastruc-
ture component and a small fraction of handsets. It does not
protect user privacy against injecting malware directly onto
users’ phones, which obtains GPS readings and transfers
them to an external party. This challenge remains outside of
the scope of this paper, because this vulnerability is present
on all networked and programmable GPS devices even
without the use of a traffic monitoring system. Instead, the
objective of the presented architecture is to limit the effect of
such compromises on other phones. For the temporal
cloaking approach, compromised phones result in two
concerns. First, an adversary at the ID proxy can learn the
current temporary trip line IDs. To limit the effectiveness of
this attack, the architecture periodically changes trip lines
and verifies the approximate location of each phone so that
a tile of trip line updates can only be sent to phones in the
same location. Second, a handset could spoof trip line
updates at a certain location to limit the effectiveness of
temporal cloaking. Our proposed architecture already
eliminates updates from unauthorized phones and can
easily limits the update rate per phone and verify that the
approximate phone position matches the claimed update.
This renders extended tracking of individual difficult
because it would either require a large number of
compromised phones spread around the area in which the
individual moves, or set of compromised phones that move
together with the individual. The system could also
incorporate other sanity checks and blacklist phones that
deliver suspicious updates.

The same methods also offer protection against spoofing
attacks that seek to reduce the accuracy of traffic monitoring
data. The system does not offer full protection against any
active attack on traffic monitoring accuracy, however. For
example, a compromised ID proxy could drop messages to
reduce accuracy. These challenges remain an open problem
for further work.

As in any secret-splitting scheme, the proposed archi-
tecture cannot offer protection if adversaries within the
different entities collude or if an adversary manages to
break into multiple entities. Experience from current
privacy violations has shown, however, that the vast
majority are due to accidental disclosures or a single
disgruntled or curious insider [19], [33]. If implemented
correctly, no individual insider would have access to more
than one of the proposed entities; thus, our secret-splitting
architecture provides adequate protection against this
important class of privacy violations.

7.2 Involvement of Cellular Networks Operators

While this work was based on cellular handsets, the question
of how to improve location privacy within cellular networks
themselves was outside of the scope of this work. The Phase
II E911 requirements [2] mandate that cellular networks be
able to locate subscriber phones within 150-300 m 95 percent
of the time, and A-GPS solutions should achieve similar

accuracy. In addition, phones are identifiable through
International Mobile Subscriber Identity (IMSI), in the
GSM system and operators typically know their owner’s
names and addresses. While precise phone location in-
formation is accessible, to our knowledge, it is not widely
collected and stored by operators at this level of accuracy.

This work investigated how traffic monitoring services
can be offered without access to sensitive location informa-
tion. It was primarily motivated by third-party organiza-
tions that currently do not yet have access to identity and
location information and want to implement privacy-
preserving traffic monitoring services. Our solution is
general enough so that in actual implementations, different
levels of involvement of network operators are possible.
One case may be four separate organizations, each operat-
ing a different component of the system with no involve-
ment of the network operator.2 Another extreme case would
be a cellular network operator creating separate entities
within the company to protect itself against dishonest
insiders and accidental data breaches of their customers
records. Clearly, the first would be preferable from a
privacy perspective, but in the end both lead to a significant
improvement in privacy over a naive implementation.

7.3 Challenges in Arterial Roads Traffic Estimation

In comparison to highway traffic, arterials present addi-
tional challenges. The underlying flow physics that governs
arterials is more complex (traffic lights often with unknown
cycles, intersections, stop signs, parallel queues). While our
work [10], [11], [42] explicitly derives techniques to
reconstruct traffic from VTL type data, such a reconstruction
becomes harder for arterials. Also, while macroscopic flow
models such as the ones used in [10], [11], [42] exist and can
be used for secondary networks [17], [39], their parameters
are in general unknown or inaccessible and only documen-
ted for few cities, making their use impossible without going
to the field and measuring them. In addition, even if they
were known, the complexity of the underlying flows makes
it challenging to perform estimation of the full macroscopic
state of the system at low penetration rates. In light of these
challenges, statistical approaches for characterizing a subset
of the macroscopic state (for example, travel times and
aggregated speeds) have proved to work well and seem to
be one of the only alternatives to traffic flow model-based
traffic reconstruction [15], [35]. Ongoing work has focused
on sampling policies for arterial networks [23], [24].

7.4 The Mobile Millennium Field Operational Test

For one year starting in November 2008, a pilot project
known as Mobile Millennium was deployed in Northern
California. Residents of the Bay Area were able to down-
load a traffic client on Java enabled mobile phones, which
displayed real-time traffic conditions while collecting
virtual trip line data. Unlike the Mobile Century experiment
described earlier, Mobile Millennium monitored traffic
conditions on highways and arterials continuously through-
out the year.
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This pilot project highlighted a fundamental challenge
for launching privacy preserving traffic monitoring systems
using GPS data, which is to achieve high participation rates
among the driving public when launching the system. Even
with more than 5,000 application downloads, only a few
hundred users ran the Mobile Millennium application at any
given time across a large geographic area. Thus, the
resulting data from these devices was sparse both in space
and time. At low participation rates, an architecture relying
on temporal cloaking is insufficient to monitor real-time
traffic conditions accurately due to the latency required for
anonymity. At the same time, without temporal cloaking,
reidentification of users at low participation rates becomes
much easier. To overcome these difficulties at low data
rates, Mobile Millennium was bootstrapped with additional
data such as inductive loop detectors, fleet GPS data, radar
data, and toll tag data to augment the traffic monitoring
system. In turn, this launched additional research at UC
Berkeley on traffic data fusion to assimilate traffic data from
these data sources, which is still ongoing.

8 RELATED WORK

Traffic monitoring applications based on a large number of
probe vehicles have recently received much attention [28];
however, location privacy concerns have not been ade-
quately addressed. The anonymization of sensing informa-
tion has been the preferred solution in practical
deployments [5], [6], [7]. Not surprisingly, recent analyses
of GPS traces [27], [31], [41] have shown that naive
anonymization by simply omitting identifiers from location
data set does not guarantee anonymity.

Stronger protection mechanisms have been investigated.
K-anonymity [40] provides a guaranteed level of anonym-
ity for a database, although some recent studies [30], [34]
have identified weaknesses in k-anonymity. For location
services, k-anonymity has led to the development of
centralized architectures that temporally and spatially cloak
location-based queries [16], [20]. Our work, in comparison,
concentrates on providing privacy without requiring a
single trustworthy entity.

There are many best effort approaches [9], [29] that
degrade information in a controlled way before releasing it.
These approaches can be implemented in a centralized or a
decentralized architecture. Many best effort approaches
successfully preserve the privacy of users in high density
areas, but they do not guarantee privacy for low user
density. Hoh et al. [27] propose an uncertainty-aware path
cloaking algorithm that provides guaranteed privacy
regardless of user density, but this again requires the
existence of a trustworthy privacy server.

9 CONCLUSIONS

This paper described traffic monitoring system implemen-
ted on GPS smartphone platform. The system uses the
concept of virtual trip lines to determine when phones reveal
a location update to the traffic monitoring infrastructure. We
demonstrated that the introduced scheme, Virtual Trip
Lines, successfully addresses known weaknesses of probe
vehicle-based traffic monitoring. First, the VTL paradigm
achieves strong anonymity through k-anonymous temporal
cloaking. Virtual trip lines allow the application of temporal

cloaking techniques to ensure k-anonymity properties of the
stored data set, without having access to the actual location
records of phones. Second, they improve the accuracy of
traffic monitoring. We show that the temporal cloaking leads
to less than 5 percent reduction in the accuracy of travel time
estimates for k values less than 7 compared to periodic
sampling techniques and a privacy-relaxed version achieves
5 percent travel time estimation error using only 1-2 percent
penetration rate. Third, VTLs enable a light-weight client
algorithm for collecting VTL measurements, and we achieve
the VTL crossing detection between 50 percent to 98 percent
in downtowns while suppressing false alarm less than
11 percent without map matching.
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