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The Lord of the Ring Road: A Review and Evaluation of

Autonomous Control Policies for Traffic in a Ring Road

FANG-CHIEH CHOU, ALBEN ROME BAGABALDO, and ALEXANDRE M. BAYEN,

UC Berkeley

This study focuses on the comprehensive investigation of stop-and-go waves appearing in closed-circuit ring

road traffic wherein we evaluate various longitudinal dynamical models for vehicles. It is known that the

behavior of human-driven vehicles, with other traffic elements such as density held constant, could stimulate

stop-and-go waves, which do not dissipate on the circuit ring road. Stop-and-go waves can be dissipated by

adding automated vehicles (AVs) to the ring. Thorough investigations of the performance of AV longitudinal

control algorithms were carried out in Flow, which is an integrated platform for reinforcement learning on

traffic control. Ten AV algorithms presented in the literature are evaluated. For each AV algorithm, experi-

ments are carried out by varying distributions and penetration rates of AVs. Two different distributions of

AVs are studied. For the first distribution scenario, AVs are placed consecutively. Penetration rates are varied

from 1 AV (5%) to all AVs (100%). For the second distribution scenario, AVs are placed with even distribution

of human-driven vehicles in between any two AVs. In this scenario, penetration rates are varied from 2 AVs

(10%) to 11 AVs (50%). Multiple runs (10 runs) are simulated to average out the randomness in the results.

From more than 3,000 simulation experiments, we investigated how AV algorithms perform differently with

varying distributions and penetration rates while all AV algorithms remained fixed under all distributions and

penetration rates. Time to stabilize, maximum headway, vehicle miles traveled, and fuel economy are used to

evaluate their performance. Using these metrics, we find that the traffic condition improvement is not neces-

sarily dependent on the distribution for most of the AV controllers, particularly when no cooperation among

AVs is considered. Traffic condition is generally improved with a higher AV penetration rate with only one

of the AV algorithms showing a contrary trend. Among all AV algorithms in this study, the reinforcement

learning controller shows the most consistent improvement under all distributions and penetration rates.
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1 INTRODUCTION

“One ring to rule them all,” The Lord of the Rings, J. R. R. Tolkien (1954) [38]. The future of traffic
autonomy lands to the power of the Ring.

This study focuses on a comprehensive investigation of a special traffic phenomenon appear-
ing on closed-circuit ring roads wherein despite the fact that everything else is held constant
(i.e., the number of vehicles are kept the same with unchanged road dimensions), stop-and-go
waves propagate upstream against the flow of traffic and travel backward along the road, creating
so-called phantom congestion. This article studies the ring road with fundamental mathematical
equations describing car-following models (CFMs) and discusses results from other researchers
with a thorough literature survey. Studying this traffic phenomenon on the ring road yields in-
sights about occurrences of traffic jams that also appear on an open straight road [18, 43] from
which congestion mitigation strategies can be derived.

CFMs are used to describe driving behavioral patterns of human-driven vehicles (HVs) and
are considered to be the most important representatives of microscopic traffic flow models in study-
ing traffic behavior to address congestion [40]. The early works in developing CFMs date back to
the 1950s. The first two researchers who are known to introduce dynamical elements of a line of
vehicles are Reuschel [32] in 1950 and Pipes [29] in 1953. In their works, they were able to include
an important element of modern microscopic modeling: the safety distance between vehicles (i.e.,
minimum bumper-to-bumper distance of a vehicle following a leading vehicle). Their models fo-
cus on the dynamical behavior of a stream of vehicles as they accelerate or decelerate and as each
leader-follower pair follows each other, making it a foundation among the most recent advances in
CFMs. There are many other researchers who extended the works of Reuschel and Pipes. Among
them are Kometani and Sasaki [17] in 1958 and Herman et al. [14] at General Motors. These early
works were called minimal models because they are “not complete and can’t describe either free
traffic or approaches to standing obstacles” [40, Chapter 10].’

It was more challenging to solve for time-continuous models because they tended to be highly
computationally expensive in the earlier years. To compensate for this, discrete-time models were
developed. One of the arguably simplest discrete-time models is the CFM of Newell [27], which
considers that a leading vehicle is following a preceding vehicle on a homogeneous highway, and
the time-space trajectory of the leading vehicle is assumed to be the same as the preceding vehicle.
Along the traffic wave speed, the leading vehicle changes its speed based on the preceding vehicle
at any time-space point. However, the advancements in computing technologies have allowed the
use of time-continuous models to be more feasible and flexible. The popularity of time-continuous
models, like the intelligent driver model (IDM), which according to Treiber and Kesting
[40, Chapter 11] is “probably the simplest, complete and accident-free model producing re-
alistic acceleration profiles and a plausible behavior in essentially all single-lane traffic sit-
uations,”making them widely applied and adopted in traffic modeling and vehicle controller
design.
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Since the early 1990s, numerous researchers have demonstrated traffic congestion without bot-
tlenecks in closed networks. Nagel and Schreckenberg [26] showed spontaneous traffic jams on a
closed ring road with a cellular automaton model. Sugiyama et al. [35] experimentally showed the
so-called phantom traffic jam phenomenon on a closed-circuit road. Tadaki et al. [37] also demon-
strated stop-and-go waves on a ring road with a similar real-world experimental setup. Various
numbers of vehicles on rings with different ring radii were experimented. They showed that critical
density for emergence of traffic jam is consistent with critical density found on a real highway.

The emergence of automated vehicles (AVs) was pushed forward when the Defense Advanced
Research Projects Agency, the research arm of the U.S. Department of Defense, organized a se-
ries of challenges in 2004–2013. This interest for AVs grew further when Tesla’s Autopilot was
launched in 2014. Transportation network companies like Uber and Lyft are also now invested
in research for autonomous cars. It is expected that AVs have the potential to improve not only
safety [10, 24, 42] but also efficiency [1, 41] and mobility [7, 46]. The idea of using AVs to stabilize
stop-and-go waves on a ring road had been studied. The emergence of stop-and-go waves on a
ring road can be viewed as instability of a dynamical system. Theoretically, the ring road is not
controllable, but it is stabilizable [44]. Therefore, the ring road can be stabilized with an AV as a
state feedback controller, although a full state feedback controller may not necessarily be needed
for stabilizing the system. The dynamics of the ring road can be totally different by replacing a HV
with an AV, and so can the stability. If the the AV model is selected carefully, the ring road stability
may be achieved even without a full state feedback controller. Cui et al. [6] carried out a stability
analysis and showed the possibility of smoothing traffic flow with a single AV on a ring road in the
simulation. Stern et al. [34] verified the idea of smoothing traffic on a ring road. Horn et al. [15]
proposed a bilateral controller to stabilize the ring road traffic. Wu et al. [48] used the reinforce-

ment learning (RL) controller to stabilize ring road traffic. Delle Monache et al. [8] proposed a
Lyapunov-based controller for dissipating traffic waves and validated it on the ring road. Zheng
et al. [53] considered a full state feedback controller and derived an AV controller based on opti-
mal control to stabilize a ring road. Li et al. [19] further investigated the impact of the penetration
rates and distributions of the optimal control method, in which optimal distributions based onH2

norm are shown to be dependent on penetration rates and the setup of CFMs. Although many
controllers have successfully demonstrated the capabilities of improving traffic flows on the ring
road in the literature, most of them are not generally benchmarked under different penetration
rates and distributions. Since the penetration rates and distribution may have great impact on the
traffic [19, 51], it is essential to evaluate controllers thoroughly under different penetration rates
and distributions. Given that the analysis may generally not be tractable for all controllers, anal-
ysis based on simulations is done in our work. This work aims to make general comparisons of
these controllers under different penetration rates and distributions, particularly focusing on con-
trollers that have been validated against ring road traffic in simulations or real-world experiments.
Kreidieh et al. [18] found that controllers generated in closed network scenarios with otherwise
similar densities and perturbing behaviors confirms that closed network policies are transferable
to open network scenarios. In their work on leading cruise control, Wang et al. [43] were able to
verify the potential to control traffic using connected AVs on an open road.

Contribution. In this article, we assess the improvement of mixed autonomy traffic with AVs
on a ring road under different penetration rates and distributions while all AV algorithms remain
unchanged under different penetration rates and distributions. The time to stabilize, maximum
headway, vehicle miles traveled (VMT), and fuel economy are used to evaluate their perfor-
mance. From the simulation experiments, we find that traffic condition improvement is generally
independent of distribution of AVs, particularly when no cooperation among them is considered,
except for two of the AV controllers considered in this work. The traffic condition is generally
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Fig. 1. CFM notation representation. The image shows three cars that are spaced, which acts as a headway

with corresponding speed traveling in the same direction. The first car is i−1, followed by the subject vehicle

i and the vehicle behind the subject vehicle represented as i + 1.

improved with a higher penetration rate, but one of the AV algorithms shows a contrary trend. We
show that the VMT and fuel economy are also improved with more AVs because of smoother traf-
fic flow, except for one AV controller that shows reduced fuel economy even with improved traffic
flow. Finally, among all AV algorithms in this study, the RL controller shows the most consistent
improvement under all distributions and penetration rates.

The rest of the article is organized as follows. Section 2 details the notations and preliminaries
in Section 2.1, followed by the detailed mathematical CFMs as HVs in Section 2.2 and various
mathematical models of car-following controllers as AVs in Section 2.3. In Section 3, we study the
performance of AVs by carrying out experiments on a ring road using a state-of-the-art traffic
simulation platform considering various penetration rates and distribution of AVs for each AV
model. Time to stabilize, maximum headway, VMT, and fuel economy are used to evaluate their
performance. Section 4 concludes the article.

2 MATHEMATICS

This section is divided into three subsections. Section 2.1 defines the notations and preliminar-
ies, whereas Section 2.2 deals with typical human behavior CFMs and Section 2.3 is dedicated to
controllers designed for AVs.

2.1 Notations and Preliminaries

In this article, vehicle CFMs are discussed. Subscripts of variables indicate to which vehicle the
variables are related. Vehicles are generally labeled with a number, increasing sequentially against
traffic flow. Vehicles in the downstream are numbered with smaller numbers, and vehicles up-
stream are numbered with larger numbers. In a platoon of N vehicles, the vehicle indexed 1 is the
leading vehicle in the platoon, and the last vehicle is indexed N . An illustration of the platoon is
shown in Figure 1. The image shows three cars in a platoon that are traveling in the same direction.
For convenience, a few commonly used variables are listed next:

• xi : [0,∞) → R: Rear end position of vehicle i
• vi : [0,∞) → R: Speed of vehicle i
• ai : [0,∞) → R: Acceleration of vehicle i
• Li ∈ R: Length of vehicle i
• si : [0,∞) → R: Space headway between vehicle i and vehicle i − 1, which is equivalent to
xi−1 − xi − Li

• vrel,i : [0,∞) → R: Relative speed between the leading vehicle and the subject vehicle i;
vrel,i := vi−1 −vi .
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Table 1. Acronyms and Abbreviations

AVs Automated vehicles ACC Adaptive cruise control
HVs Human-driven vehicles LACC Linear adaptive cruise control
CFM Car-following model MLYAU1 Modified Lyapunov 1 controller
RL Reinforcement learning MLYAU2 Modified Lyapunov 2 controller
IDM Intelligent driver model LinOpt Linear optimal controller
VMT Vehicle miles traveled MLP Multilayer perceptron
AUG Augmented Optimal Velocity Follow-the-Leader GRU Gated recurrent unit
BCM Bilateral control model PPO Proximal policy optimization
FS FollowerStopper controller SUMO Simulation of Urban Mobility
PI Proportional-integral with saturation controller ICs Initial conditions
HBEFA Handbook Emission for Road Transportation FUZ Fuzzy controller

Discrete models are considered in this article. Discrete dynamics of the vehicle motion are

xi [k + 1] = xi [k] +vi [k]Δt , (1)

vi [k + 1] = vi [k] + ai [k]Δt , (2)

where Δt ∈ R is the discretization step size. Acceleration of the vehicle will be determined based
on CFMs and AV algorithms described in the following sections.

A list of abbreviations and acronyms used in this article is summarized in Table 1.

2.2 Intelligent Driving Model IDM as a Human Driver CFM

As mentioned in Section 1, there are many extensive studies to model how people drive on the road.
The conceptual bases of these models are supported by empirical data [4]. Despite the numerous
models developed, this is still an active field of research given the modeling challenges caused by
heterogeneity of traffic and varying characteristics of drivers. Other examples of CFMs include
the optimal velocity model [2, 3] second-order linear model [28], and IDM [39, 40]. Among these
models, IDM is recognized for being capable of accurately representing realistic driver behavior
[39]. Hence, IDM is adopted in this work and used to represent human-driven cars.

The work of Treiber et al. [39] and Treiber and Kesting [40] provided a comprehensive and
instructive coverage of vehicular traffic flow dynamics and modeling in their work leading to
the formulation of IDM, a CFM for the simulation of freeway and urban traffic. It describes the
dynamics of the positions and velocities of single vehicles. The acceleration of IDM is shown next:

ai [k] = amax

⎡⎢⎢⎢⎢⎣1 −
(
vi [k]

v0

)δ

−
(
s∗

(
vi [k],vrel,i [k]

)
si [k]

)2⎤⎥⎥⎥⎥⎦ , (3)

where v0 ∈ R is the desired velocity, amax ∈ R is the maximum acceleration, δ ∈ R is the accelera-
tion exponent, b ∈ R is the desired deceleration, and s∗ : R×R→ R is the desired headway of the
vehicle for a given vehicle speed and a relative speed, denoted by

s∗
(
vi [k],vrel,i [k]

)
= s0 +max

(
0,vi [k]T −

vi [k]vrel,i [k]

2
√
amaxb

)
, (4)

where T ∈ R is the safe time headway and s0 ∈ R is the jam distance or minimum gap. The
parameters used in IDM are presented in Section 3.2. To replicate stop-and-go waves with IDM,
the selection of the parameters are picked such that the criterion for ring road stability is not
satisfied.
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2.3 AV CFMs

This section discusses the known models that include controllers mainly developed for AVs, start-
ing from level 1 (driving assistance capabilities) to having algorithms that may apply up to level
5 (fully) AVs. Note that as the level of autonomy increases, there are also increased capabilities
with respect to what the vehicles on its own like the ones described for level 1 and level 2 here.
Unlike human behavior CFMs, models introduced here are not meant to replicate human driving
behavior. These AV CFMs were designed and meant to have better properties, e.g., stability, safety,
efficiency, etc.

2.3.1 Augmented OV-FTL Model. Cui et al. [6] augmented the OV-FTL (optimal-velocity-follow-
the-leader) model with a term penalizing the difference between the AV speed and the equilibrium
speed veq ∈ R:

a[k] = ka (V (si [k]) −vi [k]) + kb
vi−1[k] −vi [k]

si [k]2
+ kc (veq −vi [k]), (5)

where ka ∈ R, kb ∈ R, and kc ∈ R are positive parameters; V (·) : R → R is a monotonically
non-decreasing function:

V (sn ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if sn � sst,
vmax

2

(
1 − cos

(
π sn−sst

sдo−sst

))
, if sst < sn < sgo,

vmax, if sn � sgo,

(6)

where sst ∈ R, sдo ∈ R are parameters.

2.3.2 Bilateral Control Model. The bilateral control model (BCM) is a controller that is al-
most similar to linear adaptive cruise control (LACC), except that instead of considering the
relative speed and the spacing headway only with respect to the preceding vehicle as applied in
LACC, it is now considering relative speeds and the spacing headways with respect to its preced-
ing vehicle and its following vehicle wherein it is assumed that this information can be obtained
by the subject vehicle using sensors in the front and in the back. By that, the vehicle tries to be
halfway between the leading and the following vehicle. Following this, the i-th vehicle uses the
following acceleration equation [15]:

a[k] = kd (si [k] − si+1[k]) + kv

(
(vi−1[k] −vi [k]) − (vi [k] −vi+1[k])

)
+ kp (vdes −vi [k]), (7)

where kd ∈ R, kv ∈ R, and kp ∈ R are parameters that with any arbitrary positive constants will
always lead to ring stability [16, 45];vdes ∈ R is a design parameter representing the desired speed.

2.3.3 FollowerStopper. The FollowerStopper controller (FS) [34] generates the speed com-
mand vcmd (·, ·) : R × R → R based on the combinative conditions of the headway si [k] and the
relative speed vrel,i [k]. The condition of the headway and the relative speed are divided into four
regions. In each region, the safety speed command is determined to prevent the AV from crashing
into the vehicle in front of it. Speed command vcmd in each region is shown next, followed by the
definition of each region:

vcmd
i (si [k],vrel,i [k]) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if si [k] ≤ Δx1 (Stopping region)

v̂[k] si [k]−Δx1

Δx2−Δx1
if Δx1 < si [k] ≤ Δx2 (Adaptation region I)

v̂[k] + (U − v̂[k]) si [k]−Δx2

Δx3−Δx2
if Δx2 < si [k] ≤ Δx3 (Adaptation region II)

U if Δx3 < si [k] (Safe region)

,

(8)
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where v̂[k] = min{max{vi−1[k], 0},U }. A safe cruise speedU ∈ R is assigned as the reference speed
in the safe region. In the stopping region, zero velocity is commanded. In the adaptation region
(two parts), some average of desired and lead vehicle velocity is commanded. The boundary of
each region is defined as follows:

Δx j [k] = Δx0
j +

1

2dj
(Δv−[k])2 , ∀j = 1, 2, 3, (9)

where Δv−[k] = min(vrel,i [k], 0). Δx0
1 ∈ R, Δx0

2 ∈ R, Δx0
3 ∈ R, d1 ∈ R, d2 ∈ R, and d3 ∈ R are

design parameters. Given the command speed, corresponding acceleration of the vehicle is

ai [k] =
vcmd

i [k] −vi [k]

Δt
.

2.3.4 Proportional-Integral with Saturation. The proportional-integral with saturation

controller (PI) is a controller for speed control. It has been implemented on the real vehicle and
used to dissipate stop-and-go waves in the circuit ring road [8, 34]. The controller is modeled in
the discrete manner, and vcmd[k] denotes the speed command at timestep k ∈ Z≥0:

vcmd[k + 1] = β[k]
(
α[k]v target[k] + (1 − α[k])v lead[k]

)
+ (1 − β[k])vcmd[k]. (10)

The speed command vcmd[k] ∈ R is basically the low-pass filtered output of the weighted average
of the preceding vehicle speedv lead[k] ∈ R and the subject vehicle’s own target speedv target[k] ∈ R.
The AV’s target speed is defined as follows:

v target[k] = Ū [k] +v catch ×min

{
max

{
si [k] − дl

дu − дl
, 0

}
, 1

}
, (11)

where Ū [k] ∈ R is the temporal average of own speed over an historic interval, which is Ū [k] =
1
m

∑k−m
j=k−1v

AV[j]; vcatch ∈ R, дl ∈ R, and дu ∈ R are design parameters. vcatch ∈ R is the catch-up

speed that allows the target speed to be larger than average speed in the past so that the AV can
speed up when the headway is large. The parameters α[k] ∈ R and β[k] ∈ R are formulated to be
dependent on the headway si [k] ∈ R at timestep k , which are shown as follows:

α[k] = min

{
max

{
si [k] − Δx s[k]

γ
, 0

}
, 1

}
, (12)

β[k] = 1 − 1

2
α[k], (13)

where γ ∈ R is a design parameter and Δx s[k] ∈ R is defined as

Δx s[k] = max

{
2

(
v lead[k] −vAV[k]

)
, 4

}
. (14)

This controller has also been called the MLB controller in the work of Delle Monache et al. [8].
Given the speed command, the corresponding acceleration command is

ai [k] =
vcmd

i [k] −vi [k]

Δt
.

2.3.5 Linear Adaptive Cruise Control. Adaptive cruise control (ACC) is a driver-assistance
system that can automatically adjust the vehicle’s speed to maintain safe spacing from the preced-
ing vehicle, which is commonly seen on many production vehicles. Linear models can be used to
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approximate the dynamics of the ACC system [5, 20, 22, 25, 31, 52]. In this work, we study the per-
formance of ACC using approximation of a first-order ordinary differential equation. The model
described in the work of Rajamani [30] is adapted in this work:

ai [k + 1] =
(
1 − Δt

τ

)
ai [k] +

Δt

τ
acmd,i [k], (15)

acmd,i [k] = k1ex,i [k] + k2vrel,i [k], (16)

ex,i [k] = si [k] − hvi [k], (17)

where acmd,i [k] ∈ R is the command acceleration of the vehicle, ex,i [k] ∈ R is the gap error, τ ∈ R
is the lag time of the system, h is the desired time gap, and k1 ∈ R and k2 ∈ R are positive design
parameters. These parameters can be calibrated using the collected data from the field experiment.

2.3.6 Optimal Control Strategy. Zheng et al. [53] proposed a strategy of optimal control. The
human driver CFM is first linearized. Suppose that vehicle 1 is the AV; linear optimal control is
derived in the following form:

ai [k] = −
[
k1,1 (si [k] − s∗c ) + k1,2 (vi [k] −v∗) +

N∑
j=2

kj,1 (si+j−1[k] − s∗) + kj,2 (vi+j−1[k] −v∗)
]
.

(18)

On a ring road, where vehicle 1 is following vehicle N , the index of the vehicle is cyclic (i.e.,
si = si+N , vi = vi+N ). Parameters kj,1 ∈ R, kj,2 ∈ R,∀j ∈ {1, . . . ,N } are obtained by optimal
control. s∗c ∈ R is the average following distance of every vehicle on the ring road. To obtain these
parameters, we define K = [k1,1,k1,2,k2,1,k2,2, . . . ,kN ,1,kN ,2] ∈ R1×2N and let K equal ZX−1,
where Z ∈ R1×2N and X ∈ R2N×2N are the optimizer of the following optimization problem:

min
X ,Y ,Z

Trace (QX ) +Trace (RY )

subject to (AX − BZ ) + (AX − BZ )T + HHT 
 0,[
Y Z
ZT X

]
� 0, X � 0,

where A ∈ R2N×2N , B ∈ R2N , and H ∈ R2N are matrices for the state space model of
the linearized ring road dynamics. Q and R are design parameters, which are defined as Q =
diaд(γ 2

s ,γ
2
v , . . . ,γ

2
s ,γ

2
v ) ∈ R2N×2N and R = γ 2

u ∈ R. Although the optimal control can be redesigned
to achieve optimal performance under different penetration rates and different distributions [19],
in this work, for our purpose, we do not redesign the controller for different penetration rates and
distributions. The optimal controller described in this section is derived based of traffic of one AV
and 22 HVs and tested under all scenarios in the simulation studies.

2.3.7 Lyapunov-Based Controller. Delle Monache et al. [8] proposed two types of Lyapunov-
based controller. The controllers are first derived using Lyapunov-like function. Controllers are
then discretized considering that the controllers are deployed on the digital system, where the tar-
get speed at each timestep is issued as the input to the lower system of the AV. The first Lyapunov-
based controller is as follows:

v
target,1
i [k + 1] = (u[k] − v̄[k])exp (−Δt ) + v̄[k]. (19)

The second controller is as shown next:

v
target,2
i [k + 1] =

(
u[k] − vi−1[k] + v̄[k]

2

)
exp (−Δt ) +

vi−1[k] + v̄[k]

2
. (20)
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v
target,1
i [k + 1] ∈ R, v

target,2
i [k + 1] ∈ R are target speeds of the i-th vehicle of the first and the

second controller at timestep k + 1. u[k] ∈ R and v̄[k] ∈ R are defined as follows:

u[k + 1] = β[k](α[k]v
target, j
i [k] + (1 − α[k])vi−1[k]) + (1 − β[k])u[k], (j = 1, 2), (21)

v̄[k] = min
⎧⎪⎨⎪⎩
∑k−1

m=1vi−1[m]

k − 1
,

∑k−1
m=1 u[m]

k − 1

⎫⎪⎬⎪⎭. (22)

Controller gains α[k] ∈ R and β[k] ∈ R are defined as follows:

α[k] = min

{
max

{
si [k] − Δx s[k]

γ
, 0

}
, 1

}
, (23)

β[k] = 1 − 1

2
α[k], (24)

where

Δx s[k] = max
{
2
(
vi−1[k] −vi [k]

)
, 4
}
.

Given the target speed, the corresponding acceleration command is

ai [k] =
v

target, j
i [k] −vi [k]

Δt
.

2.3.8 Fuzzy Controller. Haulcy et al. [13] proposed a fuzzy controller for stabilizing a ring road.
In the fuzzy logic, the space headway and the relative speed are processed to determine the desired
speed change. Triangular shape membership functions are constructed to represent the levels of
the different classes of the distances and the speed differences. The speed change command is
determined following the inference process and the defuzzification process.

2.3.9 RL Control. RL is learning to do tasks wherein the agent (i.e., the learner) does some
action without having to be told what action to do. The agent does random actions at first and
maps out each of these actions to determine which among them maximizes the numerical rewards.
Mathematically, an agent learns a policy π (state ) = action, and maps from states state to actions
action, to achieve a goal in an environment under uncertainty. Through repeated environment
interactions, an RL agent strives to develop an optimal policy π *, which maximizes the sum of the
rewards. RL is often used in solving sequential decision-making problems [36]. To deal with the
traffic control with the RL, Wu et al. [49, 50] proposed a framework for traffic control using deep
RL. The framework integrates the traffic simulation environment called Simulation of Urban

Mobility (SUMO) and the RL library, such as rllab [9] and rllib [21], so that the policy can be
learned to optimize the cumulative reward using sampled data from SUMO. The policy usually
consists of neural networks and may be of several forms. Two policies—the multilayer percep-
tron and the gated recurrent unit—are proposed for a ring road problem in the work of Wu et al.
[50]. The multilayer perceptron is a classical (feedforward) artificial neural network with multiple
hidden layers and utilizes back propagation to optimize its parameters. Gated recurrent units are
recurrent neural networks capable of storing memory on the previous states of the system through
the use of parameterized update and reset gates, which are also optimized by the policy gradient
method. One of the advanced RL algorithms is Proximal Policy Optimization [33], which is said
to perform comparably or better than state-of-the-art approaches. Other advanced RL, such as the
soft-actor critic [12], not covered in this work, can also be investigated in the near future. The RL
control tested in this work is trained on the ring road of one agent and 21 HVs. The state is the
distance between the agent and its leading vehicle (si [k]), the leading vehicle speed (vi−1[k]), and
the agent speed (vi [k]). The action is the agent acceleration (ai [k]). Suppose that the RL agent is
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Table 2. Summary of the AV Models on a Ring Road

AV Model Input Controller Type Design Parameters Design Method
AUG si, vi , vi−1 Linear ka, kb, kc, veq Model based
BCM si, si+1, vi , vi−1, vi+1 Linear kd, kv, kp, vdes Model based
FS si, vi , vi−1 Nonlinear U , Δx 0

1, Δx 0
2, Δx 0

3, d1, d2, d3 Heuristic

PI si, vi , vi−1 Nonlinear v catch, дu, дl, γ Heuristic
LACC si, vi , vi−1 Linear k1, k2, h Model based
LinOpt si, vi , ∀i ∈ {1, 2, . . . , N } Linear γs, γv, γu Model based
MLYAU1 vi , vi−1 Linear γ Model based
MLYAU2 vi , vi−1 Linear γ Model based
FUZ si, vi , vi−1 Nonlinear See details in the work of Haulcy et al. [13] Heuristic
RL si, vi , vi−1 Nonlinear See details in the work of Wu et al. [48] Learning based

the i-the vehicle in the ring road; the reward ri [k] ∈ R is designed in a way that high average
speed of all vehicles is rewarded, whereas high acceleration of the agent is penalized. The reward
at each timestep is

ri [k] = η1

22∑
j=1

vj [k] − η2 max{0,ai [k]}.

Once the policy is trained on the ring road of one agent and 21 HVs, it is tested under different
penetration rates and distributions with no modification.

2.3.10 Summary Table for AV Controllers. In Table 2, properties of the AV models considered in
this article are summarized, including the needed input, the controller type, the design parameters,
and the design method. In terms of input needed for the controllers, all the controllers need at
least the speed measurements of the leading vehicle and the subject vehicle, and most of them also
use the measurement of the spacing ahead of the subject vehicle, except MLYAU1 and MLYAU2.
Without using the feedback of the spacing ahead, the following distance of MLYAU1 and MLYAU2
cannot be controlled. In addition to the spacing ahead and the speed of the leading vehicle, the BCM
also uses the spacing behind and the speed of the following vehicle. The optimal control needs the
most information, not only the spacing and the speeds of the vehicles nearby but also spacing
and speeds of all vehicles on the ring road. To access this information, wireless communication
may be needed between vehicles. The third column of Table 2 shows the types of the controller.
Four of the controllers are nonlinear controllers, and the rest of the controllers are linear. The
design parameters of the controllers are listed in the fourth column, except FUZ and RL, because
there are too many parameters of these two controllers to show here. The references for these two
controllers are provided instead. Inspired by the classification in the work of Wang et al. [44], the
last column summarizes the ways controllers are derived. Three controllers are designed based on
observations in the real world. RL is the only controller that is based on learning. The rest of the
controllers are based on analyses of the CFMs.

3 SIMULATION

3.1 Simulation Platform

SUMO [23] is mainly used to simulate traffic flow in a ring road. We used this simulation software
since it is open source, enabling interested parties to reproduce the results we have. SUMO has the
capability to generate microscopic models of inter-modal traffic systems including road vehicles,
public transport, and pedestrians. It allows customized models and has various APIs to control
the simulations remotely. It also allowed us to calculate the fuel economy, based on the Handbook
Emission Factors for Road Transport 3 Euro 4 passenger car emission model.
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To run the simulations in SUMO, we also utilized existing libraries of code available in Flow
[47, 48] which is a computational framework mainly developed to enable the use of RL methods
such as policy gradient methods for traffic control and enables benchmarking of the performance
of classical controllers, which is then built to work on the SUMO microsimulator. Flow is developed
by the Mobile Sensing Lab at the University of California, Berkeley.

This study is the general investigation of behavior of vehicles driving on a closed-circuit road.
Since the ring itself is a closed loop, we used a continuous router that ensures the continuous
rerouting of the vehicles in a closed loop. This class is useful if vehicles are expected to continu-
ously follow the same route, and the said route is repeated once it reaches its end.

3.2 Simulation Setup and Simulation Parameters

We are interested in the dynamic behavior of the closed-circuit ring road. The simulation envi-
ronment is set up similar to the real experiment shown in the work of Stern et al. [34]. There are
22 vehicles on the single-lane-circuit ring road, which has a radius of 41.38 m (circumference is
260m). At the beginning of the simulation, the vehicles are placed uniformly, with each headway
being the same, and the initial speeds are all zero. Depending on the scenarios (Section 3.3) run-
ning, each vehicle is assigned as an HV or as a different type of AV. In each simulation run, there is
always a 300-second warm-up, in which all vehicles are running with IDM to make the ring traffic
in the status of having stop-and-go waves. After that, the assigned AVs switch to the automated
control. For each model, values of parameters used in the simulations in this work are summarized
in this section. Selection of parameters may have an influence on the performance. For the purpose
of benchmarking, values of the original articles are used if they are available. Otherwise, values
based on design criteria shown in the origin articles are used. None of these values are fine-tuned,
although performance may be improved after careful tuning:

• Intelligent driver model (IDM): The parameters chosen for IDM are as follows: acceleration
component δ = 4, safe time headway T = 1, maximum acceleration amax = 1, desired decel-
eration b = 1.5, jam distance s0 = 2, and maximum speed v0 = 30 [40, Chapter 11].
• Augmented OV-FTL (AUG): ka = 1, kb = 1, kc = 11.0, hst = 2, hgo = 15, vmax = 30, and
veq = 4.8, where ka and kb are arbitrary positive numbers, and kc is selected based on the
criterion shown in the work of Cui et al. [6]; hst, hgo, and vmax are default values in Flow
[48]; veq is the equilibrium speed of 22 IDMs on the ring road.
• Bilateral control model (BCM): The bilateral CFM (Section 2.3.2) and the parameters of the

controller used are kd = 1, kv = 1, kp = 1, vdes = 4.8. It has been proven in the work of
Wang and Horn [45] that the system of BCM vehicles is chain stable for arbitrary values of
kd and kv that are greater than zero. vdes is picked as the equilibrium speed of 22 IDMs on
the ring road.
• FollowerStopper (FS): The parameters defining the four regions of the controller are as follows:

Δx0
1 = 4.5, Δx0

2 = 5.0, and Δx0
3 = 6.0. In addition, the deceleration rates are defined to be

d1 = 1.5, d2 = 1.0, d3 = 0.5, and U = 4.8. Parameters shown in the work of Stern et al. [34]
are used. U is the target speed of the FollowerStopper. It is picked as the equilibrium speed
of 22 IDMs on the ring road.
• Proportional-Integral with saturation (PI): Parameters used in simulation are γ = 2, дl = 7,
дu = 30, and vcatch = 1. Parameters shown in the work of Stern et al. [34] are used.
• Linear Adaptive Cruise Control (LACC): All the ACC-controlled vehicles have the same pa-

rameters for dynamics and control: τ = 0.1, h = 1.4s, k1 = 0.4, and k2 = 0.7. These param-
eters are picked such that its equilibrium speed is close to that of IDM, and string stability
condition for a linear CFM can be satisfied.
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Fig. 2. Speed profiles of all IDM vehicles on the ring. The stop-and-go waves are fully developed at around

300 seconds and persist for the rest of the time.

• Linear optimal controller (LinOpt): The controller gains are designed using the gains as fol-
lows: γs = 1, γv = 1, γu = 1. These values are not specified in the original work and are
arbitrarily selected here.
• Lyapunov-based controllers (MLYAU1 and MLYAU2): For both type 1 and type 2, they have the

same parameter: γ = 2. The parameter value shown in the work of Delle Monache et al. [8]
is used.

3.3 Scenario

Given the goal of this article, we designed our simulations to include cases of both mixed-autonomy
traffic with varying percentages of AVs in the system, and also the case where we have full
autonomy.

Baseline case (no automation). In this article, the baseline scenario we are considering is all HVs
on the ring. We are using IDM to model the human driving behavior. To stimulate instability of
the ring road model to reproduce stop-and-go waves, acceleration noises are intentionally injected
to all CFMs. Another way of stimulating speed fluctuations is by inducing sudden speed changes
of vehicles in the traffic (e.g., [11, 15, 53]). In this works, persistent excitation of the traffic with
acceleration noises are used, because we can produce stop-and-go waves more easily by doing this.
Speed profiles of the 22 vehicles of IDM on the ring are shown in Figure 2. The plot shows how
the speed profiles of the vehicles greatly vary with time especially after a certain time greater than
200 seconds.

Mixed autonomy traffic (varying percentages of AV penetration). As an integral part of the simu-
lations, we included a variation in the number of AVs in the system to test how the autonomous
controllers perform in a mixed-autonomy condition to see if there is also significance in their
performance depending on the percentage of penetration. Besides the penetration rate, we also
investigate the impact of different distributions of AVs among HVs. Table 3 summarizes the se-
tups for scenarios we are studying in this article. In scenario I: platooned, AVs are placed in the
clustered manner, of which AVs are placed consecutively and HVs are also placed consecutively.
Penetration of 1 AV all the way to 22 AVs is studied. Then, scenario II: evenly distributed is the case
where the AVs are placed as evenly distributed as possible. That is when the minimum number
of HVs between any two AVs is maximized. In this scenario, a maximum of 11 AVs are placed on
the ring and studied, because any number more than 11 will no longer keep AVs separated evenly
by HVs. Simulation results of these scenarios are shown in the next section. To help the reader
visualize scenarios, Tables 4 and 5 are provided, showing the types of each vehicle on the road
under different penetration rates in different scenarios. To compare the performance of controllers
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Table 3. Scenarios of Experiments in Flow

Scenario I Scenario II
AV(s) Activation Time 300 300

ICs (Positions) si [0] = seq + s̃i ,∀i = {1, . . . , 22} si [0] = seq + s̃i ,∀i = {1, . . . , 22}
ICs (Speeds) vi [0] = 0,∀i = {1, . . . , 22} vi [0] = 0,∀i = {1, . . . , 22}
AV Distribution Clustered Evenly distributed

Number of AVs (= n) n ∈ {1, 2, . . . , 22} n ∈ {2, . . . , 11}
IDM Noise 0.1 0.1

seq := (2π Rring −
∑22

i=1 Li )/22, where Rring ∈ R is radius of the ring road, and s̃i ∈ R are random variables and

are sampled such that
∑22

i=1 s̃i = 0 to keep the sum of the headway matching the perimeter of the ring road. AV(s)

Activation Time is the time at which AV controllers start to actively control the vehicles. ICs (Positions) are the

initial conditions of vehicle positions on the ring road. ICs (Speeds) are the initial conditions of vehicle speeds on

the ring road. AV Distribution is the way AVs are distributed among other vehicles. Number of AVs is the number

of AVs being placed on the ring road. IDM Noise is the magnitude of the acceleration noise (in m s−2) added to

vehicles. The distributions of AVs for scenario I are shown in Table 4, and the distributions of AVs for scenario II

are shown in Table 5.

Table 4. AV Distribution for Scenario I: Platooned Under Different Penetration Rates

(%) Vehicle Type

4.55 AV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV

9.09 AV AV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV

13.64 AV AV AV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV

18.18 AV AV AV AV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV

22.73 AV AV AV AV AV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV

27.27 AV AV AV AV AV AV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV

31.82 AV AV AV AV AV AV AV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV

36.36 AV AV AV AV AV AV AV AV HV HV HV HV HV HV HV HV HV HV HV HV HV HV

40.91 AV AV AV AV AV AV AV AV AV HV HV HV HV HV HV HV HV HV HV HV HV HV

45.45 AV AV AV AV AV AV AV AV AV AV HV HV HV HV HV HV HV HV HV HV HV HV

50.00 AV AV AV AV AV AV AV AV AV AV AV HV HV HV HV HV HV HV HV HV HV HV

54.55 AV AV AV AV AV AV AV AV AV AV AV AV HV HV HV HV HV HV HV HV HV HV

59.09 AV AV AV AV AV AV AV AV AV AV AV AV AV HV HV HV HV HV HV HV HV HV

63.64 AV AV AV AV AV AV AV AV AV AV AV AV AV AV HV HV HV HV HV HV HV HV

68.38 AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV HV HV HV HV HV HV HV

72.73 AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV HV HV HV HV HV HV

77.27 AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV HV HV HV HV HV

81.82 AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV HV HV HV HV

86.36 AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV HV HV HV

90.91 AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV HV HV

95.45 AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV HV

100.00 AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV AV

in terms of capabilities of dissipating stop-and-go waves, the controllers would only be activated
after 300 seconds, a time at which the stop-and-go waves are fully formed.

3.4 Results

Some simulation results are shown in this section, and performance of the AV algorithms is evalu-
ated. The metrics we are using for evaluation include time to stabilize, maximum final gap, VMT,
and fuel economy.

Definition (Time to Stabilize). The time to stabilize is the minimum time it takes for the standard
deviation of the speeds across all vehicles to become smaller than 0.1, which is the noise we inten-
tionally inject into the acceleration command. To be more precise, the mathematical description
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Table 5. AV Distribution for Scenario II: Evenly Distributed Under Different Penetration Rates

% Vehicle Type

9.09 AV HV HV HV HV HV HV HV HV HV HV AV HV HV HV HV HV HV HV HV HV HV

13.64 AV HV HV HV HV HV HV AV HV HV HV HV HV HV HV AV HV HV HV HV HV HV

18.18 AV HV HV HV HV AV HV HV HV HV HV AV HV HV HV HV AV HV HV HV HV HV

22.73 AV HV HV HV AV HV HV HV HV AV HV HV HV AV HV HV HV HV AV HV HV HV

27.27 AV HV HV HV AV HV HV AV HV HV HV AV HV HV HV AV HV HV AV HV HV HV

31.82 AV HV HV AV HV HV AV HV HV AV HV HV HV AV HV HV AV HV HV AV HV HV

36.36 AV HV HV AV HV AV HV HV AV HV HV AV HV HV AV HV AV HV HV AV HV HV

40.91 AV HV AV HV HV AV HV AV HV HV AV HV AV HV HV AV HV AV HV HV AV HV

45.45 AV HV HV AV HV AV HV AV HV AV HV AV HV HV AV HV AV HV AV HV AV HV

50.00 AV HV AV HV AV HV AV HV AV HV AV HV AV HV AV HV AV HV AV HV AV HV

is as follows:

Tstable = arд min
t

⎧⎪⎪⎨⎪⎪⎩t :

√√
1

21

22∑
i=1

(vi [k] − μ[k])2 ≤ 0.1, μ[k] =

22∑
i=1

vi [k]
⎫⎪⎪⎬⎪⎪⎭ − tactivation , (25)

where tactivation is the time when we switch on the AV, which is 300 seconds in our simulation.
The shorter time implies better wave dissipation capability.

Definition (Maximum Final Gap). The maximum final gap is the maximum gap between any
of two consecutive vehicles on the ring if a ring road is stable. This can be used to evaluate the
efficiency of the use of spacing. Smaller is better. The formal mathematical definition is as follows:

S̄final = max
t ∈[tactivation+Tstable,Tfinal]

max
∀∈i=1,2, ...,22

si [k], (26)

where Tfinal is the timestep at the end of the simulation. To reduce the variations of these values
because of randomness of the microsimulation, the values we are showing in the following are
averages of 10 simulation runs. Because of the randomness, for a few of the controllers, some of the
stable(unstable) results are not 100% reproducible. In other words, for a few AVs, under the same
distribution and the same penetration rate, the simulations may not always be stable(unstable).
For those marginal cases, we can say they are stable if more than 50% of the simulation runs are
stable. For reference, we keep the number of unstable runs for each scenario and show them in
Appendix A.

3.4.1 Scenario I. Given the metrics defined, we can now evaluate the performance of different
AV controllers. In the first scenario, the AV penetration rate from 0% to 100% is studied, where AVs
are placed in the platoon. Some AV controllers can successfully stabilize the ring at a relative low
penetration rate, whereas some need a higher penetration rate to stabilize the ring. Table 6 shows
the minimum number of AVs needed to stabilize the ring and their corresponding time to stabilize,
max gap, VMT, and fuel economy. To be noted, FUZ cannot stabilize the ring for any penetration
rate. Therefore, no values are available. To illustrate the simulation, speed profiles of each vehicle
of each case in the table are shown in Figure 3, and headways of each case in the table are shown
in Figure 4, where red curves represent AVs and blue curves represent HVs. Results of FUZ are
not shown here because the ring is not stabilized for any penetration rates. Table 6 also shows
the VMT and the fuel economy for AVs that stabilized the traffic on the ring. The fuel economy is
calculated using the built-in fuel consumption model of SUMO, which uses the HBEFA 3 Euro 4
passenger car emission model.

Based on Table 6, we can tell that the following controllers are able to stabilize the traffic on
the ring with a minimum of one AV: FollowerStopper, PI, the linear optimal controller, Lyapunov-
based controllers type 1 and type 2, and RL. Although AUG and BCM need four AVs and LACC
needs nine AVs to stabilize the ring, the rest of the controllers need only one AV to stabilize the
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Table 6. Average Performance Comparison of Scenario I

Controller
Minimum No. of AVs

to Stabilize
Time to Stabilize

(in seconds)
Max Gap

(in meters)
VMT

Fuel economy
(in miles per gallon)

AUG 4 88.29 12.19 118.23 16.21
BCM 4 319.68 12.11 128.59 21.46
FS 1 270.85 12.96 126.54 20.51
FUZ Unstable N/A N/A N/A N/A
LACC 9 1,104.77 12.14 130.15 21.15
LinOpt 1 471.23 12.19 125.78 20.89
MLYAU1 1 62.64 116.49 21.83 7.39
MLYAU2 1 625.66 39.65 99.83 16.15
PI 1 263.74 12.03 125.67 20.71
RL 1 102.20 13.12 142.64 20.64

Fig. 3. Speed profiles of the stabilized results: red, AV; blue, HV; black, indication of the beginning of AV

control. For the results of AUG and BCM, four AVs are placed on the ring road. For the result of LACC, nine

AVs are placed on the ring road. For the result of the rest of the AVs, only one AV is placed on the ring road.

ring. Among these controllers, the Lyapunov-based controller type 1 (2.3.7) yields the fastest time
to stabilize. However, from Figure 3, it is notable that after a few seconds in which the vehicles
are stable, all of them simply stop. This is a trivial solution to be stable. Because of this, we can
consider that the RL controller performs the best in terms of time to stabilize.

By looking at the headway, we can observe whether the traffic flow density on the ring road
is uniform. We can observe that the headway between vehicles converges to a steady state when
the traffic on the ring road is stable for all cases in Figure 4. Most AV controllers have similar
headway, except MLYAU1 and MLYAU2, which have relative large headway. MLYAU1 gives the
highest headway since the vehicles go to a complete stop a few seconds after being stable, creating
a huge gap between the AV and the HVs. The baseline values of VMT and fuel economy are 96.71
miles and 13.43 miles per gallon when all vehicles are HVs. In terms of VMT, all cases in the table
perform better than the baseline, because the flow is more smoother, except MLYAU1 basically
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Fig. 4. Headway profiles of the stabilized results: red, AV; blue, HV; black, indication of the beginning of AV

control. For the results of AUG and BCM, four AVs are placed on the ring road. For the result of LACC, nine

AVs are placed on the ring road. For the result of the rest of the AVs, only one AV is placed on the ring road.

blocks the traffic, as mentioned. Fuel economy for all cases are generally better than the baseline
as well, except MLYAU1.

Figure 5 further shows time to stabilize, maximum final gap, VMT, and fuel economy across
different numbers of AVs on the ring. In Figure 5(a) and Figure 5(b), we neglect data points of
unstable simulation results. In Figure 5(a), it can be observed that, generally, the time needed to
be stable is shorter with more AVs on the ring, except PI. PI eventually makes the traffic turn into
total chaos when there are more than eight AVs (~36% penetration rate) on the ring.

In Figure 5(b), we can also observe that the maximum headway is also not very dependent on
the number of AVs on the ring, but it is relatively dependent on the AV types. It should be noted
that MLYAU1 has relatively large headway because what it is doing is basically stopping all the
traffic behind.

Figure 5(c) shows the comparison of VMT and Figure 5(d) shows the fuel economy. In terms of
VMT, we can see that the AVs generally improve the VMT, except FUZ, which is not stable, and
MLYAU1, which basically stops the traffic as we saw previously. The VMT is improved because
the traffic flow is smoother than the baseline scenario. The VMT is generally positively related
to the stability of the ring road. The VMT is almost the same for AVs whose stabilizing time is
almost the same for different penetration rates. For AVs that get more stable (shorter stabilizing
time) with an increasing penetration rate, the VMT is increasing with the penetration rates (e.g.,
BCM, LACC, AUG). However, for the AV that becomes less stable at higher penetration rates, the
VMT decreases (e.g., PI). For fuel economy, we can observe that the fuel economy is improved
for AVs with better stability. Whereas most AVs have generally improved fuel economy than the
baseline case, except some AVs, both FUZ and MLYAU1 have worse fuel economy, because they
either make the traffic less stable or block the traffic. Fuel economy generally gets better with
increased penetration rates. This is particularly significant for the AVs that are not stable at lower
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Fig. 5. Time to stabilize (a), maximum final gap (b), VMT (c), and fuel economy (d) for the clustered case

scenario. For (c) and (d), black dots are the baseline scenario values, where all vehicles are HVs.

penetration rates (e.g., AUG, BCM, LACC). There are two exceptions in which the fuel economy
is getting worse at higher penetration rates: FS and PI. For PI, as we have seen, the stability is
getting worse at higher penetration rates; hence, the fuel economy is also getting worse at higher
penetration rates. It is interesting to note that the fuel economy of FS also gets worse even though
the traffic flow is getting smoother. The possible reason is that FS is actually doing a lot of subtle
acceleration and deceleration. This is because FS is essentially a speed controller, and the process
of converting speed command to acceleration introduces “noise” into the acceleration command,
which causes higher fuel consumption.

3.4.2 Scenario II. Results of scenario II are presented in this section. Similar to the previous
section, for scenario II, the corresponding values when the traffic on the ring is stable are presented
in Table 7. In this scenario, the penetration rate is only limited to about 9% to 50% of AV penetration
in the system given that the placement of the AVs has to follow an even distribution (as shown in
Table 5).

From Table 7, we can see that the overall results appear to be similar to scenario I with mini-
mal changes in the values. Again, it failed to stabilize when FUZ is used. It takes the most num-
ber of AVs for LACC to work, whereas the number of AUG needs to be increased to 6 from
3 and the number of BCM needs to be increased to 5 from 3 in scenario I for the system to
be stable.

To further differentiate the controllers based on their performance at different penetration rates,
results across different penetration rates also presented in Figure 6. Again, we can see the same
trend as in the previous scenario if we look at Figure 6(a) where the time to stabilize for the ring
generally decreases as the AV penetration rate increases, except for PI, where it also could get
unstable at high penetration rates. In Figure 6(b), we can restate our prior observations that the
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Table 7. Average Performance Comparison of Scenario II: Evenly Distributed

Controller
Minimum No. of AVs

to Stabilize
Time to Stabilize

(in seconds)
Max Gap

(in meters)
VMT

Fuel Economy
(in miles per gallon)

AUG 6 272.04 12.19 133.83 22.28
BCM 5 1516.9 12.29 127.06 19.32
FS 1 196.23 12.70 127.17 20.18
FUZ Unstable N/A N/A N/A N/A
LACC 9 1,213.55 12.13 129.98 21.05
LinOpt 1 120.50 12.12 128.99 21.82
MLYAU1 1 61.41 114.97 24.27 7.70
MLYAU2 1 151.23 36.87 101.13 16.82
PI 1 86.98 12.01 128.69 21.13
RL 1 241.03 14.52 138.69 19.70

Fig. 6. Time to stabilize (a), maximum final gap (b), VMT (c), and fuel economy (d) for the evenly distributed

scenario. For (c) and (d), black dots are the baseline scenario values, where all vehicles are HVs.

maximum gap is invariant with respect to the penetration rate except for the two Lyapunov-based
controllers for the same reasons mentioned previously. In Figure 6(c) and (d), the trends of VMT
and fuel economy are also similar to the previous scenario.

3.4.3 Comparison Across Two Scenarios. To further compare the influences of distributions of
AVs, Figure 7 through Figure 10 arrange the results in a different way. We overlay the results of
different scenarios on top of each scenario for different types of AVs. Figure 7 shows the time to
stabilize for each AV. For most of the AVs, the time to stabilize is decreasing with an increasing
penetration rate or kept the same. However, PI shows that as the penetration rate increases, traffic
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Fig. 7. Time to stabilize the ring road for AV controllers under different penetration rates and different

distributions.

becomes less stable. This may imply that PI is more appropriate when AV penetration rate is low.
For most of the AVs, it can be noted that variation of the stabilizing time is not significant across
different AV distributions, whereas it is more relevant to AV types and the penetration rate. BCM
shows a significant difference between two distributions. The performance of BCM is much better
when they are clustered together than being separated.

Figure 8 shows the maximum gap for each AV. Only the results of FS show that the maximum gap
is a little shorter in the case of the evenly distributed scenario. There is no significant discrepancy
for other type of AVs.

Figure 9 shows the VMT for each AV. The VMT is also not sensitive to the variation of AV
distributions. With the help of AVs smoothing traffic flow, the VMTs are significantly increased
compared to the baseline case, except for FUZ and MLYAU1. FUZ results in slightly lower VMT
because it was not able to stabilize the traffic flow under any penetration rate. MLYAU1 stops the
traffic, so the VMT is much smaller than the baseline. Figure 10 shows the fuel economy for each
AV. For AVs, fuel economy does not show much change with the change in penetration rates and
AV distributions.

4 CONCLUSION

In this article, AVs dissipating stop-and-go waves on a ring road are studied under different dis-
tributions and penetration rates. To evaluate their performance, experiments are carried out in a
state-of-the-art simulation framework. Our findings are summarized as follows:

• Out of 10 AVs, 6 AV models are able to stabilize the ring road traffic at a penetration rate as
low as 5%. They are FS, LinOpt, MLYAU1, MLYAU2, PI, and RL.
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Fig. 8. Maximum gap for AV controllers under different penetration rates and different distributions.

• In general, the stabilizing time is shorter if more AVs are placed in the traffic. However, for
PI, the performance is degraded when more AVs are placed.
• FUZ is the only controller that is not able to meet stability based on the set criterion, but

it is able to ensure that the traffic moves on the ring without encountering any vehicular
crashes.
• The RL controller shows the most consistent traffic improvement under all circumstances

for all four metrics. It shows more than 40% VMT improvement while maintaining good fuel
economy.
• MLYAU1 stabilizes the ring road with a trivial speed, where it almost stops all the vehicles

in the system.
• For most of the AVs, the performance of the AVs is not much related to the way they are

distributed among the traffic (except PI and BCM). No matter whether they are clustered (i.e.,
platooned) or evenly distributed, the performance of AVs is pretty much the same. However,
this shall be treated with a caveat. This might only be applicable when we treat control of
AVs individually (i.e., no cooperation/communication among them), as a recent study by Li
et al. [19] mentions that the distribution of AVs may have a big impact when we consider
the cooperation of multiple AVs.
• PI is one of the two controllers that shows some difference between two distributions. It is

interesting to see that the performance of PI is not as good as in the clustered case compared
to being evenly distributed. When PI is placed in the manner of scenario II, the performance
of PI is degraded severely as multiple AVs are placed in the traffic.
• Another controller that shows quite different results for different distributions is BCM.

The results of the time to stabilize also show that it performs better under a clustered
scenario.
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Fig. 9. VMT for AV controllers under different penetration rates and different distributions. The baseline

VMT is 96.71.

Fig. 10. Fuel economy in miles per gallon under different penetration rates and different distributions. The

baseline fuel economy is 13.12 miles per gallon.

ACM Transactions on Cyber-Physical Systems, Vol. 6, No. 1, Article 8. Publication date: January 2022.



8:22 F.-C. Chou et al.

APPENDIX

A NUMBER OF UNSTABLE RUNS

Disclaimer : Because of the randomness, for a few of the controllers, some of the stable (or unstable)
results are not 100% reproducible. In other words, for a few AVs, under the same distribution and
the same penetration rate, the simulations may not always become stable (or unstable). For those
marginal cases, we say they are stable if more than 50% of the simulation runs are stable.

Table 8. Number of Unstable Runs (Out of 10): Clustered

Penetration
Rate (%)

AUG BCM FS FUZ LACC LinOpt MLYAU1 MLYAU2 PI RL

4.55 10 10 0 10 10 0 0 0 1 0
9.09 10 10 0 10 10 0 0 0 0 0
13.64 7 10 0 10 10 0 0 0 0 0
18.18 0 0 0 10 10 0 0 0 0 0
22.73 0 0 0 10 10 0 0 0 0 0
27.27 0 0 0 10 10 0 0 0 0 0
31.82 0 0 0 10 10 0 0 0 0 0
36.36 0 0 0 10 10 0 0 0 1 0
40.91 0 0 0 10 0 0 0 0 8 0
45.45 0 0 0 10 0 0 0 0 9 0
50.00 0 0 0 10 0 0 0 0 9 0
54.55 0 0 0 10 0 0 0 0 10 0
59.09 0 0 0 10 0 0 0 0 10 0
63.64 0 0 0 10 0 0 0 0 10 0
68.18 0 0 0 10 0 0 0 0 10 0
72.73 0 0 0 10 0 0 0 0 10 0
77.27 0 0 0 10 0 0 0 0 10 0
81.82 0 0 0 10 0 0 0 0 10 0
86.36 0 0 0 10 0 0 0 0 9 0
90.91 0 0 0 10 0 0 0 0 6 0
95.45 0 0 0 10 0 0 0 0 10 0
100.00 0 0 0 10 0 0 0 0 10 0

Table 9. Number of Unstable Runs (Out of 10): Evenly Distributed

Penetration
Rate (%)

AUG BCM FS FUZ LACC LinOpt MLYAU2 MLYAU2 PI RL

9.09 10 10 0 10 10 0 0 0 0 0
13.64 10 10 0 10 10 0 0 0 0 0
18.18 10 10 0 10 10 0 0 0 0 0
22.73 10 5 0 10 10 0 0 0 0 0
27.27 0 0 0 10 10 0 0 0 0 0
31.82 0 0 0 10 10 0 0 0 10 0
36.36 0 0 0 10 10 0 0 0 10 0
40.91 0 0 0 10 0 0 0 0 10 0
45.45 0 0 0 10 0 0 0 0 10 0
50.00 0 0 0 10 0 0 0 0 10 0
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