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Abstract
We consider an online optimization problem on
a compact subset S ⊂ Rn (not necessarily con-
vex), in which a decision maker chooses, at each
iteration t, a probability distribution x(t) over
S, and seeks to minimize a cumulative expected
loss,

∑T
t=1 Es∼x(t) [`(t)(s)], where `(t) is a Lip-

schitz loss function revealed at the end of iter-
ation t. Building on previous work, we pro-
pose a generalized Hedge algorithm and show a
O(
√
t log t) bound on the regret when the losses

are uniformly Lipschitz and S is uniformly fat
(a weaker condition than convexity). Finally, we
propose a generalization to the dual averaging
method on the set of Lebesgue-continuous dis-
tributions over S.

1. Introduction
We consider the online optimization setting used by
Zinkevich (2003) and Hazan et al. (2007), where a de-
cision maker chooses, at each iteration t, a probability
distribution x(t) over some compact feasible set S ⊂ Rn,
and incurs a loss Es∼x(t) [`(t)(s)]. When choosing x(t), the
decision maker only has access to (`(τ)(·))1≤τ≤t−1, i.e.
the loss functions up to iteration t − 1. The cumulative
regret is a natural measure of performance in sequential
decision problems; it was introduced by Hannan (1957)
in the context of repeated games, then later used in the
analysis of general sequential decision problems, see
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for example Cesa-Bianchi & Lugosi (2006) and Bubeck
& Cesa-Bianchi (2012). The cumulative regret R(t) at
iteration t is defined as the difference between the loss
incurred by the decision maker and the loss of the best
fixed decision in hindsight, that is,
R(t) =

∑t
τ=1 Es∼x(t) [`(τ)(s)]− infs∈S

∑t
τ=1 `

(τ)(s).

Zinkevich (2003) shows that if the feasible set S is convex,
and the loss functions `(t) are convex with a bounded gra-
dient, a simple online gradient descent algorithm achieves
a O(

√
t) cumulative regret. In 2007, Hazan et al. show

that if the loss functions `(t) are exp-concave, uniformly
in t, a generalized Hedge algorithm achieves a O(log t) re-
gret. The Hedge algorithm, also known as the multiplica-
tive weights update (Arora et al., 2012), has been exten-
sively studied in the discrete case, i.e. when S is a dis-
crete set. The Hedge algorithm was introduced as the ex-
ponentially weighted average forecaster by Littlestone &
Warmuth (1989). It has also been analyzed in the context
of convex optimization, and is known as the exponenti-
ated gradient method (Kivinen & Warmuth, 1997), or the
entropic descent method (Beck & Teboulle, 2003). The
Hedge algorithm is a simple method to implement and to
analyze, and achieves sublinear regret in the discrete case
whenever the loss functions `(t) are uniformly bounded.
More precisely, if the action set has size N and the the
learning rates have a 1/

√
t decay rate, then the regret is

bounded by O(
√
t logN), see for example the analysis

in (Bubeck & Cesa-Bianchi, 2012).

We seek to generalize this regret bound to a setting in which
the action set is a continuum, while making only mild as-
sumptions on the geometry of the set and the class of loss
functions. The logarithmic regret bound achieved by Hazan
et al. (2007) requires the feasible set to be convex, and the
loss functions to be exp-concave. We extend their analy-
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Assumptions on `(t) convex α-exp-concave uniformly L-Lipschitz

Assumptions on S convex convex v-uniformly fat

Method Gradient descent (Zinkevich) Hedge (Hazan et al.) Hedge (this paper)

Learning rates 1/
√
t α 1/

√
t

R(t)/t O
(
1/
√
t
)

O
(
t−1 log t

)
O
(√

t−1 log t
)

Table 1. Some regret upper bounds for different classes of losses.

sis to a less restrictive class of problems, which only re-
quires uniform fatness of the action set (a weaker condi-
tion than convexity) and uniform Lipschitz continuity of
the loss functions. We show that under such assumptions
the Hedge algorithm achieves aO(

√
t log t) regret. Table 1

summarizes the regret bounds for these problem classes.

The online optimization model on a continuum has vari-
ous applications, including machine learning (Hazan et al.,
2007), portfolio optimization (Cover, 1991; Blum & Kalai,
1999), pricing with uncertain demand and transmission
power control over noisy channels (Cope, 2009). By re-
laxing the assumptions of convexity of the feasible set
and exp-concavity of the loss functions, we extend the
class of problems for which the Hedge algorithm provides
bounds on the worst-case regret. For example, in the con-
text of portfolio optimization, this would allow for non-
convex diversification constraints and non-convex transac-
tion costs (Xidonas & Mavrotas, 2014).

In Section 2, we derive a general regret bound for Lip-
schitz losses. In Section 3, we specialize this bound to
convex feasible sets, then relax the convexity assumption
and show that the Hedge algorithm guarantees sublinear
regret on uniformly fat sets. In Section 4, we study the dual
averaging method and prove a regret bound on the set of
Lebesgue-continuous distributions on S, then discuss how
one can recover the Hedge regret bound as a special case.
In Section 5, we compare the Hedge algorithm to learning
on a finite cover of S. Finally, we illustrate these theoretical
results with a numerical example in Section 6.

2. A General Regret Bound on Metric Spaces
Consider a compact metric space (S, d) where d is a dis-
tance function. Let ν be a reference probability measure
on S, and denote by ∆ν(S) the set of probability measures
that are absolutely continuous with respect to ν.

Let `(t) ∈ C0(S,R+) denote the loss function at itera-
tion t. We assume that the losses are bounded uniformly
in t, i.e. ∃M > 0 such that `(t)(s) ∈ [0,M ] for all t ∈ N
and all s ∈ S. The decision maker chooses, at iteration t, a
distribution over S, i.e. an element of ∆ν(S). Its density
w.r.t. ν will be denoted by x(t). The Hedge algorithm with

initial density x(0) and learning rates (ηt), is defined by
the sequence (x(t)) of densities as follows:

x(t+1)(s) =
1

Z̄(t)
x(0)(s) exp

(
−ηt+1

∑t
τ=1`

(τ)(s)
)

(1)

where Z̄(t) is the appropriate normalization constant, i.e.,
Z̄(t) = Es∼x(0)

[
exp(−ηt+1

∑t
τ=1 `

(τ)(s))
]
. The Hedge

algorithm is summarized in Algorithm 1.

Algorithm 1 Hedge algorithm with initial density x(0) and
learning rates (ηt).

for t ∈ N do
Choose action s ∼ x(t)
Observe loss function `(t)

Update x(t+1)(s) ∝ x(0)(s) exp
(
−ηt+1

∑t
τ=1 `

(τ)(s)
)

Define r(t)(s) = Eu∼x(t) [`(t)(u)]− `(t)(s) as the instanta-
neous regret function at iteration t, and

R(t) = sups∈S
∑t
τ=1 r

(τ)(s)

=
∑t
τ=1Es∼x(τ) [`(τ)(s)]− infs∈S

∑t
τ=1`

(τ)(s) (2)

as the cumulative regret. The first term in the above expres-
sion is the expected cumulative loss of the decision maker.
The second term is the infimum of the cumulative loss func-
tion, which will be denoted by

L(t)(s) :=
∑t
τ=1 `

(τ)(s)

Since S is compact and L(t) is continuous, the infimum of
L(t) is attained on S. We write s?t ∈ arg mins∈S L

(t)(s)
for the minimizer.

We start by giving a first regret bound for Lipschitz-
continuous losses. This bound can be obtained as a conse-
quence of Theorem 4.6 of (Audibert, 2009), and a similar
result is proved by (Dalalyan & Salmon, 2012).
Lemma 1. The Hedge algorithm with non-increasing
learning rates (ηt) guarantees

R(t) ≤ M2

8

t∑
τ=1

ητ +
(
ξ(ηt, L

(t))− L(t)(s?t )
)

(3)

where ξ : R+ × L2(S)→ R is given by

ξ(η, L) = −1

η
log

∫
x(0)(s) exp(−ηL(s))ν(ds)
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t∑
τ=1

Ex(τ) [`
(τ)] ≤ M2

8

t∑
τ=1

ητ +

t−1∑
τ=1

(
ξ(ητ , L

(τ))− ξ(ητ+1, L
(τ))
)
+ ξ(ηt, L

(t)) (4)

∂ξ(η, f)

∂η
=

1

η2
log

∫
x(0)(s) exp(−ηf(s)) ν(ds)− 1

η

∫
−f(s)x(0)(s) exp(−ηf(s)) ν(ds)∫

x(0)(s) exp(−ηf(s)) ν(ds)

= − 1

η2
log

1

Zf
− 1

η

∫
−f(s)xf (s)ν(ds) = −

1

η2

∫
log

1

Zf
xf (s)ν(ds)−

1

η2

∫
log exp(−ηf(s))xf (s)ν(ds)

= − 1

η2

∫
log

exp(−ηf(s))
Zf

xf (s)ν(ds) = −
1

η2

∫
log

xf (s)

x(0)(s)
xf (s)ν(ds) = −DKL(xf , x(0)) (5)

Proof. We have

ξ(ηt+1, L
(t+1))− ξ(ηt+1, L

(t))

= − 1

ηt+1
log

∫
x(0)(s) exp(−ηt+1

∑t+1
τ=1 `

(τ)(s)) ν(ds)∫
x(0)(u) exp(−ηt+1

∑t
τ=1 `

(τ)(u)) ν(du)

= − 1

ηt+1
log

∫
x(t+1)(s) exp(−ηt+1`

(t+1)(s)) ν(ds)

= − 1

ηt+1
log Ex(t+1)

[
exp(−ηt+1`

(t+1))
]

≥ Ex(t+1)

[
`(t+1)

]
− ηt+1M

2

8

where the last inequality follows from Hoeffding’s lemma.
Summing the inequalities, we find that∑t

τ=1

(
ξ(ητ , L

(τ))− ξ(ητ , L(τ−1))
)

≥
∑t
τ=1 Ex(τ) [`(τ)]− M2

8

∑t
τ=1 ητ

Rearranging, and observing that ξ(η, L(0)) = ξ(η, 0) =
− 1
η log

∫
x(0)(s) ν(ds) = 0, we obtain equation (4) at the

top of the page.

Next, we show that each term of the second sum in (4) is
non-positive. Since ηt+1 ≤ ηt by assumption, it suffices
to show that, for any bounded Lipschitz function f , η 7→
ξ(η, f) is decreasing. Calculating the partial derivative
w.r.t. η (using Dominated Convergence to differentiate un-
der the integral) we obtain (5), where we use xf to denote
the density function xf (s) = Z−1

f x(0)(s) exp(−ηf(s)),
with Zf the corresponding normalization constant. Thus
∂ηξ(η, f) is proportional to the negative Kullback-Leibler
divergence of xf with respect to x(0), therefore η 7→
ξ(η, f) is non-increasing. The bound (4) then reduces to∑t

τ=1 Ex(τ) [`(τ)] ≤ M2

8

∑t
τ=1 ητ + ξ(ηt, L

(t))

and we conclude by subtracting L(t)(s?t ) =
mins∈S L

(t)(s) from both sides.

Next, we refine this regret bound by bounding the differ-
ence ξ(ηt, L(t))− L(t)(s?t ).

For any measurable subset A ⊆ S, we define the diame-
ter D(A) := sups,s′∈A d(s, s′) and the generalized volume
Vx(0)(A) :=

∫
A
x(0)(s) ν(ds).

Lemma 2. Suppose that the loss functions `(t) are
L-Lipschitz uniformly in t. Consider a sequence (St)
of measurable subsets of S, such that s?t ∈ St for all
t. Then the Hedge algorithm with non-increasing learn-
ing rates (ηt) guarantees the following bound on the regret:

R(t) ≤ M2

8

t∑
τ=1

ητ + tLD(St)−
log Vx(0)(St)

ηt
(6)

Proof. Since the loss functions `(t) are uniformly L-
Lipschitz, we have for all s ∈ St, |`(τ)(s) − `(τ)(s?t )| ≤
Ld(s, s?t ) ≤ LD(St). Hence, `(τ)(s) ≤ `(τ)(s?t ) +
LD(St), and L(t)(s) ≤ L(t)(s?t ) + tLD(St). Therefore

ξ(ηt, L
(t)) ≤ − 1

ηt
log
∫
St
x(0)(s) exp

(
−ηtL(t)(s)

)
ν(ds)

≤ − 1
ηt

log
∫
St
x(0)(s) exp

(
−ηt(L(t)(s?t ) + tLD(St))

)
ν(ds)

= L(t)(s?t ) + tLD(St)LD(St)− 1
ηt

log
∫
St
x(0)(s) ν(ds)

= L(t)(s?t ) + tLD(St)− 1
ηt

log Vx(0)(St)

Combining this with Lemma 1 concludes the proof.

Lemma 2 provides a regret bound in terms of any sequence
(St) of subsets of S, with each St containing s?t , an optimal
decision in hindsight. However, this bound is only useful if
one can construct such a sequence with appropriate relative
decay rates of the diameters and generalized volumes.
More precisely, we have the following corollary.

Corollary 1. Consider the Hedge algorithm with learning
rates (ηt) such that

∑t
τ=1 ητ = o(t). Suppose that there

exists a sequence (St) of subsets with s?t ∈ St,∀ t, and
such that D(St) = o(1) and log Vx(0)(St) = o(tηt). Then
the regret grows sublinearly, i.e. lim supt→∞R(t)/t ≤ 0.

In the next section, we give sufficient conditions on the ac-
tion set S that guarantee the existence of such a sequence.
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3. Sublinear regret in Rn

We now restrict our attention to finite dimensional Eu-
clidean spaces. Let S be a compact subset of Rn. We
start with the simple case of convex S, and construct a se-
quence (St) using a homothetic transformation centered at
s?t , similarly to (Blum & Kalai, 1999). Unless stated other-
wise, we make the following assumption for the remainder
of this paper:
Assumption 1. The reference measure is the Lebesgue
measure λ, and the initial distribution x(0) is the Lebesgue-
uniform distribution over S, i.e. x(0)(s) = 1

λ(S) .

3.1. Sublinear Regret on Convex Sets

Lemma 3. If S is a convex compact subset of Rn and x(0)

is the Lebesgue-uniform probability density over S, then
the set St defined by the homothetic transformation

St =
{
s?t + dt(s− s?t ), s ∈ S

}
(7)

has diameter D(St) = dtD(S) and generalized volume
Vx(0)(St) = λ(St)

λ(S) = dnt .

Proof. We have

D(St) = sups,s′∈St ‖s− s
′‖

= sups,s′∈S ‖s?t + dt(s− s?t )− s?t − dt(s′ − s?)‖
= dt sups,s′∈S ‖s− s′‖

Furthermore, using a change of variable s = s?t + dt(s
′ −

s?t ), s′ ∈ S, we can write

Vx(0)(St) =
∫
St
x(0)(s)λ(ds) = 1

λ(S)

∫
St
λ(ds)

= 1
λ(S)

∫
S
|det(dtIn)|λ(ds′) = dnt

Theorem 1 (Hedge on convex compact subsets of Rn). Let
S ⊂ Rn be convex and compact, and suppose that the `(t)

are L-Lipschitz uniformly in t. Then under the Hedge algo-
rithm with learning rates ηt = θt−α

√
log t, α ∈ [0, 1), we

have

R(t)

t
≤ M2θ

8(1− α)

√
log t

tα
+

LD(S)

t
+
n

θ

√
log t

t1−α
(8)

In particular, the per-round regret isO
(
t−ᾱ
√

log t
)
, where

ᾱ = min(α, 1− α).

Proof. Constructing the sequence St as in Lemma 3, it
follows from the regret bound (6) that

R(t)

t ≤
M2θ

8

∑t
τ=1 τ

−α

t + LD(S)dt − n log dt
θ t1−α

Bounding
∑t
τ=1 ητ ≤ θ

√
log t

∑t
τ=1 τ

−α ≤
θ
√

log t
∫ t

0
τ−αdτ = θt1−α

√
log t

1−α , we have

R(t)

t ≤
M2θ

8(1−α)

√
log t
tα + LD(S)dt + n

θ
log 1/dt

t1−α
√

log t

Now (8) follows by taking dt = 1/t.

Corollary 2. Under the assumptions of Theorem 1, with
ηt = η constant, we have R(t)

t ≤ M2η
8 + LD(S)

t +
n log t
η t . For a given horizon T , we can choose η =

M−1
√

8n log T/T to minimize this bound, for which

R(T )

T
≤ LD(S)

T
+M

√
n log T

2T
(9)

3.2. Sublinear Regret on Uniformly Fat Sets

The convexity assumption can, in fact, be relaxed, while
keeping the same asymptotic rate of the regret. Intuitively,
to be able to use the sequence (St) of sets as constructed
in Lemma 3, it suffices to find, for each s?t , a convex set
Kt containing s?t such that its volume Vx(0)(Kt) = λ(Kt)

λ(S)

is uniformly bounded below. This motivates the following
relaxation of convexity.

Definition 3.1 (Uniform fatness). A set S ⊂ Rn is v-
uniformly fat w.r.t. the density x if, for all s ∈ S, there
exists a convex set Ks ⊆ S such that s ∈ Ks and
Vx(Ks) =

∫
Ks
x(s)λ(ds) ≥ v.

Intuitively, the uniform fatness property ensures that there
is sufficient volume around any point of the set, so that it
is possible to assign sufficient probability mass around the
optimal point s?t in particular. Note that uniform fatness
excludes isolated points, but does not require the set to be
connected.

s

SKs

s?t

S

Ks?t

St

Figure 1. Illustration of the uniform fatness condition (left) and
the construction of the set St = s?t + dt(Ks?t

− s?t ) in the proof
of Theorem 2 (right).

We are now ready to give a regret bound for the Hedge
algorithm on uniformly fat sets.

Theorem 2. Let x(0) be Lebesgue uniform, and suppose
that S is v-uniformly fat w.r.t. x(0) and that the loss func-
tions are L-Lipschitz uniformly in time. Then the regret of
the Hedge algorithm with learning rates ηt = θ t−α

√
log t,

α ∈ [0, 1), satisfies

R(t)

t
≤ M2θ

8(1− α)

√
log t

tα
+

LD(S)

t
+
n log t+ log 1

v

θ t1−α
√

log t
(10)

In particular, if S is convex, then it is 1-uniformly fat, and
Theorem 1 becomes a special case of Theorem 2.
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Proof. Since S is v-uniformly fat, for all t, there exists a
convex measurable subset Ks?t

⊂ S with s?t ∈ Ks?t
and

Vx(0)(Ks?t
) ≥ v. Similarly to (7), define St as the ho-

mothetic transformation of Ks?t
with center s?t and ratio

dt. By Lemma 3, we have D(St) = dtD(K?
t ) ≤ dtD(S)

and Vx(0)(St) = dnt Vx(0)(Kt) ≥ dnt v. Applying the regret
bound (6) with ηt = θt−α

√
log t, we have

R(t)

t
≤ M2θ

8(1− α)

√
log t

tα
+ LD(St)−

log Vx(0)(St)

θt1−α
√
log t

≤ M2θ

8(1− α)

√
log t

tα
+ dtLD(S)− log(dnt v)

θt1−α
√
log t

and we conclude by taking dt = 1/t.

Corollary 3. Under the assumptions of Theorem 2, with
constant learning rate ηt = η, we have R(t)

t ≤ M2η
8 +

LD(S)
t + n log t−log v

η t . For a given horizon T , we can

choose ηT = M−1
√

8(n log T − log v)/T to minimizes
this bound, for which

R(T )

T
≤ LD(S)

T
+M

√
n log T − log v

2T
(11)

Remark 1. If S ⊂ Rn is a lower-dimensional manifold, it
is not uniformly fat with respect to the Lebesgue measure
on Rn. However, if it is homeomorphic to a uniformly fat
S′ ⊂ Rm, m < n, then one can run the Hedge algorithm
on S′ instead.

4. Dual Averaging on L2(S)

In this Section, we study a more general family of algo-
rithms based on the dual averaging method.

Dual averaging (Nesterov, 2009) is a general method for
solving constrained optimization problems. It was applied
to online learning on a convex subset of Rn, for example
in (Xiao, 2010) and (Bubeck, 2014). Building on these
ideas, we propose to apply it to our problem of learning
on uniformly fat sets.

Consider a Hilbert space E, and a feasible set X ⊂ E,
assumed closed and convex. Given a sequence (`(t)) of lin-
ear functionals in the dual space E∗, the method projects,
at each step, the cumulative dual vector L(t) =

∑t
τ=1 `

(τ)

onto the feasible set, using a Bregman projection. This is
summarized in Algorithm 2. In constrained convex opti-
mization, one seeks to minimize a convex function f over
X , and the dual vectors `(t) are taken to be subgradients of
f at the current iterate, but dual averaging provides regret
guarantees without requiring `(t) to be subgradient vec-
tors. The function ψ in Algorithm 2 is assumed to be `ψ-
strongly convex with respect to a norm1 ‖ · ‖ on E, that

1The reference norm ‖ · ‖ need not necessarily be the norm
induced by the inner product on E.

Algorithm 2 Dual averaging method with input sequence
(`(t)) and learning rates (ηt)

1: for t ∈ N do
2: L(t) =

∑t
τ=1 `

(τ)

3: Update

x(t+1) = arg min
x∈X

〈
L(t), x

〉
+

1

ηt+1
ψ(x) (12)

is, ψ(x) ≥ ψ(y) + 〈∇ψ(y), x− y〉 +
`ψ
2 ‖x − y‖

2 for all
x, y ∈ X . To simplify the discussion, we also assume,
without loss of generality, that infx∈X ψ(x) = 0.

The dual averaging update (12) can be written in terms
of the Legendre-Fenchel transform of ψ: Let ψ∗(L) =
− infx∈X ψ(x)−〈L, x〉. Note that the minimum is attained
and the minimizer is unique since ψ is strongly convex and
X is closed and convex (Theorem 11.9 in (Bauschke &
Combettes, 2011)). Then ∇ψ∗(L) = arg minx∈X ψ(x) −
〈L, x〉, and the update (12) can be written

x(t+1) = ∇ψ∗(−ηt+1L
(t)).

To apply the dual averaging method to our problem of
learning on S, let E = L2(S), the Lebesgue space of
square integrable functions2 on S, endowed with the inner
product 〈f, g〉 =

∫
S
f(s)g(s)λ(ds), and the feasible set

X :=
{
f ∈ L2(S) : f ≥ 0 a.e. and

∫
S
f(s)λ(ds) = 1

}
.

Note that while X is closed and convex, it may be un-
bounded3. An element f ∈ X will be identified with the
probability distribution with density f . The dual space is
E∗ = L2(S), and since S is compact, E∗ contains, in par-
ticular, the set C0(S) of continuous functions on S.

We next show that the regret of the dual averaging method
grows sublinearly under appropriate assumptions on the
feasible set S and the regularizer ψ. The result extends
the regret bound of (Nesterov, 2009) to L2(S). We will
use the following Lemma, which can be proved following
Lemma 1 in (Nesterov, 2009), mutatis mutandis.

Lemma 4. If ψ is `ψ-strongly convex w.r.t. ‖ · ‖. Then ψ∗

is 1
`ψ

-smooth w.r.t. ‖ · ‖∗, that is, for all x, y

ψ∗(x)− ψ∗(y)− 〈∇ψ∗(y), x− y〉 ≤ 1
2`ψ
‖x− y‖2∗.

Lemma 5 (Dual averaging regret bound). Suppose that
there exists M > 0 such that for all t, ‖`(t)‖∗ ≤ M . Then
under the dual averaging method with non-increasing
learning rates (ηt), for all x ∈ X ,

2An element of E is, in fact, an equivalence class of functions
equal almost everywhere.

3Consider for example the simple case S = [0, 1], and the
sequence fn = n1[0, 1

n
], for which ‖fn‖1 = 1 but ‖fn‖2 =

√
n.
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t∑
τ=1

〈
`(τ), x(τ) − x

〉
≤ 1

ηt
ψ(x) +

M2

2`ψ

t∑
τ=1

ητ (13)

Proof. We use a similar argument to the proof of Lemma 1.
Define the potential function ξ : R+ × L2(S)→ R

ξ(η, L) = − 1
ηψ
∗(−ηL) = 1

η infx∈X 〈ηL, x〉+ ψ(x)

We first show the following inequality:〈
x(t), `(t)

〉
≤ ξ(ηt, L(t))− ξ(ηt−1, L

(t−1)) +
ηt

2`ψ
‖`(t)‖2∗

(14)
Since ψ is `ψ-strongly convex, by Lemma 4, ψ∗ is 1

`ψ
-

smooth, therefore

ψ∗(− ηtL(t))− ψ∗(−ηtL(t−1))

≤
〈
∇ψ∗(−ηtL(t−1)),−ηt`(t)

〉
+

1

2`ψ
‖ηt`(t)‖2∗

= −ηt
〈
x(t), `(t)

〉
+

η2t
2`ψ
‖`(t)‖2∗

Dividing by ηt and rearranging, we have〈
x(t), `(t)

〉
≤ ξ(ηt, L(t))− ξ(ηt, L(t−1)) +

ηt
2`ψ
‖`(t)‖2∗.

To prove (14), it suffices to show that η 7→ ξ(η, L) is de-
creasing. Taking the derivative with respect to η,

∂ηξ(η, L) =
1

η2
ψ∗(−ηL)− 1

η
〈−L,∇ψ∗(−ηL)〉

=
1

η2
(ψ∗(−ηL) + 〈ηL,∇ψ∗(−ηL)〉)

≤ 1

η2
ψ∗(0) by convexity of ψ∗

= − 1

η2
inf
x∈X

ψ(x) = 0

which proves inequality (14). Summing over τ ∈
{1, . . . , t}, and using the bound on ‖`(t)‖∗, we have

t∑
τ=1

〈
`(τ), x(τ)

〉
≤ ξ(ηt, L(t))− ξ(η0, L

(0)) +
M2

2`ψ

t∑
τ=1

ητ

Finally, by definition of ξ,

ξ(η0, L
(0)) =

1

η0
inf
x∈X

ψ(x) = 0

ξ(ηt, L
(t)) =

1

ηt
inf
x∈X

〈
ηtL

(t), x
〉
+ ψ(x) ≤

〈
L(t), x

〉
+

1

ηt
ψ(x)

Therefore
t∑

τ=1

〈
`(τ), x(τ)

〉
≤
〈
L(t), x

〉
+

1

ηt
ψ(x) +

M2

2`ψ

t∑
τ=1

ητ

which proves the claim.

Lemma 5 gives an upper bound on the regret with respect
to elements of X , the set of Lebesgue-continuous densities.
This can also provide a bound on the regret (2), with respect
to elements of S, as defined in Section 2, by observing that
when S is uniformly fat4,

R(t) =
∑t
τ=1

〈
`(τ), x(τ)

〉
−mins∈S

∑t
τ=1 `

(τ)(s)

=
∑t
τ=1

〈
`(τ), x(τ)

〉
− infx∈X

〈∑t
τ=1 `

(τ), x
〉
.

In particular, if ψ is bounded on X , then it follows from
Lemma 5 that

R(t) ≤ 1

ηt
sup
x∈X

ψ(x) +
M2

2`ψ

t∑
τ=1

ητ

which implies that the regret is sublinear for ηt = Θ(t−α),
α ∈ (0, 1), for any sequence of continuous losses. How-
ever, when X is unbounded, so is ψ by strong convexity.
But one can still obtain a sublinear bound on the regret for
Lipschitz losses, as stated in the following Theorem.

Theorem 3 (Dual averaging regret for Lipschitz losses).
Suppose that `(t) is L-Lipschitz, and ‖`(t)‖∗ ≤ M , uni-
formly in t. Then the dual averaging method with learning
rates (ηt) guarantees the following bound on the regret:
For any positive sequence (dt),

R(t)

t
≤ M2

2`ψ

∑t
τ=1ητ
t

+ LD(S)dt +
1

tηt
infx∈Btψ(x)

(15)

where Bt⊂ X denotes the set of Lebesgue-continuous den-
sities supported on B(s?t , D(S)dt).

Proof. Since the losses are L-Lipschitz, we have, ∀x ∈ Bt,〈∑t
τ=1 `

(τ), x
〉

=

∫
Bt

∑t
τ=1 `

(τ)(s)x(s)λ(ds)

≤
∫
Bt

∑t
τ=1(`(τ)(s?t ) + LD(S)dt)x(s)λ(ds)

= L(t)(s?t ) + tLD(S)dt

Thus, for all x ∈ Bt,

R(t) =
∑t
τ=1

〈
`(τ), x(τ)

〉
− L(t)(s?t )

≤
∑t
τ=1

〈
`(τ), x(τ) − x

〉
+ tLD(S)dt

≤ 1
ηt
ψ(x) + M2

2`ψ

∑t
τ=1 ητ + tLD(S)dt

where the last inequality uses Lemma 5. We conclude by
dividing by t and taking the infimum over x ∈ Bt.

In the finite dimensional case, the Hedge algorithm is
known to be an instance of the dual averaging method,

4Proof in the supplementary material.
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when the feasible set X is the simplex, and the distance
generating function ψ is the negative entropy function, as
observed by Nesterov (2009), Beck & Teboulle (2003), and
many others. This is also true in the infinite dimensional
case, as discussed for example in (Audibert, 2009) and in
Chapter 5 in (Catoni, 2004). Next, we apply the regret
bound of Theorem 3 to the Hedge algorithm.
Example 1 (Hedge algorithm or the entropic dual averag-
ing). Let the reference measure be the Lebesgue measure
on S, denoted by λ, and let ψ be the generalized negative
entropy, defined by

ψ(f) =

∫
S

f(s) log f(s)λ(ds) + log λ(S) (16)

Note that ψ(f) is the Kullback-Leibler divergence of f with
respect to the Lebesgue-uniform distribution. By Pinsker’s
inequality, ψ is 1-strongly convex with respect to the total
variation norm ‖f‖ =

∫
|f(s)|λ(ds). Furthermore, ψ is

nonnegative since it is minimal on the Lebesgue uniform
distribution, for which it takes value 0. One can show that
ψ∗(f) = log 1

λ(S)

∫
S

exp(f(s))λ(ds), thus the definitions
of ξ(η, L) in Lemmas 1 and 5 coincide.

With this choice ofX and ψ, the dual averaging update can
be shown to be equal to the Hedge density (1):
Proposition 1. Let L(t) ∈ E∗, and consider the dual
averaging iteration (12) with ψ the negative entropy (16).
Then the solution x(t+1) is given by the Hedge update rule

x(t+1)(s) =
1

Z̄(t)
e−ηt+1L

(t)(s)

with normalization constant Z̄(t) =
∫
S
e−ηt+1L

(t)(s)λ(ds).
A proof is provided in the supplementary material for com-
pleteness.

By Theorem 3, the regret of the Hedge algorithm with Lip-
schitz losses is then bounded as follows

R(t)

t
≤ M2

2

∑t
τ=1 ητ
t

+ LD(S)dt +
1

tηt
infx∈Bt ψ(x)

In order to bound the last term, consider a subset St ⊂
B(s?t , D(S)dt), and take x to be the uniform distribution
over St (thus x ∈ Bt). Then

ψ(x) = log λ(S) +

∫
St

1

λ(St)
log

1

λ(St)
λ(ds) = log

λ(S)

λ(St)

Now, if S is v-uniformly fat, then there exists a convex
set Kt containing s?t , such that λ(Kt)/λ(S) ≥ v, and
constructing St as in the proof of Theorem 1, as the ho-
mothetic transform of Kt with center s?t and ratio dt we
have D(St) ≤ D(S)dt and λ(St)/λ(S) ≥ vdnt , therefore
infx∈Bt ψ(x) ≤ − log(vdnt ), and taking dt = 1/t,

R(t)

t
≤ M2

2

∑t
τ=1 ητ
t

+
LD(S)

t
+
n log t− log v

t ηt

which results in a regret bound similar to Theorem 2.

5. Learning on a finite cover
In this section, we briefly compare our method to a related
idea: for a given horizon, compute a finite cover of the set,
such that the maximum difference of losses on each ele-
ment of the cover is small enough, and then perform a dis-
crete learning algorithm on the finite cover.

More precisely, fixing a horizon T and a constant εT > 0,
suppose that we can compute a finite cover AT of S such
that, for all ST ∈ AT ,

sup
s,s′∈ST

|`(t)(s)− `(t)(s′)| ≤ εT . (17)

If we call R̃(t) the regret with respect to the discrete set,
then running the discrete Hedge algorithm on this finite
cover with learning rate η guarantees (Bubeck & Cesa-
Bianchi, 2012) that

R̃(T )

T
≤ M2

8
η +

log |A|
Tη

and the optimal η given the horizon T yields the regret
bound R̃(T )/T = O

(√
log |A | /T

)
. Since we incur at

most εT additional per-round regret due to the variation
of losses within each element of the cover, we have that
R(T )/T = O

(√
log |A| / T + εT

)
.

Since the loss functions are L-Lipschitz, a sufficient condi-
tion for (17) to hold is to have each element ST of the cover
have diameter D(ST ) ≤ εT /L. Thus, the size of the cover
is typically |AT | = O(1/εnT ). Under this estimate of the
size ofAT , we have R(T )/T = O

(√
−n log εT / T + εT

)
,

and choosing εT = 1/
√
T , we obtain the bound

R(T )/T = O
(√

n log T/T
)

which matches the regret rate of Corollary 3.

The Hedge algorithm on uniformly fat sets is conceptually
similar to the idea of working with a finite cover. This is
most visible in the proof of Theorem 2, where we rely on
the existence of a set around s?t with an appropriate rela-
tionship between diameter and volume. To apply the Hedge
algorithm, one needs to sample from the distributions x(t),
without having to explicitly construct a cover. Sampling
from the distribution can be more tractable, as is the case
in the example of Section 6.

6. Numerical results
We test our algorithm on a numerical example in R2 with
convex quadratic loss functions of the form

`(t)(s) =
1

2
(s− µt)>Qt(s− µt) + ct

restricted to the domain S ⊂ R2 shown in Figure 2.
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Figure 2. The set S for the numerical example.

If x(0) is the uniform distribution over S one can show that

x(t+1)(s) ∝ |Q̃t|−1/2 exp
(
−1

2
(s− µ̃t)>Q̃t(s− µ̃t)

)
on S, so x(t+1) is a multivariate Gaussian distribution re-
stricted to S with covariance matrix Q̃t = ηt

∑
τ≤tQτ and

mean µ̃t = Q̃−1
t ηt

∑
τ≤tQτµτ . Hence the size of the

parameter space required to represent the cumulative loss
(and thus the Hedge densities) is independent of the hori-
zon.

Remark 2. Since the Hedge distributions are, in this case,
multivariate Gaussian, sampling from these distributions
can be done efficiently. This example is one instance of a
problem in which one can directly sample from the Hedge
distributions without having to maintain a discrete cover.
More generally, the complexity of the Hedge algorithm de-
pends on the complexity of sampling from the Hedge distri-
butions.

For a simulation horizon of T = 104, we randomly gen-
erated the parameters µt, Qt and ct of the loss functions
subject to the uniform bounds M = 10 and L = 5. The
set S has diameter D = 5.83 and is v-uniformly fat with
v = 0.273. We simulated the algorithm 2500 times for
each of the different choices of the learning rates. Figure 3
shows means (solid lines), regret bounds (dashed lines) and
regions between the 10% and 90% quantiles (shaded) of the
per-round cumulative regret over these simulations. To de-
termine the regret, the computation of the best choice in
hindsight for each period t was performed by solving mul-
tiple quadratic programs on a convex decomposition of S.

Figure 3. Mean time-average cumulative regret (solid), 10% and
90% quantiles (shaded regions) and worst-case bounds (dashed).

We first verify from Figure 3 that the regret bound (10)
is satisfied. Since the loss functions are generated ran-
domly (and not adversarially), the regrets observed in sim-
ulation are much smaller than the theoretical regret bounds.
We further note that the optimal constant learning rates
ηopt from Corollary 3 are outperformed by higher constant
learning rates5, an observation familiar from the discrete
case (Even-Dar et al., 2008; Koolen et al., 2014).

Finally, Table 2 compares the decay rates of the per-round
cumulative regret (solid lines in Figure 3), estimated using
a linear regression on log R(t)

t as a function of log t, with
those of the corresponding theoretical bound (10) (dashed
lines). The observed rates of decay are higher than those of
the theoretical bounds.

ηt simulation bound bound (t→∞)

t−0.15 −0.778 −0.173 −0.150
t−0.3 −0.644 −0.397 −0.300

Table 2. Decay rates of the per-round regret.

7. Concluding remarks
We studied an online optimization problem over a com-
pact subset S of Rn. Previous work shows that when S
is convex, one can achieve O(

√
t) cumulative regret using

a gradient descent method when the losses are convex, and
O(log t) cumulative regret using a generalized Hedge al-
gorithm when the losses are uniformly exp-concave. We
consider Lipschitz losses, and relax the convexity assump-
tion of S. In particular, we show that as long as the set
is uniformly fat, i.e. there exists a convex set of minimal
volume v around all points of the set, then the generalized
Hedge algorithm achieves O(

√
t log t) regret. We further

proved a regret bound for dual averaging method, a gen-
eralization of the Hedge algorithm. A question which re-
mains open is whether the uniform fatness condition is nec-
essary for a given class of algorithms to achieve sublinear
regret.

A related problem, which is not studied here, is bandit
learning on a continuum, in which only the current loss
value `(t)(s(t)) is revealed. This problem is studied for
example by Bubeck et al. (2011) for Lipschitz losses and
general topological spaces. A hierarchical algorithm is pro-
posed, which achieves a O(td1(log t)d2) where d1, d2 ≤ 1
depend on the geometry of the problem. The algorithm re-
quires explicitly computing a hierarchical cover of the set.
One question is whether one can generalize the Hedge al-
gorithm to such a bandit setting, so that sublinear regret can
be achieved without the need to explicitly maintain a cover.

5Due to the rather weak assumptions on the action set and the
loss functions, the optimal learning rate ηopt(T ) for the known
horizon T derived from Corollary (3) is very small.
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