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An aggregate air traffic flow model based on a multicommodity network is used for traffic
flow management in the National Airspace System. The problem of minimizing the total
travel time of flights in the National Airspace System of the United States, subject to sector
capacity constraints, is formulated as an Integer Program. The resulting solution achieves
optimal delay control. The Integer Program implemented for the scenarios investigated
has billions of variables and constraints. It is relaxed to a Linear Program for computational
efficiency. A dual decomposition method is applied to solve the large scale Linear Program
in a computationally tractable manner. A rounding algorithm is developed to map the Lin-
ear Program solution to a physically acceptable result, and is implemented for the entire
continental United States. A 2-h traffic flow management problem is solved with the
method.
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1. Introduction

The National Airspace System (NAS) in the United States is a large scale, nonlinear dynamic system with a control authority
which is organized hierarchically. A single Air Traffic Control System Command Center (ATCSCC) in Herndon, VA, supervises the
overall traffic flow. Organized by geographical region, the airspace is divided into 22 (20 in the continental US) Air Route
Traffic Control Centers (ARTCCs, or simply, Centers), controlling the airspace up to 60,000 feet (Nolan, 2003). Each Center
is sub-divided into smaller regions, called Sectors, with at least one Air Traffic Controller responsible for each sector. The last
few decades have witnessed the almost uninterrupted growth of air traffic. Except for a dip immediately after the tragic
events of September 11, 2001, air traffic in the United States continues to grow at a steady pace. There are different growth
scenarios associated both with the magnitude and the composition of the future air traffic. In particular, the Terminal Area
Forecast (TAF), prepared every year by the Federal Aviation Administration (FAA), projects the growth of traffic in the United
States (Anonymous, 2005). Since the main function of Air Traffic Controllers is to maintain safe separation between aircraft
while guiding them to their destinations, an imbalance between the growth of air traffic and airspace capacity poses poten-
tial safety and efficiency issues to the air traffic control system. Thus, the design of a semi-automated Air Traffic Control (ATC)
system is promising to help Air Traffic Controllers manage the increasing complexity of traffic flow in the en route airspace.

Current Traffic Flow Management (TFM) operations in the United States have two coupled phases. The first phase includes
national-level flow management initiatives over a 2–8 h planning horizon. This is administrated by the ATCSCC, interested in
overall traffic flow. The goal of national traffic flow management is to account for user-preferred gate-to-gate trajectories by
er Ltd.
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managing and allocating NAS resources in situations when demand approaches or exceeds supply (Sridhar et al., 2008;
Grabbe et al., 2009). In the second phase, Center-level controls are designed for local flows and or refinement of the na-
tional-level plan in response to updated weather and traffic information. This Center-level management is performed over
a 30 min to 2 h time horizon as a tactical control loop to implement the national-level initiatives and to introduce local flow
control initiatives such as miles-in-trail and tactical rerouting (Idris et al., 2006; Vossen et al., 2000; Grabbe et al., 2009). In
the current air traffic system, national and tactical flow management heavily relies on human operators, with a limited num-
ber of decision support tools such as the Enhanced Traffic Management System (ETMS) (Volpe National Transportation Center,
2005) and the Flight Schedule Monitor (FSM) (US Department of Transportation and Federal Aviation Administration, 2008).
Human operations are based on a combination of intuition and past experience, which can possibly result in inefficient con-
trolling of air traffic flows. Meanwhile, air traffic in the United States is forecasted to double or triple over the next twenty
years (Joint Planning and Development Office, 2009). There is thus a need to develop advanced traffic management concepts
and techniques that can (partially) automate the control process and therefore maximize the throughput and efficiency of
the NAS under limited resources.

In order to evaluate the impact of TFM procedures on overall NAS performance, a number of metrics, such as delay, safety,
predictability, access, flexibility, and efficiency, have been proposed to describe the performance of the system (Bradford
et al., 2000), and details about the metrics are available in Bolczak et al. (1997), Gosling (1999) and Kopardekar et al.
(2009), among which delay has been used extensively to assess the performance of NAS (Callaham et al., 2001; Wang
et al., 2003; Bratu and Barnhart, 2005; Chatterji and Sridhar, 2005a; Xu et al., 2005; Laskey et al., 2006; Sridhar and Swei,
2006, 2007; Klein, 2007; Churchill et al., 2007). A number of recent studies have proposed methods to facilitate the devel-
opment of TFM control strategies. In general, there are two complementary parts for these studies: (i) Models for the air traf-
fic system. (ii) Optimization methods for optimal TFM.

Among air traffic models, methods based on aggregate modeling have been of significant interest to the Air Traffic
Management (ATM) community in the recent years. Aggregate and reduced order models simplify the analysis and design
of numerous complex systems. The dimension and complexity of an aggregate model do not change with respect to the num-
ber of flights in general, which is a very useful feature to study benchmark scenarios in which air traffic doubles or triples
(Menon et al., 2002; Sridhar et al., 2006; Bayen et al., 2006; Sun and Bayen, 2008). Aggregate models thus contrast with phys-
ics-based modeling approaches including the Center TRACON Automation System (CTAS) (Erzberger, 1992), the Future ATM
Concepts Evaluation Tool (FACET) (Bilimoria et al., 2001), and the Collaborative Routing Coordination Tool (CRCT) (Rhodes
et al., 2001), which are agent-based models. The development of aggregate flow models for air traffic flow management
has been the subject of considerable interest since the first model (Menon et al., 2002) appeared in the literature. Previously
published aggregate flow models (Sridhar et al., 2006) represent and predict the traffic behavior to a high degree of accuracy
and can be tailored to the time-scales and regions of interest. A comparison of the characteristics of the different aggregate
flow models can be found in previous studies (Sridhar and Menon, 2005; Sun et al., 2006, 2007). In addition, stability and
response characteristics of the aggregate flow models are presented in Chatterji and Sridhar (2005b). The aggregation in flow
models generally results in the loss of information about the route structure of individual aircraft. Recent studies have shown
that efficient disaggregation methods can be designed to convert flow-based (aggregate) solutions to flight-specific control
actions (Sun et al., 2009, 2010).

In parallel, optimization techniques are developed (mostly based on specific or a class of air traffic models) to facilitate
the design of TFM strategies. Current popular TFM control schemes have been mainly focused on ground delay and/or rero-
uting flights to accommodate capacitated elements, en route sectors and airports (Lulli and Odoni, 2007). TFM studies focus-
ing on optimal ground delays have been conducted by many researchers, from both deterministic and probabilistic
perspectives (see Odoni, 1987; Terrab and Odoni, 1993; Gilbo, 1993; Vranas et al., 1994; Andreatta et al., 1995; Andreatta
and Brunetta, 1998; Navazio and Romanin-Jacur, 1998; Bertsimas and Stock Patterson, 1998; Hoffman and Ball, 2000;
Dell’Olmo and Lulli, 2003; Vossen et al., 2003; Ball and Lulli, 2004; Ball et al., 2005; Vossen and Ball, 2005; Vossen and Ball,
2006; Ball et al., 2010), and flight delay propagation has also been studied (Churchill et al., 2010). Odoni formulated the TFM
problem using a large number of models and algorithms to detect optimal strategies to assign ground delays to flights (see
Odoni, 1987; Bertsimas et al., 2008). Helme was among the first to include en route capacity restrictions in the TFM problem
(Helme, 1992), which is intuitive to understand but has weak computational performance as was discussed in Bertsimas
et al. (2008). Lindsay et al. formulated a disaggregate deterministic 0–1 integer programming model for deciding ground
and airborne holding of individual flights in the presence of both airport and airspace capacity constraints (Lindsay et al.,
1993). A deterministic, open-loop integer programming method was formulated to assign departure time and sector occu-
pancy time of each aircraft in the work of Bertsimas and Stock Patterson (1998), but the computational complexity of this
model has limited its use to a small number of real-world examples as was shown in Grabbe et al. (2007). To improve the
runtime, a method that reduces the number of flights to be optimized was proposed in Rios and Ross (2008); and more re-
cently, a Dantzig–Wolfe decomposition method was implemented for the Bertsimas and Patterson model (Rios and Ross,
2010), which actually motivated several studies (including the work in this paper) using decomposition methods to solve
large scale TFM problems. The work in Bertsimas and Stock Patterson (1998) was extended to provide a complete represen-
tation of all the phases of each flights including rerouting strategies (Bertsimas et al., 2008). In Sherali et al. (2002), a binary
integer programming was proposed for a TFM problem, which considers controller workload, airspace safety, and equity
among airlines. Subsequently, the binary IP was extended to incorporate rerouting, in Sherali et al. (2003) and Sherali
et al. (2006). Research that considers equity or market-based traffic management using aggregate models has been



882 D. Sun et al. / Transportation Research Part B 45 (2011) 880–902
conducted in Bloem and Sridhar (2008), Waslander et al. (2008a,b). Sridhar et al. proposed an integrated three-step hierar-
chical method for developing deterministic TFM plans consisting of national-level playbook reroutes, miles-in-trail restric-
tions, and tactical reroutes to alleviate sector-level congestion (Sridhar et al., 2002). Subsequently, Kopardekar and Green
used a deterministic, Center-based system to manually identify congested sectors and compare the trade-offs of implement-
ing altitude capping, local rerouting, departure delays, and time-based metering or miles-in-trail restrictions (Kopardekar
and Green, 2005). Wanke and Greenbaum proposed a Monte Carlo-based incremental, probabilistic decision making ap-
proach for developing en route traffic management controls in Wanke and Greenbaum (2007). More recently, Grabbe
et al. applied a sequential optimization method to manage air traffic flow under uncertainty in airspace capacity and demand
(Grabbe et al., 2009).

In the present article, we use the framework of aggregate air traffic models for strategic TFM, in which optimization for
TFM can be cast in the form of optimization-based control of a dynamical system evolving on a network. Although the same
methodology could be applied for air traffic control in a smaller portion of the airspace (such as a sector, which mainly
concerns the separation of aircraft), it is not the main focus of this work. In this proposed study, given flight departures
and destinations, we solve the problem of minimizing the total flight time for all the flights in the entire NAS, by assigning
optimal en route delay control actions (such as holding patterns, change of speed) to a group of aircraft in specific sectors
along their paths, so that the sector capacity will be respected. The formulation is shown to be adaptable for consideration
of optimal ground delay control when airports are part of the model. Because of the size of the optimization problem and
the accuracy of the model, the problem, formulated as an Integer Program, has billions of variables and constraints. It is
relaxed to a large scale Linear Program for computational efficiency. Solving the Linear Program directly is prohibitively
complex due to its high dimension. A method based on dual decomposition is applied to solve the problem (Bertsekas,
2002).

The method of dual decomposition has been used since the 1960’s with the historical work of Dantzig and Wolfe (1960). A
good, modern reference of dual decomposition is Chapter 6 in the book of Bertsekas (2002). The dual decomposition method
has been applied in engineering, such as in rate control for communication networks (Kelly et al., 1997), and to networking
problems for simultaneous routing and resource allocation (Xiao et al., 2004). Recently, the dual decomposition method was
presented in the article Chiang et al. (2007) in an effort towards a systematic understanding of ‘‘layering’’ as ‘‘optimization
decomposition,’’ where the overall communication network is modeled by a generalized network utility maximization prob-
lem, and each layer corresponds to a decomposed subproblem. Alternative decomposition methods were also applied in net-
work utility maximization problems to obtain specific distributed algorithms (Tan et al., 2006; Palomar and Chiang, 2007).
The dual decomposition method was also recently used to solve large computationally intractable problems for formation
flight with multiple cooperative agents, which resulted in an algorithm that is easily implementable in a decentralized man-
ner (Raffard et al., 2004).

In the present article, it is shown that the dual decomposition method is well suited to the multicommodity network
structure of the aggregate traffic flow model, the Large-capacity Cell Transmission Model, in short CTM(L), developed in earlier
work (Sun and Bayen, 2008). It breaks the large scale Linear Program into a sequence of smaller Linear Program problems
(subproblems), which are tractable and can be solved in a reasonably short amount of time. This is helpful for strategic
TFM planning/re-planning responsive to different traffic conditions, for example, when the air traffic system is disturbed
by unexpected weather perturbations. It consists of an iterative algorithm, in which the subproblems are solved involving
their own local variables as well as the variables of subproblems they are coupled with.

The rest of this article is organized as follows. The second section introduces the aggregate air traffic flow model. The third
section formulates the optimal traffic flow management problem as a large scale Linear Program. In the fourth section, the
Linear Program is solved using a dual decomposition method. Finally, in section five, we present some numerical results.
2. Large-capacity cell transmission model

This section briefly summarizes the modeling framework developed in two earlier articles (Sun et al., 2007; Sun and
Bayen, 2008), in which we constructed a traffic flow model used for the present article, the Large-capacity Cell Transmission
Model, in short CTM(L) (Sun and Bayen, 2008). It is based on a network flow model constructed from historical Enhanced
Traffic Management System (ETMS) and Aircraft Situation Display to Industry (ASDI) air traffic data (Bayen et al., 2006). This
model is called Large-capacity Cell Transmission Model in reference to the Cell Transmission Model in highway traffic
(Daganzo, 1994; Daganzo, 1995). The key element in the CTM(L) most relevant to the dual decomposition method is the
underlying flow network, which is illustrated in the rest of this section, and uses a multicommodity routing network.
2.1. Definitions

The system modeled in this section is the continental en route US NAS, of the size of 20 ARTCCs, for altitudes 24,000 feet
and above. The model can be extended to include airports as is shown in Appendix A.1. The ETMS/ASDI data used in this
study, provides the position and altitude of all airborne aircraft in the US, updated every minute. Additional information re-
lated to flight plans or other flight parameters, such as speed and heading, are also provided in the data, but were not used to
build the present CTM(L).
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2.2. Construction of the network

Network models are standard in science and engineering. A network model is composed of fundamental components
called vertices or nodes; each node is connected to other nodes by links or edges. The network modeling traffic flow in
the NAS in CTM(L) is constructed as follows.

2.2.1. Vertices (nodes)
The vertices in the network are constructed following a paradigm developed in earlier work (Sun and Bayen, 2008). For

any two neighboring sectors s1 and s2, the vertices at the boundary of s1 and s2 are denoted by vfs1 ;s2g and vfs2 ;s1g. Vertex vfs1 ;s2g

represents the entry point used by flights going from s1 to s2, while vertex vfs2 ;s1g represents the exit point used by flights
going from s2 to s1. Because the physical entry or exit points do not affect the modeling (while the lengths of links and con-
nections between links are important, as will be seen in the rest of this section), we assume that the exit point and the entry
point on a common boundary between sectors are fixed at the same location (location of a vertex), and that each flight
crosses (enters or exits) a sector boundary at the fixed vertex.

2.2.2. Links (edges)
For any sectors s1, s2 and s3, if s1 and s2 share a boundary and if s2 and s3 are neighbors, two directed links are created: one

from vertex vfs1 ;s2g to vertex vfs2 ;s3g and one from vertex vfs3 ;s2g to vertex vfs2 ;s1g. In the rest of this work, the term link refers to
a directed link (Ahuja et al., 1993). Fig. 1 illustrates the concept of a link.

For each link of the network, the flight times for a full year (October 1st, 2004 to September 30, 2005) extracted ASDI/
ETMS data are aggregated into travel time distributions. The mean of this distribution is computed, and its value is chosen
to represent the ‘‘time length’’ of the link, i.e. the aggregated travel time along the link. Fig. 2 shows a typical travel time
distribution.

2.2.3. Multicommodity network
For a complete network model including the whole continental NAS of the US, a multicommodity flow structure (Cormen

et al., 2002) is used in CTM(L). Flights are clustered based on their entry-exit node pairs (origin-destination pairs) in the
Fig. 1. Examples of vertices, links, trajectories and paths for a subset of the NAS.



Fig. 2. Distribution of travel time on one link (ZLC45–ZOA33–ZOA34). One full year of aggregated data.
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network. Each pair corresponds to a path consisting of links between these nodes. If two or more paths have one link in com-
mon, this link will be duplicated, using a multicommodity flow structure.

2.3. Dynamics

The CTM(L) model, based on the network constructed above, is developed inspired by the Lighthill–Whitham–Richards the-
ory (Lighthill and Whitham, 1956; Richards, 1956), and the Daganzo’s Cell Transmission Model (CTM) (Daganzo, 1994;
Daganzo, 1995), commonly used in highway traffic modeling. The model is reduced to a linear time invariant dynamical sys-
tem, in which the state is a vector of aggregate aircraft counts. The behavior of air traffic flow on a single link indexed by i can
be modeled by a deterministic linear dynamical system with a unit time delay, defined as follows (Sun and Bayen, 2008):
xiðt þ 1Þ ¼ AixiðtÞ þ Bi
1uiðtÞ þ Bi

2fiðtÞ; ð1Þ
yðtÞ ¼ eCixiðtÞ; ð2Þ
where xiðtÞ ¼ ½x1
i ðtÞ; . . . ; xmi

i ðtÞ� is the state vector whose elements represent the corresponding aircraft counts in each cell of
link i at time step t, and mi is the number of cells in link i. The forcing input, fi(t), is a scalar that denotes the entry count onto
link i during a unit time interval from t to t + 1, and the control input, ui(t), is an mi � 1 vector, representing airborne delay
control, which can take several forms such as speed change, vector for spacing (VFS), holding pattern (HP) (Nolan, 2003). Par-
ticularly, the update time interval (1 min in this paper) matches the minimum delay control time unit in practice in most
cases (Nolan, 2003; Bilimoria et al., 2001). For example, if ui(t) = 2, it means at time t there are two flights subject to airborne
delay in cell i with each flight delayed by 1 min. If a longer delay (say, 3 min during the time t1 to t1 + 2) for two flights in cell i
should be actioned, the control variable ui(t) takes the value ui(t) = 2 for t = t1, t1 + 1 and t1 + 2.

The output, y(t), is a scalar which represents the aircraft count in a user-specified set of cells (indicated by vector eCi) at
time step t. The nonzero elements of the mi � 1 vector eCi correspond to the cells in the user-specified set, and are equal to
one. Ai is an mi � mi nilpotent matrix with 1’s on its super-diagonal. Bi

2 ¼ ½0; . . . ; 0; 1� is the forcing vector with mi elements,
and Bi

1 is the mi �mi holding pattern matrix, in which all nonzero elements are 1 on the diagonal and �1 on the super-
diagonal.

Based on the link level model, it is straightforward to build a sector level model using the same technique. Suppose that
there are n links in a sector, then the dynamics for the sector level model can be described as:
xðt þ 1Þ ¼ AxðtÞ þ B1uðtÞ þ B2f ðtÞ; ð3Þ
yðtÞ ¼ eCxðtÞ; ð4Þ
where x(t) = [x1(t); . . . ;xn(t)] denotes the state, and f (t) = [f1(t); . . . ; fn(t)] is the forcing input vector (the entry count onto the
sector). The control input vector is denoted as u (t) = [u1(t); . . . ;un(t)]. The scalar y(t) represents the aircraft count in a user-
specified set of cells at time step t, and eC corresponds to the cells in the user-specified set, The matrices A, B1, and B2 are block
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diagonal, with block elements associated with each link in the sector. For example, A = diag(A1, . . . ,An) with Ai’s defined by
Eq. (1). In the above model, the matrices A, B1 and B2 are sparse and structured (e.g., A is nilpotent), which can be exploited to
develop efficient algorithms for optimization using this model.

When building a NAS-wide model (at the ARTCC level), flights are first clustered based on their origin-destination
(source-sink) pairs in the network. Each pair corresponds to a path consisting of links between these nodes. If two or more
paths have one link in common, this link will be duplicated. Therefore, the NAS-wide model can also be cast in the same
framework of (3) and (4) and the corresponding x(t) includes all cells of the complete network. The forcing input, f(t), is
now the entry count into the NAS. Further details about the CTM(L) are described in Sun and Bayen (2008).

2.4. Remarks

� The CTM(L) can be extended to include airports as part of the model. The dual decomposition method in the next sections
can be extended and applied for NAS-wide TFM including airports. See Appendix A.1 for details.
� Advantages of CTM(L): The CTM(L) is computationally efficient, and its computational complexity does not depend on the

number of aircraft, but only on the size of the network under consideration. Therefore it is suitable to study the air traffic
control system in benchmark scenarios for which traffic could double or triple. These scenarios have been of high interest
in the air traffic control community. Its control theoretic structure enables the use of standard methods for analysis and
optimization. For example, the stability, controllability, observability, and response characteristics of CTM(L) can be
directly addressed using control theory (Robelin et al., 2006; Sun and Bayen, 2008). The optimization method using Linear
Program/Integer Program which is proposed in the next sections, is based on the fact that the CTM(L) is a linear system
model.
� Limitations of CTM(L): Although the CTM(L) is capable of routing flights, i.e., given an origin-destination pair, there could

be different routes based on the underlying network representation of the NAS (see Sun and Bayen, 2008, Section 3.2).
However, the dual decomposition method proposed in the following sections is limited to delay controls, without rero-
uting. As a type of aggregate modeling, information about the route structure of individual aircraft is not modeled or pre-
served. These limitations are addressed in the authors’ other work (Sun et al., 2009, 2010). However, the aggregation
feature of CTM(L) is useful to support FAA or the operator of the airspace, particularly for resource allocation in the en
route airspace for TFM purposes. The disaggregation method will be devised when translating flow-based controls to
flight-based controls becomes necessary (Sun et al., 2009, 2010). Re-routing is under investigation and is a key part of
future work, which can be done by taking into account a limited number of possible routes for an origin-destination pair,
which is a common practice in air traffic control.

3. Problem formulation

3.1. Notations, nomenclature

The following notations are used to formulate the optimization problem presented in the rest of the article.

� S = {s1, s2, . . . ,sjSj}: set of sectors in the NAS. jSj denotes total number of sectors in the NAS.
� E = {e1, e2, . . . ,ejEj}: set of links (Section 2.2). Link em = (vi, vj), or simply em = (i, j), corresponds to an ordered pair of vertices.
� K ¼ fko1 ;d1 ; ko2 ;d2 ; . . . ; kojKj ;djKj g, or simply K = {k1, k2, . . . ,kjKj}: set of origin-destination (OD) pairs: origin (source) ok, destina-

tion (sink) dk. jKj denotes total number of OD pairs. In this article, OD pairs can also be understood as ‘‘paths,’’ because
given an OD pair, a path is uniquely defined: no multiple paths exist between a single OD pair.1

� T: time horizon of the optimization.
� Qs � E: set of cells in sector s 2 S. (j, k) 2 Qs means the jth cell on path k is in Qs (therefore in sector s).
� hk

t : scheduled input (departure) flights into path k at time t. The vector ht is used to denote the aggregation of scheduled
departures to the entire NAS at time t.
� xj;i

t : state of cells in the dynamical system. xj;i
t represents the number of aircraft in the jth cell on path i (namely cell (i, j);

defined in Section 2.2) at time t. The vector xk
t is used to denote the aggregation of states on path k at time t:

xk
t ¼ ½xðk;1; tÞ; xðk;2; tÞ; . . . ; xðk; nðkÞ; tÞ�, where n(k) is the total number of cells on path k. The vector xk is the aggregation

of states on path k: xk ¼ ½xk
1; xk

2; . . . ; xk
T �. The vector xt is the aggregation of states at time t: xt ¼ ½x1

t ; x2
t ; . . . ; xk

t ; . . . ; xjKjt �. The
vector x is the vector of all the states: x = [x(1); x(2); . . . ;x(T)].
� xri

t : state of last cell (the rith cell) on path i at time t, where ri is the total number of cells on path i. The vector
xr

t ¼ ½x
r1
t ; xr2

t ; . . . ; xrk
t ; . . . ; x

rjKj
t � is the aggregation of states for last cells on each path.

� xk
p: sum of all airborne flights on path k at time t = 0: xk

p ¼
Prk

j¼1xk;j
0 . The vector xp ¼ ½x1

p; x2
p; . . . ; xk

p; . . . ; xjKjp � is the aggregation
of the sums.
� uj;i

t : delay control in cell (i, j) at time t, representing number of delay controlled aircraft in the jth cell on path i at time t.
The vector uk

t is used to denote the aggregation of controls on path k at time t: uk
t ¼ ½uðk;1; tÞ; uðk;2; tÞ; . . . ; uðk;nðkÞ; tÞ�,
1 This feature can easily adapt to cases of multiple paths between an OD pair. It is omitted in this article for simplicity of the description.
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where n(k) is total number of cells on path k. The vector uk is the aggregation of the controls on path k: uk ¼ ½uk
1; uk

2; . . . ; uk
T �.

The vector ut is the aggregation of controls at time t: ut ¼ ½u1
t ; u2

t ; . . . ; uk
t ; . . . ; ujKjt �. u represents the vector of all the controls:

u = [u(1); u(2); . . . ;u(T)].
� c(i, j), i = 1, . . . , jKj, j = 1, . . . ,ni (ni is the number of cells on path i), means the cost associated with flying through cell (i, j),

which is the travel time of a flight through cell (i, j). c(i, j) = 1 represents 1 min travel time in the present CTM(L). Let ck

represent an aggregation of costs on path k: ck = [c(k,1); c(k,2); . . . ;c(k, n(k))], and let c = [c1; c2; . . . ;cjKj].
� Cs(t), s = 1, . . . , jSj: sector capacity for sector s at time t. The sector capacities are time dependent because the usage of air-

space is dynamic: capacity can change due to weather or operations. Denote C(t) = [C1(t);C2(t); . . . ;CjSj(t)], as the aggre-
gation of capacity constraints at time t, and C = [C(1); C(2); . . . ;C(T)] as the aggregation of all sector capacities at all times.
� Slack variables Zk

s ðtÞ, s = 1, . . . , jSj, k = 1, . . . , jKj, represent the number of aircraft in sector s on path k at time t:
Zk

s ðtÞ ¼
P
ðj;kÞ2Qs

xðk; j; tÞ, where (j, k) is the jth cell on path k and Qs is the set of links in sector s. Let Zk(t) denote the aggre-
gation of slack variables Zk

s ðtÞ on path k at time t: ZkðtÞ ¼ ½Zk
1ðtÞ; Zk

2ðtÞ; . . . ; Zk
jSjðtÞ�, and Zk = [Zk(1); Zk(2); . . . ;Zk(T)] are slack

variables associated with path k. Let Z(t) denote the aggregation of all slack variables at time t: Z(t) = [Z1(t);
Z2(t); . . . ;ZjKj(t)]. Let Z = [Z(1); Z(2); . . . ;Z(T)] be the aggregation of all slack variables.
� T0 ¼ f0; . . . ; T � 1g: set of time indices from 0 to T � 1.
� T ¼ f0; . . . ; Tg: set of time indices from 0 to T.
� S ¼ f1; . . . ; jSjg: set of sector indices.
� K ¼ f1; . . . ; jKjg: set of path indices.
� Zþ: the non-negative integer set.

3.2. Formulation of en route airspace problem

The problem of minimizing the total travel time of the flights in the NAS can be formulated as follows:
minx;u

XT

t¼0

cT xt ; ð5Þ

s:t: x0 ¼ B2f0; ð6Þ
xtþ1 ¼ Axt þ B1ut þ B2ft ; t 2 T0; ð7ÞXt

t0¼0

ft0 6
Xt

t0¼0

ht0 ; t 2 T0; ð8Þ

XT

t0¼0

ft0 ¼
XT

t0¼0

ht0 ; ð9Þ

XT

t0¼0

xr
t0 ¼

XT

t0¼0

ht0 þ xp; ð10ÞX
ði;jÞ2Qs

xi;j
t 6 CsðtÞ; s 2 S; t 2 T; ð11Þ

u 6 x ð12Þ
x � Zþ ð13Þ
u � Zþ: ð14Þ
The objective function (5) encodes the minimization of the total travel time for all the flights in the NAS for the time hori-
zon of interest. Eq. (6) represents the initial condition, i.e., the airborne flights at the beginning of optimization. Eq. (7) en-
codes the dynamics of the system. Eq. (8) ensures that accumulated departures (left-hand side of the equation) cannot
exceed the amount of scheduled departures (right-hand side of the equation). Eq. (9) enforces all scheduled flights will
departure, while Eq. (10) enforces all flights will land at their destinations by end of the planning time horizon. Constraints
(8)–(10) are important in TFM optimization problems when the departures are variables to be optimized (Sun et al., 2010).
Eq. (11) enforces the capacity constraint for every sector, meaning that the number of aircraft in the sector cannot exceed the
sector capacity. Equation (12) is the control constraint for every cell: the number of delay controlled aircraft cannot exceed
the total number of aircraft in the cell. Eqs. (13) and (14) represent the non-negativity integer constraint on the states and
controls, respectively.

3.3. Remark

Using the framework above, different objective functions can be used for other optimization purposes. In particular, as
long as the objective function is convex, one can find efficient algorithms to solve the optimization problem (Boyd and Van-
denberghe, 2004; Bertsekas, 2002). Moreover, when the terms in the objective function are separable path by path, the dual
decomposition method described in the rest of this article can be applied following the same algorithm developed in Section
4. This is the main contribution of the article, which makes this large scale optimization program computationally tractable.
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4. Dual decomposition

A realistic and accurate NAS model approximately includes 100,000 paths to accurately represent the high altitude flow
structure of air traffic. Every path usually has hundreds of cells. In order to perform 2-h TFM (t = 1, . . . ,120), the problem con-
sists of about five billion states and controls (x(i, j, t) and u(i, j, t)); the number of constraints is of the same order (billions).
The formulation in Section 3.2 is an Integer Program (IP), which is computationally challenging to solve efficiently. To make
the problem tractable, we relax the last two constraints (13) and (14) to u P 0, and as a consequence, x P u P 0, by con-
straint (12). The formulation now becomes a Linear Program (LP):
minx;u

XT

t¼0

cT xt ; ð15Þ

s:t: x0 ¼ B2f0; ð16Þ
xtþ1 ¼ Axt þ B1ut þ B2ft; t 2 T0; ð17ÞXt

t0¼0

ft0 6
Xt

t0¼0

ht0 ; t 2 T0; ð18Þ

XT

t0¼0

ft0 ¼
XT

t0¼0

ht0 ; ð19Þ

XT

t0¼0

xr
t0 ¼

XT

t0¼0

ht0 þ xp; ð20ÞX
ði;jÞ2Qs

xi;j
t 6 CsðtÞ; s 2 S; t 2 T; ð21Þ

0 6 ut 6 xt ; t 2 T: ð22Þ
However, LP relaxation does not change the size of the problem: we still have the same number of variables and con-
straints as in the IP formulation. Now, we apply the dual decomposition method (Bertsekas, 2002) to solve the large scale LP.

Step 1 Decompose the terms path by path. The objective function can be rewritten as a summation of the total travel time
of flights along each path, where the path index is denoted by k. Each constraint can also be written path by path,
which is also indexed by k for the kth path.
minx;u

XjKj
k¼1

XT

t¼0

ckT
xk

t

 !
;

s:t: xk
0 ¼ Bk

2f k
0 ; k 2 K;

xk
tþ1 ¼ Akxk

t þ Bk
1uk

t þ Bk
2f k

t ; t 2 T0; k 2 K;Xt

t0¼0

f k
t0 6

Xt

t0¼0

hk
t0 ; t 2 T0;

XT

t0¼0

f k
t0 ¼

XT

t0¼0

hk
t0 ;

umT
t0¼0xrk

t0 ¼
XT

t0¼0

hk
t0 þ xk

p;

0 6 uk
t 6 xk

t ; t 2 T; k 2 K;XjKj
k¼1

X
ði;kÞ2Qs

xi;k
t 6 CsðtÞ; s 2 S; t 2 T:
Step 2 Introduce slack variables Zk
s ðtÞ, Z(t) and Z, as defined in Section 3.1.
minx;u;Z

XjKj
k¼1

XT

t¼0

ckT
xk

t

 !
;

s:t: xk
0 ¼ Bk

2f k
0 ; k 2 K;

xk
tþ1 ¼ Akxk

t þ Bk
1uk

t þ Bk
2f k

t ; t 2 T0; k 2 K;Xt

t0¼0

f k
t0 6

Xt

t0¼0

hk
t0 ; t 2 T0

XT

t0¼0

f k
t0 ¼

XT

t0¼0

hk
t0 ;
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XT

t0¼0

xrk
t0 ¼

XT

t0¼0

hk
t0 þ xk

p;

0 6 uk
t 6 xk

t ; t 2 T; k 2 KX
ði;kÞ2Qs

xi;k
t ¼ Zk

s ðtÞ; s 2 S; k 2 K; t 2 T;

XjKj
k¼1

Zk
s ðtÞ 6 CsðtÞ; s 2 S; t 2 T
Step 3 By forming the partial Lagrangian for the last constraints and switching the min and max operators, we can obtain
the dual problem:
d� :¼maxkP0 minx;u;Z

XjKj
k¼1

XT

t¼0

ckT
xk

t

 !
þ
XT

t¼0

XjSj
s¼1

ksðtÞ
XjKj
k¼1

Zk
s ðtÞ � CsðtÞ

 !
ð23Þ

s:t: xk
0 ¼ Bk

2f k
0 ; k 2 K;

xk
tþ1 ¼ Akxk

t þ Bk
1uk

t þ Bk
2f k

t ; t 2 T0; k 2 KXt

t0¼0

f k
t0 6

Xt

t0¼0

hk
t0 ; t 2 T0

XT

t0¼0

f k
t0 ¼

XT

t0¼0

hk
t0 ;

XT

t0¼0

xrk
t0 ¼

XT

t0¼0

hk
t0 þ xk

p;

0 6 uk
t 6 xk

t ; t 2 T; k 2 KX
ði;kÞ2Qs

xi;k
t ¼ Zk

s ðtÞ; s 2 S; k 2 K; t 2 T;
where d⁄ denotes the optimal value of the dual problem. Since the problem has linear constraints, the optimal values of the
dual problem (23) and the primal problem are equal (Bazaraa et al., 2006). This allows us to solve the primal via the dual.
Step 4 Re-arrange the terms in the objective function of the dual problem (23) to group the terms path by path:
maxkP0 minx;u;Z

XjKj
k¼1

XT

t¼0

ckT
xk

t

 !
þ
XT

t¼0

XjSj
s¼1

ksðtÞ
XjKj
k¼1

Zk
s ðtÞ � CsðtÞ

 !
¼maxkP0 �

XT

t¼0

XjSj
s¼1

ksðtÞCsðtÞ þ
XjKj
k¼1

dk�ðkÞ
( )

;

where
dk�ðkÞ ¼ minx;u;Zk

XT

t¼0

ckT
xk

t þ
XT

t¼0

XjSj
s¼1

ksðtÞZk
s ðtÞ;
which is actually the subproblem for path k.
Step 5 Iterations.

�

� Subproblems dk ðkÞ; k 2 K

T T jSj
minx;u;Zk

X
t¼0

ckT
xk

t þ
X
t¼0

X
s¼1

ksðtÞZk
s ðtÞ ð24Þ

s:t: xk
0 ¼ Bk

2f k
0

xk
tþ1 ¼ Akxk

t þ Bk
1uk

t þ Bk
2f k

t ; t 2 T0Xt

t0¼0

f k
t0 6

Xt

t0¼0

hk
t0 ; t 2 T0

XT

t0¼0

f k
t0 ¼

XT

t0¼0

hk
t0 ;

XT

t0¼0

xrk
t0 ¼

XT

t0¼0

hk
t0 þ xk

p;

0 6 uk
t 6 xk

t ; t 2 TX
ði;kÞ2Qs

xi;k
t ¼ Zk

s ðtÞ; s 2 S; t 2 T:
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There are jKj (number of paths) subproblems.

Construction of feasible primal variables. It is noticed in this step that optimal variables x (denoted as xopt
dual) derived in the

subproblems (24) via the dual approach still violate the dualized constraints (21) during many iterations. It is necessary to
construct feasible primal variables, namely x and u (see Bazaraa et al., 2006, Chapter 6). A procedure is designed to solve this
problem as follows.

To construct feasible primal variables, when constraint (21) is violated by xopt
dual (in this case we call that sector s is satu-

rated), the first step is to have the overall sector capacity Cs(t) in (21) divided and allocated to all the paths that pass sector s.
The allocated capacity, denoted as Ci

sðtÞ for path i at time t, is proportional to the amount of flights on the path based on xopt
dual.

For example, if there are N paths (indexed by i1 through iN) passing sector s and suppose the number of flights in this sector
for path ij is yij

ðtÞ at time t, where
yij
ðtÞ ¼

X
ðij ;nÞ2Qs

xopt
dualðt; ij; nÞ;
where xopt
dualðt; ij;nÞ is the solution for the number of flights in the nth cell on path ij at time t, derived in the subproblem (24)

via the dual approach, then the portion of the capacity allocated to path ij is defined by
C
ij
s ðtÞ ¼

yij
ðtÞP

ði;nÞ2Qs
xopt

dualðt; i; nÞ
� CsðtÞ: ð25Þ
where the denominator
P
ði;nÞ2Qs

xopt
dualðt; i;nÞ is actually the total number of flights in sector s at t, optimized by (24). Clearly, for

these saturated sectors, we have
XjKj
k¼1

Ck
s ðtÞ ¼ CsðtÞ: ð26Þ
For the sectors whose capacities are not violated by xopt
dual, we define nominal allocated capacities by
C
ij
s ðtÞ ¼ yij

ðtÞ: ð27Þ
Obviously, in these unsaturated sectors,
XjKj
k¼1

Ck
s ðtÞ 6 CsðtÞ: ð28Þ
Summarizing (26) and (28), we have
XjKj
k¼1

Ck
s ðtÞ 6 CsðtÞ: ð29Þ
The allocated capacities Ck
s ðtÞwill be used in the following step to construct feasible primal variables, in which we implement

a quadratic programming-based scheme. Denote the elements associated with the kth path at time t in xopt
dual as
xopt
dualðt; kÞ :¼ xopt

dualðt; k; �Þ;
we solve the following quadratic programming:
minx;u

XT

t¼0

xk
t � xopt

dualðt; kÞ
�� ��2

2 ð30Þ

s:t: xk
0 ¼ Bk

2f k
0

xk
tþ1 ¼ Akxk

t þ Bk
1uk

t þ Bk
2f k

t ; t 2 T0Xt

t0¼0

f k
t0 6

Xt

t0¼0

hk
t0 ; t 2 T0

XT

t0¼0

f k
t0 ¼

XT

t0¼0

hk
t0 ;

XT

t0¼0

xrk
t0 ¼

XT

t0¼0

hk
t0 þ xk

p;

0 6 uk
t 6 xk

t ; t 2 TX
ði;kÞ2Qs

xi;k
t 6 Ck

s ðtÞ; s 2 S; t 2 T:
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The solution to the above problem (30) has the following properties:

1. The solution x will be close to xopt
dual (because of the objective function (30); we do not want x far off the solution to the

dualized problem (24), and it always respects the constraints (21) in the primal problem because
X
ði;jÞ2Qs

xi;j
t ¼

XjKj
k¼1

X
ði;kÞ2Qs

xi;k
t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

6Ck
s ðtÞ

6

XjKj

k¼1
Ck

s ðtÞ 6 CsðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
by ð29Þ

:

2. In most cases (which is true for most practical TFM problems), there is a feasible solution to problem (30): we can always
hold the flights on the ground (by using small forcing inputs f k

t ) to make sure that the last constraint in (30) is not vio-
lated. In the extreme case when the allocated capacity Ck

s ðtÞ is too low which causes infeasibility to problem (30), we can
increase Ck

s ðtÞ and decrease Ck0
s ðtÞ (or multiple allocated capacities) associated with path k0 (or multiple other paths) in

sector s, but we still make sure that (29) is satisfied. This is actually equivalent to allocating the capacities Ck
s ðtÞ non-

proportional to the amount of flights on path k in sector s based on xopt
dual. If none of such non-proportionally allocated

capacities results in a feasible solution to (30), it is because the original TFM problem (5)–(14) does not have a feasible
solution, which has not happened in practice.

Fig. 3 shows the percentage of violations of (21). It can be seen that the number of violations converges to zero in around
30 iterations.

� Master problem
d�ðkÞ ¼maxkP0 �
XT

t¼0

XjSj
s¼1

ksðtÞCsðtÞ þ
XjKj
k¼1

dk�ðkÞ
( )

; ð31Þ
To solve the dual problem (23), or (31), we need to compute the subgradient of d⁄(k). In the subgradient method used in
this article, we start with initial k = k0 > 0. At each iteration step i = 1, 2, 3, . . . , we compute a subgradient of the dual function:
gðtÞ ¼
XjKj
k¼1

ZkðtÞ � CðtÞ; t ¼ 0; . . . ; T:
Then we update the dual variable (Lagrange multiplier, in this formulation) by
kðtÞ :¼ ðkðtÞ þ aigðtÞÞþ; t ¼ 0; . . . ; T;
where (�)+ denotes the non-negative part of a vector (i.e., projection onto the non-negative orthant), and ai is the subgradient
step size rule, which is any nonsummable positive sequence that converges to zero (see Boyd and Vandenberghe, 2004;
Bazaraa et al., 2006, Chapter 8):
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Fig. 3. Percentage of violations of constraints (21) during the iteration of the dual decomposition method.
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ai ! 0;
X1
i¼1

ai ¼ 1:
In this study, we tried several diminishing step size rules: ai ¼ 1=ðiþ 1Þ;ai ¼ 0:5=ðiþ 1Þ;ai ¼ 0:2=ðiþ 1Þ;ai ¼ 0:1=
ffiffiffiffiffiffiffiffiffiffi
iþ 1
p

and ai ¼ 0:02=
ffiffiffiffiffiffiffiffiffiffi
iþ 1
p

, and we notice that ai ¼ 0:02=
ffiffiffiffiffiffiffiffiffiffi
iþ 1
p

yielded a better convergence rate, which was therefore chosen
as the step size rule throughout this paper. It should be noted that the step sizes we tried are all based on the divergent
series; Chapter 2 of Bazaraa et al. (2006) provides several simple yet effective deflected subgradient schemes that will be
investigated for future implementation. A proof of convergence of the above algorithm can be found in Chapter 2 of Shor
et al. (1985). Numerous methods to accelerate the convergence can be found in the literature (Shor et al., 1985; Bertsekas,
2002).

The dual decomposition method, with the subgradient method for the master problem outlined above, is summarized in
Algorithm 1 below.

Algorithm 1. Dual decomposition algorithm.

Inputs:
Initial state x0.
Time horizon T.
Inputs ft ; t 2 T.
Required sector capacity constraints CsðtÞ; s 2 S; t 2 T.
Initial k := k0 P 0.

Start: Iteration number i = 0.
repeat

i: = i + 1.

Solve the subproblems (24) for dk⁄(k), obtain xk
t ;u

k
t ; Z

kðtÞ; k 2 K; t 2 T.
Construct feasible primal variables
Master algorithm subgradients

gðtÞ ¼
PjKj

k¼1ZkðtÞ � CðtÞ; t 2 T.
Master algorithm update
kðtÞ :¼ ðkðtÞ þ aigðtÞÞþ; t 2 T.

until d⁄ converges or i = max iterations.
Output: xk

t ;u
k
t ; t 2 T; k 2 K.
4.1. A discussion on the integrality of the solution

As observed from our experiments, the optimal solutions to the relaxed LP are actually integer in most cases. In over
300,000 numerical experiments summarized in the following section, more than 95% experiments resulted in integer opti-
mal solutions. In the rest 5% cases, the following rounding method (see Algorithm 2) was applied which always generated
integer solutions while maintaining the same optimal values for the objective functions of Eq. (15).

When the optimal control generated by the Linear Program is non-integer, the following empirical fact is always
observed:

4.1.1. Empirical fact
If there exists some time t0 and i0 2 Qs such that ui0 ;k

t0
is non-integer, then it is always true that there exist Dt1 and Dt2 such

that
Xt0þDt2

t¼t0�Dt1

X
i2I

ui;k
t 2 Zþ ð32Þ
where ui;k
t is the delay control in cell (k, i) at time t and
I ¼ fi : ði; kÞ 2 Qs and i0 � Dt1 6 i 6 i0 þ Dt2g:
This can be interpreted as follows: we can always find (a) different control(s) ui;k
t , which is (are) applied to the flights on the

same path (path k in this case, going from the same origin to the same destination) in the same sector s, such that the overall
control is integer. With integer control u and integer inputs f, the state x is always integer using the dynamic Eq. (4). The
investigation of the reason for this fact is ongoing work.

Based on the fact above, a rounding method is proposed in Algorithm 2 to round the optimal control output u to an integer
value: for each non-integer ui0 ;k

t0
on a link in sector s, find Dt1 and Dt2 such that Eq. (32) holds. Each non-integer control ui;k

t

(t0 � Dt1 6 t 6 t0 + Dt2 and i 2 I) will be rounded by taking the nearest integer below the sum of its current value and the
residual of the control values that have been rounded (see Algorithm 2 for details).
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Algorithm 2. Rounding algorithm.

Inputs:
Sector s on path k.
U :¼ ; (empty set).

Start: Find the smallest t1 such that ui1 ;k
t1

is non-integer
for some i1 2 Qs.
U :¼ ; (empty set).
Initial uoverall: = 0.
Initial uoffset: = 0.

uoverall :¼ ui1 ;k
t1

.

U :¼ U [ fui1 ;k
t1
g.

t2: = t1.
repeat

t2: = t2 + 1.
Find i2 > i1and i2 2 Qs such that

ui2 ;k
t2

is non-integer.

U :¼ U [ fui2 ;k
t2
g.

uoverall :¼ uoverall þ ui2 ;k
t2

.
until uoverall is an integer.
repeat

ui;k
t :¼ first element in U .

U :¼ U n ui;k
t .

bui;k
t c :¼ floor ui;k

t þ uoffset

� �
.

U :¼ U [ fbui;k
t cg.

uoffset :¼ uoffset þ ui;k
t � bu

i;k
t c.

uoverall :¼ uoverall � bui;k
t c.

until uoverall = 0.
Output: U .

An example of the rounding method is illustrated in Table 2. The number to the left of an arrow is an optimal control u
output from the LP, while the value to the right of the arrow is the rounding result using Algorithm 2. The explanation of the
example follows: the delay control action with u2

1 ¼ 1:3 and u3
2 ¼ 1:7 is equivalent to bu2

1c ¼ 1 and bu3
2c ¼ 2.
5. Results

The dual decomposition method was implemented in C++, with subproblems (24) solved using ILOG CPLEX Concert (ILOG
CPLEX, 2009). A 2-h TFM problem was solved for the whole continental NAS in the United States.

Fig. 4 shows the amount of delay control in each sector using the dual decomposition method at different times. Sectors
with a larger controlled count are colored with a darker color.

Fig. 5 shows a comparison between sector counts for three sectors. For each of them, the counts are displayed for an
uncontrolled scenario, in which aircraft are flying according to their flight plan (when the controls u in system (3) are set
to be zero) and a controlled scenario (when the controls u are optimized by the dual decomposition method). The sector
capacities are also represented in the figures as a reference. As can be seen from the solution, by generating an optimal delay
allocation in the NAS, the dual decomposition algorithm minimizes the total travel time of the flights in the entire airspace
while respecting sector capacity constraints. For example in Fig. 5, the capacity of sector ZOB26 (a high altitude sector in
Cleveland ARTCC) is 18; when no delay control is applied, the number of flights in ZOB26 is above 18 after 52 min and
can reach 24 (at 99 min), which exceeds the sector capacity (18 flights at a time), while the number of flights stays below
the sector capacity all time when delay control is applied. Fig. 5 also shows the situation for sector ZOB29, a neighbor sector
of ZOB26 in Cleveland ARTCC, whose capacity is 17. When no delay control is applied, the number of flights in ZOB29 is al-
ways below the capacity (under-utilized). However, with an optimal delay control, the dual decomposition algorithm allo-
cates delays in ZOB29, increasing its sector load, which reaches the sector capacity at 35–37 min.

One of the outcomes of the optimization algorithm can be qualitatively described as follows: congestion in sectors will be
reduced by allocating delays in under-utilized sectors (usually in under-utilized neighboring sectors).

Other experiments have been conducted with different weights of c(i, j) associated with the cost of flying through cell (i,
j), to assess the distribution of delays and the resulting fairness issues in the TFM application. Fig. 6 shows the sector counts



Fig. 4. Solution 19 (top left), 39 (top right), 59 (mid left), 79 (mid right), 99 (bottom left), 119 (bottom right) minutes after the start time, with delay control
computed by the dual decomposition algorithm. Shading of sectors indicates aircraft occupancy in each sector with control.
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in sector ZLA16 with the costs of flying through cells in ZLA16 equals one, two and four respectively, while keeping the costs
of cells in all other sectors remaining one. As an illustration of the distribution of delays in other sectors, Fig. 7 shows the
aircraft counts in sector ZLA34, which is a sector adjacent to ZLA16. As can be seen from Fig. 7, more flights are delayed
in ZLA34 due to smaller cost for delays in this sector as compared with that in ZLA16. With larger costs for delays in
ZLA16 (e.g., increased from 2 to 4), there are more delays caused in ZLA34. It is our future work to assess the global distri-
bution of delays and to investigate the design of appropriate delay costs in different sectors to include fairness issues in the
study. Computation wise, different costs did not change the computational time to run the optimization, which remains
around 2.5 min for a 2-h TFM problem.

The computation is done on a Dell T1500 workstation, with a 2.8 GHz 8-processor CPU and 16G RAM, running RedHat
Enterprise Linux 5 operating system. Note that in light of the fact that the dual decomposition method is highly suitable
for parallel computing, a parallel computing platform is designed to improve the computational efficiency. Fig. 8 shows
the run time improvement by deploying different numbers of processes. Observed from this figure, the more processes
are executed simultaneously, the more run time it saves. The run time reduction decreases as the number of processes
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Fig. 5. Comparison of controlled and uncontrolled sector counts in Sectors ZLA16, ZOB26 and ZOB 29.
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approaches eight (which is the number of processors in the workstation) and undergoes slight changes with more proces-
sors. This is due to the overhead for synchronization and job distribution. A more general illustration of the parallel comput-
ing platform is presented in Cao and Sun (in press). The computation presented in this paper is done on a single computer
with 8 processes, which will be implemented on a more general parallel computing platform described in Cao and Sun (in
press) in the future. The computational time (using eight processes in a single workstation) for a 2-h TFM problem is about
2.5 min. Fig. 9 summarizes the average and maximum computational times for at least 10,000 experiments in each ‘day’: the
average/maximum run time for day i is the average/maximum computational time for at least 10,000 experiments from the
ith day of every month in a year (from October 1st of 2004 to September 30 of 2005). For a particular day in a particular
month, approximately 100 scenarios (100 different 2-h intervals) are considered, and each scenario is run 10 times. For
example, the average computational time for day 3 in Fig. 9 is 41 min, which is the average computational time for a 2-h
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TFM problem from 1200 scenarios taken from the 3rd day of each month in a year (October 3rd of 2004, November 3rd of
2004, etc., till September 3rd of 2005). For each day, e.g., September 3rd of 2005, 100 time intervals are chosen for the 2-h
optimization time horizon, which include 8:00 AM–10:00 AM EDT (12:00–14:00 UTC), 8:10 AM–10:10 AM EDT, 8:45 AM–
10:45 AM EDT, for example.

With a fixed network model of the NAS and a fixed optimization time horizon (2 h in our examples), we have a fixed num-
ber of variables and constraints: approximately five billion variables and eight billion constraints. The size of a subproblem
mainly depends on the length of the associated path. Typically a subproblem involves 6000 variables and 10,000 constraints.
The computational time does not significantly change with different scenarios (amount of flights, level of sector capacities,
different days, etc.).

As a comparison with decomposition-based TFM algorithms in literature, particularly the most recent study in Rios and
Ross (2010), similar traffic scenarios are tested and summarized in Table 1. The application of the dual decomposition meth-
od differs from that of the Dantzig–Wolfe decomposition method in Rios and Ross (2010) in the sense that they are based on
different models: the basis for the dual decomposition method is the CTM(L) (Sun and Bayen, 2008), an aggregate model
whose dimension (number of variables and constraints) and complexity do not change with the number of flights, while
the base model for the Dantzig–Wolfe decomposition method is the seminal Bertsimas and Patterson model (Bertsimas
and Stock Patterson, 1998), which is Lagrangian. From Table 1, it can be seen that the dual decomposition method is com-
parable to the Dantzig–Wolfe decomposition method in terms of run time; most importantly, we can conclude that decom-
position methods provide an opportunity to accelerate the computation for TFM, which makes a real-time TFM platform
possible.

The CTM(L) and the dual decomposition method for solving NAS-wide TFM problems have been integrated with FACET
(Bilimoria et al., 2001) by Metron Aviation (2010). The output from the dual decomposition method based on CTM(L) is
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Table 1
A comparison of runtime between the dual decomposition method and a Dantzig–Wolfe decomposition method (Rios
and Ross, 2010).

Dual decomposition Dantzig–Wolfe decomposition

Planning time horizon (min) 120 120
Number of flights 7956 8505
Reduced sector capacity (%) 90 90
Run time (s) 149 101

Table 2
An example of the rounding algorithm.

Time Cell

1 2 3 4

1 0 ? 0 1.3 ? 1 0 ? 0 0 ? 0
2 0 ? 0 0 ? 0 1.7 ? 2 0 ? 0
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Fig. 10. A snapshot of FACET integrated with CTM(L) and dual decomposition method for solving NAS-wide TFM problems.

D. Sun et al. / Transportation Research Part B 45 (2011) 880–902 897
optimal delay control for groups of flights at specific times in specific sectors. FACET then assigns delay controls (such as
change of speed, holding patterns) to individual flights associated with the groups of flights in the CTM(L) (Hoffman
et al., 2008), such that the TFM requirements defined in the optimization problem can be achieved. Fig. 10 shows a snapshot
of the integration of this work in FACET. The details of the implementation of this algorithm in FACET will be the focus of a
separate publication, joint with Metron, in a systems journal.

6. Conclusion

In this article, a linear time-varying aggregate traffic flow model based on multicommodity flow network is developed
and implemented. Using the model, an optimization framework is proposed for strategic Traffic Flow Management problems,
which are formulated as Integer Programs. The generic Integer Program is relaxed to a Linear Program for computational
efficiency, which is solved by a dual decomposition method developed specifically for the multicommodity flow problem.
The program is implemented for the entire National Airspace System in the continental United States, which results in an
implementation with billions of variables and constraints. Optimal delay controls are obtained based on the resulting opti-
mization solutions, which are tractable at the scale of the United States. The work presented in this article has been inte-
grated with NASA’s Future ATM Concepts Evaluation Tool in a first step towards developing an operational tool available
for practitioners.
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Appendix A. CTM(L) and TFM with airport

A.1. Model

The CTM(L) can be extended to include airports as part of the model. This allows the use of ground holding, which is less
expensive than airborne delays. The network modeling of the air traffic can be extended as follows.

A.1.1. Vertices (nodes)
For any airport, for departure flights ao (which will be referred as an ‘‘origin airport’’), a vertex denoted as vfground;aog rep-

resents the entry point used by flights entering the network and waiting for departure, while a vertex vfaog represents the
entry point used by departure flight going from airport ao to a low sector. Similarly, vertices vfad ;groundg and vfadg are defined
for an airport for arrival flights ad (which will be referred as a ‘‘destination airport’’).

A.1.2. Links (edges)
Let Vout

i ¼ fv1;v2; . . . ;v jVout
i j
g be the set of vertices representing exit points from sector si 2 S to the neighboring sectors.

The set of vertices which represents entry points from neighboring sectors to sector si is denoted by V in
i ¼ fv1;v2; . . . ;

v jV in
i j
g. For each origin airport ao in sector si, directed links are created: one from vertex vfnone;aog to vertex vfaog and one from

vertex vfaog to each vertex vk 2 Vout
i . Similarly, directed links from each vertex vk 2 V in

i to vertex vfadg and one directed link
from vertex vfadg to vertex vfad ;noneg are created for any destination airport ad in sector si. For the rest of this work, the term
low-altitude link refers to a directed link from an airport to a high-altitude sector, and vice versa. The directed link included
between an airport and the ground is called a queuing link.

The aggregated flight time along a low-altitude link is estimated using the great circle distance and an estimation of flight
speed. For each single flight, this distance is computed between two points: one from the flight coordinates in the most re-
cent recorded ASDI/ETMS data and one from the physical location of the airport.

Fig. 11 shows an interface between an origin airport ao and high-altitude sectors.

A.1.3. Extended network
Flights are now clustered based on their origin-destination airport pairs. The network is still defined as an aggregation of

the trees for all destination airports, instead of destination sectors. Based on the extended network, the CTM(L) model now
includes low-altitude links and airports queuing links.

A.2. Ground delay

Using the extended CTM(L), the problem of minimizing the total flight travel time in the NAS can now be extended to
include departure airports. The optimization formulation remains unchanged as in Section 3.2, but the equation which
Fig. 11. An illustration of vertices and links interface for an origin airport.
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encodes the dynamics of the system now includes departure airport queuing system. The queuing departure link is defined
by the state vector xdep

a ðtÞ ¼ ½x1
aðtÞ; . . . ; xma

a ðtÞ�, whose elements represent the corresponding aircraft counts in each cell of the
departure airport queuing link a at time step t, and ma is the number of cells in the link. The number of departure flights from
airport a at time t + 1 is equal to xma

a ðtÞ unless delay control action is applied.
Each origin-destination pair in the network corresponds to a path, which consists of queuing links, low-altitude links and

en route links between these nodes. The same rules of a multicommodity network flow model are applied, and if two or more
paths have a common queuing link or low-altitude link, this link will be duplicated. The forcing input, f(t), is now the entry
count of departure aircraft, ma minutes before their departure time from airport a.

The cost c includes the cost of ground holding per plane per time period (cg) and the cost of airborne holding per plane per
time period (ca). In the rest of this work, the cost is defined with an air to ground delay cost ratio equals 3.

A.3. Destination airport capacities

Congestion at a destination airport is defined by the difference between the number of arrival flights within a 15-min
interval and the capacity of the current runway configuration. The dual decomposition method, developed in Section 4, is
now adapted for the optimization for traffic flow for the entire network including airports.

The additional notations are defined below.

� A ¼ fa1; a2; . . . ; aAg: set of destination airports in the NAS. jAj denotes total number of airports in the NAS.
� A ¼ f1;2; . . . ; jAjg: set of destination airport indices.
� Cdt

a ðhÞ; a ¼ 1;2; . . . ; jAj: airport capacity of the current runway configuration of airport a for a dt-minute interval from t to
t + dt. Denote Cdt

AðhÞ = ½Cdt
1 ðhÞ; Cdt

2 ðhÞ; . . . ; Cdt
jAjðhÞ�, and Cdt

A ¼ ½C
dt
Að1Þ; Cdt

Að2Þ; . . . ; Cdt
AðHÞ�.

� Qa � E: set of cells in airport a 2 A. (j, k) 2 Qa means the jth cell on path k is in Qa.
� H ¼ T1; T2; . . . ; T jHj: dt-minute time interval, given by: Th = [h� dt + 1, . . . , (h + 1)�dt]. jHj denotes total number of dt-minute

for ground delays.
� # = 1, 2, . . . , jHj: set of dt-minute time interval indices.
� Slack variables Zk

aðtÞ, a ¼ 1; . . . ; jAj, k = 1, . . . , jKj representing the number of aircraft in airport a on path k at time t, defined

by: Zk
aðtÞ ¼

P
ðj;kÞ2Qa

xðk; j; tÞ, where (j, k) is the jth cell on path k and Qa is the set of links for airport a. Let Zk
AðtÞ denote the

aggregation of slack variables Zk
aðtÞ on path k at time t : Zk

AðtÞ ¼ ½Z
k
1ðtÞ; Zk

2ðtÞ; . . . ; Zk
jAjðtÞ�, and Zk

A ¼ ½Z
k
Að1Þ; Zk

Að2Þ; . . . ; Zk
AðTÞ�,

slack variables associated with path k. Let ZAðtÞ denote the aggregation of all slack variables at time t:
ZAðtÞ ¼ ½Z1

AðtÞ; Z2
AðtÞ; . . . ; ZjKjA ðtÞ�. Let ZA ¼ ½ZAð1Þ; ZAð2Þ; . . . ; ZAðTÞ� be the aggregation of all slack variables.

A new constraint is included in the problem of minimizing the total travel time of the flights in the NAS. This constraint is
formulated as follows:
X

t2Th

X
ði;jÞ2Qa

xi;j
t 6 Cdt

a ðhÞ; a 2 A; h 2 #
The optimization problem is formulated as follows:
minx;u

XT

t¼0

cT xt ; ð33Þ

s:t: x0 ¼ B2f 0; ð34Þ
xtþ1 ¼ Axt þ B1ut þ B2ft; t 2 T0; ð35ÞX
ði;jÞ2Qs

xi;j
t 6 CsðtÞ; s 2 S; t 2 T; ð36ÞX

t2Th

X
ði;jÞ2Qa

xi;j
t 6 Cdt

a ðhÞ; a 2 A; h 2 #; ð37Þ

u 6 x ð38Þ
x � Zþ ð39Þ
u � Zþ ð40Þ
Similar constraints as in (18)–(20) are enforced to make sure every scheduled flight should will land at its destination
airport. Solving this Integer Program follows the same scheme as discussed in Section 4.

A.4. Results

The extended framework was implemented on the same platform as in Section 5. A 2-h TFM problem was solved for the
whole continental NAS in the United States, with arrival capacity constraints in three major destination airports. To reduce
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the number of variables and constraints, dt = 15 min is chosen as the update time interval. The computational time of solving
this optimization problem is less than 60 min.

The airport capacity constraint is fixed as Cdt
a ðhÞ ¼ 45; h � #, which means that the Airport Arrival Rate (AAR) accepted by

the airport is up to 45 aircraft per dt minutes. In this study, three airports have a restricted arrival capacity constraint, which
are Los Angeles (LAX), San Francisco (SFO) and Boston Logan International Airport (BOS).

Fig. 12 shows a comparison between the real and the optimal aircraft arrival counts at LAX. The airport arrival capacity
constraint is also represented as a reference. For example the schedule arrivals for LAX airport for the 15 min interval from
t = 1 to t = 15 min are 60 flights, which exceeds the arrival capacity. The optimal solution gives an optimal number of arrivals
equal to the airport arrival capacity from t = 20 to t = 100. This solution makes perfect physical sense, i.e., it shows that an
optimal integrated high altitude – airport problem spreads capacity usage between the ground and the air, in particular by
maximization of airport runway usage.
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