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Modeling and Optimization Analysis of a Single-Flagellum Micro-Structure
Through the Method of Regularized Stokeslets

Edgar J. Lobaton and Alexandre M. Bayen, Member, IEEE

Abstract—Bacteria such as Rhodobacter sphaeroides use a single
flagellum for propulsion and change of orientation. These types
of simple organisms have inspired microrobotic designs with
potential applications in medicine, which motivates this work. In
this paper, an elastic model for a single-flagellum micro-structure
is presented and followed by an analysis of the system based on
optimization. The model is based on the method of Regularized
Stokeslets which allows for a discretization of the system into parti-
cles connected by spring forces. The optimization analysis leads to
the design of an optimal elasticity distribution that maximizes the
mean forward speed of the structure. These elasticity coefficients
are obtained through the use of adjoint-based optimization. The
results are illustrated through simulations showing improvement
on the swimming pattern of the micro-structure.

Index Terms—Adjoint optimization, animation and simulation,
biologically-inspired robots, microrobotics.

1. INTRODUCTION

HERE have been numerous achievements in MEMS tech-
T nology which have led to the development of micro-ma-
chines such as the ones designed by Donald ez al. [1] and Yesin
[2]. Among some of the main applications for these devices,
we find biomedical microrobots capable of performing tasks
such as drug delivery [3], diagnosis, and surgical removal of un-
wanted agents. In this particular paper we present the modeling
and design of a micro-structure inspired by single flagellum bac-
teria.

A bacterial flagellum is a helical structure attached to the
body of bacteria which is used for locomotion. Several studies
explain the motion patterns observed in bacteria due to chemo-
taxis and phototaxis. In particular, Armitage and Schmitt [4]
describe the type of swimming patterns observed in different
bacteria that use flagella for their locomotion. Rhodobacter
sphaeroides is a particular example of such bacteria, which
uses a single flagellum for motion.

Bacteria have a motor at the base of each flagellum which
applies a rotational torque. This torque forces the base of the
flagellum to rotate. The rest of the structure moves due to
the elastic forces joining it together, i.e., there are no internal
forces generated in the flagellum (only reactive forces due to
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stretching). When the direction of the torque agrees with the
handedness of the flagellum, the bacteria moves forward while
the flagellum stretches. If the torque is turned off, the flagellum
returns to its original position. It is stated in the article [5] by
Armitage et al. that bacteria such as Rhodobacter sphaeroides
(R. sphaeroides) change direction just by stopping rotation,
while other bacteria such as Escherichia coli (E. coli) reorient
themselves by switching the direction of their torques. R.
sphaeroides are single flagellum organisms while E. coli are
petrichously flagellated. For E. coli, the dynamics of motion are
more complex due to bundling and tumbling motion patterns.
Modeling of these processes have been studied by Flores et al.
[6].

Analysis on the propulsion mechanism of a single flagellum
can be found in work by Purcell [7]. However, this type of anal-
ysis often ignores the dynamics of the system, any elasticity
considerations, and neglects the effect of the body. On the other
hand, simulation studies such as the one performed by Flores et
al. [6] include the dynamics of the system and elasticity of the
flagellum. However, the model in [6] does not include the effect
of the bacterial body.

The recent years have stressed an increased interest in devel-
oping models of swimmers at low-Reynolds number. The in-
terest ranges from biological to nanotechnology applications.
For example, a model that uses three spheres for motion was in-
troduced by Najafi and Golestanian [8]. Dreyfus ez al. [9] built a
microscopic artificial swimmer with a flagellum composed of a
chain of colloidal magnetic particles linked by DNA. At a macro
scale, Long et al. [10] built a simple robot that demonstrates the
dynamics underlying helical trajectory on microscopic organ-
isms. Previous work has also been done on the motion of solid
surfaces using flagellated bacteria as propulsion mechanism by
Darton et al. [11]. Further work on controlling the motion by
using magnetotactic bacteria has been presented by Martel et
al. [12]. Behkam et al. [13] perform a propulsion analysis of a
single flagellum in a silicone oil tank, and experiment with an
actual array of bacteria for propulsion of larger payloads using
chemotaxis for control [14]. Steager ef al. [15] use phototaxis
for motion control. Several efforts have dealt with the study
of deformation of helical filaments including the work by Kim
and Powers [16]. In their work, bending stiffness is reported to
range from A =~ 1072 N-m? to A ~ 1072! N - m? and twist
modulus in the range C' ~ 10722 N . m? for a variety of fila-
ments in biological structures. Properties of elastic rods in vis-
cous fluids have also been studied experimentally by Qian et
al. [17] and through intensive numerical simulations using im-
mersed boundary methods by Lim and Peskin [18].

In this paper, the model presented by Flores er al. [6] is ex-
panded to reproduce motion of bacteria with a single flagellum
such as R. sphaeroides. The work is also extended to consider
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design strategies for microrobotic applications. The model has
been studied and validated for helical structures in the studies
of Cortez et al. [19] and Flores et al. [6]. Hence, we do not go
over the particulars of how it incorporates the adequate phys-
ical constraints in the system. This model includes a bacterial
body and an “engine” that drives the rotation of the structure.
The engine can also be thought of as a reacting mechanism to
an external field driving the micromachine. The motion for the
model is studied, and some key observations on the trajectory
of the structure are highlighted. The model uses a combination
of closed form solutions of Stokes’ equations: the regularized
Stokeslet and rotlet. The model is analyzed: we investigate the
influence of the elasticity distribution in the flagellum of the
micro-structure on the forward thrust motion. In particular, we
characterize an optimum value of the elasticity which provides
maximal thrust. This type of analysis can be used for systems
biology parameter estimation [20], [21], as well as for design,
in particular for micromachines [9], [13], [14], which is a moti-
vation for this work.

We pose the problem of finding an optimal elasticity distribu-
tion as an optimization program, in which the underlying flow
of the problem (governed by Stokes’ equations) appears in the
constraints. We solve this problem with adjoint-based optimiza-
tion. The specificity of the method proposed in this article lies
in the use of the closed form regularized Stokeslet and rotlet so-
lutions in the computation of the full solution of the direct and
the adjoint problems. Adjoint-based control or optimization has
proved to be a very efficient technique for shape optimization
[22], flow control [23], [24], parameter estimation in biology
[20], control of networks [25], [26], inverse modeling, and data
assimilation [27]. In most of the adjoint work available in the
literature, the gradient of the cost function of the optimization
problem is computed explicitly in terms of the solution of the
adjoint and the direct problems; note that, the actual numerical
solution of the problem has to rely on numerical schemes to
solve the corresponding partial differential equations (PDEs).
In this work, the specific structure of the system enables us to
write the gradient explicitly in term of the closed form solutions
of Stokes’ equation, which provides an enormous gain in com-
putational efficiency and numerical accuracy.

This paper is organized as follows. First, the model is in-
troduced by reviewing the scheme used for discretization of
the structure and displaying some motion results. Then, the ad-
joint-based optimization analysis is presented by showing the
derivations and discussing the implications of our results.

II. MODELING

The model consists of the body, a helical flagellum, and the
junction connecting them. The junction, which consists of a
hook coming out of the body and attached to the helical fla-
gellum, has at its base the rotor engine that drives the motion. In
Section II-B, the engine is modeled by a set of torques. These
torques are the active components that drive the motion of the
whole structure. The flagellum is a helical-shaped elastic struc-
ture that moves due to the forces and torque effects that are im-
posed on it. Of course, all of these interactions must be com-
puted in a low-Reynolds number environment which is charac-
teristic of the scale of the organism to be modeled.
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Fig. 1. Rotor and junction structures shown in micro-structure model (left) and
as a separate component (right).

The structure is discretized into a set of particles joined by a
network of springs (see Fig. 1), which have forces and torques
applied to them. The motion of these particles obeys a set of
PDEs as it is described in the next section.

A. PFarticle Method

Due to the low-Reynolds number that characterizes this
system, the hydrodynamics of the system can be properly
described with the Stokes’ equations

pAu=VP—f, Vui=0 (1)

where 4 is the fluid velocity, P is the fluid pressure, f is the
external force density, and p is the viscosity of the fluid. By
proper scaling of the variables by characteristic values of length
(L) and velocity (U)

1 L
T, u==u, P=-—%

Tr =

=
h

we can obtain dimensionless versions of Stokes’ equations

Au=VP—-f, Vu=0. 3)

These are the equations that will be used to discuss the fluid
motion around the flagellum.

For R. sphaeroides, the typical length for the flagellum fila-
ment is 1-6 ym, and a typical velocity is 10—40 gm-s~1[5]. Our
dimensionless results can be interpreted to a scale comparable
to that of R. sphaeroides by choosing the factors summarized in
Table I. These values were chosen such that the length of the fil-
ament in our model (see Table II) corresponds to 2 ;m, and the
maximum velocity observed in Fig. 4 is close to 20 pm - s~ 1.

Here we use the regularized Stokeslet and regularized rotlet
solutions used by Flores et al. [6], introduced by Cortez et al.
[19], for the cases of a single point force fy and a single point
torque Lg applied at location zy. The method of regularized
Stokeslet has been validated for the use of helical structures by
Cortez et al. [19]. Also, Flores et al. [6] show more comparisons
to biological data for E. coli.

The regularized Stokeslet and rotlet solutions are given by

(T2+252) [fg(x—lo)] (ZE—LE )
87 (r? + 62)3/2 (1% + 62)3/2 0
(2r% 4 562)
167(r2 + §2)5/2

Us($;$07 fO) =

fo—f—8

U.(x; 20, L) = [Lo X (x — x9)] O]
where r is the distance between = and xg, and ¢ is the regu-
larizing parameter in the method. These formulas express an-
alytical solutions to a regularized version of the Stokes (3) in
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Fig. 2. There are four types of springs on the flagellum: cross sectional, longitudinal, diagonal, and anti-diagonal (from left to right). For each triangular cross
section there are three cross sectional springs. Going along the flagellum, we can group these springs into three components. We can similarly obtain three com-

ponents for each one of the spring categories mentioned before.
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Fig. 3. Motion simulation illustrating change of orientation due to reversing the torque at + = 1000 for a duration of 30 units of time. The path followed by

average particle is shown as a solid curve.

TABLE I
CONVERSION FROM DIMENSIONLESS TO DIMENSIONAL UNITS

Dimensionless variable  Factor

Length L=5-10"%m
Velocity U=10"!tms~!
Viscocity s (water) p=10"3kgm=1s~1
Time T=L/U=5-10"7s

F=pU/L?=4-10% Nm~3
Ty =pU/L =20 Nm~?2

Force density
Torque density

TABLE II
GEOMETRIC PARAMETERS (IN DIMENSIONLESS UNITS)

Parameter Value
Length of axis of body in z-direction (az) 0.09
Length of axis of body in yz-directions (a-) 0.07
Number of particles for discretization (Npr) 75
Radius of curvature of junction (R ) 0.02
Number of triangular cross sections in junction (/N y) 5
Radius of tubular region around centerline of junction (r) 0.01
Amplitude of flagellum (Rr) 0.06
Wavelength of flagellum («) 0.1
Arc-length of flagellum (L) 0.4
Number of triangular cross sections in flagellum (Np) 30
Radius of tubular region around centerline of flagellum (r)  0.01

which the forces and torques are not applied at single points,
but are distributed over a small neighborhood of the application
point. For more details refer to [6]. Throughout this brief, we

use 6 = 0.02 which is consistent with the size of our discretiza-
tion. This choice is made based on numerical arguments present
in [6] and [19].

Common Stokeslet and rotlet solutions to the application of
point forces and torques in a system governed by the Stokes
equations yield singular solutions. This would make the formu-
lation of the optimization of a functional based on these solu-
tions problematic due to the lack of differentiability of the so-
lution. The method of regularized Stokeslet yields smooth ver-
sions of these solutions, which allows the application of the cal-
culus of variations. Also, having control over a regularization
parameter can lead to the use of multiscale schemes for the op-
timization of our objective functional.

These closed form solutions give us a velocity field that can
be used to track particles moving in the fluid. Hence, we only
require a model that specifies the forces and torques due to a par-
ticular configuration at a specified time. In this model, the effect
of the forces (which are defined at all particle locations) and the
torques (applied at a total of four locations) can be combined
to define the following dynamics for the system of particles in-
dexed by k:

3 N,
i=0 j=1

where R £ {n;}?_, is the set of indices where torques {L;}
are applied, f; is the force applied at point z;, and N, is the
total number of particles. See Fig. 1 and Section II-B for an
illustration.
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B. Model

The model follows the methodology developed by Flores et
al. [6]. The flagellar structure and the body are discretized into
a collection of particles with a network of springs connecting
them. A view of some of these connections is shown in Figs. 1
and 2.

Our model consists of an ellipsoid representing the body, a
tubular section with a helical centerline representing the fla-
gellum, and a tubular section with part of a circular centerline
representing the hook that joins the body to the flagellum. The
equation for the body is given by

T+ a,)? 2 22
in+%+¥:1
where a, and a,. are the length of the axis of the ellipsoid. The
equation is shifted so it matches properly with the hook. The
equation for the centerline of the hook is

(z,y,2) = (Rysin(s), Ryj(1 — cos(s)),0), s€ [0./ g}

where R is the radius of curvature of the junction. Finally, the
equation for the centerline of the flagellum is

(x,y,2) = <a L,RF sin(s) + Ry, Rp(1 — cos(s))>
(2m)

where s € [0,Lp/\/a?+ R%], R is the amplitude of the
helix, « is the wavelength of the helix, and Lp is the total
arc-length of the helix. The tubular sections around the cen-
terlines for the hook and the flagellum have radius r. For our
discretization, we consider triangular cross sections normal to
the tangent of the centerlines for the flagellum and the hook.
A total of N ; cross sections and N cross sections are consid-
ered for the junction and the flagellum, respectively. The body
is discretized by considering particles along circles normal to
the x direction. A total number of Ny particles are used for dis-
cretizing the whole surface of the body.

The values used in our simulations are given in Table II. Fig. 1
shows a 3-D rendering of our model for the given parameters.

The particles and spring connections on the body define a tri-
angular tessellation of its surface. Besides having spring con-
nections on the surface of the body, we also define connections
between the front and back particles in the body. These are
marked with dark lines in the right plot of Fig. 1. These con-
nections are there to make the structure more stable.

The flagellum is discretized by using triangular cross sections
perpendicular to the helix that determines the centerline of the
structure. The types of spring connections in the flagellum are
cross sectional, longitudinal, diagonal, and anti-diagonal. Fig. 2
illustrates these connections with the darker lines corresponding
to each set of connections.

The body is joined to the flagellum by a junction shaped as
a hook. This junction is discretized in the same way as the fla-
gellum. The junction is connected to the body through the rotor
engine. This engine is discretized allowing for free rotation of
the junction. On the right plot of Fig. 1 the engine structure
(which is a diamond-like structure joined to the body) and part
of the junction are shown. The left plot of Fig. 1 shows these
components and their location in the model.
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Forces due to the stretching of a spring are defined by using
Hooke’s law. The total force at a particle location z; is the sum-
mation of the forces due to all the particles connected to it, and
it is given by

fi= Y ajn <1 - M) (Tn — ) (6)

T,
nee(j) m

where c(j) is the set of indeces of particles connected to z; by
spring, o, is the elasticity of the spring connection between x ;
and z,, 7y is the distance between the particles, and 7o ;, is
the rest length of the corresponding spring.

The driving forces in the engine are the torques. A main
torque Ly is applied at location z,,,, and counter-torques L;
are applied at locations x,,, for« = 1,...,3. The location of
the torques are shown in the right plot of Fig. 1. All of these
torques are defined to be parallel. The magnitude o of the main
torque is given by o (a parameter chosen for the simulation),
and the magnitude o; of the counter-torques is given by —o /3
which is chosen to conserve angular momentum. For all of our
simulations, we chose 0 = 0.001. The equation of any of the
torques is given by

N

where p £ (2., — (Zn, + Tn, + Tn,)/3). The vector p points
in the same direction as the tangent to the axis of rotation of
the junction. The locations of the points x,,, in our structure are
shown in Fig. 1.

C. Motion Results

For this section, elasticity values were chosen to be: 20 on the
body, 60 on the junction, and 40 on the flagellum. Note that all
types of coefficients (i.e., cross sectional, longitudinal, diagonal,
and anti-diagonal) are given the same values for the junction and
the flagellum.

Fig. 3 shows the position and configuration of the model at
different stages of the simulation. For this simulation, the torque
is turned-on at time ¢ = 0, its direction is reversed at time ¢ =
1000, and it is set again to its original magnitude at ¢ = 1030.
Initially the flagellum has a small pitch (top-left). As the struc-
ture moves, the flagellum stretches (top-right). The structure
changes orientation when the torque is reversed (middle-left),
and reorients itself (middle-right) when the torque is reset. Fi-
nally, the structure moves in a new direction (bottom-right) with
a change of orientation of about 30 deg. It is observed that the
applied torque acts as a 1-DOF actuator for changing the swim-
ming direction of the structure. This actuator uses the passive
properties of the flexible flagellum and provides an avenue for
trajectory tracking. Animations of the motion can be seen at:
http://www.eecs.berkeley.edu/~lobaton/Bacteria/index.html.

III. ADJOINT-BASED SPEED OPTIMIZATION

The goal of this section is to analyze the elasticity distribu-
tion over the flagellum. In particular, we compute an elasticity
distribution of the flagellum which maximizes the average for-
ward velocity. A gradient descent algorithm will be used next
to obtain the minimum of a functional that is specified below
and encodes average velocity. The derivation of the gradient is
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performed using the adjoint problem, since a direct computation
using finite difference would be computationally too expensive
and potentially inaccurate.

A. Optimization Problem With PDE Constraints

We formulate the problem as a constrained optimization pro-
gram. We aim to find the optimal elasticity distribution over
the flagellum that maximizes the mean forward speed of our
structure given that the dynamics are constrained by the Stokes’
equations (3).

Due to the complex motion of the structure, the mean forward
speed v is not a quantity that can be expressed in closed form.
However, it can be approximated by considering the average
distance traveled by a particle k, i.e.,

[l (T) = 21 (0)]l2
T :

VR

This is a valid approximation for large enough 7'. Hence, the
following objective functional is defined from considering the
distance traveled by the average among all particles

_ (lz@e) w2 )
J(a>:(TTO )

5 ®

where Z(t; o) = Ei\r:”l x;(t; &) /N, a encodes the design pa-
rameters (in our case, the elasticity distribution over the fla-
gellum), and N, is the number of particles in the structure.
The dependency of the trajectories on « is emphasized by using
the notation x;(¢; ). The average among all particles can be
thought as a center of mass computation. Technical reasons as
of why this average particle is used, instead of focusing on a
single particle, will be given later. The design parameter o only
appears explicitly on the computation of the forces between par-
ticles as seen in Section II-B. In turn, these forces specify the
velocity flow field that updates the position of the particles.

Therefore, the optimization problem is posed as the mini-
mization of the objective functional given in (8) with constraints
given by (5), where the forces and torques are defined by the cur-
rent configuration of the structure.

B. Considerations due to Periodic Configuration

Due to the physical nature of the motion, it is expected to
find periodic behavior associated with the configuration of the
structure. This is also observed in the numerical simulations.
Hence, it can be assumed that the motion of a particle is of the
form

zr(t) = 21(0) + vtér + p1(t)ér + pa(t)éa + p3(t)és  (9)

where p;(t) are periodic functions of period 7 and p;(0) = 0,
€1 is the unit vector in the direction of the mean velocity, and
{é;} form an orthonormal basis. This implies

”“T(T);—;”(O)”%:ru?+0(%>.

Using this result and (8), then

J(a) = _7”2+0 <;>

Note that if T 2 N 7, where N is an integer and the motion
is exactly periodic, then the last term vanishes. However, using
this for the adjoint computation would require knowing 7 ex-
plicitly as a function of «. In order to reduce the last term in
the functional evaluation, 7" is computed such that 7" ~ N
by minimizing the Lo difference between configurations after
some fixed time.
From the previous equation, it also follows that

D,J(a) = —v(Dav) + O (%) .

In this case, the last term does not vanish for 7' = N7, but
the right-hand side becomes a better estimate to —vT (D, v) as
T — oo. The latter is of interest since the goal is to maximize
the mean forward speed.

C. Adjoint Derivation

By perturbing the system and noting that the zth elasticity
coefficient «; (here we are assuming an ordering of the coef-
ficients) only appear explicitly in the computation of the forces,
we have

3

=2 (D

/
lkaxnnL )xk

+ DU, (s T, LL)LE; + D3U,(z; 2, L;) L)

N,

Z DIU xkaxjafj)xk + D>Us (xk‘7x_]7f])
+D3Us(wk;$j7fj)f]{)

(DI'mLi)x;n

(D, fj)z (10)

L = Z
mER
N, No

f = Z Z Danfj
m=1 n=1

where it is assumed that the first IV, elasticity coefficients are
the ones used for the optimization, D; stands for the gradient
with respect to the ith entry, and {z}, f;, L}, } are the corre-
sponding first order variations. By recombining all of these
terms the previous equation can be expressed as

N,
)= Z Fy.i(S(t)x

75, (0) =0

Na
{0+ Gy (5o
" (In

where S(t) stands for the configuration of the structure at time
t. Definitions and explicit formulations of Fy, ;, G ; are given
in Appendix A. The first variation of the energy functional given
in (8) is given by
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Fig.4. Mean forward speed results (in dimensionless units) when varying mag-
nitude of the constant uniform distribution for the elasticity.

- 2(0)" 24(T).  (12)

1=

The adjoint state yy(¢) is defined in order to obtain an analyt-
ical expression in terms of o} . Multiplying both sides of (11) by
the transpose of the corresponding adjoint state and integrating
over time, then

/ YT (1) () dt =y (T)y(T) — / GT (1) (t) d
JO JO
T T Nz
/ o (1)l (8) dt = / ACDILNEL
JO .

/0' yF(t ZG;” a dt.

A summation over all particles of the structure provides

i (t) dt

N,
S =5 [ it it e
k=1 i=170
N T Nz
+3 [ L R s@i) i
[,
+> [ S @Gk it a
=170 k=1
N, N. ,r N, T
I AGIAGEY / (a<t>+ZFZL<S<t>>yk) 2(t) dt
k=1 1=1NQ : ka:l
+ (/ SGE(s( >>yk<>dt)
j=1 \"0 k=1
The following definition:
N,
FT(SM)we(t)  wi(T) = 2(T) — 7(0)
k=1

when incorporated in the previous formula, can be used to ex-
press (12) as follows:
yi(t) dt ) o

1 Na T Na
_ T
J’(a)_—m E </0 E de(st
T j=1 k=1
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We note that in the previous derivations, it is essential to have a
summation over the index k in order to obtain the desired sim-
plifications. This summation comes from the consideration of
the average particle in our functional. This is the reason why
the functional is based on the displacement of the average par-
ticle instead of focusing on a single particle. By defining

2e(t) 2yp(T — 1),
Fri(t) 2 FL(S(T —t)) and
Gri(t) 2GR (S(T 1)) (13)
the previous equations become
N,
4(t) =Y Foit)a(t)  2(0) = 2(T) - #(0)
k=1

J(a) = NTZi(/ ;G,” zk()dt>a .(14)

Hence, it is possible to identify the gradient of the cost func-
tional as

a.J 1 T

—(0) = ———— Gr,j(t)zi(t) dt. 15
9o, ) = TR /0 kz_l ba(t)ar() (>
This result can now be used in any gradient descent algorithm
(as it is also illustrated in [20], [26], and [28]) to minimize the
desired functional. Our particular implementation performs a
linear search on the direction of the gradient. We constraint our
linear search to the close interval for which the design parameter
« remains with positive components (since negative elasticity
does not make physical sense).

D. Optimization Results

For this section and the following, we use the same elasticity
values as specified in Section II-C. The values given to the elas-
ticity of the flagellum are the ones over which we will optimize,
with an initial value of 40 for all of them.

As described in Section II-B, the flagellum is discretized
using triangular cross sections perpendicular to the helix cen-
terline of the structure. The spring connections defined can
be categorized into four types (see Fig. 2): cross sectional
(between particles in the same cross section), longitudinal (be-
tween corresponding particles in the following cross section),
diagonal and anti-diagonal (between any other particles in the
following cross section that has not been connected yet). We
distinguish between three components in each category due to
triangular cross sections in our model.

For the optimization process, each of these types of spring
connections are initialized to the value of 40 uniformly. Then,
updates are done based on a particular search direction. This
initial value was chosen to yield a steady forward motion. Any
elasticity value less than 40 did not end up in steady forward
motion during simulation.

1) Using Constant Uniform Distributions: In order to have a
basis of comparison for the optimization results using the pre-
vious gradient computation, we look for the optimal mean for-
ward speed over the space of constant uniform distribution (i.e.,
so the elasticity remains constant throughout the flagellum). In
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Fig. 5. Plots of the elasticity components along the flagellum for the optimal distribution found. The x-axis depicts the relative position along the arc-length of
the flagellum where O is at the base and 1 is at the end. The y-axis is the elasticity value. Due to triangular cross sections, there are three components for each

elasticity category. These components are illustrated in Fig. 2.

TABLE III
PATH STATISTICS FOR MEAN PARTICLE (IN DIMENSIONLESS UNITS)

Category Optimal Initial Ratio
Mean Forward Speed 5.27 x 1074 148 x 10~*  3.56
Frequency of Oscillation 4.0 x 10~2 3.7x 1072 1.08
Amplitude of Oscillation 2.0 x 1073 1.3 x 1073 1.54

this case, we have only one free parameter, which is the magni-
tude of the elasticity.

By varying the magnitude of the elasticity, we expect that for
low values (weak springs) the structure will not be able to hold
its shape properly causing slower speed. Ultimately if the elas-
ticity is 0, there should be no forward speed. The other extreme
is having a high value for the elasticity (strong springs). In this
case, we expect that the structure will keep its initial configura-
tion. We expect in this case to have more of a rigid body motion
and with a finite forward velocity (i.e., we expect the velocity to
converge to a value for high elasticity values). Fig. 4 shows the
mean forward speed for an elasticity value in the interval 40 to
400. This function plot was obtained by sampling the function at
marked locations. No values smaller than 40 were used because
the flagellum would not be able to get to a stable configuration
with these values. As expected this plot shows the mean forward
velocity values converging for high values of elasticity. We es-
timate this final velocity to be about 2 x 10~%, which is about
1.35 times our initial speed. Hence, this optimization process
yields an improvement of 35%. We now compare these results
with the optimization using the gradient information.

2) Using Gradient Descent: In this section, the gradient is
computed using (14)—(15), and then used to update the elas-
ticity coefficients by gradient descent. The optimal step size is
obtained by linear search on the direction of the gradient. At the
end of the optimization, the optimal distribution yields a mean
forward speed of over 3.5 times the original speed as it is shown
in Table III. This is about 2.6 times better than the optimal in-
crease obtained from the constant distribution case in the pre-
vious section.

0.01
0 VAVAVAVAVAY
-0.01
0 0.05 0.1
& Direction of Motion
0.01
O PR AR AR AN AN AN N

-0.01
0 0.05 0.1

Swimming Pattern

Structural Configuration

Fig. 6. Comparison between swimming patterns (left) and corresponding struc-
tural configurations (right). Trajectories on the zy plane of the average particle
before optimization (top-left) and after (bottom-left) are compared. The scale in
the configuration plots is five times the scale in the trajectories.

In Fig. 5, the elasticity distribution for the different compo-
nents along the flagellum after convergence of the algorithm is
shown. We observe an overall increase on the longitudinal co-
efficients from their initial value of 40. Since the longitudinal
springs have the effect of maintaining the length of the flagellum
constant, we could conclude that the optimal distribution does
not allow for stretching of the flagellum. This is validated in our
simulations by noting a minimal change on the arc-length of
the flagellum in the order of 1%. For the diagonal coefficients
we observe that the springs are strengthened at locations in the
flagellum closer to the body and weakened at locations farther
away from the body. Since the diagonal springs can be associ-
ated to the amount of torsion allowed in the structure, the op-
timal distribution allows for more torsion at locations farthest
from the body. This can be seen clearly by comparing the con-
figuration at the right of Fig. 6. Weakening the diagonal springs
yields more torsion on the structure, which translates into a
longer amplitude at the end of the flagellum that is farthest from
the body, as observed by comparing the configurations before
(top-right) and after (bottom-left) optimization. We also observe
an overall decrease for the anti-diagonal coefficients, and small
variations for the cross sectional values.

Since the optimization involves the estimation of the velocity
of the average particle, it is useful to analyze the trajectory this
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average particle follows. In Fig. 6, we observe two trajectories
in the xy-plane. The trajectory for the initial uniform distribu-
tion is shown on top. The trajectory for the optimal distribution
is shown at the bottom. It is observed that there is no noticeable
change on the frequency of oscillation on these helical paths.
This is true despite the change on the wavelength and ampli-
tude of the paths. Some statistics comparing these two paths are
shown in Table III.

There is also a noticeable difference between the configura-
tions of the structure during motion. On the top-right of Fig. 6,
the plot shows a configuration of the structure during motion
before any gradient update is applied. On the bottom-right of
the same figure, a configuration during motion after optimiza-
tion is shown. There is a noticeable increase on the pitch of the
helical structure at the end of the flagellum that is furthest from
the body.

IV. CONCLUSION AND FUTURE WORK

This paper derives a mathematical framework to model the
structural properties of a flagellum, and the corresponding
swimming patterns in low Reynolds number flows. The motion
modeling portion of this work successfully simulates bacterial
forward motion and change of orientation by reversing the
torque for a single-flagellum organism. For the optimization
part of this brief, the aim was to maximize the forward speed
in terms of the elasticity distribution on the flagellum. An ex-
plicit expression for the gradient of a cost functional encoding
forward speed of the flagellum was obtained using the adjoint
method. This estimate of the gradient was also successfully
used for computing elasticity distributions that yield higher
speed. Also, the observed conformation of our model matched
what was expected from biological observations. This analysis
can easily be extended to optimizing structural shape of the
flagellum.

Due to the regular structure of flagella in biological organ-
isms, the types of elasticity distributions presented in this work
are not a feature which biological organisms can necessarily
achieve by themselves. Also, elasticity properties of biolog-
ical structures are very sensitive to environmental parameters
such as pH level and temperature. However, the fabrication
of nanoscale filaments with any desired elastic properties can
be foreseen in the near future; with numerous applications in
microrobotics.

The model can be improved by including other boundary
conditions that are more suitable such as planes with no-slip
boundary conditions for direct comparison to biological data

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

and experimental results such as the ones presented by Behkam
et al. [13], which we hope to do in the future.

APPENDIX A
COMPUTING F}, ; AND Gy, ;

By identifying the coefficient of o/, in (10) to the coefficients
in (11), it can be observed that

N, N, Na
> Gen(SM)ar, =Y DsUs(xkiwj, f5) Y (Da, fi)t
n=1 7j=1 n=1

N,
Grn(S(t) =Y DsUd(wr; 5, f;) Do, fi-

i=1

In the model, particles are joined by spring connections, and
the total force applied at a particle location is the sum of the
forces due to the springs connected to it, as seen in (6). Hence,
D, f; is 0if the nth spring (with elasticity «,,) is not connected
to z;. Therefore, by defining v(n) to be the set of particles con-
nected by the spring with coefficient «,, then we obtain

Gen(S(t) = > DsUs(wr; ;, ;) Da, fi-

Jj€v(n)

(16)

By identification of the coefficients of z/ between (10) and
(11), it can be concluded as shown in the equation at the bottom
of the page. Then

3
Fen(S(t) =Y DiUp(wx; 2, Li) I k = ]
=0
+ DU, (k; @0, Ly) If n € R]

3
+ Y DsUp(2ki @, Li) Dy, Li [Ifn € R]
=0
Na
+ ZDlUg(xk;LI}j,f]‘) [Ifk' = TL]
j=1

+ D2U5($k;$n, fn)

j€e(n)

+D3Us($k§$n7fn>Dznfn (17)

where c(n) is the set of particles connected to z,, by some
spring. For the last two term we used the fact that D, f; is
nonzero only for those forces for which x,, is part of the com-
putation, i.e., the set ¢(n) U {z,}.

S Ben(St)ah, = 3

1=

0
N,

>

J=1

D1U,(wk; T, , Li)wy, + DoUp(g; @y, Li)xy,, + DsUp (g5 @, , Li) Z (Da,, Li)a,,

mEB

N,
m=1 ‘|

DyU (s 5, f)2h, + DoUs(@r; 25, f5)2 + DaUs(zis 2, £5) Y (Day, £5)7h,
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D1U, (zx; 20, L) =

(2k—=n,) (217, +56°) L
- ((67‘]%”1, +216%)L; x W (e — 20,)T + W)
(167)

APPENDIX B
LIST OF DERIVATIVES OF FUNCTIONS

All derivatives required for the previous computations are de-
fined in the following.

Derivatives of Rotlet Component: The expression for the

velocity contribution from the rotlet solutions is given in (4) by

(xk — xni)
(1677, + 077

U (2130, , Li) = (2r},, + 56%)L; x

where 7y, is the euclidean distance between zj, and z,,,, and
¢ is the regularization parameter. Hence, we get the equation at
the top of the page, where L; is the skew symmetric operator ~
applied to the vector L;. Also

D2Ur($k; In,7Li) = - DlUr($k7xn,7Li)

(1 — @)
(167 (17, + 62)7/2)

D3UT($k;xni7Li) = - (27“]%“1 + 562)

Derivatives of Stokeslet Component: The expression for
the velocity contribution from the rotlet solutions is given in (4)
by

(riy; +28%)
S (2, + 22

[fi (. — wi)]
8m(ry;+62)%/2

Us(xk;xiafi): f1+ (wk_wi)'

Hence

8m(r2, + 62)5/2

! T

* Sntg, o ek

VA CT))

8m(r?; + 62)5/2
8 (r3, + 62)3/2

DoUs(@ns @i, fi) = = DiUs(an, @i, fi)

(rf; + 2691

(8 (r2, + 62)3/2)

DUs(xp; i, fi) = — filze —z)"

(wr — i) (zp — 23)"

(wr—i)(wp—2i)"

D3U,(wg;zi, fi) = (87((7',%,» + 52)3/2) )

Derivatives of the Torques: The torques, as given in (7),
are defined as: L; = a;p/||p||, where p £ (2, — (T, + Ty +
Tn,)/3), 0; is the magnitude of the torque, n; € R are the
indexes of the points used for computing the direction of the
torque and where the torques are applied.
Clearly, if k ¢ R then D,, L; = 0. In the case that k = ny,
then

I pp”

D S < iy
el dlell®

L=

T

AISO, l)gvn1 Li = l)wn2 L'i = l)xn3 Lz = —(1/3)Dxno Li~
Derivatives of the Forces: The forces are also defined in

(6) as
T0,in
in 11— — n — &g
Q < - > (z x;)

where o, is the elasticity constant between z,, and x;, and 7¢ ;y,
is the rest length between x,, and z;.

Clearly, if £ ¢ ¢(i) and k # i then D, f; = 0. Otherwise,
for k € c(i)

D$kfi = ajp <7‘Oéik> (xk_xi)(xk_xi)T+aik (1_T07ik) I
Tik Tik
Dfifi = - Z kafi'

kee(i)

fi=

>

nec(i)

We also have that

D i = (1 - °—) (s — 22)

Tin

for a;;, connecting z,, to z;. In general, if o, does not connect
any node to x;, then D,, f; = 0.
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