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Exponential Stability of Switched Linear Hyperbolic
Initial-Boundary Value Problems

Saurabh Amin, Member, IEEE, Falk M. Hante, and Alexandre M. Bayen, Member, IEEE

Abstract—We consider the initial-boundary value problem gov-
erned by systems of linear hyperbolic partial differential equations
in the canonical diagonal form and study conditions for exponen-
tial stability when the system discontinuously switches between a
finite set of modes. The switching system is fairly general in that the
system matrix functions as well as the boundary conditions may
switch in time. We show how the stability mechanism developed
for classical solutions of hyperbolic initial boundary value prob-
lems can be generalized to the case in which weaker solutions be-
come necessary due to arbitrary switching. We also provide an ex-
plicit dwell-time bound for guaranteeing exponential stability of
the switching system when, for each mode, the system is exponen-
tially stable. Our stability conditions only depend on the system
parameters and boundary data. These conditions easily generalize
to switching systems in the nondiagonal form under a simple com-
mutativity assumption. We present tutorial examples to illustrate
the instabilities that can result from switching.

Index Terms—Distributed parameter systems, stability of hybrid
systems, switched systems.

I. INTRODUCTION

S WITCHED systems are a convenient modeling paradigm
for a variety of control applications in which evolution

processes involve logical decisions. However, in contrast to
their simplicity on modeling grounds, the stability analysis of
switched systems is often nontrivial. An extensive body of liter-
ature now exists for the case of switched (linear and nonlinear)
ordinary differential equations (ODEs) and more generally for
differential algebraic equations (DAEs) in finite-dimensional
spaces. As surveyed in [1] and [2], two different approaches
have been mainly considered in the literature: Either one
designs switching signals such that solutions of the switched
system decay exponentially (or otherwise behave “optimally”),
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or one tries to identify conditions which guarantee exponen-
tial stability of the switched system for arbitrary switching
signals. The later approach is of particular interest when the
switching mechanism is either unknown or too complicated
for a more careful stability analysis [3], [4]. Stability under
arbitrary switching is mainly achieved by constructing common
Lyapunov functions or, more directly, by identifying alge-
braic/geometric conditions on the involved parameters.

During the past years, several attempts have been made to also
consider switched systems in the context of infinite-dimensional
control theory. Mostly, the problem of designing (optimal or sta-
bilizing) switching control is considered for problems in which
the state equation is fixed and just the controller is switched. For
example, in [5], model reduction together with control synthesis
for the reduced finite-dimensional model is used to construct
switching control for quasi-linear parabolic equations. The de-
sign of boundary switching control actions for semilinear hyper-
bolic balance equations using switching time sensitivities is con-
sidered in [6]. An algorithm to construct optimal switching con-
trol for abstract linear systems on Hilbert spaces with switching
control operator at fixed switching times is proposed in [7].
Moreover, for the heat equation, a systematic way of building
switching control based on variational methods is described in
[8] and, in a similar context, [9] gives conditions under which
such switching controls exist for the 1-D wave equation.

Despite the aforementioned developments, much less is
known for problems when not only the controller, but also the
state equation is switched. Some general ideas are sketched in
[10] and, for semilinear hyperbolic equations with application
to transport networks, optimal open-loop and closed-loop
switching control is addressed in [11] and [12]. For problems
concerning the stability of switched infinite-dimensional sys-
tems, the construction of common Lyapunov functions gets
very difficult when the state equation is switched, even for
abstract switched linear systems on Hilbert spaces. The only
available result appears to be [13], in which a common quadratic
Lyapunov function is provided for the case when the semigroup
generators commute. This condition is, however, too restrictive
for some applications. Nevertheless, it is interesting to note
that without further restrictions on the generators, common
(not necessarily quadratic) Lyapunov functions exist, even
more generally for switched linear systems on Banach spaces
[14]. Under constrained switching, some algebraic conditions
for stability of switched nonlinear systems on Banach spaces
utilizing Lyapunov functions in each mode are provided in [15].

In this paper we are interested in the stability properties of
solutions to switched linear hyperbolic systems with reflecting
boundary conditions when the boundary conditions and the state
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equation are switched arbitrarily. Let us first introduce the fol-
lowing (unswitched) system of linear hyperbolic partial dif-
ferential equations (PDEs) defined for some interval :

(1)

where is a diagonal real matrix
function and is a real matrix function on .
Assuming appropriate regularity of the matrix functions
and and under the hyperbolicity assumption that for some

(2)

uniformly in , a -dimensional vector solution
of the system (1) with components for ,
arrayed as

is uniquely determined on the time-space strip with
the initial condition

(3)

for specified -valued initial data and boundary
conditions

(4)

where , are constant matrices of dimensions
and , respectively. A common

class of problems studied for initial-boundary value problems
(1)–(4) is the stability and stabilization under boundary control
actions specified by the matrices and . These problems
are of interest because hyperbolic PDE systems can model flows
in networks that are monitored and controlled at the boundary
nodes [16]. Examples include transportation systems [17],
[18], canal systems [19], and gas distribution systems [20]. The
available results for this class of problems for linear hyperbolic
systems can be found in [21] and [22], and more generally for
quasilinear hyperbolic systems in [23]–[25] and [26].

Here we are interested in the stability properties of the hyper-
bolic initial boundary value problem (1)–(4) when , ,

and are not fixed, but are known to satisfy

at any time , where is a finite set of
modes and, for all , the data
is given. This is equivalent to studying the stability of the
switching system

(5)

for the time-space strip where switching occurs
according to a piecewise-constant switching signal

. Preliminaries and wellposedness of the switched system (5)
will be discussed in Section II. Then, recalling the classical ob-
servation in the finite-dimensional control theory of switched
systems that exponential stability of all subsystems does not
necessarily guarantee an exponential decay of the solution when

the system is switched [3], we study, motivated by a simple PDE
counterpart to this observation, the following two specific prob-
lems for the switched system (5) in Section III.

(A) Find conditions on the matrix functions , and
the matrices and that guarantee exponential sta-
bility for arbitrary switching signals.

(B) Alternatively, characterize a (preferably large) class of
switching signals for which exponential stability of all
subsystems is sufficient for exponential stability of the
switched system.

Our contribution here is twofold. Firstly, we show how the
techniques mainly developed for classical solutions (with
data) can be used for weaker solutions (with data) based
on the geometric picture of propagation along characteristics.
This is necessary because switching boundary conditions may
introduce discontinuities into the solution. Secondly, we show
how the switching enters the known stability mechanism such
that the decay rate obtained in this way is independent of the
switching signal (Theorem 1). Following from our analysis,
we also obtain an explicit dwell-time bound guaranteeing
exponential stability of the system under constrained switching
when all subsystems satisfy the known stability condition
individually (Corollary 1). In Section IV, we discuss how our
results for switched diagonal system (5) generalize to switched
hyperbolic systems in nondiagonal form under a commutativity
assumption (Proposition 1). In Sections III and IV, we also pro-
vide illustrative examples of instabilities which can result from
switching. Some final remarks are mentioned in Section V.

II. PRELIMINARIES

For an interval and a measurable function
, let

We call the space of all measurable functions
for which . For an real matrix

, we define

Also define the nonnegative matrix of as and
for eigenvalues of define the spectral radius of

as .
A switching signal is a piecewise-constant function

. Here, we restrict admissible piecewise-constant
signals to those for which during each finite time interval of

, there are only finitely many switches to avoid Zeno
behavior. This assumption anticipated with the accumulation
of switching times is commonly made in the field of switched
and hybrid systems to obtain global existence results; see
for example [27]. Thus, necessarily, has switching times

( ) at which switches discontinuously from
one mode to another mode . We denote

for the set of all such switching signals .
We say that for a given the system (5) is

exponentially stable (with respect to the norm ) if there
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exist constants and such that the solution
satisfies

(6)

In view of problem (A), we say that the switched system (5) is
absolutely exponentially stable (with respect to a norm )
if (6) holds for all with constants and

independently of . In view of problem (B), we say
that a value is a dwell-time of a switching signal , if
the intervals between consecutive switches are no shorter than

, that is, for all and we let
denote the subset of switching signals with dwell-

time .

III. DIAGONAL SWITCHING SYSTEM

For each , we have the diagonal subsystem

(7)
for which we impose the following assumptions:

( ) The matrix function
is such that the char-

acteristic speeds are uniformly bounded,
Lipschitz-continuous functions of for

, and there exists such that for some
, ( ) and

( ); the matrix function is such
that is bounded measurable with
respect to .
( ) For all , .

It is well-known that under the hyperbolicity assumption ( )
for any , , and initial data where

is bounded measurable with respect to ,
a solution of (7) in the broad sense can be defined by the
method of characteristics [28], [29]. In this method, for each
and each point , one uses that the ODE

(8)

has a unique Carathéodory solution, defined for all . As usual,
we say that this solution passing through

is the th characteristic curve for the th subsystem. The
broad solution is then defined as a vector function with
components , , that are absolutely continuous and
satisfy

(9)

along almost every characteristic curve . Here
corresponds to the th row and th column of .

Existence and uniqueness of such broad solutions with
initial data and boundary conditions for the subsystems (7) with

for all can be obtained on arbi-
trary finite time horizons using Banach’s fixed point theorem.
Uniqueness then has to be understood within the usual Lebesgue

almost everywhere equivalence class. For further details on the
existence and uniqueness of broad solutions, we refer to the it-
eration method of [28, pp. 470–475], and to the text of Bressan
[30, pp. 46–50], though noting that the latter does not treat
boundary conditions. For treatment of the boundary conditions
see, instead, [29].

We now justify the existence and uniqueness of solutions
for the switching system (5), which we need in deriving the
main stability result in Section III. Any switching signal

defines a mode for each interval .
For an initial condition, , we define

where

and is a solution of the subsystem corresponding to
mode in (7) with the initial condition

if ,
if .

Thus, under Hypothesis ( ), for every , by
construction there exists a unique broad solution with data

for all of the switching system
(5). Again, uniqueness then has to be understood within the
usual Lebesgue almost everywhere equivalence class.

In the following, we denote by the th char-
acteristic path that passes through a point

and is the concatenation of the characteristic curves
through switching times defined by the switching signal .
When needed, we omit the dependence of on

for notational convenience and simply write .
Observe that, if ( ) holds in addition to ( ), each character-

istic path can be classified into left- and right-going depending
on the sign of the corresponding characteristic speeds , in-
dependently of the switching signal . Although ( ) is not
required for the existence and uniqueness of the solution, it is
crucial for the kind of stabilizing mechanisms that we consider
here. This is further discussed in Example 3.

Furthermore, for the switching system (5) we define

(10)

Geometrically, is an upper bound of the time in which the
slowest of all possible characteristic paths will have undergone
reflections at both boundaries.

Our motivation to study the stability of the diagonal switching
system (5) is inspired a simple PDE counterpart to the classical
ODE observation [3] that exponential stability of all subsystems
is not sufficient for the exponential stability of the switching
system.

1) Example 1: Let , ,
, , ,

, and consider for
. For the case of no switching, that is when

or for all , the solution of the system
(5) is zero after , but the solution of the system with a
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Fig. 1. Instability by switching according to Example 1.

switching signal that is defined over the switching times
and alternates between modes in

starting with is not exponentially stable. Indeed,
is not bounded as , because the values on the

right-going characteristic emerging from always
increase by reflection of the characteristics along the boundary;
see Fig. 1. Thus, we can conclude that the instability due to
switching can occur for certain combinations between the char-
acteristic speeds and the switching times. (Note, however, that
with a switching signal that is defined over the switching
times the system is exponentially
stable.)

We now focus on conditions on the matrix functions ,
and the boundary data , under which the

switching system is absolutely exponentially stable. Our main
result, presented next, shows that if a spectral radius condition
is jointly satisfied for the left and right boundary data and all
pairs of modes then a sufficiently small bound on

exists such that the switching system is absolutely
exponentially stable with respect to the norm .

Theorem 1: Assume Hypotheses ( ) and ( ) and suppose
that for the following condition holds:

(11)

Then there exists an such that if for all
and , the switching system (5) is absolutely

exponentially stable with respect to the norm .
Proof: We define the following constants in terms of

boundary data

(12)

where

From the Lemma 2.1 of Li [23], we note that the condition (11)
implies

(13)

where and . Let us define

Thus, (resp. ) is the time in which the fastest (resp.
slowest) of all possible characteristic paths will have traveled
the domain .

Under the assumption of the theorem, we choose a such
that

(14)

and we choose an such that , and select a
such that

(15)

We also choose an such that , and select
an such that

(16)

where

We will show that under the aforementioned assumptions and
the choice of constants, if the bound

(17)
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Fig. 2. Illustration of case A.1 (left) and case A.2 (right) for the proof of the
induction basis.

holds for and for all , then

(18)

uniformly for all switching signals . Note that
the chosen , , and are independent of and only depend
on the boundary data and system parameters. We will prove (18)
using the method of characteristics and induction. To this end,
we will first prove the induction basis in Part A and the induction
step in Part B. We define

(19)

Part A (Proof of the Induction Basis): We show that under
the chosen constants , (18) holds on the
domain when satisfies . For any

, let denote the th characteristic path passing
through the point , ( ). Then,
we have

For any fixed , consider the th characteristic
path passing through . Under the assump-
tions ( ) and ( ), backward in time, either
intersects within the interval before hitting any
boundary (case A.1) or it intersects the line (case A.2).
See Fig. 2 for an illustration of both possible cases. The point
of intersection of the characteristic path with the boundary of
the domain is denoted by for case A.1 and

for case A.2 with .
Furthermore, let denote the th characteristic
path passing through ( ). Then,
since , intersects the line
before hitting the line . We denote the point of intersection
by . For the ease of notation, we will use

for .
Estimate for Paths With Negative Slope: We first obtain an

estimate of for any by
considering cases A.1 and A.2 for the th characteristic path

passing through ( ).
For Case A.1: Using in (9), and integrating the th

equation from 0 to for any we get

where we use the notation for and for
. Using the bound (17), we obtain

Multiplying both sides by , and noting that ,
we obtain

(20)

where and .
For Case A.2: Integrating the th equation from to we

get

Using with , we
have

(21)

Integrating th equation from 0 to we get

where we use the notation for and for
. Again using the bound (17), we have

Substituting this bound in (21), we obtain

where and are defined in (12). Multiplying by and
noting again that since , we have

(22)

with and .



296 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 2, FEBRUARY 2012

Fig. 3. Illustration of case B.1 (left), case B.2(i) (center), and case B.2(ii) (right) for the proof of the induction step.

Combination of Cases A.1, A.2: From inequalities (20) and
(22) we obtain a combined estimate

(23)

with and .
Estimate for Paths With Positive Slope: Similarly, we can

write an estimate of ( ) for
by considering the corresponding

cases for th characteristic path passing through
. We have

(24)

with and , where is de-
fined in (12).

Estimate for All Paths: From (23) and (24), by taking the
maximum over th and th characteristic paths (
and ) respectively, and taking the essential
supremum over we obtain the estimate

(25)

with and , where is defined
in (12).

Now, by using as defined in (14) and noting that
, we can write

(26)

with and . By applying
Gronwall’s lemma, we obtain the inequality for any

(27)

for all . With the and chosen according to (15)
and (16) respectively, we note that

Then by expanding the right-hand-side of inequality (27) we
obtain that

holds on for all switching signals
. Finally, using the definition (19), we obtain that

This completes the proof of the induction basis.
Part B (Proof of the Induction Step): We will now show

that under the chosen constants , if (18)
holds on the domain , then it still holds on domain

. Let and assume that (18) holds on
. In this case we have to distinguish three cases as

illustrated in Fig. 3.
Proceeding as before, for any fixed , the th

characteristic path passing through consid-
ered backward in time, either intersects within the interval

before hitting any boundary (case B.1) or it intersects
the line (case B.2); the points of intersection with the
boundary of the domain are denoted by and

respectively, where .
Furthermore, the th characteristic path
passing through ( ) either

intersects the line before hitting the
line [case B.2(i)] or it hits [case B.2(ii)]. The point
of intersection is denoted by for case
B.2(i) and for case B.2(ii). We will again use
for and for .

Estimate for Paths With Negative Slope: We first obtain an
estimate of for any
by considering the above three cases for the th characteristic
path passing through ( ).

For Case B.1: Using in (9), and integrating the th
equation from 0 to for any , and using the bound
(17), we have

where the second inequality is obtained using the assumption
that (18) holds on . Multiplying both sides by ,
using definition (19); and noting that for the present situation
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(case B.1), we have , then , and for
, then , we obtain

(28)

with and .
For Case B.2: Again integrating the th equation from to
, and using that with

, we get

(29)

For Case B.2(i): Integrating th equation from 0 to and
using the bound (17) we have

Substituting this bound in (29), we obtain

where the last inequality is obtained using the assumption that
(18) holds on . Noting that for the present situation
[case B.2(i)], then , and for

, then we obtain

(30)

with and .
For Case B.2(ii): We have

Using with , we
have

Substituting this bound in (29), and using the induction hypoth-
esis, we obtain

with as in (13). Again, noting that for , in
the present situation [case B.2(ii)], and

, we obtain

(31)

with and .
Combination of Cases B.1, B.2(i), and B.2(ii): From inequal-

ities (28), (30), and (31) and the defined in (12), we obtain

(32)

with and .
Estimate for Paths With Positive Slope: By using similar

arguments, we also obtain an estimate of for any
by considering the corresponding

cases for the th characteristic path passing through
, for chosen according to (14), and

defined in (12)

(33)

with , .
Estimate for All Paths: We now combine (32) and (33)

by taking the maximum over th and th characteristic paths
( and ) respectively, taking the
essential supremum over to obtain the estimate

(34)

where , . By
applying Gronwall’s lemma, we obtain the inequality

(35)

for any and thus

for all . Using (34), plugging in the expressions for and
, given the expression of in (15) we obtain the inequality

(36)

With and given by (15) and (16) respectively, we have

and using this in the right-hand side of (36) we obtain
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holds on for all switching
signals . Finally, from (19) we obtain that

This completes the proof of the induction step.
Remark 1: From the proof of Theorem 1 we see that with

and given by (12) and (13) respectively, and the constants
and chosen such that , (16) gives a concrete
value of for which the conditions of Theorem 1 guarantee ex-
ponential stability for all switching signals. That is, (18) holds
uniformly for all switching signals with and

given by (14) and (15) respectively. We then see that the so
obtained bound on satisfies as . Similar
conditions are known for the unswitched case, where such sys-
tems with sufficiently small inhomogeneities are called “almost
conservative” [31].

For an illustration of the decay estimate and the size of ob-
tained by Theorem 1 and Remark 1 we provide the following
example.

2) Example 2: Consider a switched system of the form (5)
with two modes ( ) and . The parame-
ters and boundary data are specified as

(37)

In this example the hypotheses ( ) and ( ) of Theorem 1 are
clearly satisfied. We have and

(38)

Following Remark 1, we choose and to
obtain that . Therefore, ac-
cording to Theorem 1, the switched system is absolutely expo-
nentially stable. Moreover, for (18), we obtain and

from (14) and (15) respectively. For initial data
on , the exponential bound in (18) is

plotted together with the observed decay of for three
different switching signals in Fig. 4. The solution approxi-
mations are computed using the two-step Lax–Friedrichs finite
difference scheme from [32].

In general, assumption ( ) is necessary for exponential sta-
bility under arbitrary switching as evident from the following
example.

3) Example 3: Let , ,
, ,

and let , , , and be any boundary data of ap-
propriate dimensions. It is clear that this example satisfies
assumption ( ) but does not satisfy ( ). Now consider
initial data on , and a switching
signal defined over the switching times , where

and , , and so on.
For the second component of the solution , we then have

Fig. 4. Exponential bound for �������� obtained in Theorem 1 (solid line) and
the observed decay for three different switching signals (dashed lines) of solu-
tions for the system considered in Example 2.

for almost everywhere on the interval
and . Hence, the solution cannot decay
exponentially irrespective of the decay that might be imposed
on , and by the boundary data.

A consequence of our results is that, when the only stabilizing
mechanism is at the boundary and arbitrary changes of sign of
the eigenvalues of cannot be ruled out a-priori, the decay of
the solution can in general not be concluded from the rate of
decay at the boundary (for example in terms of condition (11)
of Theorem 1).

Remark 2: The condition (11) implies the following spectral
radius condition to hold for the subsystems (7) with fixed:

(39)

Under this assumption, classical solutions of (7) are known to be
exponentially stable [23]. However, assumption (39) for all

is not sufficient for the switching system to be exponentially
stable. Note that in Example 1 satisfy (39) but not
(11) for , 2, i.e.,

but

Nevertheless, as shown next in Corollary 1, the switched
system satisfying (39) in every mode can be stabilized by
switching slow enough. Note that Corollary 1 does not require
assumption ( ) to hold.

Corollary 1: (Dwell-Time) Under the hypotheses ( ), there
exists an such that if for all
and , the switching system in diagonal form (5) is expo-
nentially stable with respect to the norm for all switching
signals in for which the dwell-time [ given
by (10)] if the condition (39) holds for all .
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Proof: From the definition of in (10) it is easy to see that
if , then in case B.2(ii), and lie in the same inter
switching interval and all the required estimates can be made
using a defined similar to (13) but where the maximum is only
taken over .

IV. NONDIAGONAL SWITCHING SYSTEM

We now focus on nondiagonal systems. Suppose that the
system switches among nondiagonal subsystems

(40)

where, for each , , are -dimensional
matrix functions on and , are constant matrices of
appropriate dimensions. Each subsystem can be written in the
diagonal form (7) under certain assumptions. For instance, if
we impose that for each ,

( ) The matrix function is Lips-
chitz-continuous such that for all , there exists

such that and has negative and
positive eigenvalues with corresponding

linearly independent left (resp. right) eigenvectors
(resp. ), all Lipschitz-continuous func-
tions of . The matrix function is
bounded measurable with respect to . Furthermore, the
following two rank conditions hold for
and

Under the assumption ( ) the matrix functions
and are Lips-

chitz-continuous functions with partial derivatives defined a.e.
We refer the reader to the text by Bressan [30, pp. 46–50], for
the details about assumption ( ) .

For all , we have

(41)

with as in ( ). By applying a transformation
, and and

using the representation

(42)

with , ,
, , and

, the system corresponding to (40) and ini-
tial data corresponding to mode becomes (7) with initial
data .

Now observing that the switching system in the nondiagonal
form for a switching signal

(43)
can be written as a switching system in the diagonal form with
discontinuous resets at the switching times for
and , i.e.,

(44)

the existence and uniqueness of solutions can be argued as
before.

Our next proposition is a very simple consequence of simul-
taneous diagonalization.

Proposition 1: Under hypotheses ( )–( ) and under the
pairwise commutativity assumption that for all and
for all

(45)

and let , and are given by (42). Then, if condi-
tion (11) holds for all , there exists an such that
if for all and , the switching
system in nondiagonal form (43) is absolutely exponentially
stable in .

Furthermore, if the condition (39) holds for all , there
exists an such that if for all and

, the system (43) is exponentially stable in for all
switching signals in for which the dwell-time
and given by (10).

Proof: Recall that a set of diagonalizable matrices are
simultaneously diagonalizable if (and only if) they commute.
Thus, system (43) can be transformed into a switching system
in diagonal form (44) with a common diagonalizing matrix
function . The assertion then follows.

Though the commutativity assumption in Proposition 1 seems
very strong, we include an example showing that it is in general
necessary for conditions such as in Section III to be sufficient
for absolutely exponential stability.

1) Example 4: Consider a nondiagonal switching system of
form (43) with two modes ( ) and initial data

on , for an alternating switching signal
with switching times where and

, , and so on. The parameters
and boundary data are specified as
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Fig. 5. Observed blowup of ������ for the system considered in Example 4
under switching.

The nondiagonal system so specified satisfies ( )-( ) but
does not satisfy the commutativity condition (45)

. With

and doing a change of variables by this transformation, both the
constituting subsystems of the nondiagonal switching system
reduce to the same diagonal subsystem

(46)

which satisfied the spectral radius condition

implying that the solution of the subsystem (46) starting with
initial condition for , decays ex-
ponentially for . However, following the representa-
tion (44), we observe that for the nondiagonal switching system

is not bounded as . See Fig. 5 for the growth
of where the solution is again obtained by using a
two-step Lax–Friedrichs scheme as in Example 2.

V. FINAL REMARKS

We present a generalization of a well-known mechanism for
stability of hyperbolic PDE systems [23] to the case in which
the switching occurs among a set of systems that may differ in
the system matrix function and/or boundary conditions. When
constituent PDEs are in the canonical diagonal form, we derive
a sufficient condition for exponential stability under arbitrary
switching signals. For the case in which the system matrix func-
tions are not diagonal, the result holds when they are jointly di-
agonalizable. This results in a commutativity condition that has
a counterpart in the switched ODE literature [3].

It is also clear that, although the switching signal represents
joint switching of the boundary conditions and system ma-
trices, the results apply for switching the boundary conditions

or system matrices individually by introducing appropriate
auxiliary modes, which is just a matter of notational conve-
nience. Thus, the treatment presented in this paper might be of
interest in control settings under abruptly changing boundary
conditions and operating regimes such as the opening and
closing of gates in a cascade of open-canal pools, the dynamics
of which are classically modeled by the linearized Saint-Venant
equations [31].

A limitation of the results obtained here is that they are valid
only for almost conservative systems (see Remark 1). Thus, it
will be interesting to investigate if, possibly by using different
methods, other conditions can be found that guarantee absolute
exponential stability for less conservative systems. In particular,
our results motivate a Lyapunov theory for switching infinite-
dimensional systems.
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