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Lax—Hopf Based Incorporation of Internal Boundary
Conditions Into Hamilton—Jacobi1 Equation.
Part I: Theory

Christian G. Claudel, Member, IEEE, and Alexandre M. Bayen, Member, IEEE

Abstract—This article proposes a new approach for computing
a semi-explicit form of the solution to a class of Hamilton-Jacobi
(H)) partial differential equations (PDEs), using control techniques
based on viability theory. We characterize the epigraph of the
value function solving the HJ PDE as a capture basin of a target
through an auxiliary dynamical system, called ‘“‘characteristic
system”. The properties of capture basins enable us to define
components as building blocks of the solution to the HJ PDE in the
Barron/Jensen-Frankowska sense. These components can encode
initial conditions, boundary conditions, and internal ‘“boundary”
conditions, which are the topic of this article. A generalized
Lax-Hopf formula is derived, and enables us to formulate the nec-
essary and sufficient conditions for a mixed initial and boundary
conditions problem with multiple internal boundary conditions
to be well posed. We illustrate the capabilities of the method
with a data assimilation problem for reconstruction of highway
traffic flow using Lagrangian measurements generated from Next
Generation Simulation (NGSIM) traffic data.

Index Terms—Hamilton-Jacobi (HJ), next generation simulation
(NGSIM), partial differential equations (PDEs).

I. INTRODUCTION

A. Background and Motivation

common mathematical tool for modeling distributed pa-
A rameter systems is partial differential equations (PDEs).
They provide an efficient way of representing physical phe-
nomena in a mathematically compact manner, which integrates
the distributed features of the systems of interest. Among PDEs,
a specific class stands out, conservation laws [40], which model
phenomena in which a balance equation governs the physics (for
example mass balance, momentum balance, etc.). Hyperbolic
scalar conservations laws appear naturally in hydrodynamics,
gas dynamics, or biological systems, etc. In one dimension (for
example to model irrigation channels, gas in pipes, or blood in
small blood vessels), hyperbolic scalar conservation laws have
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a direct counterpart in Hamilton-Jacobi (HJ) theory [30], which
we use in this article.

Conservation laws use an Eulerian framework, i.e., a (static)
control volume based representation of the physics, in which
conservation is expressed. This is in contrast with Lagrangian
approaches, which are trajectory-based, i.e., can be used to char-
acterize the evolution of quantities (such as particles) along tra-
jectories. When solving PDE:s, it is common to use boundary
conditions (BCs), which are inherently Eulerian, and initial con-
ditions (ICs). BCs and ICs can be integrated with the PDE in a
Cauchy problem [30], which if well posed leads to existence and
uniqueness of a solution. For phenomena which are evolving
in time, it is not common to prescribe data other than at the
boundary of the domain (BCs). Beyond the mathematical rea-
sons for this fact (to do with the Cauchy problem), there are
also historical or technological reasons: usually, for conserva-
tion laws, data is only prescribed (and eventually controlled) at
the boundary of the domain of interest. Moreover, for sensing
data, while it might be possible to place sensors other than at the
boundary of the domain, the use of mobile sensors which travel
inside the domain along trajectories is still relatively new, as is
the field of Lagrangian sensing for distributed parameter sys-
tems. The fusion of Lagrangian and Eulerian data into Eulerian
distributed parameter model is precisely the focus of the current
article.

The fundamental problem in prescribing internal data in-
side the domain for a conservation law (or equivalently for
its Hamilton-Jacobi counterpart) is the potentially introduced
discontinuities due to this additional information, which might
result from incompatibilities of the data with BCs or ICs. While
such discontinuities are standard in the definition of solutions
to hyperbolic scalar conservation laws (see the entropy solution
defined by Oleinik [48] for conservation laws in unbounded do-
mains, and later in [9], [39] for bounded domains), prescribing
additional data which might introduce other discontinuities is
to our best knowledge posed as such an open problem.

The present article solves the problem of prescribing internal
conditions for the Hamilton-Jacobi counterpart of scalar hyper-
bolic conservation laws. The viscosity solution to the HJ PDE
goes back to the seminal work of Crandall, Evans and Lions
[24], [25], which finds its applications in numerous fields, in-
cluding control theory [7], [8]. The theory of viscosity solu-
tions has shaped engineering by the application of distributions
to solve this problem, on which a significant theoretical frame-
work was built since the 1990’s, particularly in control theory.
For the present work, and because of the nature of the internal
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conditions we would like to prescribe for the PDE, we use via-
bility theory [2], which is a set valued approach [5], [6] to the
same problems. The benefit of using this theory (which has some
links with nonsmooth analysis [20]) is the possibility of posing
the problem as a capture problem [3]: control theoretic proper-
ties give an elegant way of integrating this data in the Cauchy
problem. The equivalence between different approaches to the
Hamilton-Jacobi equations proposed by viscosity theory, via-
bility theory, and nonsmooth analysis has been investigated in
the literature, see for example [11], [16], [31], [42]. So even if
our work directly refers viability theory, by the article [31] it is
de facto mathematically related to viscosity techniques.

This article is a follow up article to earlier work [4] in which
we use viability techniques for solving Dirichlet problems
with inequality constraints (obstacles) for a class of HJ PDEs
enclosing this particular equation. In the work [4], the hypo-
graph of the solution of this class of HI PDEs was defined as the
capture basin of a target associated with initial and boundary
conditions under an auxiliary control system, viable in an envi-
ronment associated with some inequality constraints. From the
tangential condition characterizing capture basins, the authors
of [4] proved that this solution is the unique upper semicontin-
uous solution to the HJ PDE in the Barron/Jensen-Frankowska
sense. We show how this framework allows us to translate
properties of capture basins into corresponding properties
of the solutions to this problem. For instance, this approach
provides a representation formula of the solution, which boils
down to the Lax-Hopf formula in the absence of constraints.

In the context of traffic flow theory, this work is of particular
interest. Indeed, macroscopic highway traffic flow models go
back to the pioneering work of Lighthill, Whitham and Richards
[41], [49], in which highway traffic flow is modeled with a
nonlinear first order hyperbolic PDE with concave flux func-
tion, called the Lighthill-Whitham-Richards (LWR) PDE. This
model is the seminal model for numerous highway traffic flow
studies available in the literature today [1], [12], [26]-[29], [37],
[45]-[47]. It models the evolution of the density of vehicles on
a highway using a flux function obtained from empirical mea-
surements [29].

An alternate macroscopic formulation of highway traffic flow
was later introduced by Newell [45]-[47]. It consists in num-
bering vehicles upon entry on the highway and following the
isolines of the functions representing vehicles numbers at all
considered times and locations. The properties of the resulting
HJ PDE have been recently studied in [28], [29]. The corre-
sponding solutions are sometimes referred to as the Moskowitz
surface [28], [29], [43]. The solution of this HJ PDE has no
shocks, but is not necessarily differentiable. It is only upper
semicontinuous. Actually, the non differentiability of the cumu-
lated vehicle number function is closely related to the presence
of the shocks of the solution to the LWR PDE (see for instance
[171-[19]).

The problem of fusion of Eulerian and Lagrangian data has a
particular relevance for traffic. Indeed, the convergence of com-
munication and multi-media platforms (for example the Nokia
NO95, the iPhone, or the G1 Google phone) have enabled a cru-
cial new component for large scale infrastructure systems mon-
itoring: mobility tracking. While most of the sensing in large
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scale infrastructure systems is static, the use of GPS in phones
such as the Nokia N95 as probe sensors on highways opens
the door for a new class of highway sensing applications: La-
grangian sensing, or mobile sensing [34], [35], [54]. The funda-
mental difficulty posed by this type of sensing is that it provides
mobile information about a distributed parameter system (flow
on a highway) internal to the domain of interest i.e., onboard of
moving vehicles, in addition to the data traditionally available
at the boundary of the domain (for example traditional loop de-
tector data [36], [44]).

B. Problem Statement

The results presented in this article hold for any Hamilton-Ja-
cobi PDE with concave (respectively convex) Hamiltonian. The
modification of all results shown in the article for convex Hamil-
tonians is straightforward, and mostly consists in inverting signs
and changing epigraphs into hypographs [4], [9], [39]. We illus-
trate the results in the context of highway traffic flow to empha-
size the applicability of the method to practical problems.

Specifically, we solve the following mathematical problem:

Given a Hamilton-Jacobi PDE with concave Hamil-
tonian, given an initial condition, given upstream and
downstream boundary conditions, and given additional
data internal to the domain, how to define the proper
(lower-semicontinuous) Barron Jensen/Frankowska solu-
tion to the problem, which satisfies all conditions above?
Additionally, when are the above conditions compatible?

Control theory (and in particular viability theory) provides
the appropriate tools to solve this problem, and to construct a
semi-analytical solution to the problem, using a Lax—Hopf for-
mula developed specifically for this problem.

The rest of this article is organized as follows. The re-
mainder of this section presents two HJ PDEs, the first one
which serves as a basis for this work, from the literature, and
the second one which is investigated in the present work.
Section II presents the control framework of viability theory
used to solve the Moskowitz HJ PDE. Section III introduces a
generalized Lax-Hopf formula used to compute the solutions
explicitly. Section IV presents a useful inf-morphism property,
and introduces components as building blocks of the solution.
Section V introduces the concept of infernal components,
which encode the effects of internal conditions on the solution.
Section VI presents the construction of the solutions to mixed
initial-boundary-internal conditions problems. The same sec-
tion also details the necessary and sufficient conditions for these
problems to be well posed in the Barron-Jensen/Frankowska
sense. Section VII illustrates the previous results on a practical
traffic flow data assimilation problem, using a high resolution
dataset.

1) Inhomogeneous Hamilton-Jacobi Equation: We consider
a function N(-, -) satisfying a HJ PDE with a concave Hamil-
tonian, following the framework set forth in [4]. The HJ PDE is
inhomogeneous, with a source term

AIGLI (%) —g®). M

The concave function 1) is called the Hamiltonian. The term
1 (v(+)) on the right hand side of (1) can be interpreted as a
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Fig. 1. Tllustration of the Greenshields and trapezoidal Hamiltonians. Numer-
ical values are represented in the context of transportation, i.e., the variable p
is homogeneous to the vehicle density (in percent of the maximal density). The
Hamiltonian v>(p) is represented in vehicles per hour. Left: representation of a
Greenshields Hamiltonian. Right: representation of a trapezoidal Hamiltonian.

source term, where v(-) is a given boundary condition to be
made explicit later.

In the context of transportation engineering, N (¢, z) repre-
sents the cumulated number of vehicles (CVN), which is the
total number of vehicles located between the upstream boundary
of the highway ¢ and the location z, at time ¢. In the same con-
text, the Hamiltonian ¢ (-) is referred to as flux function or funda-
mental diagram [26], [27], usually assumed to be concave. The
function v(-) corresponds to the density of vehicles prescribed
at the upstream boundary of the highway.

Example 1.1: Trapezoidal Hamiltonian [26], [27], [53]: One
of the simplest Hamiltonians used in the literature is the trape-
zoidal model

ifp<~’
if p € [v, %]
Viw—p) ifp>~F

where I/b, v w, 6, 'yb and * are constants and satisfy the
following relations: § < (wr’vf/1” + vf) (called capacity in
the transportation engineering literature), v’ := (6/1”) (called
lower critical density in the transportation engineering litera-
ture), and 7% := (vfw — §/v*) (called upper critical density in
the transportation engineering literature). When 7” = ~%, the
Hamiltonian is triangular, as used in the Daganzo cell transmis-
sion model [26], [27], [53].

Example 1.2: Greenshields Hamiltonian [1], [33]: Another
possible model for the Hamiltonian (-) is called the Green-
shields Hamiltonian and is given by

Vpelowl, v(p)=p(w=p) @)
where w and v are model parameters, respectively referred
to as jam density and free flow velocity in the transportation
literature.

The Greenshields and trapezoidal Hamiltonians are illus-
trated in Fig. 1. In this article, we assume once for all that
the Hamiltonians are concave functions, and vanish for p = 0
and p = w (jam density in the context of transportation engi-
neering). We also assume that the vehicles evolve in the set X,
which is an interval of R defined by X = [¢, x], and that the
time ¢ is ranging in R .

The results of existence, uniqueness, and the proper charac-
terization of the solution to (1) are available in [4].

2) Solution to the Homogeneous HJ PDE: The Moskowitz
Function: The present article focuses on a modification of (1),
which also appears in the literature [28], [45]-[47].
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Definition 1.3: Moskowitz Function: The Moskowitz func-
tion M(¢, z) is defined from the function N(¢,z) by the fol-
lowing variable change:

M(t,z) = —N(t,z) + /Ot P(v(w))du. 3)

By applying the variable change N(¢,2) — —M(¢,z) +
fot 1(v(u))du, we obtain the following HJ PDE [29] for the
Moskowitz function:

0M(t,x)> _0 @
ox

In the context of transportation, it was first introduced in
[43], and appeared later in the famous Newell trilogy [45]-[47],
which does not mention it in reference to the field of HJ equa-
tions however. The link with HJ equations was made a few years
later by Daganzo [28], [29]. In the context of traffic flow mod-
eling, the Moskowitz function is a possible macroscopic de-
scription of traffic flow, in which the traffic is described by a sur-
face representing the so-called cumulative number of vehicles
[45] on the highway. Conversely, microscopic descriptions of
the traffic flow consist in following individual vehicles trajecto-
ries. Microscopic descriptions of traffic flow can be linked with
the Moskowitz formulation using the concept of label functions.

Definition 1.4: Label Functions: Let £4(+) : [tmin, bmax)
X be a given continuous function (denoted in the remainder of
the article as trajectory function) representing the trajectory of a
point A. Let M(-, ) be a solution of the HJ PDE (4). The label
function [ 4(+) associated with the trajectory function z 4(-) is
defined by

—

YVt € [omims Frnax]s La(t) := Mt 2.4(1)). )

In the context of transportation engineering, the label function
associated with a trajectory encodes the behavior of a vehicle A
with respect to the rest of the traffic flow. We provide further
physical interpretations of the label function in Section V.

Proposition 1.5: Single Valued Selections: Let the
Moskowitz function M be given on [£ iy, Emax) X X . Let I(+) be
the image of M for a fixed ¢: I(¢) = M(t, X). Let us consider
a function I 4 : [tmin, tmax] — R satisfying V ¢ € [fmin, tmax)»
l4(t) € I(t). There exists a function 4 (-) : [fmin, tmax] — X
satisfying V ¢ € [Emins bmax)s M (£, 74(t)) = 1a(t). If
V't € [tmin,tmax), the function z — M(t,x) is strictly
monotonic, the selection x4 () such that V ¢ € [tmin, tmax)>
M(t,24(t)) = La(t) is unique.

Proof: Let t € [tmin, tmax]. Since 14(t) € I(t), there
exists x4 (t) in X satisfying M(¢,24(t)) = [4(t) for all ¢ in
[£min, Emax]- If furthermore for all ¢ in [£in, fmax ], the function
M(t, -) is strictly monotonic, M(¢, -) is a bijection from X to
1(t), and there exists a unique z 4 (¢) satisfying M(¢, 2 4(¢)) =
la (t) |

Note that for general functions M(-,-) and [4(-), there
is no guarantee on the continuity of the selection z4(-) on
[tmin, tmax]- The existence and uniqueness of the solution
M(+, ) to (4) is presented later in this article.

II. VIABILITY EPISOLUTIONS

While the solution to the HJ PDE with initial and boundary
conditions is well known and well studied in the literature [15],
[17]-[20], [24] (see in particular the reference book [8]), the
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Fig. 2. Illustration of the convex transforms associated with the Greenshields

and trapezoidal Hamiltonians. Left: representation of the function ¢* associ-

ated with a Greenshields Hamiltonian. Right: representation of the function ¢*
associated with a trapezoidal Hamiltonian.

mathematical properties of the solution to (1) or (4) requires
specific treatments when trying to introduce internal boundary
conditions, as shown later. In the present context, we introduce
a specific control framework based on viability theory [2], [3],
which enables us to add this type of conditions to a traditional
Cauchy problem [30]. We first recall a definition from viability
theory [2], [3], which we later use in the article.

Definition 2.1: [2], [3] Capture Basin: Given a dynamical
system F' and two sets K (called the constraint set) and C (called
the target set) satisfying C C K, the capture basin Capt (K, C)
is the subset of states of IC from which there exists at least one
evolution solution of F' reaching the target C in finite time while
remaining in K.

Definition 2.1 will be used throughout the article. Note
that there are several ways to compute the capture basin
Capt (/C, C) numerically, in particular using the capture basin
algorithm [15], [51]. We also need to recall the following
definition from convex analysis:

Definition 2.2: Convex Transform: Given a concave function
1 with domain Dom(v)), we define a transform of v (denoted
©*), as follows:

[p - u+(p)]. (©)

©*(u):= sup

peDom(v)

Note that (6) in Definition 2.2 differs from the traditional defi-
nition of the Legendre-Fenchel transform by a sign change. The
convex transforms ¢* associated with Greenshields and trape-
zoidal Hamiltonians can be computed analytically, and are rep-
resented in Fig. 2. More details regarding the function ¢* are
available in [4], [14], [23]. In the following, we also define
Dom(¢*) as the domain of the function ¢* (i.e., Dom(¢*) =
{u € R such that ¢*(u) < 4+o0}). The link of the capture
basin with the HJ PDE of interest can be made using a dynam-
ical system, which we now introduce:

Definition 2.3: Auxiliary Dynamical System: Given a Hamil-
tonian v (-) with convex transform ¢*(-), we define an auxiliary
dynamical system F' associated with the HJ PDE (4):

T'(t) = -1
2’ (t) = u(t)
y'(t) = —¢"(u(t))

This dynamical system is both Marchaud and Lipschitz [4].
The function u(-) is called auxiliary control of the dynamical
system F.

To be rigorous, we have to mention once and for all that the
controls u(-) are measurable integrable functions with values
in Dom(¢*), and thus, ranging L*(0, +00; Dom(¢*)), and that
the above system of differential equations is valid for almost

F:= where u(t) € Dom(p*). (7)

1145

() (b)

Fig. 3. TIllustration of the capture basin associated with an epigraphical target.
Left: element (¢, z:, y) of the capture basin Capt (X, C): there exists an evo-
lution starting from (¢, x, y) and reaching C in finite time while remaining in
K := Ry x X X R. Right: element (%, z. y) not belonging to the capture
basin Capt (K, C): all evolutions starting from (¢, «, y) exit the set K before
reaching C (only two evolutions are represented for clarity).

all ¢ > 0. We now introduce specific expressions for I and
C, which intervene in the definition of the proper capture basin
used to define the solution to the HJ PDE.

Definition 2.4: Constraint Set Associated With a HJ PDE:
For a HJ PDE (4) defined in the set R, x X, we define the
constraint set K as K := Ry X X x R.

We refer the reader to [4] for the construction of solutions
associated with general epigraphical environment sets, and the
interpretation of the resulting solutions. We recall the following
definition:

Definition 2.5: Target Set Associated With a HJ] PDE: For a
HJ PDE (4) defined in R4 x X, we define a target function as
a lower semicontinuous function c(-, -) in a subset of R x X.
The target function ¢ defines a epigraphical target set as C :=
Epi(c). This set is the subset of triples (¢, z,y) € Ry x X xR
such that y > c(¢, ) (it is the epigraph of the function c).

Note that the target set C = Epi(c) associated with a target
function c is closed, since it is the epigraph of a lower semi-
continuous function. The definition 2.1 of the capture basin can
now be applied to the specific target C given by Definition 2.5 in
the constraint set X given by Definition 2.4 with the dynamics
(7), as illustrated in Fig. 3.

Definition 2.6: Viability Episolution: Given a characteristic
system F', a constraint set & and a target set C, respectively
defined by Definitions 2.3, 2.4 and 2.5, the viability episolution
M is defined by

M(t,z) == inf Y. 8)

o (t,z,y)€Capt (K,C)

Note that by definition, the capture basin Capt (KC,C) of a
target C viable in the environment K is the subset of initial states
(t,z,y) for which there exists a measurable control u(-) such
that its associated evolution

5o <t—37z+'/0'8u(7')d7',y—/Oscp*(u(T))dT) )

is viable in & until it reaches the target C. We illustrate the notion
of viability episolution associated with a given target function in
Fig. 4. It is called “episolution” of the HJ PDE (4) because it is
defined by its epigraph, i.e., by (8) which states that the graph of
M(+, -) is the lower envelope of the capture basin Capt (K, C).
The viability episolution M defined by (8) is shown later in
theorem 4.8 to be a Barron-Jensen/Frankowska solution to (4).
Furthermore M is differentiable, it is a classical solution to (4).
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Fig. 4. Tllustration of a viability episolution. We represent in the same figure a
target C and its associated viability episolution M. The episolution is the lower
boundary of the capture basin Capt ,.(K, C), shaded in this figure.

III. GENERALIZED LAX-HOPF FORMULA

The definitions in the previous section explain the construc-
tion of a function M(-, -) from a target function c(-, -). In this
section, we use this concept of viability episolution to construct
a semi-explicit Lax-Hopf formula associated with this solution.
This Lax—Hopf formula will be used later in the article (Sec-
tion VI) to explicitly instantiate the compatibility conditions
which the initial, boundary and internal conditions should sat-
isfy for well posedness of the problem. Theorem 3.1 below is
necessary for the rest of the article since the Lax-Hopf formula
presented in [4] is explicitly written for initial and boundary
conditions, and not for internal boundary conditions. Also, the
HJ PDE (1) solved in [4] is not homogeneous, and its source
term (translating the upstream boundary condition) appears ex-
plicitly in the Lax-Hopf formula which prevents a straight appli-
cation of the results presented in [4]. The HJ PDE (4) introduced
in this article enables us to remove this explicit dependency.

Theorem 3.1: Generalized Lax Hopf Formula: The viability
episolution M., associated with a target C := Epi(c), for a given
lower semicontinuous function c, and defined by (8) can be ex-

pressed as:
M. (t,z) = (c(t =T,z + Tu) + Te*(u)).

(10)

Proof: We fix (t,x) € Ry x X, and define R as the set of

elements (u(-), T, y) belonging to L' (0, co; Dom(p*)) x Ry x
R and satisfying viability property (11)

Vs €0, 7] <t _saot /0 w(r)dr,y — /0 go*(u(7))d¢>
K. (11

inf
(u,T)eDom(p*)XR4

Equations (8) and (9) thus imply the following formula:

Mc(t,z) =
inf Y.
(u(+),T,y)ER such that (th,z+f0T u(T)dT,yffoT ga*(u(r))dr) €&pi(c)
(12)

Since the graph of the target function ¢ (denoted Graph (c)) is
the lower boundary of Epi(c), we have

T T
(<t—T,w—|—/ u(T)dT,y—/ p*(u(T))dT) € Epi(c)
0 0

T T
and (t—T, .1'—1—/ u(T)dT,z—/ ;p*(u‘(T))ch') € Graph(c))
0 0

=z <uy. (13)
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Since Graph(c) C Epi(c), (13) and (12) imply

M. (t,2) =
inf 3 Y.
(u(+),T’,y)ER such that (171',x+f07 u(f)dr,yffol gp*(u(r))dr)e(iraph(c)
(14)

Since c is infinite outside of its domain of definition, and
given the definition of Graph(c), (14) can be expressed as
follows:

T
M. (t,z) = inf clt—T,z+ / u(T)dr
(u(-),T,y)GR 0

+/0 @*(U(T))dT]. (15)

The indexing by y in the inf of the formula above is dummy,
since it does not intervene in the infimum. We have left it as is,
in order to avoid defining another set similar to R just for this
formula only. We now define the following constant control %
on the time interval [0, T'] as follows:

1T
u::T/O u(r)dr.

The control @ is the average value of the control function u(-)
on the time interval [0, T]. In the following, we slightly abuse
the notation by calling u(-) the constant function ¢ — u. Note
that by convexity of K, (u(-), T,y) € R if (u(-),T,y) € R.

We define y(u(-),T) and y(u(-),T), respectively, as the
values of the term minimized in (15) obtained for the control
functions u(-) and u(+), and for the capture time 7'

{y<u<->, T)=clt— T,z + [ u(r)dr) + [ o*(u(r))dr
y(@(-),T)=c(t — T,z + Tu) + Te*(a).

(16)

7)

*

Since ¢* is convex and lower semicontinuous, Jensen in-
equality implies

" (% /OT u(T)dT)

and thus, since T4 = fOT u(t)dr

y(@(), T) < y(u(),T). (19)
Equation (19) thus implies that one can replace the search of

the infimum over the class of measurable functions u(-) by the

search of the infimum over the set of constant functions @(-).
Hence, we can write (15) as

Mc(t,z) = inf c(t—T,z+Tu)+ T (u
(t, ) (H’T)eDom(w)xm( ( )+ T (u))
(20)
which for the remainder of the article enables us to restrict our-
selves to the set of constant controls. [ |
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Note that in practice, given a constant control function u, the
parameters 7" used for the minimization in (10) can be restricted
to the elements of the set S¢ (¢, x, u) defined by formula (21)

Se(t,z,u) = {s € Ry such that

(t — s,z + su) € Dom(c)}. (21)

Indeed, when T' ¢ Sc(t,z,u), c(t — T,z + Tu) is infi-
nite. We could also alternatively define for any (¢, ) the set
R.(t,z) as Rc(t,z) := {(u,T) € Dom(¢*)xRy s.t. (¢t —
T,x 4+ Tu) € Dom(c)}. Note that the parameters (u,T") used
for the minimization in (10) can also be restricted to the ele-
ments of R, (when (u,T) ¢ R.(t,z), c(t — T,z + Tu) is
infinite). When V¥ u € Dom(¢*), Sc (¢, z,u) = 0, (20) involves
a minimization on an empty set, and M (¢, ) is infinite. Since
c(t—T,z+ Tu) = 4+oo when (t — T,z + Tu) ¢ Dom(c), we
can write (20) as

M, (t,z) = inf

{(u,T)eDom(¢*) xR such that T€Sc(t,x,u)}

(et =T,z +Tu) + Te*(u)) (22)
or alternatively as
M, (t,z) = (c(t =T,z 4+ Tu) + Te*(u)).

(23)

inf
{(«v,T)ER:(t,a)}

While (23) is algebraically simpler than (22), we only con-
sider expression (22) in the remainder of the article for compat-
ibility with [4].

IV. INF-MORPHISM PROPERTY AND ITS CONSEQUENCES

The major contribution of this article is the definition of the
components of the solution to the HJ PDE (4), which encodes
initial, boundary and internal conditions (Sections IV-B and V).
For this, we need to introduce an inf-morphism property, which
results from the sup-morphism property derived in [4].

A. Inf-Morphism Property

It is well known [2], [3] that for a given environment /C, the
capture basin of a finite union of targets is the union of the cap-
ture basins of these targets:

Capt (IC, U ci)

i€l

= J Capt (K, C))

i€l

(24)

where I is a finite set. This property can be translated in epi-
graphical form:

Proposition 4.1: Inf-Morphism Property: Let c; (2 belongs to
a finite set 1) be a family of functions whose epigraphs are the
targets C;. Since the epigraph of the minimum of the functions
c; is the union of the epigraphs of the functions c;, the target
C = Uiel C; is the epigraph of the function ¢ := inf;¢y c;.
Hence, (24) implies the following property [4]:

Vi20, w€X, Me(to)=infM(tx).  (25)

In [4], the authors prove a sup-morphism property, used to
construct the solution of the corresponding HJ PDE (1). Equa-
tion (25) can be obtained similarly, noting that hypographs have
to be changed to epigraphs, and supremums to infimums. The
inf-morphism property enables us to compute the episolution
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Fig. 5. Illustration of the inf-morphism property. Top: representation of the
target C; := Epi(cy) (left), representation of the corresponding episolution
M, (-, -) (right). Center: representation of the target C, := Epi(c2) (left), rep-
resentation of the corresponding episolution M (-, -) (right). Bottom: Repre-
sentation of the target C := C; |JCo (left). The episolution M(-, -) associ-
ated with the target C (right) is the minimum of the episolutions M (-, ) and
M, (-, -) associated with C; and C».

associated with a target ¢ := inf,¢ c; by taking the infimum of
all episolutions M, associated with the target functions c;, as
illustrated in Fig. 5. From a practical perspective, this property
is a significant breakthrough, as it not only enables us to divide
the problem into independent subproblems, but it also enables
us to update a solution with new data without recomputing the
entire solution: it just suffices to augment the set I by new tar-
gets to be added to the set of existing targets.

B. Components of the Moskowitz Function

The inf-morphism property presented in the previous section
can be used for the construction of the respective components
of this problem, which we now define.

Definition 4.2: Components of the Moskowitz Function: The
component M., associated with the HJ PDE (4) is defined as
the episolution associated with a target function c;:

M., (t,z) := Yy (26)

inf
(t,z,y)€Captr (K,Epi(ci))

where F' is defined by (7) in Definition 2.3, and K by Definition
24.

Example 4.3: Initial and Boundary Condition Components:
We consider three given functions M (-, ), v(-,-) and B(-, ),
satisfying the following properties:

Initial condition:

| Mp(z)(given) fort=0andz € X
Mo(t,z) = { oo Vitoovzg X 2D
Upstream boundary condition:
_ J M, (t)(given) forz=Eandt >0
V(. 7) '_{+oo Voteorvi<o )
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Fig. 6. Illustration of the initial, upstream and downstream boundary condi-
tion components. For each component, the associated target function is high-
lighted by a solid line. Left: representation of the initial condition component
M 4, (-, ) obtained by applying (26) to the function M-, -). Center: repre-
sentation of the upstream boundary condition component M., (-, -) obtained by
applying (26) to the function +(-, ). Right: representation of the downstream
boundary condition component M (-, -) obtained by applying (26) to the func-
tion 3(-, -)

Downstream boundary condition:

Blt,x) = {Mﬁ(t)(given)

T +oo

forx = xandt >0
VaséorVi<o = &

The dependency of My, v and ( on two arguments has been
added for notational consistency. Note that M(¢,z) is only
defined when t = 0 and & € X, that (¢, ) is only defined
when ¢ > 0 and = = &, and that 3(¢t, ) is only defined when
t > 0 and x = Y. In the context of traffic, the initial condi-
tion function defined by (27) describes the distribution of the
vehicles on the highway section, at the initial time ¢ = 0. The
upstream (respectively downstream) boundary condition func-
tion defined by (28) (respectively (29)) describe the inflow (re-
spectively outflow) of vehicles on the highway section. The ini-
tial condition component M »4,, upstream boundary condition
component M., and downstream boundary condition compo-
nent M5 associated with the target functions M, and -y respec-
tively, are defined by the following formulas:

MMO (t,:v) =
M, (t,z) =
Mﬂ(t,x) =

i inf(t,ar,y)GCaptF (K,Epi(Mo)) Y
inf(4,2.4)eCapt . (K, £pi()) Y
lnf(t,z,y)GCapt,, (K,Epi(B) Y

(30)

Fig. 6 shows an illustration of the initial, upstream and down-
stream boundary condition components for given functions
Mo(-). M, (-) and Mj(-).

The component M, associated with the target function c can
be computed using the Lax Hopf formula (22), where Se(¢, z, u)
is defined by (21), see the equation shown at the bottom of the
page.

In the case of initial and boundary conditions, the following
corollary of Theorem 3.1 provides the semi-explicit Lax-Hopf
formulas. Note that it is in general not possible to derive ex-
plicit versions of these formulas, except for specific classes of
Mo(-,-), v(+,-) and B(-,-), as is shown in a companion ar-
ticle [21].

Corollary 4.4: Lax Hopf Formulas Associated With the Ini-
tial and Boundary Condition Components: The initial condi-
tion M r4, , upstream boundary condition M, and downstream
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boundary condition M3 components can be computed using the
following formulas:

Mumo(to) = nf  (Mo(0, @ +tu) + 1" ()
M, (t,z) =
( inf — —x
uw€Dom(¢p*)such that u<0 (,Y (t - §T7£) + gu ¥ (u))
ifx > ¢
réog (1= T,6) +T"(0))
L ifr =¢
:l\/]:’g(t7 iE) =
inf T, ok
( uw€Dom(p*)such thatu>0 (’8 (t - XT7X) + XT@ (U))
' ifr <y
B (BT, + T (0))
\ ifr = x.
€19

Proof: The elements of the set Suq, (¢, 2, u) associated
with the initial condition component M x4, are given by the fol-
lowing formula:

SMO(t7x7u):{{t} ifé <az4+tu<y (32)

0 otherwise.

We can thus express formula (22) for the particular target
function M as:

Mo, (8, 2) = <M0(0,$+tu)

inf
u€Dom(p* )N[(§—x)/t,(x—x)/t]
+ts0*(U)) :

Since the function M (0, z) is infinite when = ¢ X, the
constraint (£ —z)/t < u < (x — )/t is already implicitly
expressed in the argument M (0, 2 + tu). We can thus rewrite
the above equation as the first line in formula (31).

The set S, (t,z,u) associated with the boundary condition
component M, can be computed using the following relation:

S (t,x,u) =

{T € Ry such that (t — T,z + Tu) € Ry x {&}}. (33)
Equation (33) S, (¢, z, u) can be rewritten as
S, (t,z,u) =RiN] — oo, t]
N{T € Rsuch that z + Tu = ¢}.  (34)

The set {T" € R such that z + Tu = £} can be explicited as

{T € R such that z + Tu = £}
{2} ifu#0
=4 R ifu=0andzx =¢
0 otherwise.

(35)

t,
(t,z

(it

z,u) := {s € R} such that (t — s,z + su) € Dom(c)}
)=

(u T EDO[II(LP )XR+ such that TE€S. (t x u)} ( (

T,z + Tu) +Te*(u)).
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Hence, (34) and (35) yield the following formula:

{2} ifu#0and0< &2 <t
[0,] ifu=0andz=¢
) otherwise.

Sy(t,z,u) = (36)

We can thus express formula (22) for the particular target
function M, as (31), observing that if z = £ and u # 0, then
Sy(t,x,u) = {0}. Note that the constraint 0 < ({ —z)/u is
equivalent to © < 0 since z > &. Note also that the constraint
(¢ — z)/u < t can be omitted in (31), since the corresponding
value of -y is infinite if this constraint is violated.

The computation of Mg(+, -) is similar to the computation of
M’Y('? ) n

As illustrated graphically in Fig. 6, for example for (-, -) and
M, (-,-), a given component is not necessarily defined for all
(t,z) € Ry x X . Indeed, the set of points (¢, z) which are influ-
enced by the condition c(-, -) are given by Capt (K, Epi(c)),
and correspond intuitively to a form of reachable set from the
condition c(-, -) [41], [52]. This can be formalized using the no-
tion of domain of influence, which is the domain of definition of
a given component.

Proposition 4.5: Domain of Influence: For a given c;, the
domain of definition of M, is also called domain of influence
of the component M, . It is given by the following formula:

Dom(M,,) =

U < U {t—l—T}X[l‘—l/uT,x—{—VbT]).
(t,x)€Dom(c;) \TER 4
(37)
Proof: The generalized Lax Hopf formula (22) implies that

Dom(M,,) ={(¢t,z) € Ry x X such that
3(T,u) € Ry x Dom(¢™)
and (¢t — T,z + Tu) € Dom(c;)}

Equation (37) is derived from the previous formula, observing
that  ranges in Dom(p*) := [—1°, v4]. ]

The domain of influence of the component M, is the union
of the cones originating at (¢, z) € Dom(c;) and limited by the
minimal —” and maximal ©* slopes of the Hamiltonian. This
property is illustrated in Fig. 7.

The notion of component is essential to this work, since it is
used to build the solution to the corresponding problem. How-
ever, one cannot prescribe components arbitrarily, which could
lead to an ill-posed problem. In order to prevent ill-posedness,
one needs to introduce the notion of proper formulation.

Definition 4.6: Proper Formulation of a Component: The
component M., associated with a target function c; is said to
be properly formulated if the following condition is satisfied:

YV (t,x) € Dom(c;), Mg, (t,z) = c;(t, ). (38)

This condition intuitively means that whenever the target
function c;(-,-) is imposed, its corresponding component
M, (-,-) will reflect the prescribed condition. Note that it
is well known [2] that for any environment K and target C,
C C Captp(K,C), which implies the following inequality:

Y (t,z) € Dom(c;),

M, (t,z) < c;(t,x). (39)
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Fig. 7. Illustration of the domain of influence of a component. We define a
target function ¢, on a domain represented by two black segments at ¢ = 0.
The domain of influence of the associated component M., is highlighted in

gray.

However the reverse inequality is not necessarily true. A com-
ponent is thus properly formulated if and only if the reverse in-
equality is true in the domain of c;.

Example 4.7: Proper Formulation of the Initial and Boundary
Condition Components: The initial condition and boundary
condition components can be computed using formulas (31).
The initial condition component is unconditionally properly
formulated, since V 2 € X, M, (0,2) = Mo(0,2). How-
ever, the boundary condition components are not properly
formulated for general lower semicontinuous functions (-, -)
and (-, -). These components are properly formulated if and
only if

VteRy, VTe]0,¢,
VteRy, VT e]0,t,
Bt—=T,x)+Te*(0) 2B (t¢). (40)
The previous conditions are satisfied if and only
if ~(-,¢) and p(,x) satisfy the growth condi-
tions (y(t+T,&) —v(t,€))/T < ©*(0) and

(Bt +Tox) = B(E.x)/T < *(0) for all (£T) € B2
In the context of traffic, since v and ( denote the label of
entering vehicles, these conditions amount to saying that
the number of vehicles entering the highway during a time
interval of length 7" must always be less than T'¢*(0). Since
©*(0) = SUppepom(y)[¥(p)] is the maximal flow that can
circulate through the highway section (according to the model),
(40) implies that the prescribed inflow and outflows must not
exceed the maximal possible inflow or outflow predicted by
the model.

We now finally have the necessary results to assemble the
components into the proper weak solution of the HJ PDE (4),
which was our initial goal. We formulate the capture basins
in terms of Barron/Jensen-Frankowska solutions [10], [31], a
weaker concept of viscosity solutions which only requires lower
semicontinuity of the solution instead of its continuity [4].

We recall some standard concepts of convex analysis [13],
[50] and set-valued analysis [2], [5], [6]. Full mathematic defi-
nitions are available in the references following each definition
of a new symbol below (omitted here for brevity). Let Tz(2)
denote the contingent cone to a set Z at a point z (see [6]),
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and let o (-, -) represent the support function (see [2], [5], [6])
of a set, which is defined by 0(A4,v) := sup,c4{u,v). For
aspace Y,andaset P C Y, let Pt denote the polar cone
of P, defined by P*™ = {peY*Vye P (p,y) <0},
where Y* denotes the dual of Y. Let the subdifferen-
tial O_ of a function v : Y — R U {+oo} be defined
by 0_u(z) = A{peY*|VyeY, (py) < Dyulz)(y)}
where the epiderivative Dy is defined [4] by its epigraph as
Epi(D12(2)) 1= Teyicr) (2, 2(2).

The work [4] defines the Barron/Jensen-Frankowska solution
in hypographical form for the function N(-,-). The following
theorem is identical to the main existence and uniqueness the-
orem of [4] modulo the variable change (3), the translation of
hypographs into epigraphs and the corresponding change on
epi/hypo derivatives and differentials.

Theorem 4.8: Barron-Jensen/Frankowska Solution: For any
lower semicontinuous target function c;, the associated compo-
nent M, is the unique lower semicontinuous function lower
than c; satisfying

(i) VY (t,x) € Dom(Mc,)\Dom(c;) V (pt, pz) € O—Me, (¢, x),
Pt —U(=ps) =0

Y (t,x) € Dom(Mc, )\Dom(c;)

Y (pe,pr) € (Dom(D M, (t, 2)))7T,

pt — o(Dom(¢™),p.) = 0.

(if)

(41)

Theorem 4.8 results from [4, Theorem 9.1] with the
aforementioned modifications. It expresses the fact that
the component M, is a solution to the HJ PDE (4) in
the Barron—Jensen/Frankowska sense. In particular, since
O_Me,(txr) = {((OMo,(t,x)/0t), (OM, (t,) /0))}
whenever M., (¢, z) is differentiable, (41) implies

Y (t,z) € Dom(Mc,)\Dom(c;),
OM, (t,x) OM, (t,z)\ _
o Y (‘T) =0

(whenever M, is differentiable.) 42)

V. DEFINITION AND CHARACTERIZATION
OF THE INTERNAL COMPONENTS

The major contribution of this article is the extension of a
mathematical framework of Sections III and I'V based on The-
orem 4.8, which enables us to add internal boundary conditions
[32], [38] to the mixed initial boundary conditions problem as
was presented until now. This section makes use of the frame-
work developed in all the previous sections to integrate these
conditions. In the context of traffic, internal boundary condi-
tions encode the trajectory information that we want to integrate
from probe vehicle measurements. In this section, we construct
the target functions associated with the internal boundary con-
ditions. We also derive the specific Lax-Hopf formula used to
compute the resulting internal boundary condition components
which are integrated into the HJ PDE in Section VI. The specific
Lax-Hopf formula also enables us to characterize the proper for-
mulation conditions and interpret them physically in terms of
traffic flow parameters for transportation problems.
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A. Formulation of the Problem

Definition 5.1: Trajectory Label History: We consider a tra-
jectory function T 4(+) defined in the time interval [£imin, Emax)-
The trajectory label history S 4 of A is defined as the following
set:

SA = {(tvjA(t)v lA(t)) 7t € [%minyzmax]}

where T 4 () and [ 4 () correspond respectively to the trajectory
function and label function of A.

The trajectory label history S4 of A contains information re-
garding the trajectory and the evolution of the order of A (with
respect to the surrounding points). In the following work, we as-
sume once for all that T 4 (-) is a continuous function defined in
[£mins Emax]> Where [Emin, tmax] C R4. The label function can
be computed and interpreted as follows.

Definition 5.2: Computation of the Label Function: We con-
sider a given point A labeled M at time 7, for which we pre-
scribe a change in value of R4 (t) per unit time at time ¢. The
function R4 (-) is a measurable integrable function belonging
t0 [Fmin, fmax) T R. Under these assumptions, the label function
la(t) of A is given by the following formula:

t
ZA(t):M—F[ RA(’T)dT.
tmin

In the context of traffic, the point A represents a given probe
vehicle, and the quantity R4 (t) represents the number of sur-
rounding vehicles that overtake A per time unit, at time ¢. In-
spired by traffic, the function R 4 (-) is denoted as the overtaking
rate function (in the remainder of the article).

B. Characterization of the Internal Component

The novelty of the definition below is the introduction of data
in the HJ PDE at points (¢, ), not on the boundary of the domain
R+ x X as was the case for Mq(-, ), v(+,-) and §(-, ), but in
its interior.

Definition 5.3: Target Function: We define following target
function /14 (-, -) associated with the internal M, , as:

— t
pa(t,z) = {M + ffmm Ru(7)dr
+00

if (t,z) € Graph(T.,)
otherwise.
43)

These internal conditions lead to the definition of internal
condition components, which we now characterize by their Lax-
Hopf formula. In order to define this formula, we first need to
characterize the set S, , of capture times as defined in (21).

Proposition 5.4: Characterization of the Set of Capture
Times: For any trajectory function Z4(-), and any element
(t,z,u) € Ry x X x Dom(¢*), the set S., (¢, , u) is defined
by
Se,(t,z,u) = {T € Ry N[t — tmax, t — Lmin)| T

=Ta(t—T)—xz}. (44)
Proof: Equation (21) and (43) imply that elements 7" of
Se,(t,z,u) satisfy (t — T, x + Tu) € Graph(Z 4). Hence, the
elements T of S, , (¢, z, u) are positive solutions to the equation
x+Tu=72s(t—T) satisfying t — T € [Emin, tmax]- ]
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Equation (44) thus implies the following characterization of
Se,(t,x,u):
_ 5‘4(t—T)—$

TESC t.gj,u = u = T —
A( ) ) {t_ T [tmimtmax]'

(45)

This directly leads into the following Lax—Hopf formula for
internal conditions:

Proposition 5.5: Lax Hopf Formula: We define S, (¢, z,u)
as in (44). The viability episolution M, , (¢, ) associated with
the target function (43) can be computed using the Lax—Hopf
formula (46)

M, (t,z) = inf
’ {(u,T)e€Dom(¢*)XR4 such that T€S. , (t,z,u)}

(M + /t_T Ra(r)dr + T(p*(u)) .

tmin

(46)

For any trajectory function T 4 (-) and any element (¢, z,u) €
Ry x X x Dom(¢*), the set S, , (¢, 2, u) is defined by (44). We
can thus express formula (46) in terms of 7" only

t—T
M, (t,z) = inf (M—I— / R(T)dr
] Jt

TER L N[t—Tmax,t—tmin

tmin

+Tp* (E—A(t oo )) @)

The components obtained from internal conditions have a do-
main of definition and a proper formulation condition which can
be derived following the previous method:

Proposition 5.6: Domain of Definition of an Internal Com-
ponent: The domain of definition of M, , is a consequence of
formula (37)

Dom(M,,) =

U < U {t+T}>< [EA(t)_V:TafA(t)—FVbT}).
tE [Eminstmax] \TERL

Note that when Z.(-) satisfies the growth condition
—I/ﬁ(t — Zmirl) < EA(t) — EA(imin) < l/b(t — imin) for
all £ in [fmin, tmax), the above formula becomes

DOHI(MCA) = U ({f})( [EA(fmill)—Vﬁt7EA(¥111in)~|—1/bt

teR,

).

As previously, the internal component M, , is properly for-
mulated if and only if it satisfies

\V/ t € [Emirn f111:1)(]7

T
inf (M + / Ru(7)dr

TER L N[t—Emasx,t—tmin]

tmin

_ _ t
+T* <xA(t_TJZ_£A(t)>> ZM—I—/ Ra(7)dr. (48)
tmin
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Fig. 8. Illustration of the domains of the possible value conditions used to con-
struct the solution of the Moskowitz HJ PDE. The time is represented by the
horizontal axis, while the location is represented by the vertical axis. The pa-
rameters { and Y represent respectively the upstream and downstream bound-
aries of the highway segment of interest.

Proposition 5.7: Proper Formulation of the Internal Compo-
nent: The internal component M. , is properly formulated if
and only if the trajectory function Z 4 (-) and the overtaking rate
function R4(-) satisfy

V t e ﬁmilﬂ fmax]?

R - t
inf (T(p* (xA(t 7) zA(t)) —/ RA(T)dT>
TE[0,t—Emin] T T
>0. (49)

Proof: Equation (49) is a direct consequence of (48). H

In the literature, in particular in [29], the transform ¢*(—v)

is regarded in the context of traffic as the relative capacity of the

highway for an observer traveling with velocity v. Hence, in the

context of traffic flow, the internal component is properly formu-

lated if and only if for all time intervals [t — T, t], the average

overtaking rate rate (1/7") |, :_T R4 (7)dr does not exceed the

relative capacity of the highway corresponding to the average
velocity (Ta(t) —Za(t —T)/T).

VI. COMPUTATION OF THE MOSKOWITZ FUNCTION

We now have all the necessary results to solve the problem
of interest: characterization of the solution of a HJ PDE with
internal conditions, and corresponding Lax-Hopf formula com-
putation. This section first derives the solution to the classical
Cauchy problem (Section VI-A) as a reference and link to ex-
isting results, and then proceeds with the general case investi-
gated here (Section VI-B) which is one of the novelties of this
article.

Fig. 8 represents the possible conditions that can be imposed
on the solution using the proposed method.

A. The Mixed Initial-Boundary Conditions Problem

Definition 6.1: Mixed Initial-Boundary Conditions Problem:
We consider an initial condition function M as defined in (27),
an upstream boundary condition function ~y as defined in (28),
and a downstream boundary condition function 3 as defined in
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(29). The solution M to the associated mixed initial boundary
conditions problem is defined as

M is a solution to equation (4) in the Barron/Jensen Frankowska

sense

M(0,2) = My (0, z) VeeX

M(t,€) = 7(t,€) ViteR,

M(t,x) = A(t, x) VteER,.
(50

Assembling all the tools derived before, we now construct the
solution using the following target function:

¢ = min(Mo, v, f). (51)

The function c¢ defined by (51) is lower semicontinuous
since it is the inf of lower semicontinuous functions. Theorem
4.8 states that the episolution M, associated with target c
defined by (51) is a Barron-Jensen/Frankowska solution to the
Moskowitz HJ PDE (4).

We assume that condition (40) is satisfied (this condition im-
plies that the boundary condition components are properly for-
mulated). Since M, = min(M xq,, M, M), we have the fol-
lowing equalities:

M, (0, z) =min(M(0, z), M, (0, z), Mg ( ,x)) Ve e X

Mc(t, &) =min(May, (¢,£),7(¢,€), Mp(t,€)) Vte R4

M. (¢, x) =min(Maq, (¢, x), My (¢, x), B(t, x)) Vit e Ry.
(52)

In (52), we have used the fact that V= € X, M, (0,2) =
M,y(0, z) by the proper formulation of the initial component,
and similarly for the boundary condition components. Note that
the initial condition component is always properly formulated
as illustrated in example 4.7. The previous considerations lead
to the following expression of the consistency conditions:

Theorem 6.2: Consistency Conditions: The episolution M,
associated with target c defined by (51) is solution to the mixed
initial boundary condition problem (50) if and only if the fol-
lowing conditions are satisfied:

(i) Mo(0,8) =~(0,¢)
(i)  Mo(0,x) = B(0,x)
(i) uenﬁqu( 0(0,& 4 tu) + te*(u)) > 7(t,§)
VteRy
(iv) inf  (Mo(0,x +tu) +tp*(u)) > B(t, x)

u€Dom(p*)
VteRy

v inf ( (t— f-x )
( ) u€Dom(p*)such that u<0 K u 15

+5525p"(w)) 2 Bt )
VieR,

(vi) -5 y)

inf (5 (
uw€Dom(¢p*)such that u>0

+2=20%(u)) > A(t,€)
\ Vt E R+.

(53)
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Proof: Equation (52) implies that M., is solution to the
mixed initial boundary conditions problem (50) if the following
conditions are satisfied:

(i) M, (0,2) > Mo(0,7) YzeX
(i) Mo () 2 7(t,§) VieRy
(15i) Mp(0,z) > Mo(0,2) VzeX
(i) M, (t,x) > B(t,x) VteRy
(v) My(t,x) > B(t.x) VteRy
(vi) Mpg(t,€) > (t,6) VteR,. (54)

The conditions (54) (%), (iv), (v) and (vi) are expressed by
conditions (53) (i7i), (iv), (v) and (vi) respectively. The con-
ditions (54) (7) and (7i7) are equivalent to y(0,£) > Mg(0,§)
and (3(0,x) > Mg(0,x), since v(0,z) = +oo if z # & and
B3(0, ) = o0 if & # x. The conditions (54) (i), (i), (i3i) and
(7v) thus imply the conditions (53) () and (7). [ |

Note that while conditions (53) do not seem to have appeared
in the literature prior to this work, they find a counterpart in
the literature on scalar hyperbolic PDEs. Indeed, the conditions
(54) must be satisfied to impose at the same time the initial and
boundary conditions in the strong sense [9], [39], [52]. When
these conditions are not satisfied, the episolution associated with
target defined by (51) will not satisfy at the same time all the pre-
scribed conditions (i.e., at least one of the prescribed conditions
will be violated).

B. The Mixed Initial-Boundary-Internal Conditions Problem

Finally, the main contribution of this work is the solution to
the problem outlined below.

Definition 6.3: Mixed Initial-Boundary-Internal Boundary
Conditions Problem: We consider a initial condition function
M as defined in (27), an upstream boundary condition function
~ as defined in (28), a downstream boundary condition function
[ as defined in (29), a set of continuous trajectory functions
Z;(-), and a set of integrable overtaking rate functions R;(-) for
1 € I. We assume that I is a finite set, and that the trajectory
and overtaking rate functions Z;(-) and R;(-) are both defined
in the time intervals [fmin,, fmax,|, and associated with the
vehicle labeled M; at time min, - Note that the corresponding
internal condition is defined for all 7 € I by definition 5.2. The
solution M to the associated mixed initial-boundary-internal
conditions problem is defined

( M is a solution to equation (4) in the Barron/Jensen
Frankowska sense
M(0, z) = Mo(x) Ve[S x]

M(t, €) =(t,£) vieR,

M(#, x)=B(t, x) VieRy
M(t,z;(t)) = M; —i—ft (r)dr

L Vte[minl, tmax, ), Vi € I.

(55)

As for the previous case, the proper target is obtained by
assembling the targets corresponding to all conditions. We
define a set of target functions u;(-,-), ¢ € I corresponding
to the internal constraints as in (43). For the mixed initial-
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boundary-internal conditions problem, we define the target
function c(-, -)

¢ = min (MO,’}/?ﬂ?Inel}l(ﬂz)) : (56)

As previously, the function c defined by (56) is lower
semicontinuous since it is the infimum of lower semicon-
tinuous functions. Theorem 4.8 states that the episolu-
tion M, associated with the target c defined by (56) is a
Barron-Jensen/Frankowska solution to the Moskowitz HJ PDE.
We assume that condition (40) is satisfied for both -y and 3 (this
condition implies that the boundary condition components are
properly formulated). We also assume that condition (48) is
satisfied for each Z;(-) and R;(-) (this condition implies that
the internal component ¢ is properly formulated), and for all ¢ in
the set /. Since M, = min (M, , M, Mg, min;c;(My,)),
we have the following equalities:

M. (0, ) =min (MO(O, x), M, (0,2), Ms(0,2), min;c; (M, (0, 1:)))

Vee X
MC(t7€):min (M/\/lo(tag)aﬁ’(fv6)7Mﬁ(tvg)a1ninz€I(Mu7,(t7£)))

ViteRL
M.c(t, x) =min (MMO(t X)s M, (2, x), B(t, x), min; ¢, (M, (¢, x)))

VteR,

M.(t,7:(t)) :min(MMO(t,m(t)) M., (t,7:()), Ms(t, 7:(t)). M,

+f B’ (7)dr, minjern i3 (M, (2, xj(t))))
YVt € [tmin,

tmax], Vi € L.
(57)

Similarly as in (52), we have used in (57) the fact that the ini-
tial, boundary and internal condition components are properly
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formulated. The previous considerations lead to the following
expression of the consistency conditions:

Theorem 6.4: Consistency Conditions for the Mixed Initial-
Boundary-Internal Conditions Problem: We assume that V ¢ €
I, tmin, > 0. The episolution M, associated with target c is so-
lution to the mixed initial-boundary-internal conditions problem
(55) if and only if the following conditions are satisfied:

MO(Oa 5) = 7(07 f)

(4ii) inf  (Mo(0,& + tu) + to*(u)) > (t, )
u€Dom(p*)
VieR;
(iv) inf  (Mo(t, x + tu)
u€Dom(p*)
+t™ (u)) > B(t, )
VieR,

e 00529
u€Dom(p*) such that u<0 "
+E267 (W) > Bt X)
VieR,
. . x=¢
(UZ) uGDom(go*)l?fch that u>0 (/B ( u ,X)
20 (w)) > (4,€)
VieR,

122
u€Dom(p* )lguch that u<0 7 “ E
+ET 00t (w)) > Mo+ [ Ri(r)dr
Viel Vte [_min,,a max,,]
SR N
uGDom(Lp*)Hsluch that u>0 ﬂ u X
XA ey ))
> M; + f,mm
Vi€ 1Yt E€ [tmin;s bmax,]

(vit)

(viii)

(T)dT

. nf o ]

(iz) Teﬂm[t_l&wt_imz]( ! Ri(rydr
Viel,VteRy

(17) inf M +ft T)dT

min;

TER L N[t—Emax; ;t—tmin, ]
+76" (BDX) ) > Bt x)
VieLVieR;
inf  (Mo(0,7;(t) + tu) + to*(u))

'uEDom((p )
T)dr,YielVte rmmﬂ timax, |

+ Jovn

T inf M; + dr
( ) TER 4+ N[t—tmax, st —tmin;] ( ft )
+Tp* (M)) > T,
i, B
\ ViEI,VtE[_min” maxi]a VjEI\{i}.
(58)

Proof: Equation (57) implies that M, associated with the
target (56) is solution to the mixed initial boundary conditions
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problem with general trajectory constraint (55) if and only if the
following conditions are satisfied:

(1) M,(0,z) > Mo(0,2) VezeX
() Ma(h,6) >1(,6) VieR,
(7it) Mg(0,z) > My(0,2) VYzeX
(iv) Mg, (t,x) 2 B(t,x) VEeR,
(v) M, (t,x) > B(tx) VteR,
() Myt.)2 (1) VeeR,
(vii) M, (¢, 75(t)) > M; ~|—/t R;(7)dr

V't € [tmin,s bmax;], Vi€T
Mﬂi(OVT) 2 MO(OVT)
VeieX, Viel
t
ML (,7:(t)) > T, + / Ri(r)dr
t

(59)

Vte [Zminwzmaxi]: Viel
Mﬂi (t7 f) Z 7(t7 f)

VteR;y, Viel

My (t,z;(t)) zﬁmtft Ri(7)dr

tmin;
Vte [Zmini ’ Zma)q]: Viel
M, (£, x) 2 B(t. x)

VteR;y, Viel

t
M, (t,7:(8) > T, + / Ri(r)dr
Ty

Viel, YtE€ [tmin,tmax,), YJ € I\{i}.(60)

The conditions (%), (iv), (v), (vi), (vii), (iz), (z), (z7),
(2i7) and (z4i7) of (59) and (60) are expressed by conditions
(58) (i1), (iv), (v), (vi), (x1), (vii), (iz), (viii), (x) and (z77)
respectively. The conditions (59) (i7), (iv), (v) and (vi) are ex-
pressed by conditions (58) (4i7), (iv), (v) and (vi7) respectively.
The conditions (59) (¢) and (i4i) are equivalent to v(0,&) >
My(0,€) and B(0,x) > My(0, ), since v(0,2) = +oo if
x # & and B(0,2) = oo if © # x. The conditions (59) (7),
(44), (474) and (4v) thus imply the conditions (58) (7) and (i1).

Since we have ,,;,, > 0 for all 4 in the set I, we have that
Ve X,Viel M, (0,z) =+oo, and the condition (59)
(viii) is always satisfied. ]

When inequalities (58) are not all satisfied, then the episo-
lution M,(+,-) associated with (56) is still a Barron-Jensen/
Frankowska of the HJ PDE (4). However, at least one of the
conditions (55) will be violated.

While formula (58) seems very complex, it is actually com-
putationally easy to check that these conditions are satisfied.
Indeed, each condition requires at most a two dimensional
search, and the number of constraints grows polynomially (in-
deed quadratically) with the number of internal conditions. In a
companion article [21], we also show that the components can
be computed explicitly when the initial, boundary and internal
conditions are piecewise affine, which further simplifies the
computation in this specific case.
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The inequalities (58) can be used in the context of traffic flow
data assimilation [22] to construct a linear program (LP) esti-
mating bounds on some traffic flow parameters such as the travel
time between two locations.

VII. APPLICATION TO MACROSCOPIC TRAFFIC

FLOW RECONSTRUCTION

We now illustrate the power of the previous results on a
practical example: data assimilation using Lagrangian measure-
ments. In an ongoing project with Nokia [34], [35], [55]-[57]
and the US and California Departments of Transportation
called Mobile Millennium, we are currently implementing
prototype algorithms to use GPS equipped cellular phones
traveling onboard vehicles on the highway as probe sensors to
monitor the state of traffic in real time. This type of sensing is
referred to as Lagrangian because the sensing device (the GPS)
provides measurements along the trajectory it follows. This is
in contrast to Eulerian sensing, which refers to fixed sensors
monitoring physical quantities in a determined control volume,
for example fixed loop detectors and the Freeway Performance
Measurement System (PeMS) in California [54]. With the
progressive penetration of GPS equipped phones in the market,
Lagrangian sensors have the potential to become a fundamental
data source in the context of highway systems, because of the
prohibitive costs of deployment and maintenance of Eulerian
sensors, and the dedicated infrastructure they require (in con-
trast, the cellular phone infrastructure is market driven and does
not require any maintenance from state or federal agencies).

The example below uses Next Generation Simulation
(NGSIM) data [58] from a section of Interstate I80 in
Emeryville, CA as our main benchmark scenario for this
study. This data set contains video extracted trajectories of all
vehicles traversing a 0.4 mile long highway section during a
period of 45 minutes. Given the accuracy of the video, this set
of data can be considered as ground truth, i.e., it provides the
exact location of vehicles to an accuracy of a few centimeters
at a 10Hz rate. We degrade the quality of the data to model the
inherent uncertainty linked with sensor measurement accuracy,
and use the corresponding dataset for verification purposes.
The corresponding data is represented in Fig. 9.

We use this data as follows:

* We record the initial state of traffic on the highway. This
provides us with My, i.e., the initial conditions of the
problem.

* We create loop detector-like (Eulerian) data from this
NGSIM data, following a standard procedure used in
traffic engineering [34]. This provides us with traffic data
similar to what the PeMS loop detector system would
record in real life. This yields the boundary condition
functions v(¢,&) and S(¢, x) defined in Section IV-B for
all positive times .

* We extract some trajectories representative of measure-
ments produced by GPS equipped Nokia N95 cellular
phones traveling onboard of the selected vehicles. This
can be done by sampling the NGSIM data along trajec-
tories, and exporting the corresponding data in a format
similar to what a GPS would produce. Noise is also added
to the data, to make it similar to what GPS measurements
would produce. This provides us with the trajectories z 4 (-)
defined in Section V. We assume that the corresponding
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Fig. 11. Computation of the error between the simulation and the ground truth.

This plot represents the error between the Moskowitz function estimated using
initial and boundary conditions only, and the actual Moskowitz function. The
error is expressed in total number of vehicles. In this Figure, the error is above
20 vehicles in white areas, and zero in black areas. The initial and boundary
conditions correspond to areas with zero error, since we assume that these func-
tions are perfectly known. The error increases away from these areas of perfect
knowledge(which physically makes sense).
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Fig. 12. Traffic flow reconstruction. For all plots, the error is low for dark areas,
and high for white areas. Left: representation of the error associated with the so-
lution to the initial boundary conditions problem with one trajectory constraint
corresponding to the vehicle labeled 110. The constrained trajectory is repre-
sented by a gray line. Right: representation of the error associated with the solu-
tion to the initial boundary conditions problem with three trajectory constraints
corresponding to the vehicles labeled 20, 120 and 220 respectively. The con-
strained trajectories are represented by gray lines. This situation represents a
situation where 1% of the vehicles would be equipped with GPS sensors.

target functions c 4 are given by (44) with R4(-) = 0: for
the specific traffic flow situation described here, the over-
taking events only marginally influence the solution. Note
however that this last hypothesis does not hold for general
traffic flow situations such as lane shearing situations.
Note that the two first sets of data are typical measurements
obtainable from Eulerian sensing (see [34] for a full description
of the procedure), while the third data set (the trajectory) is a
typical Lagrangian data set, obtainable from a probe vehicle.
Note also that in this forward simulation, we know the
label M of the vehicle from which we extract the trajectory
Z A(-), since we have the full knowledge of the experimental
Moskowitz function. Although the trajectory x 4(-) is easily
obtained using GPS measurements, there is no simple method
to obtain the label M of a probe vehicle without any other
information. However, if we are able to obtain the function
v (from loop detector measurements for instance), the label

M of a vehicle entering the highway at time ¢ is given by
M := 5(t,€).

We next solve two problems.

Problem 1: First, we compute the solution of (4) satisfying
the initial and boundary conditions. This yields the solution to
the mixed initial boundary conditions problem (50), which cor-
responds to the estimate one could obtain without the probe data
(GPS data). The corresponding results are shown in Fig. 10.
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Fig. 13. Trajectories reconstruction. Top: representation of the trajectories as-
sociated with the solution to the mixed initial boundary conditions problem.
Center: representation of the error associated with the solution to the mixed
initial boundary conditions problem with trajectory constraint (the constrained
trajectory is highlighted in gray). Bottom: representation of the ground truth tra-
jectories corresponding to the NGSIM dataset.

As can be seen by visual comparison with Fig. 9, there is a
significant mismatch between the estimates of the simulation
and the ground truth. This is due to the fact that traffic does not
obey the LWR model as soon as exogenous phenomena start to
influence traffic, such as a driver randomly braking because of
external disturbances. Fig. 11 displays the level of error between
the estimates of the forward simulation and the ground truth.

Problem 2: In order to illustrate how the knowledge of the
Moskowitz function can be improved from the incorporation of
trajectories in the solution, we extract a real trajectories z;(-)
from the NGSIM data. Using this new information, we solve the
mixed initial-boundary-internal conditions problem (55), and
construct the solution using internal components. As can be seen
from Fig. 12, the solution models the ground truth more accu-
rately after incorporating this Lagrangian data into the problem.

The corresponding trajectories are represented in Fig. 13. In
this figure, one can clearly see that the solution to the mixed
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initial boundary conditions problem with trajectory constraint
now captures the trajectories associated with the vehicles down-
stream of the constrained trajectory.

On February 8, 2008, we successfully demonstrated the use
of GPS equipped mobile phones for highway monitoring. Nick-
named the Mobile Century experiment, 100 vehicles drove loops
on I-880 in California for 10 hours with GPS equipped mobile
phones on board [57]. The data was collected and processed
using a privacy aware architecture developed for this experi-
ment, and new inverse models were implemented to enable ac-
curate estimation of the velocity fields on the highway with
2%—5% of the traffic stream carrying the devices [55]. Estimates
were broadcast live over the Internet to demonstrate the ability
to integrate the data into flow models. The next phase of this
project, nicknamed Mobile Millennium consists in the deploy-
ment of this technology for the general public in the Bay Area,
and is now underway with more than 4000 users at the time of
this submission. The solution method presented in this article
was implemented in Mobile Millennium [57], and is an example
of fusion of Eulerian and Lagrangian data in flow models. The
numerical schemes used in the Mobile Millennium system are
presented in a companion article [21].

VIII. CONCLUSION

This article presents a technique based on control theory to in-
clude internal boundary conditions into Hamilton-Jacobi equa-
tions which can be used to model highway traffic. The proposed
method relies on earlier work, which defines solutions in the
sense of Barron/Jensen—Frankowska. This framework allows
the use of epigraphical techniques, which in the present article
allowed us to formulate the internal boundary conditions (La-
grangian data) in epigraphical form, and consequently pose the
problem as a target problem. The corresponding target for each
Lagrangian data is called component. Using an inf-morphism
property, we were able to construct a solution to a problem con-
taining multiple components. A semi explicit solution of the
problem was proposed with a generalized Lax-Hopf formula,
which was extended to the case of multiple components. In order
to be applicable, the method requires consistency conditions to
be satisfied, which are given explicitly. The method is imple-
mented using one of the most accurate existing databases of
highway traffic, the Next Generation Simulation data. The value
provided by the data is demonstrated by adding measurements
to simulations of the data where exogenous disturbances violate
the flow model (i.e., the Hamilton-Jacobi equation). Numerical
results show great improvement of the accuracy of traffic flow
prediction due to this fusion of Lagrangian data into the flow
model. Future work will include the development of numerical
schemes to compute numerical solutions of this problem (be-
yond the Lax Hopf formula), presented in a companion article
[21]. Current implementations of the techniques demonstrated
in this article include the Mobile Millennium field operational
test in the Bay Area, which was launched in November 2008.
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