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ABSTRACT1
We design a testbed for evaluating and comparing the performance of automated vehicles (AVs)2
control strategies for reducing traffic congestion and improving the energy efficiency in mixed3
autonomy traffic. The system includes a microscopic traffic simulator along with specific test4
scenarios derived from real-world trajectory data representing different traffic conditions. We equip5
the system with a set of desired KPIs and evaluation metrics that serve as the basis on which we6
compare and rank the controllers. We present a use case of the system by implementing and7
comparing a few control strategies ranging from classical to deep reinforcement learning (DRL)8
based controllers. Our comparison results show that the controllers can achieve an increase of9
up to 19.15% in the average speed and an improvement of up to 25.39% in the fuel efficiency of10
the platoon, compared to the baseline of fully human-driven traffic. Through these experiments we11
illustrate the capabilities of the system in allowing for detailed and fair comparison between control12
strategies of different nature on a wide range of scenarios with flexible configurations. Finally, the13
system architecture allows for easy integration of additional control strategies in the future. This14
aims to promote continues development in the field and to allow input from the broader research15
community.16

17
Keywords: traffic simulation, mixed-autonomy traffic, automated vehicles, traffic control.18



Alanqary, Lee, and Bayen 3

INTRODUCTION1
Mixed-autonomy traffic, is a system in which only a fraction of the vehicles are automated (AVs)2
and they interact with human driven vehicles in the road. The introduction of AVs in such pre-3
dominantly human drivers traffic has the potential to improve the traffic conditions at both the4
microscopic and the system level.5

Several recent studies have demonstrated, through simulations or field experiments, such6
positive impact of introducing one or a few AVs on the overall traffic flow. Different metrics have7
been considered in such studies including improved travel time (13), increasing the throughput,8
improving the system stability (11), and reducing fuel consumption (8).9

There is still a strong emphasis within the intelligent transportation research community10
to further harness such benefits. This results in a growing number of developed controller that11
are based on various control strategies and designs to serve the common purpose of improving12
traffic conditions. The literature is rich in such controllers ranging from classical hand-crafted13
micro-controllers to modern deep reinforcement learning policies. In this work we highlight the14
importance of establishing a standard testbeds for common evaluation and comparisons of con-15
trol strategies of AVs in mixed-autonomy traffic. Systematic evaluation and comparison will not16
only further understanding of the strengths of existing algorithms, but also reveal their limitations17
and suggest directions for future research. Further, such benchmarks can accelerate the develop-18
ment of the field by enabling researchers to focus on controller and algorithmic design rather than19
experimental design for testing and evaluation.20

The benefit of standard benchmarks in control and sequential-decision-making research21
has been realized by multiple research fields. Perhaps the most prominent example comes from22
the field of reinforcement learning (RL), in which standard benchmarks has accelerated the de-23
velopment of the field and created common grounds for evaluating progress in algorithm design.24
Examples of RL benchmarks include the Arcade Learning Environment (ALE) (2), the benchmarks25
released with rllab (4), and the Multi-Joint dynamics with Contact (MuJoCo) physics engine (9).26

In contrast, when it comes to the field of mixed autonomy traffic, there’s a sever lack of27
domain specific standardized benchmarks and testbeds that are designed based on realistic traffic28
scenarios. This makes it difficult to evaluate the practicality of the proposed methods in the liter-29
ature, compare their performance in a systematic and fair manner, and reveal their limitations. A30
few studies have attempted to bridge this gap and propose systems and benchmarks for compar-31
ison and evaluation in the domain of mixed autonomy control. Ault and Sharon (1) developed a32
toolkit for comparing RL-based controllers for signal control. The work of Vinitsky et. al. (11)33
devised a set of standard benchmarks for RL-based longitudinal controller on problems shockwave34
minimization, inflow management, efficient merging, and intersection control.35

In this work we propose and develop a testbed for the task of smoothing traffic flow through36
longitudinal control of a AVs in mixed-autonomy traffic driving along a single high-way lane. The37
testbed consists of a microscopic simulation engine for mixed-autonomy traffic, a set of standard38
benchmarks inspired by real-world scenarios, and a set of evaluation metrics for comparing and39
ranking controllers. To the best of our knowledge, we are unaware of a standard set of benchmarks40
and evaluation tools that are compatible with both RL-based and classical controllers for such task41
in the domain of mixed-autonomy traffic. By introducing this system, we aim to bridge the eval-42
uation gap and provide a standard way for comparing and evaluating controllers in the literature.43
Our key contributions in this article:44

• Define the task of reducing traffic congestion in mixed-autonomy traffic using AVs.45
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• Introduce a set of test scenarios for this task based based on real-world trajectory data.1
• Develop an architecture for testing and evaluating control algorithms on these scenarios.2
• Present a use-case to illustrate the use of the system using multiple control strategies3

ranging from classical to deep RL controllers.4

SETUP5
In this section we describe the details of the the mixed-autonomy traffic system and the task of6
reducing traffic congestion in such system. We then introduce the microscopic simulation com-7
ponenet of the evaluation testbed.8

System Description9
The system we consider in this work is a mixed-autonomy platoon consisting of three types of10
vehicles: (1) a leader vehicle which has a fixed trajectory and takes the leading position in the11
platoon, (2) autonomous vehicles which are equipped with longitudinal (acceleration based) con-12
trollers which we aim to compare, and (3) human driven vehicles whose longitudinal behaviour is13
governed by a human-driver model and their lateral behaviour is governed by a probabilistic lane14
changing distribution.15

FIGURE 1: Example of a mixed-autonomy platoon consisting of a leader vehicle (gray), auto-
mated vehicles (red), and human driven vehicles (blue)

The leader vehicle’s trajectory represents the downstream traffic conditions. Congested16
traffic presents itself in the form of stop-and-go waves in the leader’s trajectory. The task is to17
design a control strategy for all AVs in the system to dampen the backwards propagation of the18
stop-and-go waves and reduce their overall effect on the platoon. In the next chapter we will19
introduce specific metrics used to evaluate the performance of the controllers for this congestion20
reduction task.21

Notation22
As a common notation, we number that cars in the platoon from front to back with the leader23
having the index 1. In all scenarios, we have a fixed simulation horizon T ∈ R+. We denote24
the time-variable number of vehicles in the platoon n(k) as the total number of vehicles (leader,25
human-driven, and automated vehicles) at time step k. We note that the number of vehicles can26
change due to the lane switching disturbance that we will introduce later in the paper. Further, we27
by Ia(k) the set of indices of the AVs in the platoon at time step k.28

At a given time step k, and given a platoon of 1 leader vehicle, N AVs and M human-driven29
vehicles, we have n(k) = 1+M +N and we denote the state vector s(k) = [xi(k),vi(k)]i=1:n(k) ∈30
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R×R+, where xi(k) and vi(k) represent the position and velocity, respectively, of the ith vehicle in1
the platoon. The position is taken with reference to the initial position of the leader vehicle, and2
the velocity is restricted to be always positive (i.e. cars can’t drive backwards). The action vector3
is a list of accelerations for each AV in the system and is denoted by a ∈ [amin,amax]

N where amin4
and amax represent the minimum and maximum allowable accelerations.5

Traffic Simulation6
In this work we simulate the performance of mixed-autonomy traffic control policies through the7
use of microscopic traffic simulators, in which the states and controls of the traffic network are8
modeled at the level of individual vehicles. Traffic microsimulators have been broadly accepted in9
the transportation engineering community as a tool to evaluate automation tasks such as adaptive10
cruise control (ACC) (6) and mixed-autonomy traffic flow control (8). In the context of micro-11
scopic simulation of mixed-autonomy traffic, human-driver models are used to recreate the lateral12
and longitudinal behavior of human-driven vehicles. In our simulation, the longitudinal behaviour13
of human-driven cars is governed by the intelligent driver model (IDM) (10), a state-of-the-art14
human-driver model in microscopic traffic simulation.15

Since our environment consists of a single lane of a highway, we have a simplified model16
for lateral human behaviour. It is modeled as a stochastic disturbance in the form of vehicles17
cutting-in (appearing) into the simulation lane and joining the platoon, or vehicles in the platoon18
cutting-out (disappearing) from the lane. At every simulation step and for each car in the platoon,19
this disturbance is modeled as a Bernoulli random variable with parameter taken as a function of20
the headway and the velocity of this vehicle. In the test scenarios this disturbance can be disabled21
resulting in a closed system with a fixed number of cars in the platoon.22

EVALUATION TESTBED23
In this section, we detail the proposed framework for testing and evaluation control strategies for24
the task of reducing traffic congestion. We start by introducing the test scenarios, followed by the25
evaluation metrics and KPIs used to compare and rank the controllers.26

Scenarios27
The test scenarios aim to expose several aspects of the controllers. Namely we aim to test the28
performance of the controller in cases of (1) congested traffic (2) free flow traffic (3) lane changing.29
Below we describe each of these scenarios.30

Congested Traffic31
The congested scenarios highlight cases where stop-and-go waves generate in the platoon starting32
with the leader and propagate backwards. The purpose of these scenarios is to evaluate the ability33
of the controller to dampen the waves and reduce the traffic congestion. The scenarios are defined34
by specifying the leader vehicle’s trajectory which experiences stop-and-go waves. We define the35
leader’s trajectory in these scenarios using real-world vehicle trajectory data collected from the36
I-24 highway during morning peak hours (7).37

Free-flow Traffic38
The free-flow traffic scenarios highlight cases where the trajectory of the leader resembles free flow39
cases with no congestion. The purpose of these scenarios is to detect any emerging behaviour from40
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the controller that might cause undesired effects that can generate stop-and-go waves or worsen1
free-flow traffic. Similarly, this benchmark is defined by the leader’s trajectory. We extract free2
flow leader trajectories from the same I-24 dataset.3

Lane changing4
The lane changing scenarios can be thought of as a variant of the previous two sets of scenarios5
in which human-driven vehicles can cut-in (appear) into or cut-out (disappear) from the lane. The6
purpose of this scenario is to evaluate the controllers’ safe-handling of lane switching and to expose7
the consequences of leaving large gaps by the controller. To design these scenarios we enable the8
lane changing stochastic disturbance in the simulation.9

Configuration10
We allow some flexibility in the test scenarios’ configuration. The user can specify the size and11
order of the platoon and the penetration rate of AVs. The user can also provide additional test12
trajectories and evaluate the performance on them. Further the simulation parameters can be easily13
tenable including the IDM parameters, the size parameter of the lane changing distribution, and the14
simulation horizon. We note that we provide a default configuration that can be used as a reference15
for all comparisons.16

Tests and Metrics17
One of the most important aspects of this evaluation scheme is the design of the metrics and KPIs18
on which the controllers are compared. The aim is to devise a comprehensive set of metrics to19
effectively captures the main objective of the control task: reducing traffic congestion. At the same20
time we aim to detect any side behaviour of the controller that can compromise safety. For this we21
propose the following metrics:22

Average speed.23
We use the commonly used metric for evaluating traffic congestion which is the time-average
sample-average speed (TASAS) (3, 11) defined as

TASAS =
∑

T
k=0 ∑

n(k)
i=1 vi(k)/n(k)

T
. (1)

Fuel consumption.24
Along with increased travel time, fuel consumption wastage is one of the most concerning effect
of traffic congestion. It is projected that 2% of the total fuel consumption of vehicles on-highways
is wasted due to congestion in 2020, a figure that is project to rise to 4.2% in 2050 (12). As such, it
is of great interest to measure the potential efficiency improvement provided by the tested control
strategies. We use the miles-per-gallon (MPG) metric as a measure of the energy efficiency of the
platoon, which is defined as

MPG =
∑

T
k=0 f (Ti,k)xi(k)

∑
T
k=0 ∑

n(k)
i=1 Ci(k)

, (2)

where Ti indicates the last time step in which the ith vehicle is in the system, and the function25
f (Ti,k) = 1 if Ti = k and zero otherwise. Here, Ci(k) is the instantaneous fuel consumption of the26
ith vehicle at time step k. This quantity is computed using the fuel consumption model proposed in27
(5) which is validated using real-world driving data. The MPG represents the total miles traveled28
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by all the vehicles in the platoon divided by the total number of gallons of fuels consumed by those1
vehicles.2

Vehicles crash count.3
As a first, and straightforward, measure of safety, we count the number of crashes occurring in the4
platoon.5

Minimum headway.6
Another safety metric that we consider in the system is the measure of the minimum space headway
achieved by the AVs in the platoon throughout the simulation, defined as

min
k=0,...,T

min
i∈Ia(k)

xi−1(k)− xi(k). (3)

Small space headway might indicate a safety concern, however, we leave the definition of the7
minimum acceptable headway open for user evaluation as it depends heavily on additional consid-8
erations regarding the deployment conditions of the controller.9

Controllers10
The last component of the evaluation scheme are the algorithms and controller developed for the11
longitudinal control of the AVs in the platoon. The system architecture is developed to be com-12
patible with and allows easy integration of a wide range of control strategies and algorithms. Any13
control algorithm can be tested using this proposed evaluation testbed as long as it can be written14
as a function that takes in the system state vector s(k) ∈ Rn(k) and produces a set of command15
accelerations a(k) ∈ RN . For ease of integration we establish a standardizes interface between16
the simulation and the control algorithm. This architecture is developed with the aim of remov-17
ing barrier of use and allow for rapid testing and development. This allows us to continuously18
track progress over time (see Figure 2) and engage effectively with the algorithms developers with19
minimal overhead from the users’ side.20

EXPERIMENTS21
In this section, we demonstrate a use case of the proposed system using the scenarios described22
above. We present three different control algorithms for the task of improving traffic congestion23
and we compare their performance based on the aforementioned evaluation metrics.24

Test Scenarios25
We conduct our experiments on a two trajectories, each representing one of the two scenarios:26
congested and free-flow traffic. The leader’s trajectory for these scenarios is shown in Figure 3.27
For each trajectory we run the experiments with and without lane changing. We fixed the starting28
platoon for all experiments to be of 200 vehicles. We also use a fix set of initial conditions for all29
experiments. Two sets of experiments are conducted with AVs penetration rates of 5% and 10% of30
the initial platoon size. The initial order of the platoon consists of a leader vehicle followed by the31
AVs equally spaced by human-driven vehicles.32

Controllers33
We implement three different control strategies for the task of reducing traffic congestion and34
evaluate their performance using our evaluation system. We use a fully human-driven platoon of35
the same size as baseline for comparing the metrics (by replacing the AVs with human-driven cars36
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FIGURE 2: A screenshot from the dashboard of the evaluation testbed illustrating the progress
of the controllers in achieving the energy saving metric over time. Each dot represents a new
controller submission and the lines (orange and blue) represent the progress of the best achieving
controllers on different scenarios.

(a) Leader trajectory for the first scenario (b) Leader trajectory for the second scenario

FIGURE 3: Experiments test scenarios

in the platoon). Below, we give a short description for each of the controllers. We omit the details1
of the controllers and their development as it is beyond the scope of this work and are only used as2
a sample controllers for this experiments.3

Microcontroller4
This is a hand-designed control strategy. The microcontroller has three major components: (1)5
computing and trying to follow a desired velocity to ensure a uniform steady-state flow, (2) cor-6
rection of this desired velocity based on the leader’s state to make it locally adaptable, and (3) a7
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headway management component to ensure safe driving at all time. The commanded accelerating1
of this controller is a combination of the acceleration produced by each of these components.2

Deep reinforcement learning (DRL)3
This is a control policy trained using a version of the proximal policy optimization (PPO) algo-4
rithm. The training was conducted on the I-24 trajectory dataset using a reward function that5
encompasses the evaluation metrics represented in the system.6

Optimized Human-driver Controller (OHDC)7
This is an optimization based controller in which we start with a collected of human-driver models8
and optimize their parameters to achieve better values for the desired evaluation metrics. We also9
use the I-24 trajectory data and optimize for the parameters that improve the fuel consumption and10
the average speed for all training trajectories simultaneously.11

Results12
Scenario 1: Congested Traffic13
Without lane changes14
In Table 1, we compare the performance of the three controllers against the baseline on the con-15
gested traffic scenario with no lane changes. For this experiment, all three control strategies achieve16
an improvement over the baseline in the average speed and evaluation metrics. With only 5% pen-17
etration rate, the controllers can achieve an improvement of up to 12.7% in the average speed, and18
up to 19% in the fuel consumption, both using the DRL controller. With a penetration rate of 10%19
the improvement increases to 19.15% for the average speed (using the OHDC), and 25.39% for the20
fuel consumption (using the Microcontroller). These results are generally consistent with findings21
of previous studies that suggests improved performance with increased penetration rates of AVs.22

We note from these results that we do not get consistent ranking of the controllers when23
using different evaluation metrics. That is, the best performing controller in terms of fuel con-24
sumption might not be the one performing best in terms of average speed. This highlights the fact25
that these metrics and not equivalent and highlights the importance of considering them separately.26

We also note that all the controllers perform at least as good as the baseline when it comes27
to the safety metrics. All controllers complete the simulation without causing crashes. Further, the28
controllers tend to keep a headway distance that is significantly larger than the baseline, except for29
the the Microcontroller.30

AS (m/s) FC (mpg) CC (#) MH (m)

Penetration Rate 5% 10% 5% 10% 5% 10% 5% 10%

Microcontroller 19.00 17.95 44.78 47.26 0 0 2.20 10.32
DRL 19.53 18.98 44.86 46.79 0 0 11.56 22.14
OHDC 18.52 20.65 42.76 41.43 0 0 9.36 9.81
Baseline 17.33 37.69 0 2.50

TABLE 1: Comparison results for the first scenario without lane switching. The evaluation metric
in the table are: AS (Average Speed), FC (Fuel Consumption), CC (Crash Count), and MH (Mini-
mum Headway)
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It is worth mentioning that the system provides visualizations of the simulated scenario.1
As an example, in Figure 4 we include the time-space diagram of the platoon for this scenario2
and compare between the trajectories resulting from the Microcontroller and the DRL controller.3
We see from the figure that both controllers effectively smooth the stop-and-go waves. However,4
we notice some differences in their performance. The micro-controller tends to leave larger gaps5
and causes some reduction in the speed and the beginning of the trajectory compared to the DRL6
controller. Though such illustrations are difficult to use for systematic ranking of the controllers it7
can offer further insights into their performance and behaviour.8

(a) Microcontroller (b) DRL Controller

(c) Baseline

FIGURE 4: Time-space diagram for the congested scenario without lane changes for the platoon
with 10% penetration rate.

With lane changes9
In table 2, we present the results for the congested traffic scenario with lane changes. The impor-10
tance of including lane changing behaviour in the simulation is that it indirectly penalizes leaving a11
large space headway, something a controller can exploit to improve other metrics like the fuel con-12
sumption. This is due to the fact the the probability of a lane change increases with the headway13
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gap. As a result, we notice a significant decrease in the performance of all the controllers when it1
comes to fuel consumption. However, the average speed metric is slightly improved in the case of2
lane changes. We note that the DRL controller succeeds in maintaining a good performance even3
in the presence of lane changes, achieving a fuel consumption improvement up to 19.25% and up4
to 5% increase in the average speed.5

AS (m/s) FC (mpg) CC (#) MH (m)

Penetration Rate 5% 10% 5% 10% 5% 10% 5% 10%

Microcontroller 18.50 18.56 38.83 39.81 0 0 9.80 14.52
DRL 19.59 19.25 42.03 42.73 0 0 8.33 1.02
OHDC 19.93 23.54 36.22 36.51 0 0 8.67 7.88
Baseline 17.66 35.83 0 2.50

TABLE 2: Comparison results for the first scenario with lane switching. The evaluation metric in
the table are: AS (Average Speed), FC (Fuel Consumption), CC (Crash Count), and MH (Minimum
Headway)

Scenario 2: Free-flow traffic6
Without lane changes7
In Table 3, we present the results for the free flow traffic scenario without lane changes. The aim8
of presenting such results is to observe the performance of the controllers and ensure that they9
are not worsening the traffic conditions in the free flow scenario. We notice that the controllers10
managed to improve the fuel consumption over the baseline, though the improvement is far less11
significant than in the congested traffic scenario. We note however that all the controllers perform12
slightly worse than the baseline when it comes to the average speed. Such is a behaviour that13
we need to be mindful of when testing and evaluating controllers. Another observation we make14
is concerning the minimum headway achieved by the controllers in the free flow conditions. We15
notice that these are much higher than those for the congested scenario. This is due to the fact16
that the average speed is also higher in these scenario, which requires a larger space gap to ensure17
safety. This draws our attention to the potential benefit of revising the minimum headway metric18
to be the minimum time-headway (define as space headway divided by the vehicle’s speed) to give19
a better understanding of the safety of the controller.20

With lane changes21
Finally, and for the sake of completion, we present the results of the free flow traffic scenario with22
lane changes in Table 4. We make similar observations regarding the limited performance in terms23
of fuel consumption and decreased average speed compared to the baseline. We note that the min-24
imum headway is significantly smaller in the case of lane changes. This might indicate an unsafe25
condition due to aggressive cut-ins. Thought such behaviour requires additional investigation, and26
more metrics can be added to the system in the future to indicate such behaviour.27

CONCLUSION28
In this work we present a simulation testbed for evaluating the performance of control strategies29
for improving traffic congestion. We present a system consisting of a micro-simulation engine of30
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AS (m/s) FC (mpg) CC (#) MH (m)

Penetration Rate 5% 10% 5% 10% 5% 10% 5% 10%

Microcontroller 33.80 33.56 37.82 38.11 0 0 84.23 86.35
DRL 33.80 33.21 38.19 39.15 0 0 86.03 87.65
OHDC 33.21 32.27 39.12 40.68 0 0 101.83 101.83
Baseline 34.80 35.19 0 43.79

TABLE 3: Comparison results for the second scenario without lane switching. The evaluation
metric in the table are: AS (Average Speed), FC (Fuel Consumption), CC (Crash Count), and MH
(Minimum Headway)

AS (m/s) FC (mpg) CC (#) MH (m)

Penetration Rate 5% 10% 5% 10% 5% 10% 5% 10%

Microcontroller 32.73 32.73 34.31 34.52 0 0 38.35 36.20
DRL 32.71 32.13 34.63 36.09 0 0 42.77 19.27
OHDC 32.47 32.09 34.37 36.40 0 0 37.16 25.97
Baseline 34.42 32.45 0 19.10

TABLE 4: Comparison results for the second scenario with lane switching. The evaluation metric
in the table are: AS (Average Speed), FC (Fuel Consumption), CC (Crash Count), and MH (Mini-
mum Headway)

mixed-autonomy traffic, a set of test scenarios, and a set of evaluation metrics to evaluate, compare,1
and rank different control strategies. We illustrate the ability of our system to integrate a wide2
range of controllers by implementing and testing three different controllers that are very different3
in nature. We conducted a few experiments on a variety of scenarios and test cases. Through these4
experiments we illustrated the use of our system, and demonstrated its features. Furthermore,5
we identified, through these experiments, a few shortcomings of our proposed evaluation metrics,6
which opens the door for future improvements of the system by introducing additional metrics to7
address such deficiencies.8

There are multiple interesting avenues for expanding this work in future. One is scaling the9
simulation engine to accommodate multiple lanes and detailed simulation of the lateral behaviour10
of both AVs and human-driven cars. Another area of improvement is to enrich the evaluation11
system with additional scenarios (e.g. merging lanes and bottleneck scenarios) and additional12
metrics to capture more features of the controller such as passenger’s comfort. Finally, we aim to13
achieve a high level of engagement in the form of both accepting submissions of controllers and14
allowing community contributions to the development of the system’s compoenent.15
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