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Abstract

Large-scale Modeling and Optimization of En Route Air Traffic Flow

by

Dengfeng Sun

Doctor of Philosophy in Engineering-Civil and Environmental Engineering

University of California at Berkeley

Professor Alexandre M. Bayen, Chair

The research presented in this dissertation is motivated by the need for balancing the

increasing demand and limited capacity of the National Airspace System (NAS), and more generally

for large scale networked dynamical systems.

A new paradigm for building an Eulerian-Lagrangian Cell Transmission Model for air

traffic flow is developed. It is based on a network flow model constructed from historical air traf-

fic data, and is applied to the entire continental NAS in the United States. This model is called

Large-capacity Cell Transmission Model, CTM(L), in reference to the Cell Transmission Model in

highway traffic. The CTM(L) captures fundamental characteristics, for example aircraft counts in

sectors and travel times, of traffic flows in the Air Traffic Control (ATC) system. The predictive

capabilities of the model are successfully validated against the recorded Enhanced Traffic Manage-

ment System (ETMS) and Aircraft Situation Display to Industry (ASDI) data by showing an accurate

match between predicted sector counts (based on filed flight plans) and measured sector counts.



2

Besides the CTM(L), four Eulerian network models are implemented to model high alti-

tude air traffic flow. The four models are applied to high altitude traffic for six Air Route Traffic

Control Centers (ARTCCs) in the NAS and surrounding airspace. Simulations are carried out for

a full day of data for the models, to assess their predictive capabilities. The models’ predictions

are compared to the recorded flight data. Several error metrics are used to characterize the relative

accuracy of the models. The efficiency of the respective models is also compared in terms of compu-

tational time and memory requirements for the scenarios of interest. Control strategies are designed

and implemented on similar benchmark scenarios for two of the models. They use techniques such

as adjoint-based optimization, and the mixed integer linear program (MILP). A discussion of the

four models’ structural differences explains why one model may outperform another.

Finally, the CTM(L) model is used for NAS-wide optimal Traffic Flow Management

(TFM). A problem of controlling sector aircraft count is posed as an integer program (IP) in which

the dynamical system appears in the constraints. A problem specific algorithm based on a dual

decomposition method is designed to show that the large scale optimization problem which has

billions of variables and constraints, can be solved efficiently, making real-time NAS-wide TFM

possible. The CTM(L) model and the optimization algorithm for NAS-wide TFM are integrated

in FACET, a software developed at NASA Ames Research Center, in collaboration with Metron

Aviation.

Professor Alexandre M. Bayen
Dissertation Committee Chair
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Chapter 1

Introduction

The aim of this dissertation is to provide efficient modeling and optimization algorithms

for en route air traffic to mitigate the imbalance between the demand and capacity of the current

National Airspace System (NAS) in the United States. In this work, a new aggregate traffic model,

the Large-capacity Cell Transmission Model or CTM(L), will be developed. Based on the CTM(L),

optimization algorithms will be designed for NAS-wide Traffic Flow Management (TFM).

Figure 1.1 illustrates the modeling, optimization and control framework of this disser-

tation. The present chapter will present the background, related research work, contribution and

organization of this thesis. This figure can be summarized as follows: The CTM(L) component is

one of the modeling contributions of this work, which can incorporate systems disturbances. The

optimization algorithm component includes contributions made in the field of optimization, applied

to the CTM(L) model. The closed loop diagram depicts the TFM contribution, i.e., the demonstra-

tion that the methods developed here are applicable to air traffic control.
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Figure 1.1: Modeling, optimization and control framework used in this work.

1.1 Air traffic systems

The NAS in the United States is a large scale, nonlinear dynamic system with a control au-

thority that is organized hierarchically. A single Air Traffic Control System Command Center (ATC-

SCC) in Herndon, VA, supervises the overall traffic flow nation-wide. Organized by geographical

region, the airspace is divided into 22 (20 in the continental US) Air Route Traffic Control Centers

(ARTCCs, or simply, Centers), controlling an airspace of up to 60,000 feet [55]. Each Center is

sub-divided into smaller regions, called sectors, each of them being a portion of airspace containing

aircraft under the local control of the responsible Air Traffic Controller. At least one Air Traffic

Controller is responsible for each sector, and can manage the traffic flow inside (and sometimes

outside) the sector. Within each sector, navigation infrastructure, including jetways, waypoints and

navigation aids, is used to help with the traffic flow management.

The last few decades have witnessed an almost uninterrupted growth of air traffic [15].

Except for a dip immediately after the tragic events of September 11, 2001, air traffic in the United

States has continued to grow at a steady pace. There are different growth scenarios associated both

with the magnitude and the composition of future air traffic. The Terminal Area Forecast (TAF),

prepared every year by the Federal Aviation Administration (FAA), projects a continued growth of
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traffic in the United States. For example, the 35 Operational Evolution Plan (OEP) airports en-

planed 470.3 million passengers in 2003, which is projected to increase to 847.6 million passengers

in 2020 [6]. The total active general aviation aircraft fleet, total hours flown by aircraft and total

active pilots will grow accordingly, and air traffic operations will increase as well. Since the main

goal of Air Traffic Controllers is to maintain a safe separation between aircraft while guiding them to

their destinations, an imbalance between the growth of air traffic and the capacities (more generally,

airspace capacity) of Air Traffic Controllers poses potential problems to the air traffic control sys-

tem. Figure 1.2, generated using the Future ATM Concepts Evaluation Tool (FACET) [14], shows

an example of the traffic situation on January 1st, 2005.

Figure 1.2: An illustration of sector loads in the NAS. Aircraft are presented by dots. Shaded areas
represent overloaded sections in the NAS in the morning of January 1st, 2005. It is a result of the
imbalance between demand and capacity in each area, which poses potential safety problems.

Thus, the imbalance between the growth of air traffic and airspace capacities has moti-

vated the design of a semi-automated Air Traffic Control (ATC) system to help Air Traffic Con-
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trollers manage the increasing complexity of traffic flow in the en route airspace [51].

Recently, there has been an increase in research to develop analysis tools and methods

that partially automate some of what is manually performed by Air Traffic Controllers today. Any

automation process for an existing system poses numerous challenges. Two key problems appear:

(i) understanding the characteristics of the current system, in order to predict its reaction under

stress or severe conditions; (ii) developing scientific approaches in order to optimize traffic flow

and relieve Air Traffic Controllers from a part of their traffic control workload. The rest of this

chapter will address background work and promising approaches to tackle these two problems.

1.2 Traffic Flow Management (TFM)

TFM is the management of air traffic in the NAS, based on system capacity and de-

mand [1; 55]. This is accomplished by using a “system approach,” which is a management approach

that considers the impact of individual actions as a whole. TFM handles demand management and

typically deals with traffic at the ARTCC level, i.e. 10 to 20 sectors. TFM personnel consider the

demand on the system and use tools, known as Traffic Management Initiatives (TMIs), which in-

cludes Special Traffic Management Programs (STMPs), Ground Delay Programs (GDPs), Airspace

Flow Programs (AFPs), Miles-in-Trail (MIT) restrictions and Coded Departure Routes (CDRs), to

help manage the flow of air traffic [1].

• A STMP is a long range, strategic initiative that is implemented when a location requires

special handling to accommodate above normal traffic demand. Currently, the FAA does not

store flight plans more than two hours in advance, therefore STMP becomes important when

the demand is unpredictable, providing long range planning capacity. In this context, being
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able to perform quick analysis of NAS-wide traffic with a two-hour notice is a very useful

capability.

• A GDP is a traffic management procedure in which aircraft are delayed at their departure

airport to manage the capacity demand at their arrival airport. GDPs are implemented to

ensure that arrivals at an airport are manageable. They are also used to mitigate the impact of

weather on the air traffic system.

• Introduced in the summer of 2006, AFPs are traffic management processes that identify con-

straints in the en route system. This is a significant new step in en route traffic management.

The major objective of AFPs is to provide enhanced en route traffic management during se-

vere weather events.

• MIT describes the number of miles between the aircraft departuring an airport, over a fix, at

a certain altitude, through a sector or that is route specific. MITs are used to apportion traffic

into a manageable flow as well as provide space for additional traffic to enter the flow.

• CDRs are a combination of coded air traffic routings and refined coordination procedures.

They are used to mitigate the impact of weather or other events on the NAS.

In the current TFM system, controllers interpret data and then make decisions; in the fu-

ture, computers might make short-term aircraft separation decisions and human beings will become

more of a manager of the airspace [55]. This calls for the creation of decision support tools, which

can help humans make more optimal decisions.
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1.3 Related work

This section presents work related to the modeling of airspace and optimization of air

traffic flow.

Investigations of traffic flow models have been studied intensively in the Air Traffic Man-

agement (ATM) community to mitigate the imbalance between the demand and capacity of the

NAS. Functions in the existing NAS models include numerous aspects of the ATC system, such

as the modeling of runway, airport and airspace capacity and operations [59; 27; 31; 53; 18; 7].

A simulation tool, FACET [14], is the first accurate NAS model capable of modeling system-wide

airspace operations over the U.S. and providing an environment for the development and evaluation

of advanced ATM concepts. This dissertation presents a framework for the modeling and optimiza-

tion of en route air traffic flow. It is mainly related to NAS models for airborne aircraft and airspace,

which are the two major aspects in the following literature review.

Numerous researchers have contributed to air traffic modeling and optimization, focusing

on conflict detection and resolution for aircraft. In particular, Mueller et al. investigated the aircraft

conflict resolution problem under specific flow management constraints, including meeting miles-

in-trail and the required time of arrival at the next waypoint [52]. Bilimoria et al. studied aircraft

conflict resolution with an arrival time constraint [13]. Paielli and Erzberger developed a conflict

detection algorithm, focused on reducing operational errors [56]. Decentralized/distributed algo-

rithms have been an important optimization tool for these models since they provide a procedural

approach to the solution of these problems. For example, Resmerita et al. proposed a distributed

multi-agent framework for conflict free navigation in a discrete environment with a two-phase ap-

proach (a conflict-resolution phase followed by an agent-accommodation phase) [62]; distributed
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algorithms that yield maximal solutions for the conflict resolution problem in multi-agent cases are

presented in [61]. In the work [62; 61] and [33], arriving aircraft are guaranteed safe approach

trajectories to choose from, and the available airspace and arrivals runway capacities can be effi-

ciently utilized. Mao et al. studied the stability and performance of intersecting aircraft flows under

decentralized conflict avoidance rules in a very unique and novel way [48]. Distributed robust re-

ceding horizon control was used by Kuwata et al. for multi-vehicle guidance [42]. Other approaches

have focused on designing conflict-free trajectories using constant-speed, heading-change maneu-

vers [36]. In fact, numerous articles tackle the problem at the individual aircraft level, for example

in the articles [14; 62; 61]. Dever et al. proposed a trajectory interpolation algorithm that performs

a smooth transformation of vehicle maneuvers across a continuous range of boundary conditions

while enforcing nonlinear system equations of motion as well as nonlinear equality and inequality

constraints [26]. Devasia et al. used a token-based approach to design automation procedures for

TFM [25], which in contrast works at a higher level of abstraction of the system.

Recently, there has been an increased interest in a specific modeling and optimization

aspect of the airspace, usually known as the Dynamic Airspace Configuration (DAC). Among the

DAC models, in the article [36], the capacity of the sector is determined by acceptable output-

flow-rate; the proposed optimization algorithms are decentralized and can be used for sectors with

multiple intersections. Kopardekar and Green designed the Airspace Restriction Planner (ARP) to

predict and manage sector congestion problems in [40].

In general, most previous NAS models consider the behavior of every aircraft individually.

For a NAS-wide study of the ATC system, extensive traffic forecast simulations (including all air-

borne aircraft) are too computationally expensive to include systematic investigations of traffic pat-
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terns that would lead to sector overload. As a result, a new class of traffic flow models has emerged

from recent studies: Eulerian models, which are control volume based [49]. This is in contrast to

Lagrangian models, which are trajectory-based and take into account all aircraft trajectories [14;

11].

Eulerian models have two main advantages over Lagrangian models. (i) They are compu-

tationally tractable, and their computational complexity does not depend on the number of aircraft,

but on the size of the network problem. (ii) Their theoretic control structure enables the use of

standard control and optimization methods to analyze the models.

The first Eulerian air traffic flow model was proposed by Menon et al. [49]. This model

is powered by a discretized version of the Lighthill-Whitham-Richards (LWR) partial differential

equation (PDE) [45; 63] and inspired by the Daganzo Cell Transmission Model [22; 23]. This Eu-

lerian model [49] has since inspired several research groups to generate similar models that include

a stochastic framework, leading to results in the expected sense [66; 70]. Two dimensional mod-

els [50] have also emerged, in the hope of better capturing flow patterns. An important characteristic

of these approaches [49; 50; 66; 70] is the diffusion and dispersion that occur in the models. While

this is not a problem in a stochastic framework (since the results are in the expected sense), it is more

problematic for the deterministic models [49; 50] because this can potentially lead to aircraft losses

or inaccurate predictions (this fact has been reported in the literature [9]). A first attempt to resolve

these issues was proposed in a continuous time-continuous space model in [9], based directly on the

LWR PDE. While this approach solves the diffusion problem, its computational tractability is dis-

putable (since it depends on required space discretization), and the resulting optimization programs

require heavy computations based on adjoint problems. Based on Eulerian modeling, a two-level
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control system for optimal TFM was recently developed [67], in which the inner-level control mod-

ule takes in the optimal inflow and outflow commands generated by the outer control module as

reference inputs and uses hybrid aircraft models to search for optimal trajectories.

In this dissertation, a discrete space, discrete time aggregate Eulerian-Lagrangian model

of the airspace is proposed, which is control volume based (Eulerian) and takes into account the

Origin-Destination (OD) information of the flights (Lagrangian) using a multicommodity flow for-

mulation. This model has no diffusion and can be cast in the form of an integer linear dynamical

system. It is computationally less expensive than previous models.

This work is related to existing frameworks, which are methods that rely on a flow model

developed to solve TFM problems. Frameworks enable the use of control techniques, optimization

tools in particular. Several frameworks to solve TFM problems have been proposed in the ATM

community. In particular, Bertsimas and Stock Patterson [11] developed a seminal framework using

a 0-1 integer programming method for the deterministic, multi-airport Air Traffic Flow Management

Problem (TFMP) that addresses the capacity restrictions in the en route airspace. The TFMP was

shown to be NP-hard (equivalent to job-shop scheduling [29]). This framework can be applied to

many general network-based NAS models. The description of the state of aircraft is made through

the dynamics of individual aircraft, therefore it is a Lagrangian model. This work is probably one

of the most famous optimization frameworks used in the literature because of its generality relying

on a mixed integer linear program (MILP), and the subsequent complexity analysis (NP-hardness)

done for specific subcases of the problem.

Using the framework of aggregate air traffic flow models, optimization for TFM can usu-

ally be cast in the form of control and optimization of a networked system. The field of control and
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optimization of physical networks is a very wide area, for which numerous research efforts have led

to the development of several methods dealing with the networks of distributed parameter systems.

Several of them will be mentioned here because of their relevance to our work. In the context of

traffic, networks of interconnected roads are modeled and studied in the recent book by Garavello

and Piccoli [28] and can be used for the study of highway traffic flow. A variety of techniques exist

for the optimization and control of physical networks. Frequency domain approaches have been

used by Litrico et al. in the context of canal network control for the Saint-Venant equations [46],

and provide useful control techniques when the underlying equations of flows are linear. They rely

on the application of a spectral representation of these equations. Malaterre applied linear quadratic

optimal control theory to the automatic control of two different eight-pool irrigation canals [47],

using techniques similar to the ones presented in Section 3.3 of Chapter 3 in this thesis, which rely

on the discretization of the underlying flow model. Several approaches have been developed to deal

with nonlinear phenomenon present in physical networks, which often happens in transportation

networks. In particular, a nonlinear output feedback method was studied in [8] for a compartmental

network flow system. From a macroscopic point of view, Haut et al. modeled the junctions in a

road network, which presents physically acceptable solutions for the capacity drop phenomenon in

highway systems [32]. Coron et al. presented methods based on Lyapunov functions for a hydraulic

application, namely the level and flow regulation in a horizontal open channel [21]. A decentralized

nonlinear control approach was used in [41] for fluid flow networks, where actuator valves and flow

rate sensors are collocated in individual branches and do not exchange information. A similar model

was used for optimal control of supply networks in [39].

Although the study in this dissertation focuses on en route air traffic, the model proposed
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in this work can be extended to take into account airports; as a result, the solutions generated by the

optimization algorithm based on the model can include the Ground Delay Program (GDP). Besides,

an en route air traffic model is useful to mitigate the impact of the shortfall of airport capacities, and

it can help better use the airspace for airborne aircraft to make the entire NAS more responsive to

unanticipated changes in system capacities.

1.4 Contributions

The contributions of this dissertation are now summarized:

• A control theoretical model of the NAS. This dissertation presents a new model called the

Large-capacity Cell Transmission Model, which is also known as CTM(L). The following is

a summary of the characteristics of the CTM(L).

– The terminology CTM(L) is in reference to the seminal Daganzo Cell Transmission

Model (CTM), which was commonly used for highway traffic [22; 23]. The term “large-

capacity” refers to the fact that there is no capacity imposed on a single cell of the

network, but on a set of cells (whose sizes are defined by time, in contrast to CTM

which is defined by space/distance) corresponding to a sector. This is fundamentally

different from highway traffic, and specifically addresses the needs of air traffic control.

– In contrast to most other existing Eulerian models, the model proposed in this disser-

tation includes Lagrangian features: despite the aggregation, it takes into account the

Origin-Destination (OD) information of the flights, which eliminates the splitting and

diffusion problems existing in some Eulerian models [49; 50]. For this purpose, a multi-

commodity flow structure [20] has been included in the model to enable the description
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of traffic path by path. This is one of this work’s fundamental contributions to NAS mod-

eling. The multicommodity network model incorporates the topology of the NAS and

the resulting flow patterns. Therefore, the model is physically meaningful and tractable

for control and optimization because it already incorporates routing information in the

flow pattern.

– The linear time invariant dynamics of the CTM(L), in which the transition matrix is

nilpotent, greatly facilitates the design (optimization) and analysis of the model.

– The CTM(L) is scalable: the granularity of the model is dependent on the time step (one

minute in this study), which can be changed to different time scales and can represent

models at different levels, e.g., from the sector level to the center level of the NAS.

• Parameter identification of the multicommodity network. The CTM(L) is developed

based on a multicommodity network model of the NAS. This dissertation presents a sequence

of techniques which automatically identify the parameters of the network, using recorded

Aircraft Situation Display to Industry (ASDI) and Enhanced Traffic Management System

(ETMS) data. In contrast to numerous aforementioned articles, this work makes extensive

use of massive air traffic data sets. Once being formulated, the mathematical model is an

input to a program, which specifically constructs the model for the entire NAS using the air

traffic data. It is obviously the key to providing the air traffic control community with a

working tool.

• Model validation. The CTM(L) was successfully validated against recorded ASDI/ETMS

data for a whole year and for the whole NAS, i.e. 20 continental ARTCCs. It is an important

feature of this work, compared to other models proposed in the literature. The accuracy of
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this model (in particular its predictive capabilities) has been assessed in practice.

• Comparison of the model to three other existing models. In addition to developing the

CTM(L), three other aggregate Eulerian models are also presented for en route (high alti-

tude) air traffic flow: (i) a modified version of the Menon model [49] adapted to fit a general

network topology, (ii) a new application of the Lax Wendroff scheme to a PDE model de-

veloped in [9], and (iii) a two-dimensional Menon model [50] at a NAS-wide level. These

four models have been implemented and their predictive capabilities are compared using the

same benchmark problem for fairness of the comparison. This study is the first NAS-wide im-

plementation of the four aforementioned models and the first comparison of their respective

performance on the same benchmark scenario.

• Formulation of traffic flow optimization problems. Using the CTM(L), this dissertation

presents a framework for the formulation of optimization problems for Traffic Flow Manage-

ment. This framework can be applied to general aggregate traffic flow models.

• Tractable optimization algorithm. An optimization algorithm based on a dual decompo-

sition method is designed for the Large-capacity Cell Transmission Model, which makes a

NAS-wide Traffic Flow Management problem with billions of variables and constraints solv-

able in real-time. This contribution algorithmically solves the dilemma of accuracy versus

tractability often faced in modeling. Because of the efficiency of the method, we can afford

to work with massive models of air traffic, which provide accurate models of fine grained

features of the flows.
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• Implementation of the CTM(L). The CTM(L) is integrated in FACET [14], a software de-

veloped at NASA Ames Research Center. This contribution merits to be mentioned: FACET

is currently becoming one of the reference air traffic control software systems in use at NASA

and FAA. The architecture integration required to assemble the optimization proposed in this

work and the software is nontrivial, and constitute a technological achievement, performed

jointly with Metron Aviation that underlines the usefulness of the work.

• Implementation of the optimization algorithm. The optimization algorithm developed in

this study is implemented in software to solve NAS-wide Traffic Flow Management problems

on a global scale, which is the goal of this dissertation.

1.5 Organization of this work

This dissertation is organized as follows. In Chapter 2, a Large-capacity Cell Transmis-

sion Model is derived. The validation of the model is presented in the same chapter. In Chapter 3,

the performance of the model is compared to three existing models. This includes the comparisons

of their accuracy and of their computational efficiency. Optimal control algorithms are developed

for two of the models. In Chapter 4, based on the Large-capacity Cell Transmission Model, a dual

decomposition algorithm is developed for NAS-wide Traffic Flow Management problems, which is

formulated with billions of variables and constraints, involving approximately 6,000 aircraft over

the course of one to four hours. Chapter 5 briefly summarizes the work of this dissertation and

future directions.
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Chapter 2

Large-capacity Cell Transmission Model

This chapter presents the Large-capacity Cell Transmission Model, shortened to CTM(L),

for en route air traffic flow, which serves as the underlying flow model for the rest of this disserta-

tion. This model is control volume based (Eulerian) and takes into account the Origin-Destination

information of the flights (Lagrangian). The construction of a graph-theoretic multicommodity net-

work model, which serves as the Lagrangian routing of these flows, is outlined first. The evolution

of air traffic flow on this graph is modeled as a discrete time dynamical system. The forecast ca-

pabilities of the model are validated for the entire NAS using ASDI/ETMS data. In particular, it is

shown that a very important metric for TFM (aircraft count) is reproduced adequately by the model,

which serves as a validation for it.

2.1 Graph-theoretic model

This section proposes a method to build a network structure model that serves as a routing

network for the flows (Lagrangian component of model), and to construct a dynamic aggregate
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model of the traffic on this network (Eulerian component), which describes the evolution of the

flows on the network.

The objective of automated model building is to produce a method that constructs a graph-

theoretic multicommodity model of air traffic flows directly from track data (ASDI/ETMS data files,

in the present case). In this research, several pattern recognition methods have been implemented

to automatically build the components of a multicommodity network model of the observed flows.

The suite of algorithms investigated includes a variety of techniques, some of which rely purely on

flight tracks, others use additional information that can be extracted from ASDI/ETMS data (e.g.

flight plan data). In general, applying canned algorithms to network flow model building problems

does not provide satisfactory results because of the specificity of high altitude traffic. This fact led

to the approach outlined later in this section.

These investigations are summarized below as an illustration of the difficulty of automated

model building.

1. K-Means [5]. The K-means algorithm groups data into clusters defined by “cluster centers”

or “cluster means.” A “cluster center” is the mean of the data points in that cluster. The

algorithm assigns data points to clusters by finding the nearest cluster mean and assigning the

data point to that cluster.

2. Generalized Principal Component Analysis (GPCA) Algorithm [75; 76]. GPCA is an al-

gebraic geometric approach to the problem of estimating clusters from sample data points.

GPCA automatically determines the number of clusters, and unlike K-means [5], it does not

need this information a priori.

3. Flight plan based algorithms. A flight goes from a departure airport to an arrival airport
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by traveling through a set of fixes (waypoints). The trajectories are classified based on se-

quences of waypoints. Waypoint-based flow pattern classification can be considered “noise-

free”, since the trajectory of a flight is defined by strings of characters. Similarly, jetways

are also used as a classification criteria. Because jetways are similar to highways, they act

as guidelines that flights should follow. Flights using the same jetway are supposed to use

similar trajectories.

The list of such algorithms can be extended at will, but they do not perform well in prac-

tice. There are several explanations for this fact. (i) The mathematical optimum leading to the

convergence of these methods is not necessarily a relevant metric for air traffic; in other words, a

suboptimal solution might be physically more relevant than the optimum because the optimized cost

function does not reflect the patterns being identified. (ii) The nature of the data makes it impossi-

ble to classify flows based on proximity, even for classification criteria involving strings (as is the

case for flight plan information, which consists of an enormous number of acronyms).

In addition to these general considerations, specific reasons prevent the above algorithms

from being applicable. (i) The K-means algorithm requires a priori knowledge of the number

of clusters, which are not known in the present case. Furthermore, it is extremely sensitive to the

initial guess, which makes it hard to use in an automated manner. (ii) Waypoint-based classification

is inappropriate because of the extremely large number of different waypoint acronyms in the NAS.

Even though this data is “noise-free” (defined by strings), its size is prohibitive for the present study.

(iii) Jetway-based classification is not applicable, since ASDI/ETMS data does not provide the

location of the merge point of an aircraft onto a jetway, leading to the well-known underconstrained

OD estimation problem in highway traffic [35]. All of these difficulties are a motivation for the
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Figure 2.1: Map of the airspace considered in this study: the entire continental NAS including 284
high-altitude sectors in the U.S. Figure obtained using FACET.

method presented in the next section.

2.1.1 Definitions

The system to be modeled is the continental en route U.S. airspace, which is the size

of 20 ARTCCs including 284 high-altitude sectors, with altitudes of 24,000 feet and above (Fig-

ure 2.1) [14]. All non-military flights traveling through the considered airspace are included in the

scope of this work. The ASDI/ETMS data used in this study, provides the position and altitude of

all airborne aircraft in the U.S. every minute. Additional information related to flight plans or other

flight parameters, such as speed and heading, are also provided in the data, but are not used to build

the present aggregate model.
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2.1.2 Construction of the graph

As will be shown in the next section, the model must be sufficiently fine, so that flights

following different flow patterns within a sector can be distinguished. However, the granularity

must not be too small in comparison to the size of a sector for the model to remain meaningful and

tractable.

Vertices (nodes)

The graph representing the flows is constructed as follows: two vertices are created at

the boundary of each pair of neighboring sectors. For any two neighboring sectors s1 and s2, the

vertices at the boundary of s1 and s2 are denoted by V{s1,s2} and V{s2,s1}. Vertex V{s1,s2} will be

used to represent flights going from s1 to s2, while vertex V{s2,s1} will be used to represent flights

going from s2 to s1. The computation of the exact physical location of the vertices will be described

at the end of this section; assume for the moment that each vertex V{s1,s2} is located at a point of

the boundary of sectors s1 and s2. Note that V{s2,s1} is not necessarily located at the same point as

V{s1,s2}. The physical location of the vertices is important to represent the graph on a map, but it

has no influence on the topology of the graph itself.

Links (edges)

For any sectors s1, s2 and s3, if s1 and s2 share a boundary and if s2 and s3 are neighbors,

two directed links are created: one from vertex V{s1,s2} to vertex V{s2,s3} and one from vertex

V{s3,s2} to vertex V{s2,s1}. In the rest of this work, the term link refers to a directed link [4].

Figure 2.2 illustrates the concept of a link.
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Interface between considered region and rest of the airspace

The region of the airspace considered in the model must be connected, for practical rea-

sons. Note that it does not need to be convex. Let us denote S as the set of coordinates (latitude,

longitude) of the points that belong to the considered region. A point in the airspace belongs to the

considered region if its coordinates are in S and if its altitude is above 24,000 feet. The considered

region must be interfaced with the airspace around it. Therefore, in the model, a “sector” called low

is created for the purpose of this study, consisting of the points of the airspace whose coordinates

are in the set S and whose altitude is below 24,000 feet. An additional “sector” labeled none is

created, consisting of the points of the airspace whose coordinates are not in the set S. In practice,

the portion of the airspace labeled none corresponds to the sectors surrounding the region of interest

(see Figure 2.1). The appellation “sector” for these two regions of airspace is not understood in the

ATC sense. Instead, it is used to indicate that, in the same manner as described above, vertices are

created at the boundary of these additional “sectors” and the sectors in the regions considered in the

study. These vertices, and the corresponding links, are used to take into account climbing, descents,

and flights entering or exiting the considered region. Figure 2.2 shows a few examples of vertices

and links. Note that not all vertices and links are represented in this figure.

Multicommodity network

For a complete network model including the whole continental NAS of the US, a mul-

ticommodity flow structure [20] is used in CTM(L). Flights are clustered based on their entry-exit

node pairs (origin-destination pairs) in the network. Each pair corresponds to a path consisting of
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Figure 2.2: Illustration of the notion of vertices, links, trajectories and paths used for the construc-
tion of the network model.
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links between these nodes. 1 If two or more paths have one link in common, this link will be du-

plicated, using a multicommodity flow structure. Figure 2.3 illustrates decoupled multicommodity

network models for several destination airports. In fact, these decoupled multicommodity networks

are trees, with air traffic flows originating from the airports in the continental US. Note that only a

portion of the origin airports are shown in the figure for clarity. An aggregation of the trees for all

destination airports provides a complete (NAS-wide) network model.

A complete NAS-wide network is shown in Figure 2.4.

Size of the network model and computational cost

Using the method described above, in the multicommodity network model, there are 284

high-altitude sectors, 1598 links, and 1841 nodes. It takes 102 hours to extract the flight information

(latitude, longitude, flight time, etc.) and build a database of links and nodes information from the

ASDI/ETMS data for a whole year. It takes five minutes to build the multicommodity network

model on a desktop computer with a 1.4GHz CPU, 1GB RAM running Linux.

2.1.3 Classification of trajectories and estimation of link travel times

The graph constructed above is used to encode the paths followed by streams of flights

traveling through the considered region of the airspace. In order to identify the behavior of these

streams of aircraft on the links, their trajectories must be assigned to a set of links of the graph. In

this identification phase, the position of all airborne aircraft is provided by ASDI/ETMS data, from

which sector information about all flights can be deduced.
1In the present study, a path is uniquely defined by an origin-destination pair; it is straightforward to extend this

stucture to include multiple paths between an origin-destination pair as long as the flight plan contains enough information
to determine which path the flight takes.
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Figure 2.3: Illustration of decoupled multicommodity network models by destination for airports
(DEN, LGA, SEA). An aggregation of the trees corresponding to destination airports provides a
complete multicommodity network level model. Left: recorded flight tracks (a few data points
only shown); Right: corresponding air traffic flow trees constructed by the model to incorporate
knowledge of the destination in the model.
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Figure 2.4: A complete continental NAS-wide network model.
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Fundamental assignment rule

The fundamental assignment rule is as follows: when a flight crosses the boundary be-

tween two sectors s1 and s2, coming from s1 and going to s2, it is assumed in the model that

the flight passes through a unique vertex V{s1,s2}. The time at which the flight is modeled to pass

through that vertex is the time at which it crosses the boundary between the corresponding sectors.

It is then assumed in the model that the flight travels from vertex to vertex, using links between

these vertices. The travel time of the flight on each link can easily be calculated from the times

at which the flight passes each vertex. The sequence of links used by a flight is referred to as a

path. In Figure 2.2, path 1 is the representation of flight 1 in the model, based on the fundamental

assignment rule.

Exception to the fundamental assignment rule

A refinement to the fundamental assignment rule is introduced, in order to take into ac-

count flights that stay in a given sector (s2) for a short period of time, while traveling from a sector

(s1) to another sector (s3), in case sectors s1 and s3 are neighbors. In that case, the flight is usually

handed off by the controller in s1 directly to the controller in s3, after the controller in s2 has been

informed by the controller in s1 that the aircraft will be in s2 for a short period of time. Therefore,

this particular aircraft should not be represented as being in sector s2, since it does not significantly

increase the workload of the controller in s2. If the sectors s1 and s3 are neighbors, the flight is mod-

eled passing through vertex V{s1,s3} instead of vertices V{s1,s2} and V{s2,s3}. The definition of the

time at which the flight is modeled passing through vertex V{s1,s3} is not as straightforward as for the

case of the fundamental assignment rule. In the model, the flight is assumed to pass through vertex
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V{s1,s3} at the time instant corresponding to the average of the time at which it crossed the boundary

of sectors s1 and s2, and the time at which it crossed the boundary of sectors s2 and s3. This rule is

applied if a flight stays in a sector for less than two minutes. Note that if the sectors s1 and s3 are not

neighbors, the sequence of vertices V{s1,s2} and V{s2,s3} is maintained in the model. In Figure 2.2,

path 2 is the representation of flight 2 in the model, based on the assignment rule described in this

paragraph. Namely, flight 2 stays in ZOA34 for a short period of time, and the sectors before and

after ZOA34 in the trajectory of flight 2, ZOA33 and ZOA15, are neighbors. Therefore, flight 2

is represented in the model traveling through the following sequence of vertices: V{ZLC42,ZOA33},

V{ZOA33,ZOA15}, V{ZOA15,ZLA27}. If only the fundamental rule was applied, the sequence of vertices

of flight 2 would be: V{ZLC42,ZOA33}, V{ZOA33,ZOA34}, V{ZOA34,ZOA15}, V{ZOA15,ZLA27}.

Interpolation required to decrease error on travel times estimation

ASDI/ETMS data provides aircraft positions every minute. Interpolation is needed to

reduce the error on the boundary crossing times and locations. Without interpolation, the error on

the crossing time (i.e. the time when the flight is modeled to pass through a vertex) can be as large

as 59 seconds, which leads to a possible error on the travel time estimation through a link as large

as one minute. Interpolation is based on the following reasonable assumptions: (i) The speed of

an aircraft remains constant between the two records, which are one minute apart. (ii) It flies in a

straight line during that same time interval. The computation of sector boundary crossing locations

and times requires the implementation of a procedure that determines the point of the trajectory’s

intersection between two consecutive flight data records, which is a segment and the boundary of

two sectors.



27

Determination of the physical location of vertices

Once the sequence of vertices is determined for all flights, the exact physical location

of each vertex can be computed. To determine the location of vertex V{s1,s2}, all flights passing

through that vertex, coming from sector s1 and going to sector s2, are considered, and the points at

which each of them crossed the boundary of s1 and s2 are computed. The location of vertex V{s1,s2}

is the center (average) of those points of boundary crossing. Note that the center (average) is not

taken in the plane, but along the unfolded boundary of s1 and s2.

2.1.4 Travel time analysis

For each link of the graph, the flight times for a full year (Oct. 1st, 2004 to Sept. 30,

2005) of ASDI/ETMS data are aggregated. The mean of this distribution is computed, and its

value is chosen to represent the “time length” of the link, i.e. the aggregated travel time along the

link. Figure 2.5 shows a typical distribution of the travel time. The expected travel time of a flight

through a link is used to determine the length of the link. As will be seen in the subsequent sections

describing the proposed CTM(L), each link is divided into several cells. The number of aircraft in a

cell will be used as a coordinate of the state in the model derived below. In the present setting, cells

correspond to one minute of flight time.

Figure 2.6 shows another distribution of the travel time, with two dominant peaks. In this

case, the link (ZOA32-ZOA43-ZLC42) is split into two links, with link lengths defined by the travel

times corresponding to the two peaks.

In the present derivation of the graph-theoretic model, the mean of the distribution of the

flight times is used as the “length” of the link. In practice, there are several variations that should
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Figure 2.5: Distribution of travel time on one link (ZOA32-ZOA43-ZLC42). One full year of
aggregated data.

Figure 2.6: Distribution of travel time on one link (ZSE15-ZOA26-ZOA31). One full year of ag-
gregated data.
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be taken into account. For example, the length (travel time) of a link generally changes, therefore,

a time-varying graph model can be derived based on the time-varying link length. Figure 2.7 shows

the distribution of travel time on one link (ZOA31-ZOA13-ZOA14) in different months of a year.

Figure 2.8 shows the mean and standard deviation of the travel time of the link ZOA31-ZOA13-

ZOA14 for different months in a year. The means of the travel time of different months are similar,

but the variances differ for different months. The analysis of the variations of the travel time is

outside the scope of this work. Another way to capture the time-varying feature of the travel time

would be to perform the travel time identification with the “clustering” methods, inspired by the

work of Hoffman et al. [34].

Depending on the objectives of modeling, different types of the travel time distribution

can be used. For example, if the priority interest is in building a stochastic air traffic model, the

type of distribution will be one of the most important characteristics. When building a time-varying

model, seasonal, monthly, weekly, daily and hourly distribution will be more important.

2.2 Derivation of the new Eulerian-Lagrangian model

2.2.1 The Large-capacity Cell Transmission Model or CTM(L)

In this section, the new Eulerian-Lagrangian model, the Large-capacity Cell Transmis-

sion Model, or CTM(L), is developed. This model is inspired by the Lighthill-Whitham-Richards

theory [45; 63], and by the Daganzo Cell Transmission Model [22; 23], which is commonly used

in highway traffic modeling. The CTM(L) is assembled with the graph-theoretic multicommodity

network, which is constructed from historical ASDI/ETMS traffic data handling the Lagrangian

routing of the flow, as described in the previous section. The model is reduced to a linear time
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Figure 2.7: Distributions of travel time on one link (ZOA31-ZOA13-ZOA14) in different months
of a year. Horizontal axis: travel time, in minutes through the link; Vertical axis: number of occur-
rences of the travel time.
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Figure 2.8: Mean and standard deviation of travel time on one link (ZOA31-ZOA13-ZOA14) in
different months of a year.
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Figure 2.9: Illustration of the CTM(L) at link level: everywhere inside the link, xp+1
i (k + 1) =

xpi (k), unless some control action is applied.

invariant dynamical system for this network topology, in which the state is a vector of aggregate air-

craft counts. The controlled input to the model is delay control, which can take several forms: speed

change, vector for spacing (VFS), holding pattern (HP), etc. These different forms will correspond

to the different time increments in which they are applied.

Link level model

In the CTM(L) derived next, a link is used in the graph-theoretic sense (i.e., an edge of a

graph [4]). When the flights are clustered based on the entry-exit node pairs in a specified sector, a

link can also be viewed as the connection between the entry point and the exit point incident to this

sector.

1. Assumptions. To formulate the model at a link level, the following assumptions are made:

(a) Each link is modeled as a directional edge. In Figure 2.9, the arrow represents the flow

direction. In other words, the graph is unidirectional.

(b) All aircraft in a given link fly at an aggregate speed. This speed can be obtained by

aggregating the speed (obtained from the ASDI/ETMS data) of all aircraft following
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this link.

(c) The number of cells in one link is scaled by the steps of expected travel time. In the

implementation, one minute is taken as a unit time step. For example, if it takes around

12 minutes for an aircraft to fly across sector ZOA33, following one particular link, then

this link would be divided into 12 segments, called cells. The choice of the cell length

(time discretization) is arbitrary of course. In the model, a link indexed by i has mi

cells. The smaller the time step, the more accurate the model, but the computation is

more complex.

(d) At the link level, only aircraft whose altitude is above 24,000 feet are taken into account

for the calculation of aircraft count. This choice is arbitrary and can be adjusted to any

user-defined level.

(e) The control strategy (based on the application of delay to aircraft) is mainly used as the

controlled input to the model, which can be implemented in many forms: speed change,

VFS as well as HP. It is supposed to be applied in one minute time increments.

(f) The model is deterministic. No statistical factor, such as the impact of the weather, is

taken into consideration at this stage. Note that it could be added later using a stochastic

framework [66; 70].

(g) In this model, all values, including the states, inputs and outputs, should be integer.

This might increase the complexity of the computations or analysis, but provides higher

accuracy.

2. Definitions. The following definitions are used in this work.

(a) The state of link i at time k is given by xi(k) := [xmi
i (k), · · · , x1

i (k)]T , an mi × 1
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Figure 2.10: Illustration of descent and climb inputs to the model, where xp+1
i (k + 1) = xpi (k) −

fdesc
i (k), and xq+1

i (k + 1) = xqi (k) + f climb
i (k) are satisfied, unless some control action is applied.

vector, whose element xpi (k) represents the aircraft count in cell p of link i at time k.

For example, in Figure 2.9, xpi (k) = 2, because there are two aircraft in the p-th cell at

time instant of k. mi is the number of cells in this link.

(b) The forcing input, f in
i (k), is a scalar input that models the entry count from the boundary

of the domain of interest into this link during a unit time interval from k to k + 1. For

example, if there are five aircraft entering link i from k = 3 to k = 4, then f in
i (3) = 5.

(c) The descent input, fdesc
i (k), is also a scalar input, which denotes the number of aircraft

leaving link i during a unit time interval from k to k + 1, because of the descent to a

lower flight level. For example, in Figure 2.10, fdesc
i (k) = 1.

(d) The climb to en route input (“climb input,” in short), f climb
i (k), is another scalar input

which means the number of aircraft entering link i during a unit time interval from k to

k+1, because of the climb from a lower flight level. Also, in Figure 2.10, f climb
i (k) = 1.

(e) The control input, ui(k), is anmi×1 vector, representing delay-based control. This type

of control is common in the presence of congestion: traffic managers will typically use

delays as a way of controlling air traffic flows in the en route airspace when aircraft are
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Figure 2.11: Illustration of delay-based control to the model (which can, for example, model holding
pattern control, vector for spacing, or ATC prescribed deceleration), where x3

i (k + 1) = x2
i (k) −

ui(k), and x2
i (k + 1) = x1

i (k) + ui(k), unless another control action is applied.

already airborne. The p-th element denotes the number of aircraft under delay control

in the p-th cell of link i at time instant k. In this model, the cycle of increment delay is

one minute. In Figure 2.11, one type of delay control, a holding pattern control, is taken

as an example, where ui(k) = [0, · · · , 0, 1, 0]T , because there is only one aircraft under

holding pattern control in the second cell of link i at time k.

(f) The output, yi(k), is the aircraft count in link i in a user-specified set of cells at time step

k, e.g. the total number of aircraft in all cells of this link at time step k. For example, in

Figure 2.9, yi(k) = 4.

3. Model Description. A deterministic, Linear Time Invariant (LTI) model for link i is developed

in state space form as follows:

xi(k + 1) = Aixi(k) +Bin
i f

in
i (k) +Bdesc

i fdesc
i (k) +Bclimb

i f climb
i (k) +Bu

i ui(k) (2.1)

yi(k) = Cixi(k), (2.2)

where Ai is called a system matrix, and is a mi by mi nilpotent matrix with 1’s on its super-

diagonal. The forcing input matrix, Bin
i = [0, · · · , 0, 1]T , is a mi × 1 vector. The descent
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input matrices,Bdesc
i , and the climb input matrix,Bclimb

i , are bothmi×1 vectors, in which 1’s

mean that aircraft will leave from the p-th cell of link i for descent or enter the q-th cell of the

same link because of climbing. The controlled input matrix, Bu
i has a dimension of mi×mi,

containing all 0’s elements except with 1’s on its diagonal and -1’s on its super-diagonal. The

non-zero elements of the mi × 1 vector Ci correspond to the cells in the user-specified set,

and are equal to 1’s.

In fact, three inputs, f in
i (k), fdesc

i (k) and f climb
i (k), can be incorporated into one vector. Then,

equation (2.1) can be rewritten in a more compact form:

xi(k + 1) = Aixi(k) +Bf
i fi(k) +Bu

i ui(k), (2.3)

where Bf
i = [Bdesc

i , Bclimb
i , Bin

i ] is the forcing matrix with a dimension of mi × 3, and the

forcing input fi(k) = [fdesc
i (k), f climb

i (k), f in
i (k)]T , is a column vector with three elements.

It is also noted that, when implementing delay control, the link level model must satisfy the

following two assumptions:

(a) The delay control always takes place at the beginning of a time step.

(b) When an aircraft is under delay control, it is in one time increment units.

Therefore, if there are n aircraft under delay control in the m-th cell of link i at time instant

k, and the control action lasts for p + 1 time units, then the controlled input vector will be

ui(k) = ui(k + 1) = · · · = ui(k + p) = [0, · · · , 0, n, 0, · · · , 0]T , where the m-th element

of these vectors is equal to n. Because the input for delay control is linear, the superposition

principle is satisfied. This means, for multiple delay controls taking place at the same time, the

gross controlled input vector is the summation of each controlled input for each corresponding
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delay control.

Sector level model

Extending this modeling technique to set up a sector level model is fairly straightforward,

because there is no interconnection (neither inputs, nor states) between different links in one sector.

For example, to obtain the sector count, all link counts are added in this sector. Suppose that there

are n links in the considered sector, then the state space equations for the model at the sector level

can be written as:

x(k + 1) = Ax(k) +Binf in(k) +Bdescfdesc(k) +Bclimbf climb(k) +Buu(k) (2.4)

y(k) = Cx(k), (2.5)

where x(k) = [xn(k)T , · · · , x1(k)T ]T denotes the state, and f in(k) = [f in
n (k)T , · · · , f in

1 (k)T ]T is

the forcing input vector, i.e. the entry count into the considered sector during a unit time interval

from k to k + 1. The descent input vector fdesc(k) = [fdesc
n (k)T , · · · , fdesc

1 (k)T ]T and the climb

input vector f climb(k) = [f climb
n (k)T , · · · , f climb

1 (k)T ]T are both column vectors with n elements.

The controlled input vector, u(k) = [un(k)T , · · · , u1(k)T ]T and the output y(k) still represents the

total aircraft count in the user-specified set of cells at time step k. Note that matrices

A = diag(An, An−1, · · · , A2, A1),

Bin =



Bin
n 0 . . . 0 0

0 Bin
n−1 . . . 0 0

...
...

. . .
...

...

0 0 . . . Bin
2 0

0 0 . . . 0 Bin
1


,
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Bdesc =



Bdesc
n 0 . . . 0 0

0 Bdesc
n−1 . . . 0 0

...
...

. . .
...

...

0 0 . . . Bdesc
2 0

0 0 . . . 0 Bdesc
1


,

Bclimb =



Bclimb
n 0 . . . 0 0

0 Bclimb
n−1 . . . 0 0

...
...

. . .
...

...

0 0 . . . Bclimb
2 0

0 0 . . . 0 Bclimb
1


,

Bu =



Bu
n 0 . . . 0 0

0 Bu
n−1 . . . 0 0

...
...

. . .
...

...

0 0 . . . Bu
2 0

0 0 . . . 0 Bu
1


are all block matrices because states and inputs in this sector level model are all decoupled. C is

given by [Cn, Cn−1, · · · , C2, C1].

In this sector level model, three inputs, f in(k), fdesc(k) and f climb(k) can also be incor-

porated into one vector. Then, equation (2.4) can be rewritten as:

x(k + 1) = Ax(k) +Bff(k) +Buu(k) (2.6)
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where

Bf =



Bf
n 0 . . . 0 0

0 Bf
n−1 . . . 0 0

...
...

. . .
...

...

0 0 . . . Bf
2 0

0 0 . . . 0 Bf
1


,

f(k) = [fn(k)T , fn−1(k)T , · · · , f2(k)T , f1(k)T ]T ,

whose elements have been defined by equation (2.3).

The dimension of the state space for each sector depends on the number of total cells in

the sector. For example, for sector ZOA33 of Oakland ARTCC, using one minute of flight time as

the size of a cell, there are 84 cells in it, therefore the dimension of the state space is 84 and A is a

84 × 84 matrix for the ZOA33 sector level model. Figure 2.12 shows the hierarchical structure of

the CTM(L).

ARTCC or multicommodity network level model

When an ARTCC level model is created, it is necessary to include merge/diverge nodes in

the network [49; 66; 70; 9]. Merge nodes are straightforward: flows are added as streams of aircraft

merge (see Figure 2.3 for an illustration of decoupled multicommodity network).

For diverge nodes, the corresponding routing choices must in general rely on knowledge

of aircraft destination. Several approaches have been proposed to solve this problem, in particular

split coefficients [49], which is inspired by the highway transportation literature [58; 23]. In the

present work, an alternate way of modeling the problem is proposed based on a priori knowledge of

the aircraft destination (provided by the ASDI/ETMS data), which is available in the form of filed
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Figure 2.12: The hierarchical structure of CTM(L).

flight plans, designated long before the aircraft depart. One significant contribution of this thesis

is thus to incorporate this knowledge into the model, which previous Eulerian models do not [49;

50; 66; 70; 9]. First, flights are clustered based on their entry-exit node pairs in the network. Each

pair corresponds to a path consisting of links between these nodes. If two or more paths have one

link in common, this link will be duplicated, using a multicommodity flow structure. Therefore,

the NAS-wide model can also be cast in the framework of (2.4)–(2.5), where the matrices A, Bf ,

Bu and C now include all links of all sectors, and the corresponding x(k) includes all cells of the

complete network. The forcing input, f(k), is now the entry count onto the NAS. The output, y(k),

denotes the aircraft count in a user-specified set of cells at time step k. The equations can be writen

as follows:

x(k + 1) = Ax(k) +Bff(k) +Buu(k) (2.7)
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y(k) = Cx(k), (2.8)

where

A = diag(An, An−1, · · · , A2, A1),

Bf =



Bf
n 0 . . . 0 0

0 Bf
n−1 . . . 0 0

...
...

. . .
...

...

0 0 . . . Bf
2 0

0 0 . . . 0 Bf
1


,

f(k) = [fn(k)T , fn−1(k)T , · · · , f2(k)T , f1(k)T ]T

are all block matrices whose elements are similar to those defined by equation (2.3): the states now

include all the cells along a path instead of a link.

The dimension of the state space for each ARTCC depends on the number of cells in the

ARTCC and the number of merge/diverge nodes. For example, for the Oakland ARTCC, using

one minute of flight time as the size of a cell, the dimension of the state space is 1,096 and A is a

1096× 1096 matrix. For the network level model (the full continental US airspace), the dimension

of the state space is 27,104. Since the sizes of the matrices A, B and C of the network level model

are very large and the matrices are very sparse, the model is not directly implemented in the compact

form as in (2.7) and (2.8). Instead, it is implemented as follows:

xk+1,p,i = xk,p,i−1 + uk,p,i − uk,p,i−1, k∈ {0, · · · , N − 1}, p ∈ P, i∈ {2, · · · , np}

xk,p,1 = fk,p + uk,p,1, k∈ {0, · · · , N}, p ∈ P,
(2.9)

where N is the time horizon, P is a set of paths, np is the number of cells in path p. k, p and i

represent the time step, path index and cell index, respectively.
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For different applications, the size of the cell can be changed to any value. For validation

purposes, each cell is designated as one minute of flight time in this dissertation, which corresponds

to the sampling rate of recorded ASDI/ETMS data. This framework requires more space and com-

putational time than existing models. For example, the dimension of the Menon model [49] is the

number of control volumes, which is five in the example model; the dimension of the dynamic

stochastic model [66] is 23, which is the number of ARTCCs including one for the international

region. However, the scalability of the CTM(L) model greatly facilitates the network model. A full

comparison between this model, the PDE model [9], the one dimensional Menon model [49], and

the two dimensional Menon model [50] is discussed in Chapter 3.

Controllability and observability

Controllability and observability play very important roles in control theory [54]. On one

hand, if a discrete-time linear dynamical system is controllable, then for any initial state x0 ∈ Rn

and final state x(k) ∈ Rn, there always exists an input sequence u, such that x(k) will be reached

from x0 by the time t = n. On the other hand, if a dynamical system is observable, then for any

k ≥ 0, the initial state x0 can be determined from the time history of the input u(k) and the output

y(k) in the interval of [0, k].

Controllability and observability are equally important in CTM(L) for TFM. If the sys-

tem (2.7)–(2.8) is not controllable and observable, one cannot guarantee the existence of a feasible

solution for TFM problems using CTM(L) (an example is shown in Chapter 3 with a TFM problem

that is formulated with equation (3.21)). If a desired target flow pattern is not in the controllable

subspace, this method provides an infeasibility certificate for the corresponding TFM policy.

Several algebraic or geometric criteria enable the verification of a dynamical system’s
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controllability and observability (either continuous time or discrete time). For example, if the con-

trollability matrix has full-row rank, then the system is controllable, or dually, if the observability

matrix has full-column rank, then the system is observable [54]. For the system (2.7)–(2.8), it is

easy to show that the controllability and observability matrices have full rank. This means that if

there were no constraints on the inputs and the states (in particular, components of x are restricted

to be integer and cannot be negative), the system would be controllable and observable. It is also an

issue of interest to verify the validation of those algebraic or geometric criteria for an integer-valued

system in the future. In fact, the verification of controllability and observability is related to the fea-

sibility checks of a linear (integer) program, which is potentially NP-hard in the present case [10;

12; 29].

2.2.2 Flight routing

The multicommodity flow model makes it straightforward to incorporate different graph

topologies into the CTM(L). In this section, three major connections of links will be introduced.

Based on the control of these three connections, routing flights can be achieved. Inter-cell flows

can be determined using a set of laws for different types of inter-cell connections, as shown in

Figures 2.13-2.15.

Figure 2.13: Simple connection.
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Figure 2.14: Merge, situation between cells i and j.

Figure 2.15: Diverge, situation at cell i into cells j and l.

Definitions

• i (j, l, etc.): cell number (integer).

• xi(k): aircraft count in cell i at time k.

• N (i): immediate downstream cells of cell i.

• P(i): immediate upstream cells of cell i.

• ui(k): delay control of traffic flow in cell i at time k.

• ui→j(k): traffic flow from cell i to cell j at time k by prescribed routing control.

Simple connection

Two cells are said to be simply connected when they are directly connected without any

intervening merging or diverging cells. Let i and j denote the upstream and downstream cells. The
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traffic flow is determined by the following law:

xj(k + 1) = xi(k)− ui(k) + uj(k), (2.10)

where

0 ≤ up(k) ≤ xp(k), p = i, j. (2.11)

Equation (2.10) is a simple mass balance, while equation (2.11) encodes the fact that one cannot

control more aircraft than actually present in a cell at a given time. Note that this is very close to

the approach taken by Daganzo in his definition of the original CTM [22; 23].

Merge connection

Merge connection represents the configuration in which two cells i and j merge into one

downstream cell k. The traffic flow is governed by the following laws:

xl(k + 1) = xi(k) + xj(k)− ui(k)− uj(k) + ul(k), (2.12)

where

0 ≤ up(k) ≤ xp(k), p = i, j, l. (2.13)

In the general case, multiple incoming links merging laws can be represented as

xl(k + 1) =
∑
p∈P(l)

[xp(k)− up(k)] + ul(k), (2.14)

where

0 ≤ up(k) ≤ xp(k), p ∈ P(l) ∪ {l}. (2.15)
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Diverge connection

Diverge connection is the configuration in which the upstream cell i diverges into two

cells j and k. The diverge laws are

xj(k + 1) = ui→j(k) + uj(k),

xl(k + 1) = ui→l(k) + ul(k),

(2.16)

where

ui→j(k) + ui→l(k) + ui(k) = xi(k),

0 ≤ up(k) ≤ xp(k), p = i, j, l

ui→p(k) ≥ 0, p = j, l.

(2.17)

In the general case, the diverging laws can be represented as

xp(k + 1) = ui→p(k) + up(k), p ∈ N (i), (2.18)

where ∑
p∈N (i)

ui→p(k) + ui(k) = xi(k),

0 ≤ up(k) ≤ xp(k), p ∈ N (i) ∪ {i},

ui→p(k) ≥ 0, p ∈ N (i).

(2.19)

For example, if some link, say the link starting with cell l, is completely closed because of weather,

Special Use Airspace (SUA), congestion, etc., the situation can be modeled by imposing one addi-

tional constraint as follows to the constraints in (2.19):

ui→l(k) = 0. (2.20)

The mathematical formulation of the three major connections of links is linear (in fact, integer

linear).
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2.3 Validation

Validation is the process of testing a model on a data set to demonstrate that the model

performs as desired. Demonstration of the accuracy of flow models is obviously key in the process

of incorporating them into decision support tools. The specific aspect of the model which we want

to validate is its predictive capability, i.e., the capability to forecast traffic from a given demand

(requested departure times and routes).

In the present case, validation consists of using OD input (i.e., for each aircraft, a depar-

ture airport, a destination airport, and a departure time) and showing that the model accurately pro-

duces sector counts for the period of interests. The counts are then compared with the ASDI/ETMS

counts. In general form, it means that the model is able to predict flows of aircraft accurately based

on OD demand information available in ASDI/ETMS data. Validations are performed using data

from 8:00 a.m. GMT on January 24th, 2005 to 8:00 a.m. GMT on January 25th. The input to the

models is the number of aircraft entering the considered region from airports through climb inputs

(284 high altitude continental sectors of the United States). The predicted states and sector counts

are computed from the model and compared with the recorded ASDI/ETMS data.

2.3.1 Sector counts

Sector counts predicted by the CTM(L) are first compared with sector counts obtained

from the recorded ASDI/ETMS data. This study shows that the sector counts predicted by the

model and the ASDI/ETMS data have the same trends for all the sectors in the model, and differ

by an error of a small magnitude (mean errors are less than one for most sectors). This can be

explained as follows: the travel time on a link in the network is computed as the aggregated travel
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Figure 2.16: Average error between the filtered and unfiltered ASDI/ETMS data (sector counts).
The mean error increases as the time window increases.

time for all flights in the data set used for the identification (one year in the present work), which is

not necessariy equal to the travel time for the particular flights on a particular day.

To avoid small amplitude, high frequency fluctuations in the data caused by the sampling

time and boundary crossing, a moving average filter (MAF) technique [69] is used to filter the sector

counts for both the recorded ASDI/ETMS data and the model’s simulation. Applying a MAF to the

data requires an appropriate number of data points (time window) in the average. A small time

window captures errors in the dynamics of the flow but loses the “filtering” benefits, while a large

time window filters variations but loses the dynamics of the flow errors. To determine a proper

size of the MAF time window, an experiment involving the average sector count error is performed.

The average count error is the mean error, computed as the absolute difference between the MAF-

filtered data and the raw unfiltered data, over the course of a simulation. Figure 2.16 shows the

results obtained. It shows how the mean error increases as the time window (number of data points
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Figure 2.17: Moving Average Filter (MAF) data processing: the dotted curve represents the unfil-
tered sector counts of sector ZOA33, and the solid curve represents the filtered data using a time
window of 20 minutes.

in the average) increases. Note that for most sectors, the mean errors are below one aircraft per

sector, when the time window is 20 minutes. For this reason, 20 is chosen as the number of data

points in the average (the time window, or time span). For this problem, removing variation makes

physical sense. Very often, sector count exceeds legal values for a few minutes (if aircraft are about

to exit a sector), which is tolerated in practice because such flights usually do not pose significant

problems to air traffic controllers.

Figure 2.17 shows an example of the unfiltered raw data overlayed with the filtered data

using MAF, which is more useful for flow pattern analysis. As can be seen, a significant portion of

the undesired variation in the data can be removed by performing a MAF of the data, which makes

it more suitable for analysis and comparison.

Figures 2.18–2.21 show the predicted and actual sector counts as a function of time in four
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Figure 2.18: Sector ZOA32: comparison of the predictions of aircraft sector counts with the
CTM(L) and ASDI/ETMS. Curves represent the processed sector counts after filtering. The map in
the figure illustrates the location of the corresponding sector (shaded).

sectors: medium loaded sectors ZOA32 and ZOA34, highly loaded sector ZOA33, and low traffic

sector ZOA35. The data shown in the figures is filtered by MAF. The figures show qualitatively that

the model correctly predicts the trends of sector counts.

2.3.2 Quantitative error analysis

The sector count error analysis involves two comparisons: the sum of the error breach S,

and the instantaneous error. S is defined as the summation of time intervals under the condition that

the difference of sector counts between the simulation and the ASDI/ETMS data is greater than or

equal to a user-specified capacity limitation, within a certain time window. This is summarized in

equation (2.21):

S =
T∑
k=1

I{|ysim(k)−yASDI/ETMS (k)|≥Cs} (2.21)
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Figure 2.19: Sector ZOA33: comparison of the predictions of aircraft sector counts with the
CTM(L) and ASDI/ETMS. Curves represent the processed sector counts after filtering. The map in
the figure illustrates the location of the corresponding sector (shaded).

Figure 2.20: Sector ZOA34: comparison of the predictions of aircraft sector counts with the
CTM(L) and ASDI/ETMS. Curves represent the processed sector counts after filtering. The map in
the figure illustrates the location of the corresponding sector (shaded).
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Figure 2.21: Sector ZOA35: comparison of the predictions of aircraft sector counts with the
CTM(L) and ASDI/ETMS. Curves represent the processed sector counts after filtering. The map in
the figure illustrates the location of the corresponding sector (shaded).

where I represents the indicator function. The sector count is denoted by y(k), ASDI/ETMS and

sim (or simulated). The constant Cs is a user-defined threshold. The time window chosen in the

simulation is T = 1440 minutes (24 hours). To measure the similarity in the simulation and the

ASDI/ETMS data, different values of Cs are used, and plots of percentage of breaches versus Cs

are shown in Figure 2.22. For example, if Cs = 3, the percentage of breaches in sector ZOA35 is

7%, which means the predicted sector counts in ZOA35 by the model differ from the ASDI/ETMS

data by at least three aircraft for 7% of the time. As the value of Cs increases, the breach length for

each model tends to zero: the larger the aircraft count error, the shorter the breach length is.

An instantaneous sector count error analysis is performed as well. This error is the dif-

ference between the model’s predicted aircraft count and the actual aircraft count for each sector,

computed from the recorded ASDI/ETMS data at each time step in the simulation. The correspond-

ing relative error is the ratio between the absolute instantaneous error and the actual count. The
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Figure 2.22: Occurrences of breach of sector count error for ten sectors in the Oakland Center.

instantaneous error and relative error are shown for sectors ZOA32, ZOA33 and ZOA34 in Fig-

ure 2.23. From Figure 2.23, it can be seen that for each of the three sectors (ZOA32, ZOA33 and

ZOA34), the means of the instantaneous error are between 1.19 and 1.33, with a standard deviation

between 1.51 and 1.96. For the relative errors, the largest error is four (for a very short period of

time), but in general, the relative errors are less than one.

A summary of the prediction errors on July 2nd, 2005 for all the sectors in the study is

presented in Tables 2.1–2.10. The error table shows that the CTM(L) works very well. For absolute

errors, 51% of the sectors have mean errors less than one; for 99.65% of the sectors, the mean

errors are below two. The maximum of the mean errors of all sectors is about two (sector ZTL15),

which also has the largest standard deviation. This is because the traffic in Center ZTL was greatly

influenced by the weather, and on a particular day (July 1st, 2005), there were more flights routed

through ZTL15 than usual. In terms of signed errors, for 91.55% of all sectors, the mean errors are
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Figure 2.23: Left: Instantaneous errors for three high altitude sectors: ZOA32, ZOA33 and ZOA34.
Right: Relative error for the three sectors.

between −1 and 1, which shows a good predictive performance of the CTM(L).
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Name Mean Std. Dev. Name Mean Std. Dev. Name Mean Std. Dev.

ZOA13 2.18 1.77 ZOA14 1.63 1.17 ZOA15 1.38 1.12

ZOA31 1.23 0.72 ZOA32 1.64 1.26 ZOA33 1.69 1.50

ZOA34 1.66 1.44 ZOA35 0.94 0.46 ZOA36 1.18 0.77

ZOA43 1.40 1.03 ZLA16 0.91 0.56 ZLA25 2.00 1.79

ZLA26 1.78 1.42 ZLA27 1.71 1.77 ZLAED 1.29 1.21

ZLALE 0.23 0.14 ZLA30 1.60 1.40 ZLA31 1.93 1.91

ZLA32 1.54 1.34 ZLA34 1.17 0.95 ZLA36 1.63 1.32

ZLA37 1.32 0.99 ZLA38 1.37 1.17 ZLA39 1.14 0.94

ZLA40 1.32 1.02 ZLA60 1.11 0.80 ZSE01 0.51 0.25

ZSE02 1.16 0.65 ZSE03 0.97 0.40 ZSE07 1.07 0.61

ZSE11 1.04 0.63 ZSE12 1.10 0.63 ZSE13 0.95 0.63

ZSE14 1.21 0.72 ZSE15 0.86 0.47 ZSE16 1.01 0.74

ZSE31 0.83 0.41 ZSE32 0.85 0.50 ZSE42 1.18 0.64

ZSE46 1.41 1.03 ZSE47 0.77 0.38 ZSE48 0.62 0.32

ZLC03 0.96 0.60 ZLC04 1.67 1.38 ZLC05 1.14 0.67

ZLC06 0.98 0.54 ZLC07 1.25 0.77 ZLC08 0.98 0.64

ZLC15 0.90 0.50 ZLC16 0.82 0.53 ZLC17 1.25 0.64

ZLC20 1.12 0.75 ZLC33 1.31 1.08 ZLC34 1.60 1.48

Table 2.1: Validation results: absolute errors (1). Means and standard deviations of the absolute
errors between the predicted and recorded sector counts.
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Figure 2.24: A screenshot of the interface that launches and controls FACET via the FACET Appli-
cation Programming Interface (API).

2.4 Implementation

The CTM(L) has been implemented in C++ during this thesis and incorporated in FACET [14]

by Metron Aviation [2]. Table 2.11 and Figures 2.24 – 2.28 show some snapshots of the implemen-

tation of the CTM(L) in FACET.

2.5 Conclusion

A new Eulerian-Lagrangian Large-capacity Cell Transmission Model of airspace was cre-

ated and implemented using a full year of air traffic data and applied to high altitude traffic for all

continental Air Traffic Control Centers of the National Airspace System in the United States. The

Eulerian-Lagrangian model was reduced to a linear time invariant dynamical system, in which the

state is a vector of aggregate aircraft counts. The model was validated against recorded air traffic

data for the whole National Airspace System based on a full day of traffic.
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Figure 2.25: High altitude sectors in the model running in FACET.
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Name Mean Std. Dev. Name Mean Std. Dev. Name Mean Std. Dev.

ZLC40 1.20 0.71 ZLC41 1.14 0.73 ZLC42 1.41 1.07

ZLC45 1.72 1.41 ZABHM 0.61 0.37 ZAB23 1.60 1.36

ZAB50 1.28 0.87 ZAB65 1.32 1.00 ZAB67 1.01 0.66

ZAB68 1.25 0.87 ZAB70 1.02 0.66 ZAB71 1.17 0.84

ZAB78 2.79 3.61 ZAB80 1.40 1.15 ZAB87 1.07 0.72

ZAB89 1.55 1.54 ZAB92 1.25 0.80 ZAB93 1.13 0.72

ZAB94 1.10 0.70 ZAB95 1.06 0.79 ZAB97 1.40 1.25

ZTL02 2.41 2.82 ZTL08 2.21 2.35 ZTL15 2.85 4.46

ZTL23 2.42 3.18 ZTL27 1.60 1.61 ZTL28 2.34 3.13

ZTL36 1.70 1.64 ZTL40 2.39 2.82 ZBW01 0.76 0.53

ZBW02 0.96 0.45 ZBW08 0.55 0.29 ZBW09 0.93 0.53

ZBW10 1.67 1.32 ZBW17 0.76 0.44 ZBW18 1.14 0.87

ZBW20 1.77 1.37 ZBW31 2.20 2.58 ZBW38 1.82 1.79

ZBW39 1.40 1.06 ZBW46 1.32 0.74 ZBW53 1.03 0.78

ZBW23 1.79 1.31 ZBW33 2.04 1.94 ZBW45 1.10 0.60

ZBW47 1.29 0.85 ZBW61 1.87 1.65 ZBW76 2.26 2.02

ZBW84 1.79 1.44 ZBW85 1.17 0.64 ZBW91 1.97 1.62

ZBW94 2.50 2.64 ZOB19 1.63 1.33 ZOB26 1.65 1.53

ZOB29 1.65 1.73 ZOB38 2.48 2.73 ZOB47 1.80 1.66

Table 2.2: Validation results: absolute errors (2). Means and standard deviations of the absolute
errors between the predicted and recorded sector counts.
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Name Mean Std. Dev. Name Mean Std. Dev. Name Mean Std. Dev.

ZOB49 1.78 1.68 ZOB59 1.90 2.07 ZOB68 1.49 1.22

ZOB69 1.85 1.89 ZOB79 2.50 3.22 ZDV03 1.44 1.27

ZDV04 1.33 1.21 ZDV05 1.34 1.00 ZDV08 1.84 1.84

ZDV09 1.31 0.91 ZDV14 1.71 1.29 ZDV16 1.49 1.13

ZDV18 1.87 1.60 ZDV24 1.80 1.92 ZDV25 1.65 1.41

ZDV30 1.93 1.56 ZDV32 0.87 0.47 ZDV33 1.46 0.96

ZDV34 1.59 1.15 ZDV35 1.54 1.00 ZDV38 1.60 1.33

ZDV39 2.04 1.95 ZDV45 1.00 0.58 ZFW28 1.03 0.72

ZFW39 1.05 0.62 ZFW42 1.39 1.32 ZFW46 1.15 0.80

ZFW47 1.52 1.51 ZFW48 1.62 1.74 ZFW49 1.02 0.71

ZFW50 1.30 1.18 ZFW65 1.63 1.34 ZFW71 0.79 0.45

ZFW82 1.63 1.44 ZFW86 1.07 0.74 ZFW89 1.25 0.81

ZFW90 0.88 0.48 ZFW92 0.85 0.52 ZFW93 1.43 1.34

ZFW94 1.06 0.84 ZHU11 0.01 0.01 ZHU24 1.28 1.02

ZHU26 0.96 0.48 ZHU37 1.62 1.61 ZHU46 1.02 0.69

ZHU59 1.23 1.05 ZHU68 1.13 1.02 ZHU70 1.24 0.88

ZHU72 0.04 0.02 ZHU74 1.45 1.10 ZHU76 0.70 0.43

ZHU78 1.01 0.64 ZHU79 0.20 0.11 ZHU81 1.06 0.73

ZHU82 1.08 0.77 ZHU95 1.25 1.03 ZHU97 1.15 0.82

Table 2.3: Validation results: absolute errors (3). Means and standard deviations of the absolute
errors between the predicted and recorded sector counts.
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Name Mean Std. Dev. Name Mean Std. Dev. Name Mean Std. Dev.

ZID76 1.62 1.45 ZID78 1.86 1.61 ZID91 1.73 1.52

ZID92 1.47 1.17 ZID93 1.72 1.77 ZID94 1.93 2.27

ZID95 2.16 2.50 ZID96 1.81 1.78 ZID97 1.75 1.67

ZID99 1.96 2.02 ZJXW1 3.27 4.80 ZJXW2 0.47 0.37

ZJXW3 0.32 0.18 ZJX00 0.28 0.15 ZJX11 1.16 0.93

ZJX16 2.57 4.20 ZJX17 1.94 2.20 ZJX30 1.26 1.09

ZJX33 1.28 1.10 ZJX34 1.89 2.10 ZJX35 1.72 1.93

ZJX48 1.92 2.48 ZJX49 2.24 2.75 ZJX52 1.97 2.60

ZJX65 2.31 3.29 ZJX67 2.70 4.24 ZJX76 2.17 2.96

ZJX78 1.77 1.95 ZJX88 0.72 0.48 ZKC02 1.03 0.60

ZKC06 1.04 0.64 ZKC20 1.17 0.88 ZKC22 1.16 0.79

ZKC23 1.28 0.96 ZKC24 1.78 1.36 ZKC26 1.74 1.57

ZKC27 1.50 1.20 ZKC28 1.20 0.86 ZKC29 1.48 1.20

ZKC30 1.49 0.95 ZKC90 1.64 1.52 ZKC92 1.74 1.52

ZKC94 2.06 1.96 ZKC98 1.39 0.96 ZME19 1.45 0.97

ZME20 1.70 1.53 ZME23 1.84 1.72 ZME24 1.88 1.73

ZME32 2.21 2.36 ZME43 1.77 1.76 ZME44 1.12 0.95

ZME61 2.02 2.33 ZMAXX 0.36 0.20 ZMA01 1.63 1.77

ZMA02 2.69 4.09 ZMA05 1.51 1.18 ZMA06 0.88 0.63

Table 2.4: Validation results: absolute errors (4). Means and standard deviations of the absolute
errors between the predicted and recorded sector counts.
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Name Mean Std. Dev. Name Mean Std. Dev. Name Mean Std. Dev.

ZMA08 1.09 0.85 ZMA19 0.68 0.52 ZMA25 1.87 2.07

ZMA30 0.00 0.00 ZMA40 1.49 1.29 ZMA43 0.00 0.00

ZMA59 0.98 1.13 ZMA60 0.62 0.38 ZMA62 0.00 0.00

ZMA63 0.08 0.04 ZMA64 1.84 1.77 ZMA65 1.95 2.74

ZMP11 1.91 2.28 ZMP12 1.15 0.76 ZMP13 1.07 0.63

ZMP15 0.94 0.54 ZMP16 1.09 0.70 ZMP17 1.76 1.61

ZMP18 1.55 1.08 ZMP19 1.29 0.79 ZMP20 1.51 1.11

ZMP23 0.87 0.44 ZMP24 1.07 0.59 ZMP25 0.92 0.49

ZMP29 1.54 0.83 ZMP30 1.84 1.25 ZMP42 2.47 2.30

ZMP43 2.03 1.79 ZNY09 1.73 1.65 ZNY10 1.61 1.43

ZNY34 1.30 0.92 ZNY42 2.44 3.08 ZNY49 1.35 1.03

ZNY56 1.45 1.14 ZNY73 1.24 0.90 ZNY75 1.38 0.97

ZDC04 1.52 1.42 ZDC09 2.26 3.03 ZDC10 1.52 1.32

ZDC12 1.57 1.46 ZDC16 2.03 2.19 ZDC18 0.85 0.55

ZDC19 1.55 1.41 ZDC36 1.59 1.52 ZDC37 1.58 1.32

ZDC38 1.61 1.50 ZDC42 1.57 1.42 ZDC50 3.15 5.46

ZDC58 1.81 1.94 ZDC59 1.77 1.85 ZDC72 2.61 3.47

ZDC97 0.26 0.15 ZDC98 0.93 0.52 ZDC99 1.33 1.15

ZDCG1 0.01 0.00 ZDCVA 0.16 0.08 ZDCVB 0.00 0.00

Table 2.5: Validation results: absolute errors (5). Means and standard deviations of the absolute
errors between the predicted and recorded sector counts.
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Name Mean Std. Dev. Name Mean Std. Dev. Name Mean Std. Dev.

ZOA13 -0.67 3.91 ZOA14 -0.71 2.24 ZOA15 0.69 1.84

ZOA31 -0.17 1.46 ZOA32 -0.20 2.60 ZOA33 -0.63 2.74

ZOA34 0.01 2.82 ZOA35 -0.18 0.89 ZOA36 -0.02 1.46

ZOA43 -0.28 1.98 ZLA16 -0.41 0.89 ZLA25 -1.43 2.75

ZLA26 -0.40 2.93 ZLA27 0.96 2.77 ZLAED 1.24 1.28

ZLALE 0.23 0.14 ZLA30 -0.94 2.24 ZLA31 -1.21 3.04

ZLA32 -0.71 2.27 ZLA34 -0.29 1.59 ZLA36 0.34 2.58

ZLA37 0.40 1.78 ZLA38 -0.71 1.86 ZLA39 0.87 1.21

ZLA40 0.76 1.61 ZLA60 0.39 1.34 ZSE01 0.04 0.38

ZSE02 -0.30 1.28 ZSE03 0.28 0.83 ZSE07 -0.19 1.17

ZSE11 -0.15 1.16 ZSE12 -0.45 1.14 ZSE13 0.17 1.06

ZSE14 0.07 1.44 ZSE15 -0.39 0.76 ZSE16 -0.24 1.23

ZSE31 -0.25 0.72 ZSE32 -0.06 0.86 ZSE42 -0.56 1.18

ZSE46 0.71 1.77 ZSE47 -0.05 0.67 ZSE48 -0.16 0.50

ZLC03 0.45 0.96 ZLC04 -0.23 2.75 ZLC05 -0.14 1.31

ZLC06 -0.23 1.00 ZLC07 -0.32 1.50 ZLC08 -0.22 1.09

ZLC15 -0.11 0.90 ZLC16 -0.24 0.84 ZLC17 -0.23 1.40

ZLC20 -0.33 1.32 ZLC33 0.01 1.93 ZLC34 -0.75 2.47

Table 2.6: Validation results: signed errors (1). Means and standard deviations of the signed errors
of (recorded sector counts − predicted counts ).
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Name Mean Std. Dev. Name Mean Std. Dev. Name Mean Std. Dev.

ZLC40 0.56 1.28 ZLC41 0.11 1.37 ZLC42 0.12 2.06

ZLC45 -0.56 2.73 ZABHM 0.58 0.39 ZAB23 1.53 1.47

ZAB50 0.22 1.66 ZAB65 -0.22 1.85 ZAB67 -0.11 1.16

ZAB68 0.40 1.58 ZAB70 0.17 1.16 ZAB71 0.12 1.51

ZAB78 -2.65 4.01 ZAB80 -0.06 2.12 ZAB87 0.20 1.27

ZAB89 -1.04 2.19 ZAB92 -0.48 1.46 ZAB93 0.04 1.36

ZAB94 0.14 1.29 ZAB95 -0.03 1.36 ZAB97 -0.10 2.22

ZTL02 -0.26 5.69 ZTL08 -0.92 4.35 ZTL15 -1.02 8.01

ZTL23 -0.80 5.78 ZTL27 0.17 2.88 ZTL28 -1.08 5.29

ZTL36 -0.87 2.70 ZTL40 -0.24 5.65 ZBW01 0.14 0.81

ZBW02 -0.28 0.87 ZBW08 -0.17 0.43 ZBW09 -0.45 0.86

ZBW10 0.20 2.69 ZBW17 0.26 0.70 ZBW18 -0.43 1.43

ZBW20 -0.10 2.94 ZBW31 1.07 4.43 ZBW38 0.36 3.39

ZBW39 -0.51 1.91 ZBW46 -0.02 1.61 ZBW53 -0.55 1.16

ZBW23 -0.81 2.59 ZBW33 -0.66 3.80 ZBW45 0.25 1.17

ZBW47 0.34 1.63 ZBW61 -1.03 2.88 ZBW76 0.42 4.50

ZBW84 -0.73 2.77 ZBW85 -0.06 1.33 ZBW91 -0.29 3.52

ZBW94 -1.34 4.87 ZOB19 -0.35 2.61 ZOB26 -0.10 2.88

ZOB29 -0.54 2.95 ZOB38 -1.67 4.43 ZOB47 -0.31 3.24

Table 2.7: Validation results: signed errors (2). Means and standard deviations of the signed errors
of (recorded sector counts − predicted counts ).
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Name Mean Std. Dev. Name Mean Std. Dev. Name Mean Std. Dev.

ZOB49 -0.51 3.14 ZOB59 -0.52 3.75 ZOB68 -0.10 2.33

ZOB69 -0.03 3.59 ZOB79 -1.15 5.68 ZDV03 -0.45 2.21

ZDV04 -0.10 2.09 ZDV05 0.27 1.87 ZDV08 -0.24 3.51

ZDV09 0.11 1.76 ZDV14 -0.05 2.74 ZDV16 0.19 2.22

ZDV18 0.34 3.28 ZDV24 0.80 3.21 ZDV25 0.19 2.75

ZDV30 0.11 3.42 ZDV32 -0.14 0.84 ZDV33 -0.21 2.01

ZDV34 -0.49 2.30 ZDV35 -0.27 2.15 ZDV38 -0.02 2.61

ZDV39 -0.15 4.02 ZDV45 -0.24 1.05 ZFW28 -0.18 1.24

ZFW39 0.26 1.14 ZFW42 0.22 2.25 ZFW46 -0.05 1.46

ZFW47 -0.10 2.66 ZFW48 -0.09 3.05 ZFW49 0.23 1.20

ZFW50 -0.51 1.90 ZFW65 -0.55 2.52 ZFW71 -0.43 0.67

ZFW82 -0.30 2.73 ZFW86 0.14 1.30 ZFW89 -0.05 1.59

ZFW90 -0.12 0.86 ZFW92 -0.05 0.88 ZFW93 1.06 1.80

ZFW94 -0.32 1.35 ZHU11 -0.00 0.01 ZHU24 -0.56 1.68

ZHU26 0.06 0.94 ZHU37 -0.02 2.93 ZHU46 0.07 1.22

ZHU59 -0.58 1.63 ZHU68 -0.35 1.59 ZHU70 -0.50 1.53

ZHU72 0.02 0.02 ZHU74 -0.27 2.12 ZHU76 -0.29 0.63

ZHU78 0.23 1.13 ZHU79 0.18 0.11 ZHU81 -0.25 1.26

ZHU82 0.04 1.35 ZHU95 -0.33 1.76 ZHU97 -0.56 1.33

Table 2.8: Validation results: signed errors (3). Means and standard deviations of the signed errors
of (recorded sector counts − predicted counts ).



65

Name Mean Std. Dev. Name Mean Std. Dev. Name Mean Std. Dev.

ZID76 -0.13 2.76 ZID78 0.26 3.31 ZID91 -0.19 3.00

ZID92 -0.49 2.13 ZID93 0.04 3.24 ZID94 -0.54 4.00

ZID95 -0.86 4.46 ZID96 -0.50 3.30 ZID97 0.03 3.21

ZID99 -0.16 3.92 ZJXW1 3.25 4.86 ZJXW2 0.43 0.39

ZJXW3 0.25 0.20 ZJX00 0.08 0.18 ZJX11 0.57 1.44

ZJX16 1.02 7.00 ZJX17 -0.72 3.81 ZJX30 -0.29 1.85

ZJX33 0.04 1.93 ZJX34 -0.43 3.78 ZJX35 -0.87 3.03

ZJX48 0.33 4.27 ZJX49 0.17 5.24 ZJX52 -1.29 3.70

ZJX65 -0.19 5.95 ZJX67 -1.77 6.30 ZJX76 -0.81 5.00

ZJX78 -0.19 3.49 ZJX88 0.64 0.53 ZKC02 0.00 1.14

ZKC06 0.14 1.18 ZKC20 0.24 1.53 ZKC22 0.06 1.46

ZKC23 -0.13 1.77 ZKC24 0.50 2.83 ZKC26 0.48 2.97

ZKC27 -0.02 2.33 ZKC28 -0.22 1.55 ZKC29 -0.27 2.25

ZKC30 0.20 2.04 ZKC90 -0.43 2.77 ZKC92 0.55 2.88

ZKC94 -0.06 4.09 ZKC98 -0.14 1.92 ZME19 0.27 1.98

ZME20 -0.20 2.95 ZME23 -0.22 3.39 ZME24 -0.46 3.38

ZME32 0.19 4.78 ZME43 -0.09 3.33 ZME44 -0.35 1.51

ZME61 0.32 4.32 ZMAXX 0.02 0.27 ZMA01 -0.87 2.72

ZMA02 1.72 6.23 ZMA05 -0.19 2.30 ZMA06 -0.49 0.90

Table 2.9: Validation results: signed errors (4). Means and standard deviations of the signed errors
of (recorded sector counts − predicted counts ).
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Name Mean Std. Dev. Name Mean Std. Dev. Name Mean Std. Dev.

ZMA08 -0.29 1.40 ZMA19 -0.14 0.74 ZMA25 0.48 3.71

ZMA30 0.00 0.00 ZMA40 -0.07 2.40 ZMA43 0.00 0.00

ZMA59 -0.09 1.61 ZMA60 -0.01 0.58 ZMA62 -0.00 0.00

ZMA63 -0.03 0.04 ZMA64 0.41 3.38 ZMA65 1.39 3.66

ZMP11 1.09 3.52 ZMP12 -0.30 1.39 ZMP13 -0.27 1.18

ZMP15 -0.15 0.97 ZMP16 -0.17 1.28 ZMP17 0.01 3.15

ZMP18 -0.26 2.25 ZMP19 -0.06 1.61 ZMP20 -0.45 2.15

ZMP23 0.04 0.82 ZMP24 0.13 1.16 ZMP25 0.15 0.91

ZMP29 -0.24 1.98 ZMP30 0.09 2.94 ZMP42 -0.72 5.09

ZMP43 -0.85 3.49 ZNY09 0.65 2.94 ZNY10 -0.31 2.68

ZNY34 0.28 1.73 ZNY42 -0.79 5.74 ZNY49 -0.05 1.95

ZNY56 0.20 2.17 ZNY73 -0.37 1.61 ZNY75 -0.01 1.92

ZDC04 0.07 2.57 ZDC09 -1.56 4.36 ZDC10 0.16 2.47

ZDC12 0.41 2.61 ZDC16 -0.09 4.24 ZDC18 0.46 0.81

ZDC19 -0.60 2.42 ZDC36 0.02 2.79 ZDC37 -0.17 2.56

ZDC38 0.40 2.71 ZDC42 -0.36 2.59 ZDC50 -2.08 8.25

ZDC58 -1.32 2.70 ZDC59 0.67 3.19 ZDC72 0.20 6.85

ZDC97 0.14 0.17 ZDC98 0.89 0.56 ZDC99 1.31 1.18

ZDCG1 -0.00 0.00 ZDCVA 0.00 0.09 ZDCVB 0.00 0.00

Table 2.10: Validation results: signed errors (5). Means and standard deviations of the signed errors
of (recorded sector counts − predicted counts ).
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Figure 2.24 The interface that launches and controls CTM(L) in FACET.

Figure 2.26 Network model of the NAS.

Figure 2.27 Network of the northwest part in the NAS.

Figure 2.28 Aggregate traffic flow in the NAS.

Table 2.11: List of snapshots of CTM(L) implementation in FACET.

Figure 2.26: Visualization of the network model of the NAS in FACET in the Metron
implementation.
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Figure 2.27: Magnified subsection of the network for the northwest part in the NAS.
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Figure 2.28: Aggregate traffic flow in the NAS. Volumes of air traffic evolve on top of the NAS
network.
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Chapter 3

Assessment of the performance of the

CTM(L) model

This chapter compares the performance of four aggregate flow models including the

CTM(L) developed in this thesis. The predictive capabilities of each model are compared through a

careful validation against recorded air traffic data (ASDI/ETMS), following the procedure outlined

in the previous section. The performances of the different models are compared, in particular, the

accuracy of their predictive capabilities, computational time, and memory requirements. A discus-

sion follows that highlights the structural differences between the four models and explains why one

model may outperform another. Finally this chapter also presents the framework which needs to be

used for the respective models in order to perform optimal control.
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3.1 Models

This section presents a short summary of each of the four models used for this chapter. A

detailed description of each model is available in the corresponding references, in particular for the

models which are developed as part of this thesis. For completeness of this chapter, the CTM(L)

model proposed in Chapter 2 is also briefly summarized.

3.1.1 The Large-capacity Cell Transmission Model (CTM(L))

The Large-capacity Cell Transmission Model (CTM(L)) was developed in Chapter 2, and

appeared in [72; 65]. It uses a graph-theoretic representation of traffic flow. Air traffic flow on this

graph is modeled as a discrete time dynamical system evolving on a network. To formulate the

model, the following assumptions are made:

1. Each link of the network is modeled as a directional edge, which can be used for some of the

other models in this chapter as well.

2. All aircraft in a given link fly at an aggregate speed. This speed can be obtained by aggregat-

ing the speed (obtained from the ASDI/ETMS data) of all aircraft following this link. To a

certain extent, this aggregated speed can also be used for the other models presented here.

3. The number of cells in one link is given by the number of steps of expected travel time. In this

implementation, one minute is taken as a unit time step. For example, if it takes around 12

minutes for an aircraft to fly across a sector, following a particular link, then this link would

be divided into 12 segments, called cells. The choice of the cell length (time discretization)

is arbitrary. In the model, a link indexed by i has mi cells. As the time step decreases, the
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model becomes more accurate, but at the expense of increased computational complexity.

4. At the link level, only high altitude traffic (above 24,000 feet) is taken into account for the

calculation of aircraft count. This choice is also arbitrary and can be adjusted to any user-

defined level. The same assumption is also made for the other models for fairness of the

comparison.

5. The control strategy (based on the application of delays to aircraft) is mainly used as the

controlled input to the model, which can be implemented in many forms: speed change, vector

for spacing (VFS), holding pattern (HP), etc. It is applied in time increments corresponding

to the unit time step.

6. The model is deterministic. No statistical factor, such as weather impact, is taken into con-

sideration at this stage. Note that it can be added later using a stochastic framework [66;

70]. Such comparison will be the objective of future work.

7. In this model, all states, inputs and outputs are integer valued. This might increase the com-

plexity of computation or analysis, in particular, the computational complexity for optimiza-

tion which is integer program, but this provides higher accuracy.

Under the assumption that air traffic flow can be accurately represented by an aggregated travel time,

the behavior of aircraft flow on a single link can be modeled by a deterministic linear dynamical

system with a unit time delay, presented in Chapter 2:

xi(k + 1) = Aixi(k) +Bf
i fi(k) +Bu

i ui(k), (3.1)

y(k) = Cixi(k), (3.2)
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where xi(k) = [xmi
i (k), · · · , x1

i (k)]T is the state vector, whose elements represent the correspond-

ing aircraft counts in each cell of link i at time step k, and mi is the number of cells in the link. The

forcing input, fi(k), is a scalar that denotes the entry count onto link i during a unit time interval

from k to k + 1, and the control input, ui(k), is an mi × 1 vector, representing holding pattern

control. The output, y(k), is the aircraft count in a user-specified set of cells at time step k. The

nonzero elements of the mi × 1 vector Ci correspond to the cells in the user-specified set, and are

equal to one. Ai is an mi×mi nilpotent matrix with 1’s on its super-diagonal. Bf
i = [0, · · · , 0, 1]T

is the forcing vector with mi elements, and Bu
i is the mi ×mi holding pattern matrix, in which all

nonzero elements are 1 on the diagonal and −1 on the super-diagonal.

The extension to sectors was presented in Chapter 2 and is quickly summarized here.

Suppose there are n links in a sector, then the state space equations for the model at the sector level

can be described as:

x(k + 1) = Ax(k) +Bff(k) +Buu(k), (3.3)

y(k) = Cx(k), (3.4)

where x(k) = [xn(k), · · · , x1(k)]T denotes the state, and f(k) = [fn(k), · · · , f1(k)]T is the forc-

ing input vector (the entry count onto the sector). The control input vector u(k) = [un(k), · · · , u1(k)]T .

The vector y(k) represents the aircraft count in a user-specified set of cells at time step k. The ma-

tricesA, Bf andBu are block diagonal, with block elements associated with each link in the sector.

For example, A = diag(An, · · · , A1) with Ai’s defined by equation (3.1).

When an ARTCC level model is created, it is necessary to include merge/diverge nodes in

the network [49; 66; 9; 71]. Merge nodes are straightforward: flows are added as streams of aircraft
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merge. For diverge nodes, the corresponding routing choices must rely on knowledge of the aircraft

destination. The modeling of the problem is proposed based on a priori knowledge of the aircraft

destination (provided by ASDI/ETMS data): knowledge of each aircraft destination is available long

before its departure in the form of filed flight plans. One significant contribution of the CTM(L) is

to incorporate this knowledge into the model with use of the notion of multicommodity flow, which

previous Eulerian models do not use [49; 50; 66; 70; 9].

3.1.2 The Modified Menon Model (MMM)

This section is based on the work presented in [49]. The model has been modified to

fit the structure of the graph model that will be discussed in Section 3.1.5, which provides a good

comparison framework with the model developed for this thesis.

The original Menon model is an Eulerian traffic flow model in which the air traffic is

spatially aggregated into control volumes, which are line elements [49]. This model was historically

one of the first models to pose the problem of traffic flow modeling using an Eulerian framework.

It is based on the Daganzo Cell Transmission Model (CTM) [22; 23] in which the traffic flowing

into a control volume changes the density of aircraft in that control volume and, hence, changes

the outflow of the control volume. Several modifications of the original Menon model are made

and outlined at the end of this subsection; we will thus refer to the modified version of the model

as the Modified Menon Model (MMM). The model also incorporates ATC management, and handle

merging and diverging air traffic flows. The model consists of two parts, the one-dimensional control

volume model and the merge and diverge routing structure.

The one-dimensional control volume model models air traffic flow as a network of inter-

connected control cells through which the air traffic flows. Aircraft counts in the network can be
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described by the discrete-time difference equation:

xj(i+ 1) = xj(i) + τj [yj−1(i)− yj(i)]. (3.5)

In the above equation, xj(i + 1) is the aircraft count of control volume j at time i + 1.

The flow into j is yj−1(i), and yj(i) is equal to the flow out of j. The time step, τj , is computed by

dividing the cell dimension, Ωj , by the aircraft speed in the cell, vj (τj = Ωj /vj). In other words, τj

is the time an aircraft takes to travel through the cell.

The effects of delaying aircraft due to ATC action is accounted for by recirculating some

of the air traffic flow in a control volume. The recirculated air traffic flow in control volume j is

defined as uj . The physical constraint on uj is that at time i, it can not be greater than the existing

flow in the cell or less than 0,

0 ≤ τjuj(i) ≤ xj(i). (3.6)

By including uj and writing down the equation for yj , the model can be written in the

form of a linear, discrete-time dynamical system:

xj(i+ 1) = ajxj(i) + τjuj(i) + τjyj−1(i), (3.7)

yj(i) = bjxj(i)− uj(i). (3.8)

The coefficients, aj , bj and τj handle the conversion between the air traffic flow, yj , and

the aircraft count, xj . In other words, at a given time step, aj is the portion of aircraft remaining in

the volume, and bj is the portion of air traffic flow leaving the volume. As was noted earlier, τj is

the length of time needed for the aircraft to travel the length of the control volume. The coefficients

are defined in terms of Ωj , the control volume length, and vj , the aircraft speed.



76

aj = (1− vjτj/Ωj), bj = vj/Ωj , τj = Ωj/vj . (3.9)

The original Menon model assumes that velocity is constant within a given control vol-

ume. This means that aj is always zero (see equation (13) in the original article [49]). That is, if

there is no control from uj , then all the aircraft in the volume travel to the subsequent volume on

the next time step.

Intuitively, what is happening in equations (3.7) and (3.8) is that the aircraft count in a

given control volume at time i + 1 depends on the number of aircraft in the volume at time i, the

number of aircraft that flow into the volume, the number of aircraft that are recirculated and the

number of aircraft that flow out of the volume. Over multiple time steps, aircraft will move through

successive cells.

In a network of inter-connected control volumes, there may be points where air traffic

coming from different directions merge into a single flow. This type of situation is referred to as a

merge node. Furthermore, there may be points where the air traffic in one direction diverges into

multiple flows. This type of situation is referred to as a diverge node. Because the nodes do not

retain any aircraft, the conservation principle implies that for merge nodes, the resulting air traffic

flow is the sum of all air traffic flows into that node. For example, if the air traffic flows qk−1 and

qk−2 merge into qk,

qk = qk−1 + qk−2. (3.10)

Likewise, diverge nodes make use of the same conservation principle and the flow along

a path from a diverge node is some proportion of the total flow coming into the diverge node. The

proportion is defined as the divergence parameter, β, and is the ratio of aircraft traveling out of the
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diverge node along a given path over the aircraft traveling into the diverge node. In the following

example, the air traffic flow diverges from the qk to qk+1 and qk+2,

qk+1 = βqk, qk+2 = (1− β)qk. (3.11)

As mentioned earlier, since the MMM is implemented on a graph model of traffic flow

constructed in the articles [64; 72] and discussed in Section 3.1.5, a number of modifications are

made to improve the original Menon model described in the article [49].

1. The flights in the MMM are aggregated according to the links of the graph structure defined

in Section 2.1 of Chapter 2, instead of the graph model presented in their original article [49].

This will ensure fairness of the comparison with the other models.

2. A link length (physical distance) is determined from flights in the data: flights in the data are

aggregated according to the links in the graph. A link’s entry and exit locations are determined

by those flights’ link entries and exits. The entry and exit locations are used in computing each

link’s length.

3. The MMM contains merge-diverge nodes. A merge-diverge node is one that has both merging

and diverging flows at the same time. The original Menon model does not have such nodes.

4. A merge-diverge node can have n (n ≥ 2) outflows, whose β values are determined from the

data, whereas in the original Menon model n is limited to n = 2.

3.1.3 The PDE model

This section is based on the joint work in the article [73]. It presents the implementation

of a PDE model based on earlier work available in the literature [9]. This model divides the airspace
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into line elements. These line elements are called paths and in practice often coincide with jetways.

In practice, the same structure as before can be used. We represent a link on a path as a segment

[0, L] and we define C(x, t) as the cumulated number of aircraft between distances 0 and x at time

t. In particular, C(0, t) = 0, and C(L, t) is the total number of aircraft in the path modeled by

[0, L] at time t. We make the additional assumption of a steady velocity profile v(x) > 0, which

depicts the average velocity of aircraft flow at position x and time t. This velocity can be extracted

from the travel time study performed in Section 2.1.4 in Chapter 2 for the CTM(L). Applying the

conservation of mass to a control volume comprised between positions x and x + h, and letting

h tend to 0, one easily finds the following relation between the spatial and temporal derivatives of

C(x, t) [9]:



∂C(x,t)
∂t + v(x)∂C(x,t)

∂x = q(t) (x, t) ∈ (0, L)× (0, T ]

C(x, 0) = C0(x) x ∈ [0, L]

C(0, t) = 0 t ∈ [0, T ],

(3.12)

where q(t) represents the inflow at the entrance of the link (x = 0). Alternatively, q(t) can be

defined in terms of the density as q(t) = ρ(0, t)v(0).

We can define the density of aircraft as the weak derivative of C(x, t) with respect to x:

ρ(x, t) = ∂C(x,t)
∂x . The aircraft density is a solution to the partial differential equation:



∂ρ(x,t)
∂t + ∂(ρ(x,t)v(x,t))

∂x = 0 (x, t) ∈ (0, L)× (0, T ]

ρ(x, 0) = ρ0(x) x ∈ [0, L]

ρ(0, t) = q(t)
v(0) t ∈ [0, T ].

(3.13)
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or in a nonconservative form:

∂ρ(x,t)
∂t + v(x)∂ρ(x,t)

∂x + v′(x)ρ(x, t) = 0 (x, t) ∈ (0, L)× (0, T ]

ρ(x, 0) = ρ0(x) x ∈ [0, L]

ρ(0, t) = q(t)
v(0) t ∈ [0, T ].

(3.14)

This is a linear advection equation with positive velocity v(x) and a source term:

v′(x)ρ(x, t).

Clearly, these two partial differential equations are equivalent and model the same physical phe-

nomenon. In this chapter, we will use the latter for control, as it enables us to impose constraints in

terms of aircraft density. We will use the former for simulation and comparison because the aircraft

count is more readily available from experimental data.

Now that the model has been defined on one link, we will extend it to a network. We

consider a junction with m incoming links numbered from 1 to m and n outgoing links numbered

from m+ 1 to m+n; each link k is represented by an interval [0, Lk] (Figure 3.1). One can see that

any network is composed of a number of such junctions. We define an allocation matrix M(t) =

(mij(t)) for 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + n, where 0 ≤ mij(t) ≤ 1 denotes the proportion

of aircraft from incoming link i going to the outgoing link j. We also require
∑m+n

j=m+1mij(t) =

1 for 1 ≤ i ≤ m. The system of partial differential equations on the network can be written as:

∂ρk(x,t)
∂t + vk(x)∂ρk(x,t)

∂x + v′k(x)ρk(x, t) = 0 1 ≤ k ≤ m+ n, (x, t) ∈ (0, Lk)× (0, T ]

ρk(x, 0) = ρ0,k(x) x ∈ [0, Lk]

ρi(0, t) = qi(t)
vi(0) 1 ≤ i ≤ m, t ∈ [0, T ]

ρj(0, t) =
Pm

i=1mij(t)ρi(Li,t)vi(Li)
vj(0) m+ 1 ≤ j ≤ m+ n, t ∈ [0, T ].

(3.15)
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Figure 3.1: A junction with m incoming links (1 ≤ i ≤ m) and n outgoing links (m + 1 ≤ j ≤
m+ n).

We will now show that on such a network, the preceding system of partial differential

equations admits a unique solution, hence that the problem is well-posed.

First, we consider the case of a single link [0, L]. Since the velocity is always positive, a

boundary condition shall be set on the left (x = 0) but not on the right (x = L). Using classical

partial differential equations techniques, more precisely the theory of characteristics, to compute

the solution and prove the existence and energy methods for the uniqueness, it can be shown that

the advection equation will have a unique solution on this interval (for example, see [43] or [9] for a

proof). On a network, this ensures the existence and uniqueness of a solution on the incoming links.

For the outgoing links, we need to impose a boundary condition on the left, that is, immediately

after the junction. This is done using the coefficients of the allocation matrix. Indeed for the j-th

outgoing link, the density at the origin will be related to the densities at the right extremity of the

incoming links by:

ρj(0, t) =
∑m

i=1mij(t)ρi(Li, t)vi(Li)
vj(0)

.

Now the advection equation on each outgoing link has only one solution, thus uniquely

defining a density on both the incoming and outgoing links. Therefore, the problem for any network,
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which is made of several such junctions, is well-posed.

The Lax-Wendroff scheme is applied to the preceding partial differential equation. A

discrete grid is used on the domain [0, L]× [0, T ]:

xa =
aL

M
, 0 ≤ a ≤M and tb =

bT

N
, 0 ≤ b ≤ N

and

∆x =
L

M
,∆t =

T

N
.

The Lax-Wendroff scheme (see [44]) is based on the second order Taylor series expansion

of C(x, t),

C(x, tb+1) = C(x, tb) + (∆t)Ct(x, tb) +
1
2

(∆t)2Ctt(x, tb) + . . .

Given that C(x, t) is a solution of the partial differential equation above, we have:

Ct(x, t) = −v(x)Cx(x, t)− v′(x)C(x, t),

Ctt(x, t) = −v(x)Cxt(x, t)− v′(x)Ct(x, t).

If we differentiate the expression of Ct(x, t) with respect to x, we obtain:

Cxt(x, t) = −v(x)Cxx(x, t)− v′′(x)C(x, t)− 2v′(x)Cx(x, t),

which yields:

Ctt(x, t) = v2(x)Cxx(x, t) + 3v(x)v′(x)Cx(x, t) + (v(x)v′′(x) + (v′(x))2)C(x, t).

Using the preceding expressions of Ct(x, t) and Ctt(x, t) in the Taylor series expansion,
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we find:

C(x, tb+1) = C(x, tb)− (∆t)v(x)Cx(x, tb)− (∆t)v′(x)C(x, tb)

+
1
2

(∆t)2(v2(x)Cxx(x, tb) + 3v(x)v′(x)Cx(x, tb)

+ (v(x)v′′(x) + (v′(x))2)C(x, tb)) + . . .

Then we replace the spatial derivatives by central finite difference approximations:

Cx(x, t)↔ Ca+1,b − Ca−1,b

2∆x

Cxx(x, t)↔ Ca−1,b − 2Ca,b + Ca+1,b

(∆x)2
.

We eventually obtain the Lax-Wendroff scheme:

Ca,b+1 =
(

1− (∆t)v′(xa) +
(∆t)2

2
(v′(xa))2

)
Ca,b

+
∆t

2∆x
v(xa)

(
3
2

(∆t)v′(xa)− 1
)

(Ca+1,b − Ca−1,b)

+
1
2

(
∆t
∆x

)2

v2(xa)(Ca−1,b − 2Ca,b + Ca+1,b).

(3.16)

The initial condition implies:

Ca,0 =
1

2∆x

∫ xa+1

xa−1

C0(x)dx for 0 ≤ a ≤M. (3.17)

The boundary conditions are implemented using 2 ghost-cells on the left and right of the

spatial domain. Given that the velocity is always positive, the boundary conditions can only be

prescribed on the left; we use zero-order extrapolation for the right boundary condition:

C−1,b =
1

∆t

∫ tb+1

tb

q(t)
v(0)

dt and CM+1,b = CM,b for 1 ≤ b ≤ N. (3.18)

Finally, when choosing the space and time steps, the Courant-Friedrichs-Lewy (CFL)

condition has to be verified: ∣∣∣∣v(x)∆t
∆x

∣∣∣∣ ≤ 1 for x ∈ [0, L].
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where
∣∣∣v(x)∆t

∆x

∣∣∣ is called the Courant number. Since the Lax-Wendroff scheme is increasingly accu-

rate as the Courant number approaches to 1, the time and space steps should be chosen so that:

∆t
∆x

is slightly smaller than
1

supx∈[0,L] v(x)
.

The update equation (3.16) with initial condition (3.17) and boundary condition (3.18) can

thus be used as a constitutive model for traffic flow, which is a discretization of the system (3.15).

3.1.4 The 2D Menon Model (MM2D)

The section is based on the article [50]. The 2D Menon Model (MM2D) first partitions

the airspace into sectors called Control Volumes (CVs) or Surface Elements (SELs). These SELs are

formed by equal increments in latitudes and longitudes. To simplify the analysis, all the SELs are

treated as equal squares. Each SEL is then partitioned into eight streams, which discretize the notion

of directions within a SEL (Figure 3.2; Source: [50]). Conceptually, a ninth stream will constitute

the input/output of a SEL from an underlying airport or from altitudes above or below the desired

range of study. Each SEL will have three, five or eight entry/exit points with its neighboring SELs,

depending on its location (corner, border or center), in addition to an eventual airport beneath it.

Figure 3.2: Traffic flow directions in an SEL (i, j).
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The MM2D discretizes the time into steps of increments τ . In each time step, a number of

aircraft exit from the streams of each SEL. The flow divergence parameter β is a five-dimensional

variable. It is time dependent, and determines the percentage of aircraft that switched from streams

m to n in the SEL (i, j). The inertia parameter a is four-dimensional. It characterizes the proportion

of aircraft that will stay in a certain stream s of a SEL (i, j) in from time k to k + 1. The dynamics

of the model can be represented as follows:

x(i,j,1)(k + 1) = a(i,j,1)

8∑
m=1

β(i,j,1,m)x(i,j,m)(k) + τy(i−1,j,1)(k) + τq
depart
(i,j,1)(k), (3.19)

where x(i,j,1)(k + 1) represents the predicted number of aircraft in stream 1 of SEL(i, j) at time

step k + 1; a(i,j,1)(k) represents the fraction of aircraft that will stay in stream 1 of SEL(i, j) after

time step k; β(i,j,1,m)(k) represents the portion of aircraft that switched from streams 1 to stream m

at time step k before leaving SEL(i, j) at time step k + 1; y(i−1,j,1)(k) represents the flow at time

step k of aircraft into stream 1 of SEL(i, j) coming from SEL(i − 1, j); qdepart
(i,j,1)(k) represents the

flow at time step k of aircraft into stream 1 of SEL(i, j) coming from an airport located beneath it.

The dynamics of other streams in the SEL can be expressed in a similar way, simply by

replacing the number 1 in the index with other numbers (2, 3, · · · , 8). The output flow y is computed

as follows:

y(i,j,m)(k) =
(
1− a(i,j,m)

) 8∑
n=1

β(i,j,m,n)x(i,j,n)(k).

The implementation of the MM2D relies on a two-dimensional geometric partition of the

airspace, which is different from the other three models described in the previous sections. The

original work of the authors of the MM2D [50] did not mention how to identify the parameters (a

and β in equation (3.19) of the model). We use one year of ASDI/ETMS data for this identification

as follows: from the recorded data, we compute a and β for each day in a full year of data, and take
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the mean of the a’s and the normalized (by the rule of conservation of flows) mean of the β’s as the

parameters a and β, respectively.

Figure 3.3: An implementation of the MM2D model. Numbers represent the amount of flights in
the corresponding SELs.

Figure 3.3 shows the implementation of the MM2D model, which was performed as part

of this thesis. As can be seen from the figure, the two dimensionality of the model is captured by

the rectangular tessilation of the airspace.

3.1.5 A benchmark scenario for comparison of the models

For the comparison, three of the four models described above (MMM, the CTM(L) and

the PDE model) are implemented on the same aggregate traffic flow graph model depicted in Fig-

ure 3.5. The construction of the graph is outlined in Section 2.1 of Chapter 2. The MM2D must

be implemented on its own flow structure because of the two-dimensional nature of the model (see

Figure 3.3). The portion of airspace studied for this comparison is depicted in Figure 3.4 (FACET
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courtesy of NASA Ames [14]), and consists of 75 sectors of the Oakland, Los Angeles, Seattle, Salt

Lake City, Denver, Albuquerque and Oakland Oceanic Centers. The graph identification procedure

relies on the notion of a path, illustrated in Figure 2.2. We use a full year of ASDI/ETMS data for

this identification. The complete resulting graph of the entire NAS is shown in Figure 3.5 which

covers the region in Figure 3.4. For the MMM, we will use β splits at the nodes where traffic is

diverging, following the procedure outlined in the original article [49] and modified according to

Section 3.1.2. For the two other models, we will use the notion of paths, linking any origin to any

destination in the graph. This idea is sometimes referred to as the colored flow paradigm, which is an

example of multicommodity flows in the network flow and combinatorial optimization literature [4].

This enables us to avoid the identification of the β split parameters and the resulting inaccuracies of

this model, and most importantly, this uses the fact that the destinations of the aircraft are known

before take off.

Using the terminology presented before and illustrated in Figure 2.2, the graph used for

this study has 648 paths, 437 links, 12,574 cells (MMM), 39,776 cells (CTM(L)), and 128,500 grid

points (PDE model).

The parameter identification used for the MMM is straightforward: following the work

in [49], we average all the velocities of all aircraft over one year for the airspace of interest. For the

CTM(L) and the PDE model, we do it path by path. An example of velocity fit for one path is shown

in Figure 3.6. The β split coefficients used for the MMM are computed by dividing the number of

aircraft on a branch from a split by the total number of aircraft exiting the split. The cell dimension

in the MMM is computed as the distance traveled by an aircraft in one minute (the time step set for

the simulation). Since the average velocity is 480 knots, this gives a cell dimension of about 15 km.
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Figure 3.4: Map of the portion of airspace considered in this study: Oakland ARTCC (ZOA),
Los Angeles ARTCC (ZLA), Salt Lake City ARTCC (ZLC), Seattle ARTCC (ZSE), a portion of
Denver ARTCC (ZDV), a portion of Albuquerque ARTCC (ZAB), and a portion of Oakland Oceanic
ARTCC. Map obtained using the software FACET.
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Figure 3.5: Top: An example of flight tracks for the full NAS. Bottom: Graph model representing
the flow patterns above.
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For the CTM(L), the cell dimension is time-based and is one minute in length.

Figure 3.6: Aggregation of velocities along a path. x-axis: positions from the starting point of a
path in the model; y-axis: velocities in knots. A third order curve fit is used for the velocity profile.
Typically, flights going through this path (passing through way-points TROSE-INYOE-OAL) pop-
up from low altitude airspace and climb up to high altitudes.

3.2 Comparison of the respective performance of the models

Following the procedure of the previous chapter, the models are validated against ASDI/ETMS

data, and their respective performances are compared. The validation procedure consists in taking

filed flight plans (origin-destination and schedule for each aircraft) as inputs, performing a forward

simulation of traffic for the full NAS (with the four models), and comparing the corresponding

results with the recorded data. The input to each model is the number of aircraft entering the con-

sidered region (Figure 3.4). The predicted states (for example, sector counts) are computed from
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each model and compared with the recorded data. Simulations are performed from 8:00 a.m. GMT

on January 24th, 2005 to 8:00 a.m. GMT on January 25th, 2005.

Sector counts predicted by the four models are compared with the recorded ASDI/ETMS

data. Our study shows that all the sector counts predicted by the four models and ASDI/ETMS data

differ from the true counts by noise of a non-negligible magnitude for the following reasons: (i) for

the CTM(L), the travel time on a link in the network is computed as the average travel time for all

flights in the data set used for the identification; (ii) for the PDE model, the velocity profile of each

path is filtered from sampled velocities and only several modes are preserved; (iii) for the MMM,

the split ratios are computed from historical data, which usually does not match the instantaneous

ratios for a specific day, and also the MMM assumes a uniform velocity across the whole network;

(iv) for the MM2D, the parameters a and β are computed from historical data, which differ from

the actual a and β for a specific day.

Figure 3.7: Maximum sector count error of ZOA33, between simulation of the models and
ASDI/ETMS data (after filtering). The maximum error decreases as the time window increases.
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A moving average filter (MAF) technique is used to filter the sector counts for both the

recorded ASDI/ETMS data and the models’ simulation data, similar as in Section 2.3.1 in Chapter 2.

Figure 3.7 shows the results obtained when using different sizes of time window for the four models

in sector ZOA33. The maximum sector count error between the filtered ASDI/ETMS data and the

filtered simulation results of the models decreases when the size of the time window increases. In

the extreme case, in which the time window is 24 hours (the simulation time span for our study),

the error between the filtered recorded data and the filtered simulation results tends to be zero. This

occurs because the error is the difference between the average sector count from the ASDI/ETMS

data and the simulation for a full day, which is very small in general for this case. For example, for

the PDE model, the maximum errors are below two when the time window is 20 minutes. Above

20 minutes, increasing the time window does not help to significantly decrease the maximum error,

and does not make sense for the problem of interest as well.

Figure 3.8 shows the predicted and actual sector counts as a function of time in three

sectors: heavily loaded sector ZOA33, medium loaded sector ZOA32 and low loaded sector ZOA35.

The data shown in the figure is filtered by MAF. From the figures we can see that all the models

correctly predict the trends of sector counts.

3.3 Controller design

One of the contributions of this thesis is the development and implementation of optimal

control schemes for the CTM(L) developed in Chapter 2. We also outline for completeness the

strategies which would have to be applied for the other models (presented in the previous section).

Their implementation and analysis are outside the scope of this work.
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Figure 3.8: Comparison between the predictions of aircraft sector counts predicted by the four
models and the actual ASDI/ETMS data counts. Curves represent the processed sector counts after
filtering. 0 min corresponds to midnight.
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3.3.1 The Large-capacity Cell Transmission Model

The present section formulates the problem of regulating the aircraft count in different

sectors under a legal threshold so that high level TFM can be applied to comply with FAA standards.

The time horizon of the problem (order of magnitude of two hours) is discretized in N

time steps of length τ . Therefore, τ is the time spent by one aircraft in one cell in absence of ATC

action. The state of the system at time step k ∈ {0, · · · , N} is characterized by the number of

aircraft in each cell and represented by the vector xk ∈ Rn, where n is the number of cells in the

network. The control variables are denoted uk ∈ Rn for k ∈ {0, · · · , N}, where uk represents

the number of aircraft held in each cell at time step k. The input to the system at time step k ∈

{0, · · · , N} consists of the aircraft entering the network, and the number of aircraft entering each

cell at time step k is represented by the vector fk ∈ Rn. Note that, unlike in a standard control

framework terminology, we do not have control over the input, fk, which is an “exogenous forcing”

from outside the system.

Using a standard optimal control framework such as in [16], the dynamics (3.3)-(3.4)

becomes part of the constraints of the mixed integer linear program (MILP) formulation:

min
∑N

k=0 c
Txk

s.t. Exk + Luk ≤M, k ∈ {0, · · · , N − 1}

xN ∈ χf

xk+1 = Axk +Bffk +Buuk, k ∈ {0, · · · , N}

x0 = Bff0,

(3.20)

where χf ⊆ Rn is a terminal polyhedron region, and the matrices E, L and M represent the

constraints on the system: the sector counts must remain under a legal threshold, and the number
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of aircraft held in a cell cannot be greater than the number of aircraft in that cell. The objective of

the problem is to minimize the total travel time; therefore, c ∈ Rn is the vector [τ, τ, . . . , τ ]T . The

formulation of (3.20) is a MILP because (i) the objective function and the constraints are all linear

and (ii) the state variable x and control variable u are actually integer in practice.

Implementation

In order to solve (3.20) in practice, we need to encode it in a computationally efficient

manner, which is now presented. Flights are clustered on paths, as explained in section 3.2. The

set P of paths is determined from the data, as well as the number np of cells along path p ∈ P .

Within each path, cells are indexed so that flights go through cells of increasing index numbers.

The notation for the state of the system, the input and the control variables are adapted to take the

paths into account. The state is reindexed, such that xk,p,i now denotes the number of aircraft in cell

i ∈ {1, · · · , np} of path p ∈ P at time step k ∈ {0, · · · , N}. The corresponding control variables

are denoted as uk,p,i for k ∈ {0, · · · , N}, p ∈ P and i ∈ {1, · · · , np}, where uk,p,i represents the

number of aircraft held in cell i of path p at time step k. The forcing inputs to the system are denoted

as fk,p, for k ∈ {0, · · · , N} and p ∈ P , where fk,p represents the number of aircraft entering the

network on path p at time step k.

The sector capacity (i.e. the maximum number of aircraft allowed in the sector) is en-

forced independently for a set S of different sectors. These sectors, referred to as sector-capacity-

constrained sectors, have capacities Cs, s ∈ S. The adapted MILP formulation of the problem is as
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follows:

min τ
∑N

k=0

∑
p∈P

∑np

i=1 xk,p,i

s.t.
∑

(p,i)∈Is xk,p,i ≤ Cs, k ∈ {0, · · · , N}, s ∈ S

0 ≤ uk,p,i ≤ xk,p,i, k ∈ {0, · · · , N}, p ∈ P, i ∈ {1, · · · , np}

xk+1,p,i = xk,p,i−1 + uk,p,i − uk,p,i−1, k ∈ {0, · · · , N − 1}, p ∈ P, i ∈ {2, · · · , np}

xk,p,1 = fk,p + uk,p,1, k ∈ {0, · · · , N}, p ∈ P

x0,p,i = 0, p ∈ P, i ∈ {2, · · · , np}

xk,p,i ∈ Z, k ∈ {0, · · · , N}, p ∈ P, i ∈ {1, · · · , np},
(3.21)

where Is is the set of cells (represented by a path p and a cell number along path p) physically

present in sector s ∈ S. The integrality of the number of aircraft in each cell ensures the integrality

of the number of aircraft held in each cell, since the input of the system is assumed to be integer.

LP relaxation of the MILP formulation

Because problem (3.21) cannot be solved in polynominal time deterministically, it is re-

laxed to a linear program (LP), which is faster to solve in practice, and theoretically polynomial

time solvable. 1

The relaxed MILP (i.e. the LP) was solved on a statistical sample of 1,000 different sets

of input parameters. 85 percent of the runs led to an integer solution. For the remaining 15 percent,

the optimal solution of the LP (OPTLP) was compared to the optimal solution of the corresponding

MILP (OPTMILP). The integrality gap α, (i.e. OPTMILP = α · OPTLP), was always smaller then

1.0015. However, the corresponding solutions are fractional, thus impractical. Several techniques
1We did not assess the usefulness of the guaranteed computational complexity of LP explicitly in the present case. In-

deed, the fact that LPs are polynomial time solvable can only be used with a thorough analysis of the constant mutiplying
of the corresponding higher order monomial.
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might apply in the future to alleviate this difficulty, in particular LP rounding, which would yield to

a suboptimal but integer solution.

On one hand, there is no guarantee of integrality of the LP solution, but on the other

hand, the running time of computing the MILPs solution is not guaranteed. Despite the limitations

of these two approaches, one conclusion can still be guaranteed from the LP approach: when it

returns no solution, it provides a certificate of infeasibility of the corresponding TFM problem with

guaranteed running time. Also, given the structure of the problem, minimizing the total travel time

is equivalent to minimizing the amount of delay assigned to the aircraft. Therefore, the number of

holding patterns provided by the LP solution is the lower bound of the number of holding patterns

for which there may exist a physical solution. In other words, no air traffic control can enforce the

sector count limitations with less holding patterns than the number of holding patterns provided by

the LP relaxation.

3.3.2 The PDE model

In this section, we study an optimal flow control problem for a network using the PDE

model derived in Section 3.1.3. This follows the earlier work performed on control of PDE models

of the NAS, in particular [9]. A similar case for highway networks was studied in [30]. We

try to mitigate congestion on the network by acting on the coefficients of the allocation matrix.

To evaluate the gradient of the objective function, we implement a continuous adjoint method to
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evaluate its performance. We consider the following problem:

min H(mij) =
∑m+n

k=1

∫ T
0

∫ Lk

0 ρk(x, t)dxdt

s.t. ∂ρk(x,t)
∂t + vk(x)∂ρk(x,t))

∂x + v′k(x)ρk(x, t) = 0, 1 ≤ k ≤ m+ n, (x, t) ∈ (0, Lk)× (0, T ]

ρk(x, 0) = ρ0,k(x), x ∈ [0, Lk]

ρi(0, t) = qi(t)
vi(0) , 1 ≤ i ≤ m, t ∈ [0, T ]

ρj(0, t) =
Pm

i=1mij(t)ρi(Li,t)vi(Li)
vj(0) , m+ 1 ≤ j ≤ m+ n, t ∈ [0, T ]

0 ≤ mij(t) ≤ 1, 1 ≤ i ≤ m, m+ 1 ≤ j ≤ m+ n∑m+n
j=m+1mij(t) = 1, 1 ≤ i ≤ m

ρk(x, t) ≤ ρmax
k , 1 ≤ k ≤ m+ n.

(3.22)

Minimizing this functional is equivalent to maximizing the outflow of the network; indeed

the value ofH represents the total amount of time aircraft spent in the network. The control variables

are the coefficients of the allocation matrix (mij(t)). This is, in fact, a case of boundary control

since as explained earlier, the density at the left of an outgoing link is directly related to the value

of (mij(t)) by:

ρj(0, t) =
∑m

i=1mij(t)ρi(Li, t)vi(Li)
vj(0)

, m+ 1 ≤ j ≤ m+ n and t ∈ [0, T ].

The first two constraints are used to make sure that the model is realistic; all the aircraft

have to leave an incoming link and enter an outgoing link. The third constraint implements a

maximum density that can not be exceeded for each link.

Adjoint methods were first introduced in the late 1980s as a tool for shape optimization,

in particular aircraft design [37]. The direct approach, which consists of calculating the gradient

of the cost functional using finite differences, is only possible when the number of control variables
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Figure 3.9: Network used for the optimization containing 16 links and 5 junctions. The links
are numbered according to the jetways they represeComparison between the predictions of aircraft
sector countsnt which are part of the ZOA ARTCC.

is small. In most real life problems, this number is too large, making this approach unfeasible. A

more efficient way of calculating gradients is to use the adjoint equations and boundary conditions,

which can be solved using numerical schemes to yield the gradient of the cost functions.

We will use this technique to determine the gradient of the functional H . We consider

links of length Lk, which in our example will be equal to the actual length of the corresponding air

traffic network links considered. We bring the reader’s attention to the fact that the following results

can be applied to any functional

H(mij) =
m+n∑
k=1

∫ T

0

∫ Lk

0
hk(ρk(x, t))dxdt,

for any functions hk(x). Note that mij does not appear explicitly in the functional, but implicitly,

through the constraints of (3.22).



99

Continuous Adjoint Method

We will present the continuous adjoint method in this section. We start by forming the

variation in the cost function:

δH = H(mij + δmij)−H(mij)

=
m∑
i=1

∫ Li

0

∫ T

0
ρi(x, t)dxdt+

m+n∑
j=m+1

∫ Lj

0

∫ T

0
(ρj(x, t) + δρj(x, t))dxdt

−
m∑
i=1

∫ Li

0

∫ T

0
ρi(x, t)dxdt−

m+n∑
j=m+1

∫ Lj

0

∫ T

0
ρj(x, t)dxdt

=
m+n∑
j=m+1

∫ Lj

0

∫ T

0
δρj(x, t)dxdt.

We then compute the variation of the constraint equation, in our case the partial differ-

ential equation verified by the density, which yields for the outgoing links (the incoming links not

being affected by the control):

∂δρj(x, t)
∂t

+ vj(x)
∂δρj(x, t)

∂x
+ v′j(x)δρj(x, t) = 0 for m+ 1 ≤ j ≤ m+ n,

with the initial condition:

δρj(x, 0) = 0,

and the boundary condition:

δρj(0, t) =
∑m

i=1 δmij(t)ρi(Li, t)vi(Li)
vj(0)

.

Since the variation of the cost function depends on δρj , we need to add a term to the

variation of the cost function to eliminate this dependence. If λj(x, t) is an arbitrary function, we

can add the scalar product of λj(x, t) with the previous equation since it is equal to zero:

δH = δH +
m+n∑
j=m+1

∫ Lj

0

∫ T

0
λj(x, t)

(
∂δρj(x, t)

∂t
+ vj(x)

∂δρj(x, t)
∂x

+ v′j(x)δρj(x, t)
)
dxdt.
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After integrating by parts:

δH = δH +
m+n∑
j=m+1

{∫ Lj

0

∫ T

0

(
−∂λj(x, t)

∂t
− ∂(vj(x)λj(x, t))

∂x
+ v′j(x)λj(x, t)

)
δρj(x, t)dxdt

+
∫ Lj

0
[λj(x, t)δρj(x, t)]T0 dx+

∫ T

0
[δρj(x, t)vj(x)λj(x, t)]

Lj

0 dt

}
.

Assembling the terms, we obtain:

δH =
m+n∑
j=m+1

∫ Lj

0

∫ T

0

(
−∂λj(x, t)

∂t
− ∂(vj(x)λj(x, t))

∂x
+ v′j(x)λj(x, t) + 1

)
δρj(x, t)dxdt

+
m+n∑
j=m+1

(∫ Lj

0
[λj(x, t)δρj(x, t)]T0 dx+

∫ T

0
[δρj(x, t)vj(x)λj(x, t)]

Lj

0 dt

)
.

In order to eliminate the dependence of δH on δρj , we make the following choice for λj :

∂λj(x,t)
∂t + vj(x)∂λj(x,t)

∂x = 1 m+ 1 ≤ j ≤ m+ n, (x, t) ∈ [0, Lj)× [0, T )

λj(x, T ) = 0 x ∈ [0, Lj ]

λj(Lj , t) = 0 t ∈ [0, T ].

(3.23)

This is the adjoint equation that will be solved to obtain λj . Using the boundary and initial

conditions for δρj and λj , we can now compute the gradient of the cost function:

∇mijH = −
m+n∑
j=m+1

m∑
i=1

vi(Li)ρi(Li, ·)λj(0, ·).

At each iteration, we solve the original and adjoint equations using an upwind finite dif-

ference scheme and modify the descent direction accordingly, using the gradient computed above,

which gives the increment in mij(·). The gradient of the cost function is used as input in a nonlin-

ear optimization method. A number of nonlinear optimization software are available, for example,

KNITRO, MINOS, NPSOL and SNOPT, the first of which is used for this dissertation.

The following algorithm was implemented and converged to a minimum of the optimiza-

tion program:
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1. Solve the partial differential equations for the density on each link.

2. Solve the adjoint equations.

3. Evaluate the gradient of the cost functional.

4. Use this result in a nonlinear optimization method.

5. Return to step 1 until numerical convergence.
Algorithm 1: Continuous adjoint method.

The method is shown for completeness. However, it is joint work, and the results are not

shown in this thesis. This optimization method was implemented on the network represented in

Figure 3.9; the links are taken from the high altitude en route jetways between Salt Lake City and

Oakland International Airport. We use jetways J56, J58-80, J84, J148, J156, J158, J198 and J199.

The input is constructed using ASDI/ETMS data. We note that without control, the flows are often

above the desirable threshold, whereas we manage to maintain the flow under the limit at all times by

applying the optimal control strategy. The method used here consists in finding an optimal routing

through the coefficients of the allocation matrix that will prevent sudden jumps in aircraft density.

These coefficients are automatically adjusted in order to allow the best repartition of aircraft on the

network. If a given link is becoming congested, the allocation coefficient that regulates the inflow

on this link will decrease and the other coefficients at this junction will correspondingly increase,

thus redirecting the aircraft to less congested links. Thus, we are able to maintain a regular spacing

between the aircraft even if sudden increases in aircraft density are registered at the entrance of the

network. In the absence of control, these jumps in aircraft density are not mitigated and eventually

allow the aircraft flow to exceed the limit. Full details of the results are shown in [73]. Note that

following the publication of [73], the problem (3.22) was shown to be a convex problem when
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discretized with a specific linear discretization scheme [77]. It is a major improvement with respect

to this formulation, which still leaves computational issues unanswered. These issues are still the

focus of ongoing research [77].

3.4 Comparison of the four models’ performance

When we compare the predictive capabilities of the four models, it can be seen that the

four models differ in accuracy. From the validation performed in Section 3.2 (see Figure 3.8 in

particular), we can see that the PDE model displays the best prediction capabilities among all the

models. As can be seen in Figure 3.8, the sector count prediction of the PDE model is closer to

the recorded ASDI/ETMS data, compared with the other three. In comparing the four models, we

will quantify each model’s error as well as its computational efficiency. The computational cost of

optimally solving problems with the four models presented here is out of the scope of this thesis.

The next chapter of the thesis will present the specific computational issues of optimal control of

the CTM(L).

3.4.1 Error analysis

Two comparisons are performed, similar to in the validation process of CTM(L) in Sec-

tion 2.3.2: cumulated occurrence of sector count error breach (S) and the instantaneous sector count

error, where S is defined as the summation of time intervals under the condition that difference

of sector counts between the simulation and ASDI/ETMS data is greater than or equal to a user-

specified capacity limitation within a certain time window. This is summarized in equation (2.21)

in Section 2.3.2.
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The time window we choose in the simulation is 1440 minutes (24 hours), i.e. T = 1440.

Different values of Cs are used, and plots of the percentage of breaches versus Cs are shown in

Figure 3.10. For example, if we choose Cs = 3, the percentage of breaches of the MMM in sector

ZOA32 is 15%, which means the predicted sector counts in ZOA32 by the MMM differ from the

ASDI/ETMS data by at least three aircraft for 15% of the time. As the value of Cs increases, the

breach length for each model tends to zero. This is because Cs is the aircraft count error limit. The

PDE model is close to zero breach when the aircraft count error limit is less than five, which has the

best predictive performance. The aircraft count error limits that bring the CTM(L) and the MMM

to zero breach are higher than the PDE model, while the MM2D requires the largest aircraft count

error to bring zero breach.

Figure 3.10: Cumulative distribution of breach of sector count error for high load sector ZOA33
(unit is % of the time).

The instantaneous sector count error analysis is performed as well. This error is the dif-

ference between the models’ aircraft count and the actual aircraft count for each sector, computed
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from the recorded ASDI/ETMS data at each time step in the simulation. The corresponding relative

error is the ratio between the absolute instantaneous error and the actual count. Statistics of the

absolute instantaneous error and the relative instantaneous error for sector ZOA33 as a function of

time for a day are presented in Table 3.2.

Number 1 2 3 4 5

Name ZOA13 ZOA14 ZOA15 ZOA31 ZOA32

Number 6 7 8 9 10

Name ZOA33 ZOA34 ZOA35 ZOA36 ZOA43

Table 3.1: Indices for a portion of the considered sectors in Oakland Center (numbers refer to
Figure 3.11).

Absolute error (aircraft) Mean Max Variance

MMM 1.5456 9 2.4695

MM2D 3.5241 15.8750 12.4788

CTM(L) 1.2373 7 1.7758

PDE 0.7119 5 0.6328

Relative error Mean Max Variance

MMM 0.2706 2.5000 0.0933

MM2D 0.5204 2.3105 0.1579

CTM(L) 0.2000 3 0.0669

PDE 0.1160 2 0.0288

Table 3.2: Instantaneous error (absolute error and relative error) statistics for high load sector
ZOA33 on January 1st, 2005.
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Figure 3.11 shows a summary of the max/mean error of the sector counts, and the error

variance as well. From Figure 3.11, we can see that the PDE model exhibits less error and less

variance than the other three.

The MM2D model has the largest predictive errors among the four for two major reasons:

(i) The fineness of MM2D depends on the SEL size, a 1◦×1◦ latitude-longitude tessellation in [50],

which is coarse compared with other models. With smaller SEL size, MM2D has more states which

increases the computational complexity of the model. (ii) The parameters of MM2D (a and β) are

assumed to be constant, which usually differ from the actual parameters in the time of interest in the

real system.

3.4.2 Computational efficiency

The respective performance of the models are compared (forward simulation). This en-

ables us to assess their computational tractability. For models based on the network graph (the

CTM(L), the MMM and the PDE model), it takes approximately 45 minutes to convert the aggre-

gate traffic flow graph model referred to in Section 3.1.5 according to each model’s specifications 2,

while the MM2D model needs approximately three days to identify the system parameters (a and

β) using a full year of ASDI/ETMS data. Table 3.3 lists the CPU time and memory usage for the

four models to predict sector counts. The analysis is done for 75 high altitude sectors in Figure 3.4.

The computations are performed on a 1.6 GHz CPU, 2 GB RAM PC running Linux, using the C++

programming language. The CTM(L) has the fastest running time (20 minutes), which is about

10 times faster than the PDE model and 15 times faster than the MMM. The running time of the

MM2D is relatively faster than the PDE model and the MMM. The difference between the CTM(L)
2Constructing the graph model alone needs four days, using a full year of ASDI/ETMS data.
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and the PDE model is that the time increments required for a PDE model simulation are smaller

than the delay unit used in the CTM(L). The reason why the MMM has the largest running time

is because the MMM must keep track of all the merge/diverge nodes in the system, for which a

number of matrix multiplications are needed for all merge and diverge nodes at each time step. For

the PDE model and the CTM(L), the aircraft count updates are based only on the previous counts

and the path length (see Section 3.1.5). Since the MM2D is based on a different modeling struc-

ture, i.e., by partitioning the airspace into small blocks (see Section 3.1.4; in this study, a 1◦ × 1◦

latitude-longitude tessellation is applied), the number of states of the MM2D is smaller than those

of the PDE model and the MMM, but larger than that of the CTM(L). This is why the MM2D has

comparable computational efficiency to the CTM(L).

Models CTM(L) PDE MMM MM2D

CPU time (minutes) 20 224 310 45

Max RAM usage (MB) 759 1262 697 732

Table 3.3: Computational efficiency (runs performed on a 1.6 GHz CPU, 2 GB RAM PC running
Linux, using C++).

3.5 Conclusion

Four Eulerian models were implemented and compared in this thesis. We started with

the Large-capacity Cell Transmission Model, and then presented a modified version of the Menon

model adapted to fit a general network topology. We also presented a new application of the Lax

Wendroff scheme to a partial differential equation representing air traffic flow. Finally, we imple-

mented the two-dimensional Menon model. The models were applied to high altitude traffic for six
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Air Route Traffic Control Centers in the National Airspace System. Each model was used for simu-

lation over an entire day. Compared to flight data, the models show accurate predictive capabilities.

The models were also compared in terms of their computational time and memory requirements.

Control strategies were designed and implemented on similar benchmark scenarios for two of the

models that were also compared.
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Figure 3.11: Left: Summary of the absolute instantaneous error of aircraft sector count. Right:
The relative error summary. Numbers on the y-axis correspond to the sectors listed in Table 3.1.
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Chapter 4

Optimization-based Traffic Flow

Management

In this chapter, a dual decomposition method is developed to solve the problem of min-

imizing the total travel time of flights in the National Airspace System of the United States. The

method uses the flow model developed in Chapter 2 of this thesis. Given flight departures and

destinations, we can solve the problem of finding optimal en route delay control actions which fol-

low sector capacity constraints while minimizing the total flight time for all the flights in the NAS.

The problem is formulated as an integer program (IP) with billions of variables and constraints,

which is relaxed to a linear program (LP) for computational tractability. Solving the global LP

directly is prohibitively complex due to the high dimensions of the state space variables and the

constraints. A method based on dual decomposition is developed to solve the large scale linear

program (LSLP) [10] resulting from this problem formulation.

The method of dual decomposition has been used since the 1960’s with the historical
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work of Dantzig and Wolfe [24]. A good, modern reference of dual decomposition is Chapter 6 in

the book of Bertsekas [10]. The dual decomposition method has been applied in engineering, such

as in rate control for communication networks [38], and to networking problems for simultaneous

routing and resource allocation [78]. Recently, the dual decomposition method was presented in

survey [19] in an effort towards a systematic understanding of “layering” as “optimization decom-

position,” where the overall communication network is modeled by a generalized network utility

maximization problem, and each layer corresponds to a decomposed subproblem. Alternative de-

composition methods were also applied in network utility maximization problems to obtain differ-

ent distributed algorithms [74; 57]. The dual decomposition method was also recently used to solve

large computationally intractable problems for formation flight with multiple cooperative agents,

which resulted in an algorithm that is easily implementable in a decentralized manner [60].

In this chapter, it will be shown that the dual decomposition method is particularly well

suited to the network structure of the aggregate traffic flow model, CTM(L), which is described in

Chapter 2. It breaks the LSLP into a sequence of small LP problems (subproblems), which are much

more tractable and can be solved very efficiently in real-time. It consists of an iterative algorithm,

in which the subproblems are solved involving their own local variables as well as the variables of

subproblems they are coupled with.

4.1 Customization of CTM(L) for dual decomposition

The CTM(L) model is introduced in Chapter 2. To simplify the notations for the optimiza-

tion problem in this chapter, the dynamics of CTM(L) are revisited in this section. The notational

changes are required to make the dual decomposition method clear.
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The behavior of air traffic flow on a single link can be modeled by a deterministic linear

dynamical system with a unit time delay, following Chapter 2:

xi(k + 1) = Aixi(k) +Bi
1ui(k) +Bi

2fi(k), (4.1)

y(k) = C̃ixi(k), (4.2)

where xi(k) = [xmi
i (k), · · · , x1

i (k)]T is the state vector whose elements represent the correspond-

ing aircraft counts in each cell of link i at time step k, and mi is the number of cells in the link. The

forcing input, fi(k), is a scalar that denotes the entry count onto link i during a unit time interval

from k to k + 1, and the control input, ui(k), is an mi × 1 vector, representing delay control. The

output, y(k), is the aircraft count in a user-specified set of cells at time step k. The nonzero elements

of the mi × 1 vector C̃i correspond to the cells in the user-specified set, and are equal to one. Ai is

anmi×mi nilpotent matrix with 1’s on its super-diagonal. Bi
2 = [0, · · · , 0, 1]T is the forcing vector

with mi elements, and Bi
1 is the mi ×mi holding pattern matrix, in which all nonzero elements are

1 on the diagonal and −1 on the super-diagonal. 1

Based on the link level model, it is straightforward to build a sector level model using the

same technique. Suppose there are n links in a sector, then the dynamics for the sector level model

can be described as:

x(k + 1) = Ax(k) +B1u(k) +B2f(k), (4.3)

y(k) = C̃x(k), (4.4)

where x(k) = [xn(k), · · · , x1(k)]T denotes the state, and f(k) = [fn(k), · · · , f1(k)]T is the forc-

ing input vector (the entry count onto the sector). The control input vector is u(k) = [un(k), · · · , u1(k)]T .

1Bi
1 and Bi

2 are defined as Bi
u and Bi

f in Chapter 2, respectively.
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The vector y(k) represents the aircraft count in a user-specified set of cells at time step k. The ma-

trices A, B1 and B2 are block diagonal, with block elements associated with each link in the sector.

For example, A = diag(An, · · · , A1) with Ai’s defined by equation (4.1). In the above model, the

matrices A, B1 and B2 are sparse and highly structured, which can be exploited to develop efficient

algorithms for optimization using this model 2.

When building a NAS-wide model (at the ARTCC level) flights are first clustered based

on their origin-destination (source-sink) pairs in the network. Each pair corresponds to a path

consisting of links between these nodes. If two or more paths have one link in common, this link

will be duplicated. Therefore, the NAS-wide model can also be cast in the same framework of (4.3-

4.4) and the corresponding x(k) includes all cells of the complete network. The forcing input, f(k),

is now the entry count into the NAS. The output, y(k), denotes the aircraft count in a user-specified

set of cells at time step k.

4.2 Problem formulation

4.2.1 Notations, nomenclature

The following notations are used to formulate the optimization problem presented in the

rest of the chapter.

• S =
{
s1, s2, · · · , s|S|

}
: set of sectors in the NAS. |S| denotes total number of sectors in the

NAS.

• V =
{
v1, v2, · · · , v|V |

}
: set of vertices, defined in Section 2.1.2. |V | denotes total number of

vertices in the NAS model constructed earlier.
2B1 and B2 are defined as Bu and Bf in Chapter 2, respectively.
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• E =
{
e1, e2, · · · , e|E|

}
: set of links (Section 2.1.2). Link em = (vi, vj), or simply em =

(i, j), corresponds to an ordered pair of vertices.

• K =
{
ko1,d1 , ko2,d2 , · · · , ko|K|,d|K|

}
, or simply K =

{
k1, k2, · · · , k|K|

}
: set of origin-

destination (OD) pairs: origin (source) ok, destination (sink) dk. |K| denotes total number of

OD pairs. In this chapter, OD pairs can also be understood as “paths,” because given an OD

pair, a path is uniquely defined: no multiple paths exist between a single OD pair.3

• T : time horizon of the optimization.

• Qs ⊂ E: set of cells in sector s ∈ S. (j, k) ∈ Qs means the j-th cell on path k is in Qs

(therefore in sector s).

• x(i, j, t) or xj,it : state of cells in the dynamical system. xj,it represents the number of air-

craft in the j-th cell on path i (namely cell (i, j); defined in Section 2.1.2) at time t. The

vector xkt or xk(t) is used to denote the aggregation of states on path k at time t: xkt =

[x(k, 1, t), x(k, 2, t), · · · , x(k, n(k), t)]T , where n(k) is the total number of cells on path k.

The vector xk is the aggregation of states on path k: xk =
[
xk1;xk2; · · · ;xkT

]
. The vector x(t)

or xt is the aggregation of states at time t: xt =
[
x1
t ;x

2
t ; · · · ;xkt ; · · · ;x|K|t

]
. x represents the

vector of all the states: x = [x(1);x(2); · · · ;x(T )].

• u(i, j, t) or uj,it : delay control in cell (i, j) at time t, representing number of delay controlled

aircraft in the j-th cell on path i at time t. The vector ukt or uk(t) is used to denote the

aggregation of controls on path k at time t: ukt = [u(k, 1, t), u(k, 2, t), · · · , u(k, n(k), t)]T ,

where n(k) is total number of cells on path k. The vector uk is the aggregation of the controls

3This feature can easily adapt to cases of multiple paths between an OD pair. It is omitted in this chapter for simplicity
of the description.
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on path k: uk =
[
uk1;uk2; · · · ;ukT

]
. The vector u(t) or ut is the aggregation of controls at

time t: ut =
[
u1
t ;u

2
t ; · · · ;ukt ; · · · ;u|K|t

]
. u represents the vector of all the controls: u =

[u(1);u(2); · · · ;u(T )].

• c(i, j), i = 1, · · · , |K|, j = 1, · · · , ni (ni is the number of cells on path i), means the

cost associated with flying through cell (i, j), which is the travel time of a flight through

cell (i, j). c(i, j) = 1 represents one minute travel time in the present CTM(L). Let ck

represent an aggregation of costs on path k: ck = [c(k, 1), c(k, 2), · · · , c(k, n(k))]T , and let

c =
[
c1; c2; · · · ; c|K|

]
.

• Cs(t), s = 1, · · · , |S|: sector capacity for sector s at time t. The sector capacities are time

dependent because the usage of airspace is dynamic: capacity can change due to weather

or operations. Denote C(t) =
[
C1(t), C2(t), · · · , C|S|(t)

]T , was the aggregation of capac-

ity constraints at time t, and C = [C(1);C(2); · · · ;C(T )] as the aggregation of all sector

capacities at all times.

• Slack variables Zks (t), s = 1, · · · , |S|, k = 1, · · · , |K|, represent the number of aircraft

in sector s on path k at time t: Zks (t) =
∑

(j,k)∈Qs
x(k, j, t), where (j, k) is the j-th

cell on path k and Qs is the set of links in sector s. Let Zk(t) denote the aggregation

of slack variables Zks (t) on path k at time t: Zk(t) =
[
Zk1 (t), Zk2 (t), · · · , Zk|S|(t)

]T
, and

Zk = [Zk(1);Zk(2); · · · ;Zk(T )] are slack variables associated with path k. Let Z(t) de-

note the aggregation of all slack variables at time t: Z(t) =
[
Z1(t);Z2(t); · · · ;Z |K|(t)

]
. Let

Z = [Z(1);Z(2); · · · ;Z(T )] be the aggregation of all slack variables.

• T0 = {0, · · · , T − 1}: set of time indices from 0 to T − 1.
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• T1 = {1, · · · , T}: set of time indices from 1 to T .

• T = {0, · · · , T}: set of time indices from 0 to T .

• S = {1, · · · , |S|}: set of sector indices.

• K = {1, · · · , |K|}: set of path indices.

• Z+: the non-negative integer set.

4.2.2 Formulation

As was explained in the previous chapter of the thesis, the problem of minimizing the

total travel time of the flights in the NAS can be formulated as follows:

min
x,u

T∑
t=0

cTxt (4.5)

s.t. x0 = B2f0 (4.6)

xt+1 = Axt +B1ut +B2ft, t ∈ T0 (4.7)∑
(i,j)∈Qs

xi,jt ≤ Cs(t), s ∈ S, t ∈ T (4.8)

u ≤ x (4.9)

x ⊂ Z+ (4.10)

u ⊂ Z+. (4.11)

The objective function (4.5) encodes the minimization of the total travel time for all the

flights in the NAS for the time horizon of interest. The constraint (4.6) represents the initial con-

dition, i.e., the airborne flights at the beginning of optimization. The constraint (4.7) encodes the
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dynamics of the system. The constraint (4.8) enforces the capacity constraint for every sector, mean-

ing that the number of aircraft in the sector cannot exceed the sector capacity. The constraint (4.9)

is the control constraint for every cell: the number of delay controlled aircraft cannot exceed the

total number of aircraft in the cell. Constraints (4.10) and (4.11) represent the non-negativity integer

constraint on the states and controls, respectively.

4.2.3 Comments on this optimization formulation

Using the framework above, different objective functions can be used for other optimiza-

tion purposes. In particular, as long as the objective function is convex, there exist efficient algo-

rithms to solve the optimization problem [17; 10]. Moreover, when the terms in the objective func-

tion are seperable path by path, the dual decomposition method described in the rest of this chapter

can be applied following the algorithm described in Section 4.3. This is one of the main contribu-

tions of the dissertation, which makes this large scale optimization computationally tractable.

4.3 Dual decomposition

In the model, there are approximately 100,000 paths, and every path usually has hundreds

of cells. In order to perform two-hour TFM (t = 1, · · · , 120), the problem consists of about five

billion states and controls (x(i, j, t) and u(i, j, t)); the number of constraints is of the same order

(billions). The formulation in Section 4.2.2 is an integer program (IP), which is computationally

challenging to solve efficiently. It is very unlikely that at the time this dissertation is written, any

computational software could solve a MILP of this size in reasonable time on a reasonable com-

putational platform (maybe with the exception of computer clusters in National Labs). The cost of



117

the relaxation of this MILP itself is also enormous, and solving this relaxation on a regular com-

puter is most likely an impossible task with today’s computing capabilities. This chapter solves this

problem using the algorithmic approach of dual decomposition. To make the problem computation-

ally tractable, we relax the last two constraints (4.10) and (4.11) to u ≥ 0, and as a consequence,

x ≥ u ≥ 0, by constraint (4.9). The formulation is now a linear program (LP):

min
x,u

T∑
t=0

cTxt (4.12)

s.t. x0 = B2f0 (4.13)

xt+1 = Axt +B1ut +B2ft, t ∈ T0 (4.14)∑
(i,j)∈Qs

xi,jt ≤ Cs(t), s ∈ S, t ∈ T (4.15)

0 ≤ ut ≤ xt, t ∈ T. (4.16)

However, LP relaxation does not change the size of the problem: we still have the same

number of variables and constraints as in the IP formulation. Now, we apply the dual decomposition

method [10] to solve the large scale LP.

Step 1 Decompose the terms path by path. The objective function can be rewritten as a summa-

tion of the total travel time of flights along each path, where the path index is denoted by k. Each

constraint can also be written path by path, which is also indexed by k for the k-th path.
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min
x,u

|K|∑
k=1

(
T∑
t=0

ck
T
xkt

)

s.t. xk0 = Bk
2f

k
0 , k ∈ K

xkt+1 = Akxkt +Bk
1u

k
t +Bk

2f
k
t , t ∈ T0, k ∈ K

0 ≤ ukt ≤ xkt , t ∈ T, k ∈ K

|K|∑
k=1

∑
(i,k)∈Qs

xi,kt ≤ Cs(t), s ∈ S, t ∈ T.

Step 2 Introduce slack variables Zks (t), Z(t) and Z, as defined in Section 4.2.1.

min
x,u,Z

|K|∑
k=1

(
T∑
t=0

ck
T
xkt

)

s.t. xk0 = Bk
2f

k
0 , k ∈ K

xkt+1 = Akxkt +Bk
1u

k
t +Bk

2f
k
t , t ∈ T0, k ∈ K

0 ≤ ukt ≤ xkt , t ∈ T, k ∈ K∑
(i,k)∈Qs

xi,kt = Zks (t), s ∈ S, k ∈ K, t ∈ T

|K|∑
k=1

Zks (t) ≤ Cs(t), s ∈ S, t ∈ T.

Step 3 Form the partial Lagrangian for the last constraints,

|K|∑
k=1

Zks (t) ≤ Cs(t), s ∈ S, t ∈ T,

and express the problem in an equivalent partial-Lagrangian form as:
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p∗ := min
x,u,Z

max
λ≥0

|K|∑
k=1

(
T∑
t=0

ck
T
xkt

)
+

T∑
t=0

|S|∑
s=1

λs(t)

 |K|∑
k=1

Zks (t)− Cs(t)

 (4.17)

s.t. xk0 = Bk
2f

k
0 , k ∈ K

xkt+1 = Akxkt +Bk
1u

k
t +Bk

2f
k
t , t ∈ T0, k ∈ K

0 ≤ ukt ≤ xkt , t ∈ T, k ∈ K∑
(i,k)∈Qs

xi,kt = Zks (t), s ∈ S, k ∈ K, t ∈ T.

where p∗ denotes the primal optimal value of the problem. The λs(t), s = 1, · · · , |S|, t = 0, · · · , T ,

are Lagrange multipliers. The aggregation of all Lagrange multipliers (over space and time) is

denoted by λ = {λs(t) | s = 1, · · · , |S|, t = 0, · · · , T}.

Step 4 Switch the min and max operators, and obtain the dual problem:

d∗ := max
λ≥0

min
x,u,Z

|K|∑
k=1

(
T∑
t=0

ck
T
xkt

)
+

T∑
t=0

|S|∑
s=1

λs(t)

 |K|∑
k=1

Zks (t)− Cs(t)

 (4.18)

s.t. xk0 = Bk
2f

k
0 , k ∈ K

xkt+1 = Akxkt +Bk
1u

k
t +Bk

2f
k
t , t ∈ T0, k ∈ K

0 ≤ ukt ≤ xkt , t ∈ T, k ∈ K∑
(i,k)∈Qs

xi,kt = Zks (t), s ∈ S, k ∈ K, t ∈ T.

where d∗ denotes the optimal value of the dual problem. Notice that the primal and dual functions

are both linear. We assume that Slater’s condition for constraint qualifications [17; 10] is satisfied,
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i.e., there exists a feasible solution x, u and Z such that the capacity constraints hold with strict

inequality:
|K|∑
k=1

Zks (t) < Cs(t), s ∈ S, t ∈ T.

This is always true in practice: when the initial airborne aircraft strictly satisfy the capacity con-

staints, i.e.,
∑|K|

k=1 Z
k
s (0) < Cs(t) for all s = 1, · · · , |S|, t = 0, · · · , T , we can hold all of them

in their sectors by delay controls, and apply “do-not-fly” to all other departure flights by holding

them on the ground. While this is not a feasible “physical” solution, it provides the mathematical

requirements of the Slater’s condition. With this assumption, the optimal values of the dual problem

(4.18) and the primal problem (4.17) are equal [17; 10]. This allows us to solve the primal (4.17)

via the dual (4.18).

Step 5 Re-arrange the terms in the objective function of the dual problem (4.18) to group the

terms path by path:

max
λ≥0

min
x,u,Z

|K|∑
k=1

(
T∑
t=0

ck
T
xkt

)
+

T∑
t=0

|S|∑
s=1

λs(t)

 |K|∑
k=1

Zks (t)− Cs(t)


= max

λ≥0
min
x,u,Z

|K|∑
k=1

(
T∑
t=0

ck
T
xkt

)
+

T∑
t=0

|S|∑
s=1

|K|∑
k=1

λs(t)Zks (t)−
T∑
t=0

|S|∑
s=1

λs(t)Cs(t)

= max
λ≥0

−
T∑
t=0

|S|∑
s=1

λs(t)Cs(t) + min
x,u,Z

|K|∑
k=1

(
T∑
t=0

ck
T
xkt

)
+
|K|∑
k=1

T∑
t=0

|S|∑
s=1

λs(t)Zks (t)


= max

λ≥0

−
T∑
t=0

|S|∑
s=1

λs(t)Cs(t) + min
x,u,Z

|K|∑
k=1

 T∑
t=0

ck
T
xkt +

T∑
t=0

|S|∑
s=1

λs(t)Zks (t)


= max

λ≥0

−
T∑
t=0

|S|∑
s=1

λs(t)Cs(t) +
|K|∑
k=1

min
x,u,Zk

T∑
t=0

ck
T
xkt +

T∑
t=0

|S|∑
s=1

λs(t)Zks (t)


= max

λ≥0

−
T∑
t=0

|S|∑
s=1

λs(t)Cs(t) +
|K|∑
k=1

dk
∗
(λ)

 ,
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where

dk
∗
(λ) = min

x,u,Zk

T∑
t=0

ck
T
xkt +

T∑
t=0

|S|∑
s=1

λs(t)Zks (t),

which is actually the subproblem for path k.

Step 6 Iteration procedure. At each iteration, the master problem provides updated Lagrange

multipliers λ for the subproblems, while the subproblems compute the optimal controls u and states

x for the master problem.

• Subproblems dk∗(λ), k ∈ K

min
x,u,Zk

T∑
t=0

ck
T
xkt +

T∑
t=0

|S|∑
s=1

λs(t)Zks (t) (4.19)

s.t. xk0 = Bk
2f

k
0

xkt+1 = Akxkt +Bk
1u

k
t +Bk

2f
k
t , t ∈ T0

0 ≤ ukt ≤ xkt , t ∈ T∑
(i,k)∈Qs

xi,kt = Zks (t), s ∈ S, t ∈ T.

There are |K| (number of paths) subproblems.

• Master problem

d∗(λ) = max
λ≥0

−
T∑
t=0

|S|∑
s=1

λs(t)Cs(t) +
|K|∑
k=1

dk
∗
(λ)

 . (4.20)

To solve the dual problem (4.18), or (4.20), we need to compute the subgradient of d∗(λ).

In the subgradient method used in this study, we start with initial λ = λ0 > 0. At each iteration

step i = 1, 2, 3, · · · , we compute a subgradient of the dual function (4.18):

g(t) = −

 |K|∑
k=1

Zk(t)− C(t)

 , t = 0, · · · , T.
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Then we update the dual variable (Lagrange multiplier, in this formulation) by

λ(t) := (λ(t)− αig(t))+, t = 0, · · · , T,

where (·)+ denotes the non-negative part of a vector (i.e., projection onto the non-negative orthant),

and αi is the subgradient step size rule, which is any nonsummable positive sequence that converges

to zero [17]:

αi → 0,
∞∑
i=1

αi =∞.

In this study, we use the diminishing step size rule αi = 1/
√
i+ 1.

Proof of convergence of the above algorithm can be found in Chapter 2 of [68]. Numerous

methods to accelerate the convergence can be found in literature [68; 10].

The dual decomposition method, with the subgradient method for the master problem

outlined above, gives Algorithm 2.

Once the algorithm converges, one obtains the xkt , ukt , etc. These can be assembled into

control policies at NAS-wide level, i.e., the number of delay minutes ukt , assigned to flights on path

k at time t. The resulting traffic is given by xkt , the number of aircraft on path k at time t.

4.4 Results

The dual decomposition method was implemented in C++, with subproblems (4.19) solved

using ILOG CPLEX Concert [3]. A one-hour TFM problem was solved for the whole continental

NAS in the United States.

Figures 4.1–4.6 show the delay control situation of the sectors using the dual decompo-

sition method at different times. Sectors with a larger controlled count are colored with a darker
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Inputs:

Initial state x0.

Time horizon T .

Inputs ft, t ∈ T.

Required sector capacity constraints Cs(t), s ∈ S, t ∈ T.

Initial λ := λ0 ≥ 0.

Start: Iteration number i = 0.

repeat

i := i+ 1.

Solve the subproblems (4.19) for dk∗(λ), obtain xkt , u
k
t , Z

k(t), k ∈ K, t ∈ T.

Master algorithm subgradients g(t) = −
(∑|K|

k=1 Z
k(t)− C(t)

)
, t ∈ T.

Master algorithm update λ(t) := (λ(t)− αig(t))+, t ∈ T.

until d∗ converges or i = max iterations.

Output: xkt , ukt , t ∈ T, k ∈ K.

Algorithm 2: Dual decomposition algorithm.
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color.

Figures 4.7–4.9 show a comparison between sector counts for three sectors. For each of

them, the counts are displayed for an uncontrolled scenario (when the controls u in system (4.3) are

set to be zero) and a controlled scenario (when the controls u are optimized by the dual decomposi-

tion method). The sector capacities are also represented in the figures as a reference. As can be seen

from the solution, by generating an optimal delay allocation in the NAS, the dual decomposition

algorithm minimizes the total travel time of the flights in the entire airspace while respecting sector

capacity constraints. For example in Figure 4.8, the capacity of sector ZOB26 (a high altitude sector

in Cleveland ARTCC) is 18; when no delay control is applied, the number of flights in ZOB26 is

above 18 after 52 minutes and can reach 22 (at 55 and 56 minutes), which exceeds the sector ca-

pacity (18 flights at a time), while the number of flights stays below the sector capacity at all times

when delay control is applied. Figure 4.9 shows the situation for sector ZOB29, a neighbor sector

of ZOB26 in Cleveland ARTCC, whose capacity is 17. When no delay control is applied, the num-

ber of flights in ZOB29 is always below the capacity (under-utilized). However, with an optimal

delay control, the dual decomposition algorithm allocates delays in ZOB29, increasing its sector

load, which reaches the sector capacity at 35-37 minutes. This is exactly how dual decomposition

helps: reducing sector loads by allocating delays in under-utilized sectors (usually in under-utilized

neighbors).

The computation is done on a Dell Server PE1900 with a 2.33GHz Intel(R) Xeon(R) CPU

E5345, 8GB RAM, running Microsoft Windows Server 2003 R2, Standard x64 Edition with Ser-

vice Pack 2. The computing time for a one-hour TFM problem is about 90 minutes. With a fixed

network model of the NAS, the computing time does not significantly change with different scenar-
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Figure 4.1: Solution nine minutes after the start time, with delay control computed by the dual de-
composition algorithm. Shading of sectors indicates aircraft occupancy in each sector with control.

ios (amount of inputs, level of sector capacities, etc.). Using the fact that the dual decomposition

method is highly suitable for parallel computing, the computing time can be greatly reduced when

parallel computing facilities are available, which makes real-time NAS-wide TFM possible.



126

Figure 4.2: Solution 19 minutes after the start time, with delay control computed by the dual de-
composition algorithm. Shading of sectors indicates aircraft occupancy in each sector with control.

Figure 4.3: Solution 29 minutes after the start time, with delay control computed by the dual de-
composition algorithm. Shading of sectors indicates aircraft occupancy in each sector with control.
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Figure 4.4: Solution 39 minutes after the start time, with delay control computed by the dual de-
composition algorithm. Shading of sectors indicates aircraft occupancy in each sector with control.

Figure 4.5: Solution 49 minutes after the start time, with delay control computed by the dual de-
composition algorithm. Shading of sectors indicates aircraft occupancy in each sector with control.
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Figure 4.6: Solution 59 minutes after the start time, with delay control computed by the dual de-
composition algorithm. Shading of sectors indicates aircraft occupancy in each sector with control.

Figure 4.7: Comparison of controlled and uncontrolled sector counts in Sector ZLA16. The sector
capacity is set to be eight.
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Figure 4.8: Comparison of controlled and uncontrolled sector counts in Sector ZOB26. The sector
capacity is set to be 18.

Figure 4.9: Comparison of controlled and uncontrolled sector counts in Sector ZOB29. The sector
capacity is set to be 17.
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Chapter 5

Summary, future work

In this brief and final chapter, we summarize the work presented in this dissertation and

the systems engineering contributions.

5.1 Contributions

We presented a new Eulerian-Lagrangian model, the CTM(L), of en route air traffic flow.

The CTM(L) is based on a network graph model generated using a full year of historical air traffic

data. A flow model is plugged on the network to describe the evolution of traffic along its links. The

model is compared with three other aggregate air traffic models, in which the predictive capability

and computational efficiency of each model are compared and analyzed. Optimal control problems

are formulated for two of the air traffic models. A solution procedure is subsequently developed

for the continuous model, relying on adjoint based optimization. A dual decomposition algorithm is

designed and implemented for the CTM(L) model. It enables a computationally tractable solution of

the optimal control problem. It makes the real-time NAS-wide Traffic Flow Management problem
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possible to solve despite its billions of variables and constraints formulation.

The main contributions of this dissertation are briefly outlined below.

• A numerical parameter identification method is developed to automatically generate a multi-

commodity network model for a user-defined airspace, using ETMS/ASDI data.

• A flow-based Eulerian-Lagrangian NAS model is constructed on top of a graph-theoretic

multicommodity network model incorporating the topology of the NAS and the resulting

flow patterns. Therefore, the model is physically meaningful.

• The model is reduced to a linear time invariant dynamical system, in which the transition

matrix is nilpotent. This feature greatly facilitates the design (optimization) and analysis of

the model.

• The model is successfully validated against ASDI/ETMS air traffic data for a whole year and

for the whole NAS, i.e. 20 continental ARTCCs.

• For the first time, four aggregate Air Traffic Control models have been implemented and

compared in regards to their predictive capability and computational efficiency on the same

benchmark scenarios.

• A framework is designed for the formulation of large scale optimization problems that is

useful for NAS-wide TFM. It relies on mixed integer linear program (MILP).

• A computationally tractable optimization algorithm based on a dual decomposition method

is designed for solving the MILP formulation of the optimal control problem. This makes

a NAS-wide Traffic Flow Management problem with billions of variables and constraints

solvable in real-time.
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• The new NAS-wide model and the optimization algorithm are integrated in FACET, a soft-

ware developed at NASA Ames Research Center, in collaboration with Metron Aviation.

• A NAS-wide TFM problem is solved numerically, which include approximately 6,000 aircraft

over the course of one to four hours.

Novel and interesting features of these results include the following items:

1. Since the model takes into account the OD information, it does not have split parameters and

eliminates the diffusion problem, a difficulty commonly faced in transportation engineering

problems.

2. Since the model is control volume based (Eulerian) and has a very classical discretized linear

dynamical representation, it is computationally less expensive than discretization of partial

differential equations or other nonlinear models.

3. The model is scalable. The granularity of the model is dependent on the time step (one minute

in this study), which can be changed to different time scales and represents models at different

levels, e.g., from sector level to center level of the NAS.

5.2 Future work, broader impacts of this work

It is expected that this work will impact TFM research in the following areas.

• Incorporating airports in the CTM(L). Current CTM(L) model focuses on en route air

traffic. Airports are not part of the model because of several reasons, one of which is a lack

of air traffic data for flights close to airports at the time when this work started. It would
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be straightforward to generate additional links connecting airports to high altitude sectors,

expanding the current network model of the NAS. This will rely on either additional air traffic

data (close to airports) or other data processing procedures such as interpolation techniques,

and is the focus of ongoing work.

• Modeling the NAS with seasonal patterns. The CTM(L) model developed in this thesis is

a time invariant system. In the future, the uncertainty in en route demand and the volatility

associated with seasonal patterns will be studied, which will make the model time varying,

and further more, stochastic. A time varying/stochastic model will be able to take into account

of additional factors that have an impact on the NAS (e.g., weather or special used airspace

and operations), and sophisticated optimization algorithms (robust optimization, stochastic

optimization) will be employed for TFM problems in this generalized framework.

• Assessing en route delays. Since the CTM(L) is a path (route) based model, and the dual

decomposition algorithm uses the underlying network structure of the CTM(L), it will be

natural to use the modeling and optimization algorithms developed in this thesis for en route

delay assessment. The optimal delay control generated by the dual decomposition algorithm

can be directly interpreted by holding procedures when required. Because it complies with

approach procedures and controller instructions, it can be used to assess en route delays.

• Automated bottleneck identification in the NAS. Bottlenecks in the NAS are usually under-

stood as sections (e.g. sectors, airports) with carrying capacities substantially below those that

characterize other sections of the same route. When sensitivity analysis [17] is applied, the

formulation in Chapter 4 for the TFM problem can be used to identify the bottlenecks in the

NAS, which is related to the Lagrange multipliers in the problem (4.17) of Chapter 4. More
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efforts can be allocated to increase the capacities of identified bottlenecks while minimizing

the total effort that can be used to increase the capability of the entire NAS.

• Airspace Flow Programs. The FAA introduced a new capability in the spring of 2006 known

as the Airspace Flow Program (AFP). The AFP combines the power of Ground Delay Pro-

grams (GDPs) and Flow Constrained Areas (FCAs) to allow more efficient, effective, equi-

table and predictable management of airborne traffic in congested airspace [2]. Using the

framework of CTM(L), a model including airports will be built. The impact of weather will

be part of the model. 1 Powered by the model, traffic patterns will be studied and the problem

areas will be identified to create FCAs. Optimization algorithms will be developed, which

incorporate the dynamics of the model, FCAs in constraints. The outputs of the optimization

algorithms will be optimal air traffic control procedures including optimal departure times

and optimal en route delays. Compared to current approaches, the AFP will address unnec-

essary delays while providing better control of demand, more equity and more flexibility for

customers.

1A weather model may be developed and combined with the traffic flow model based on CTM(L).
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