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Abstract— This article investigates the problem of estimating
the state of discretized hyperbolic scalar partial differential
equations. It uses a Godunov scheme to discretize the so-
called Lighthill-Whitham-Richards equation with a triangular
flux function, and proves that the resulting nonlinear dynamical
system can be decomposed in a piecewise affine manner. Using
this explicit representation, the system is written as a switching
dynamical system (hybrid system), with an exponential number
of modes. The estimation problem is posed using Kalman
filtering in each of the linear mode, and the approach becomes
computationally tractable by tracking the mode evolution as the
estimation is performed at each time step. Numerical results are
presented using the Mobile Millennium data set, and compared
to results obtained using ensemble Kalman filtering, which is
used for estimation in traffic monitoring.

I. INTRODUCTION

Numerous traffic estimation techniques developed in the
literature rely on density-based traffic models such as the
Lighthill-Whitham-Richards (LWR) partial differential equa-
tion (PDE) [19], [23] and its discretization using the Go-
dunov scheme [15], [18], [25] also known as the Cell
Transmission Model (CTM) [6], [7] in the transportation
literature. Highway traffic monitoring systems which rely
on these models use large amounts of data from different
sources. These include inductive loop detectors (ILD) such
as the ones used in the PeMS system [4] and in-vehicle
transponders (IVTs) such as FasTrak. Recently, the amount
of available traffic data has increased tremendously since
the development of cellular phone based highway traffic
monitoring [32]. Large scale applications include traffic flow
estimation to assimilate velocity measurements [30], [31].
With this rapid increase in available data, the necessity of
using powerful statistical filters and algorithms to efficiently
assimilate the measurements has become evident.

In the 70’s, Gazis [9], [26] was among the first to use the
Kalman filter (KF) and the extended Kalman filter (EKF)
for sequential traffic state estimation. Recently, Papageorgiou
[28], [29] applied the EKF to a non-scalar traffic model [22].
The EKF has also been applied to the LWR equation in
[24]. In [30], [31] the ensemble Kalman filter is used to
assimilate velocity measurements. In [21], a switching-mode
model (SMM) has been derived from the Cell Transmission
Model (CTM), which is a nonlinear discrete time dynamical

Department of Electrical Engineering and Computer Science, University
of California, Berkeley, jerome.thai@berkeley.edu

Assistant Specialist at UC Berkeley Institute of Transportation Studies,
Berkeley, boris.prodhomme@polytechnique.edu

Associate Professor, Systems Engineering, Department of Electrical En-
gineering and Computer Sciences, Department of Civil and Environmental
Engineering, University of California, Berkeley, bayen@berkeley.edu

system. This consists in switching among different sets of
linear difference equations, defined as linear state-space
model (SSM) or modes, combined with a hidden Markov
model to describe the transitions from one mode to another.
The mixture Kalman filter algorithm [5] is employed to
assimilate data in a switching state-space model. In this
article, we show that for a triangular flux function, the
Godunov scheme applied to the LWR model (described in
[7]) is a piecewise affine (PWA) dynamic system, in which
each affine component is a mode. Contrary to the SMM,
for which an additional statistical model, namely the hidden
Markov model, is introduced, we unravel the PWA character
of the Godunov scheme. Hence, the Godunov scheme is a
special case of hybrid systems, for which there has been
considerable interests in the among researchers in academic
and industrial communities [2], [16], [17], [27].

The contribution of this article are as follows:
• An explicit formulation of the piecewive affine (PWA)

nature of the Godunov scheme and a description of the
affine components (or modes).

• A hybrid filtering algorithm in which the Kalman filter
is applied to each mode, which is a special case of EKF.

• An efficient implementation of this filtering algorithm.
The rest of the article is organized as follows: Section II,

presents the mathematical model used in the rest of the arti-
cle. Section III unravels the PWA character of the Godunov
scheme. Section IV presents a Kalman filter implementation
using the PWA character of the Godunov scheme, and Section
V some numerical results.

II. MATHEMATICAL MODEL

A. The LWR Model

Lighthill, Whitham in 1955 [19], and Richards in 1956
[23] introduced a macroscopic dynamic model of traffic
based on conservation of vehicles (II.1), using Greenshields’
hypothesis [12] of a static flow/density relationship (II.1),
known as the flux function:

q(x, t) = Q(ρ(x, t)) (II.1)

where ρ(x, t) and q(x, t) denote the density and the flow
of vehicles at location x and time t respectively, and Q is
the flux function which is assumed to be a function of the
density only. The conservation of mass can be rewritten as
follows:

∂ρ(x, t)

∂t
+
∂Q(ρ(x, t))

∂x
= 0 (II.2)
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This equation is commonly known as the Lighthill-
Whitham-Richards, or LWR, model. Different flux functions
have been suggested. They all share the same characteristics
LWR1-6:

LWR1. Greenshields’ hypothesis of a static flow/density
relationship: q = Q(ρ(x, t))

LWR2. Q(0) = Q(ρjam)=0 where the jam density ρjam
refers to extreme traffic density associated with completely
stopped traffic flow.

LWR3. The continuous portions of Q(ρ) are concave.
LWR4. V (0) = vf , and V (ρjam) = 0.
LWR5. A critical density ρc can be defined in which the

maximum flow qc is attained. Then, Q(ρ) is increasing for
ρ ≤ ρc and decrasing for ρ > ρc.

LWR6. The critical density ρc separates the flux function
into two regimes: free flow when ρ ≤ ρc and congestion
when ρ > ρc

a)

b) ρc

ρc

density density

velocity flow

ρc

free flow
velocity vf

capacity qc

V (ρ)
Q(ρ)

congestionfree flow

ρjam

ρjam ρjam

ρjam

c)

ρc ρjamρc ρjam

Fig. II.1: Speed and flow relationships for Greenshields (a), triangular
(b), and discontinuous (c).

For instance, Greenshields [12] found that freeway speed
and density could be reasonably well approximated by an
affine function. The widely used triangular velocity function
[7] assumes a constant velocity in free-flow and a hyperbolic
velocity in congestion as shown in Figure II.1:

v = VT (ρ) =

{
vf if ρ ≤ ρc
−ωf

(
1− ρjam

ρ

)
if ρ > ρc

(II.3)

and the corresponding flux function is:

QT (ρ) = ρVT (ρ)

=

{
vfρ if ρ ≤ ρc
−ωf (ρ− ρjam) if ρ > ρc

(II.4)

where ωf = vfρc/(ρjam − ρc) is the backwards propagation
wave speed.

In [1], [3], [13], a capacity drop on the order of 4-10%
in the peak flow Q(ρc) has been proposed, as the freeway
transitions into congestion (cf Figure II.1).

B. Numerical Discretization

A seminal numerical method to solve the above equations
is given by the Godunov scheme, which is based on exact
solutions to Riemann problems [10], [11]. This leads to the
construction of a nonlinear discrete time dynamical system.
The Godunov discretization scheme is applied on the LWR
PDE, where the discrete time step ∆t is indexed by t, and
the discrete space step ∆x is indexed by i:

ρt+1
i = ρti −

∆t

∆x

(
G(ρti, ρ

t
i+1)−G(ρti−1, ρ

t
i)
)

(II.5)

In order to ensure numerical stability, the time and space
steps are coupled by the CFL condition [18]: cmax

∆t
∆x ≤ 1

where cmax denotes the maximal characteristic speed.
For a family of flux functions Q(ρ) that share the same

characteristics LWR1-6 listed above, the Godunov flux can
be expressed as the minimum of the sending flow S(ρ)
from the upstream cell and the receiving flow R(ρ) from
the downstream cell (II.7,II.8,II.9) through a boundary con-
necting two cells of a homogeneous road (i.e. the upstream
and downstream cells have the same characteristics).1For the
triangular flux function:

G(ρ1, ρ2) = min(S(ρ1), R(ρ2)) (II.7)

S(ρ) =

{
Q(ρ) = vfρ if ρ ≤ ρc
qc if ρ > ρc

(II.8)

R(ρ) =

{
qc if ρ ≤ ρc
Q(ρ) = −ωf (ρ− ρjam) if ρ > ρc

(II.9)

where ρ1 is the density of the cell upstream and ρ2 is the
density of the cell downstream.

ρc

density

flow

capacity qc

R(ρ)

ρjamρc

flow

capacity qc
S(ρ)

congestionfree flow

ρjam
free flow congestion

density

Fig. II.2: Sending and receiving flows for triangular velocity function.

As shown in Figure II.2, the application of the Godunov
scheme to the flux functions introduces intuitive concepts of
supply and demand at the boundary connecting two cells. The
upstream cell supplies the flow at the boundary up to capicity.
On the other hand, when the downstream traffic is congested,
there is a decrease in demand from the downstream cell,
limiting the flow through the boundary.

1There are various definitions of the Godunov flux G(ρ1, ρ2) in the
literature, notably in [8]:

G(ρ1, ρ2) =

{
minρ∈[ρ1,ρ2]Q(ρ) if ρ1 ≤ ρ2
maxρ∈[ρ2,ρ1]Q(ρ) if ρ2 ≤ ρ1

(II.6)

This assumes that a flux function is defined at each boundary between two
cells.
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Important remark: For the rest of the article, the widely-
used triangular flux function described in [6] is chosen for
our dynamic model and results are derived from it. We also
assume for simplicity and clarity that the segment of road
we are modelling is homogeneous, i.e. the parameters of the
flux function ωf , vf , ρjam, ρc, qc are uniform along the cells
of the discretized road. All the results derived in the rest
of the article still remain valid for an heterogeneous road, in
particular the piecewise affine character of the model and the
tractibility of the Kalman filter algorithm, but the number of
modes and the complexity increase.

The explicit values taken by G(ρ1, ρ2) for a partition of the
space in different regions of the space (ρ1, ρ2) W, L, and D
are shown in Figure II.3 and defined by equations II.11. In
the triangular case:

GT (ρ1, ρ2)

=


R(ρ2) = −ωf (ρ2 − ρjam) if (ρ1, ρ2) ∈W
qc if (ρ1, ρ2) ∈ L
S(ρ1) = vfρ1 if (ρ1, ρ2) ∈ D

(II.10)

W = {(ρ1, ρ2) | ρ2 > h(ρ1) , ρ2 > ρc}
L = {(ρ1, ρ2) | ρ1 > ρc , ρ2 ≤ ρc}
D = {(ρ1, ρ2) | ρ2 ≤ h(ρ1) , ρ1 ≤ ρc}

(II.11)

The boundary between the W and D regions follows the
(ρ1, ρ2) = (ρ1, h(ρ1)) trajectory for ρ1 ≤ ρc, with:2

h(ρ1) = R̄−1(S̄(ρ1)) = − vf
ωf
ρ1 + ρjam (II.12)

where S̄ and R̄ respectively denote the restrictions of the
sending and receiving flows S and R to the sub-regions
[0, ρc) and (ρc, ρjam] respectively, which also correspond to
the left and right parts of the flux function (w.r.t. ρc), as
shown in Figure II.3. In the triangular case, W, L, D form
a polyhedral partition of the space (ρ1, ρ2):

W = {(ρ1, ρ2) | ρ2 +
vf
ωf
ρ1 > ρjam , ρ2 > ρc}

L = {(ρ1, ρ2) | ρ1 > ρc , ρ2 ≤ ρc}
D = {(ρ1, ρ2) | ρ2 +

vf
ωf
ρ1 ≤ ρjam , ρ1 ≤ ρc}

(II.13)

III. POLYHEDRAL PIECEWISE AFFINE MODEL

In the Godunov scheme (II.5), the update of the density
ρt+1
i at cell i depends on the triplet (ρti−1, ρ

t
i, ρ

t
i+1). With

∆t
∆x = α, the Godunov scheme reads:

ρt+1
i = ρti − α

(
G(ρti, ρ

t
i+1)−G(ρti−1, ρ

t
i)
)

(III.1)

2Here, we suppose that R̄ is a strictly monotonic function on (ρc, ρj ],
hence invertible, and R̄−1 denotes its inverse, which is the case for the
triangular flux function.

ρ1

ρ2

ρc density

ρc

ρc

ρ

R̄−1(S̄(ρ))

S̄(ρ)

ρ R̄−1(S̄(ρ))

flow

R̄S̄

ρ1 = ρ2

qc

R(ρ2)

S(ρ1)

ρjam

ρjam

ρjam

qc

W

LD

Fig. II.3: Values of G(ρ1, ρ2) in the space (ρ1, ρ2).

A. Modal description of the Godunov scheme
The density ρt+1

i depends on whether both pairs (ρti−1, ρ
t
i)

and (ρti, ρ
t
i+1) are in W, L, or D via G(ρti−1, ρ

t
i) and

G(ρti, ρ
t
i+1). There are nine possible combinations at cell

i, which can be reduced to seven “modes” since the pairs
(ρti−1, ρ

t
i) and (ρti, ρ

t
i+1) have ρti in common. Let us denote

by f(ρti−1, ρ
t
i, ρ

t
i+1) and fT (ρti−1, ρ

t
i, ρ

t
i+1) the vector func-

tions for the possible values of ρt+1
i for the general and

the triangular cases respectively, for which the variables are
ρti−1, ρti, and ρti+1. Table III.1 list these seven possibilities,
which can easily be derived from Figure II.3.

Mode (ρti−1, ρ
t
i) (ρti, ρ

t
i+1) f(ρti−1, ρ

t
i, ρ

t
i+1)

1 W W ρti − α(R(ρti+1)−R(ρti))

2 W L ρti − α(qc −R(ρti))

3 L W ρti − α(R(ρti+1)− qc)
4 L D ρti − α(S(ρti)− qc)
5 D W ρti − α(R(ρti+1)− S(ρti−1))

6 D L ρti − α(qc − S(ρti−1))

7 D D ρti − α(S(ρti)− S(ρti−1))

TABLE III.1: 7 × 1-dimensional column vector f(ρti−1, ρ
t
i, ρ

t
i+1) of

the different values of ρt+1
i depending on the mode.

Mode fT (ρti−1, ρ
t
i, ρ

t
i+1)

1 (1− αωf )ρti + αωfρ
t
i+1

2 (1− αωf )ρti + αωfρc

3 ρti + αωfρ
t
i+1 − αωfρc

4 (1− αvf )ρti + αvfρc

5 αvfρ
t
i−1 + ρti + αωfρ

t
i+1 − αωfρjam

6 αvfρ
t
i−1 + ρti − αvfρc

7 αvfρ
t
i−1 + (1− αvf )ρti

TABLE III.2: 7× 1-dimensional column vector fT (ρti−1, ρ
t
i, ρ

t
i+1) of

the different values of ρt+1
i depending on the mode.

For example, for the first mode, (ρti−1, ρ
t
i) and (ρti, ρ

t
i+1)

are both in W (see Figure II.3), thus G(ρti−1, ρ
t
i) = R(ρti)

and G(ρti, ρ
t
i+1) = R(ρti+1), and then ρt+1

i = ρti −
α(R(ρti+1)−R(ρti)). By extending this result to an entire link
with discrete state space indexed by i = 1, · · · , n, where n is
the number of space steps, we have an exhaustive description
of the space of “modes” along the link.
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Computational complexity: A priori, the number of modes
in Table III.1 renders the approach of mode decomposition
for estimation untractable: for n cells, the number of possible
modes at any given time is equal to 7n. Since there is a
correlation between two consecutive indices i and i+ 1, the
number of modes for the entire link reduces from 7n to an
expression in the form of a · βn + b · γn + c · δn which
lower and upper bounds are proved to be 3 ·2n and 3 ·(2.5)n

respectively (for full details, see Appendix). And we will see
later in section IV-B that the implementation of the Kalman
filter in each mode has O(n2) time complexity and O(n)
space complexity.

We define J , the Jacobian matrix of f with respect to
(ρti−1, ρ

t
i, ρ

t
i+1) in each of the modes (which are all linear):

J =

(
∂fj
∂ρk

)
j=1,··· ,7,k=i−1,i,i+1

(III.2)

Where fj is the j-th entry of the vector function f defined in
Table III.1. It is useful to make the Jacobian matrix JT of the
vector function fT explicit with respect to (ρti−1, ρ

t
i, ρ

t
i+1),

and the constant term w:

JT =



0 1− αωf αωf
0 1− αωf 0
0 1 αωf
0 1− αvf 0
αvf 1 αωf
αvf 1 0
αvf 1− αvf 0


, w =



0
αωfρc
−αωfρc
αvfρc
−αωfρjam
−αvfρc

0


(III.3)

Since fT is a linear function of (ρti−1, ρ
t
i, ρ

t
i+1) as shown

in Table III.1, we can notice that JT is constant. More
notably, the state ρt+1

i can be rewritten as:

fT (ρti−1, ρ
t
i, ρ

t
i+1) = JT

 ρti−1

ρti
ρti+1

+ w (III.4)

In the next section, we will see that the decomposition
in “modes” as shown in Table III.1 leads to a piecewise
affine formulation of the Godunov scheme in the case of the
triangular flux function.

B. Polyhedral piecewise affine formulation of the Godunov
scheme

Let us consider a link with discrete time step indexed by
t ≥ 0 and discrete space step indexed by i = 1, · · · , n,
and let us denote ρt = (ρt0, ρ

t
1, · · · , ρtn, ρtn+1) an n + 2

dimensional vector which describes the state of the link at
time t in the space S = [0, ρjam]n+2, where ρti is the density
at time t and cell i. We can note that the ghost cells 0 and

n+ 1 are included in the state of the link.3

Definition of the space of modes: Let us denote by Mn

the space of modes of the system (Mn ⊂ {1, · · · , 7}n, see
Table III.1). For m ∈ Mn, m is a vector of dimension n
for which the i-th entry mi ∈ {1, · · · , 7} is the mode at cell
i. Equivalently, each element of Mn can be described as a
sequence of regions in which the pair (ρi, ρi+1) is, for i =
0, · · · , n. Hence, we define the equivalent space of modes
M̃n ⊂ {w, l, d}n+1, and for s ∈ M̃n, s is a vector of
dimension n + 1 for which the i-th entry si is equal to l if
(ρi, ρi+1) ∈ L, for i = 0, · · · , n. As will be seen later, this
second definition gives a description of the partition of the
space S into different polyhedra Pm in which the mode is
m. See Figure III.1 for an illustration.

s ∈ M̃n

1 4 m ∈Mn2

ρ0 ρ1 ρ2 ρ3 · · · ρn ρn+1

w l d l

ρ ∈ [0, ρjam]
n+2

· · ·
· · ·

Fig. III.1: An illustration of the vectors ρ ∈ [0, ρjam]n+2, s ∈ M̃n ⊂
{w,l,d}n+1, and m ∈Mn ⊂ {1, · · · , 7}n for n cells.

The n-dimensional vector m ∈ Mn describes the mode
of the link at any time, as defined in the previous section.
At each time step, the state of the link is updated through
the following nonlinear dynamical system:

ρt+1 = Fm[ρt] if ρt ∈ Pm (III.5)

with Fm[·] an n+2 dimensional function vector, and m the
mode at time t. With ut and dt the boundary conditions
upstream and downstream at time step t, the i-th entry
ρt+1
i = Fm,i[ρ

t] is:

ρt+1
i =


fmi(ρ

t
i−1, ρ

t
i, ρ

t
i+1) for i = 1, · · · , n

ut for i = 0

dt for i = n+ 1

(III.6)

where mi denotes the i-th entry of m ∈Mn, i.e. the mode
of cell i at time step t, and fmi(ρ

t
i−1, ρ

t
i, ρ

t
i+1) is the mi-th

entry of the function vector f evaluated at (ρti−1, ρ
t
i, ρ

t
i+1).

We note that ρt+1
0 = ut and ρt+1

n+1 = dt, which means that
the ghost cells are the boundary conditions of the Godunov
scheme. For a triangular flux function, with Lmi the mi-th
line of JT and wmi

the mi-th entry of w, the update operator
of the dynamical system is:

3The values of ρt0 and ρtn+1 are given by the prescibed boundary
conditions to be imposed on the in left and right side of the domain
respectively. Note that these boundary values do not always affect the
physical domain because of the nonlinear operator (II.10), which causes
the boundary conditions to be implemented in the weak sense. For more
details, see [32] and [25].
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ρt+1
i

=


Lmi
·

 ρti−1

ρti
ρti+1

+ wmi
for i = 1, · · · , n

ut for i = 0

dt for i = n+ 1

(III.7)

When ρt ∈ Pm, the (n + 2) × (n + 2)-dimensional state-
transition matrix Am is obtained by concatenating the 3× 1
row vectors Lmi along the diagonal. It is tridiagonal with
diagonal elements {0, Jm1,2, · · · , Jmn,2, 0}, lower diagonal
elements {Jm1,1, Jm2,1, · · · , Jmn,1, 0}, and upper diagonal
elements {0, Jm1,3, Jm2,3, · · · , Jmn,3} where J (or JT ) are
defined in equations (III.2), (III.3). Equivalently:

Am =


0 · · · 0

Lm1

. . .
Lmn

0 · · · 0

 (III.8)

Let us denote bm and ct the two vectors of dimension (n+
2) with entries {0, wm1

, · · · , wmn
, 0} and {ut, 0, · · · , 0, dt}

repectively, and Pm the subset of space S where the mode is
m. The update operator of the dynamical system is piecewise
affine:

ρt+1 = Amρ
t + bm + ct if ρt ∈ Pm (III.9)

We now provide a description of the partition of the space
into the polyhedra Pm in which the mode is m. Note
that in this formula, Amρ

t represents the local (affine)
discretization of the PDE, and ct the boundary condition.

Polyhedral partition of the space: For a discretization into
n cells, we chose to describe the ensemble of modes M̃n in
sequences s ∈ {w, l, d}n+1 and define Ps the corresponding
polyhedron for each sequence. Let us define 3n+1 polyhedra
Wi, Li, and Di for i = 0, · · · , n in the space S obtained by
instantiating h(ρ1) with (II.12):

Wi = {(ρi, ρi+1) | ρi+1 +
vf
ωf
ρi > ρjam , ρi+1 > ρc}

Li = {(ρi, ρi+1) | ρi > ρc , ρi+1 ≤ ρc}
Di = {(ρi, ρi+1) | ρi+1 +

vf
ωf
ρi ≤ ρjam , ρi ≤ ρc}

(III.10)
The polyhedron Ps, in which the mode is s ∈ M̃n, can be
described as an intersection of n+ 1 polyhedra Qi:

Ps =

n⋂
i=0

Qi with Qi =


Wi if si = w

Li if si = l

Di if si = d

(III.11)

Moreover, for two different modes s and s′, and corre-
sponding polyhedra Ps =

⋂n
i=0 Qi and Ps′ =

⋂n
i=0 Q′i, we

can find an index i for which Qi and Q′i are disjoint. For
instance, suppose without loss of generality that Qi = Wi

and Q′i = Di, and we know that Wi and Di are disjoint.
Then in this case, the hyperplane {ρ | ρi+1 +

vf
ωf
ρi = ρjam}

is a seperating hyperplane between Ps and Ps′ . Hence, Ps

and Ps′ are disjoint and the family {Ps}s∈Mn
is a partition

of M̃n.

IV. HYBRID KALMAN FILTERING ESTIMATION

The Kalman filter provides the state estimate and the
covariance estimate given the sequence of measurements
y0:t, and a sequence of control parameters. We now present
a simple Hybrid Kalman filtering estimation algorithm based
on the Kalman filter in the estimated affine mode m̂ of
the Godunov scheme with n cells, as explicitly derived
in section III-A. Note that the state at time t is ρt =
(ρt0, ρ

t
1, · · · , ρtn, ρtn+1), a vector of dimension n + 2 that

includes the two ghost cells 0 and n + 1 which are the
boundary conditions.

Remark: The application of the Kalman filter in each mode
is in practice equivalent to the extended Kalman filter.
Since the dynamical system is linear in each mode, the
linearization of the Godunov scheme is equal to the system
itself. However, the Jacobian is piecewise constant and has
discontinuities at the boundaries between modes, where the
Godunov scheme is not differentiable. The boundaries of the
polyhedra are labeled to one of the polyhedra they bound as
in (III.10), where there are strict inequalities on one side
and non-strict inequalities on the other. This assumes that
the polyhedra are a true partition of the space.

A. Kalman filtering algorithm

In order to use the Kalman filter to estimate the state of the
link given a sequence of noisy observations, we model the
process by adding a white noise to the underlying dynamical
system model. The “true” state at time t+ 1, namely ρt+1,
is then given by the update equation:

ρt+1 = Amρ
t + bm + ct + ηt if ρt ∈ Pm (IV.1)

where ηt ∼ N(0, Qt) is the Gaussian zero-mean, white state
noise with covariance Qt. To apply the control update of the
Kalman filter, it is then necessary to know the mode m of
the state ρt (i.e. m such that Pm).

Additionally, the observation model for the link is given
by:

yt = Htρt + χt (IV.2)

where Ht ∈ {0, 1}pt×n is the linear observation matrix
which encodes the pt observations (each one of them being
at a discrete cell on the highway) for which the density is
observed4during discrete time step t, and n is the number
of cells along the link. The last term in equation (IV.2) is
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the white, zero mean observation noise χt ∼ N(0, Rt) with
covariance matrix Rt.

Let ρ̂t:t and P t:t be the a posteriori state estimate and
error covariance matrix at time t, and m̂ the mode estimate.
Then the predicted state estimate ρ̂t+1:t and covariance
estimate P t+1:t of the prediction step are:

ρ̂t+1:t = Am̂ρ̂
t:t + bm̂ + ct if ρ̂t:t ∈ Pm̂

P t+1:t = Am̂P
t:t(Am̂)T +Qt

(IV.3)

The measurement residual rt+1, residual covariance St+1,
Kalman gain Kt+1, updated state estimate ρ̂t+1:t+1, and
updated estimate covariance P t+1 of the update step are:

rt+1 = yt+1 −Ht+1ρ̂t+1:t

St+1 = Ht+1P t+1:t(Ht+1)T +Rt+1

Kt+1 = P t+1:t(Ht+1)T (St+1)−1

ρ̂t+1:t+1 = ρ̂t+1:t +Kt+1rt+1

P t+1:t+1 = (I −Kt+1Ht+1)P t+1:t

(IV.4)

B. Implementation and complexity

Since the number of modes grows exponentially as the
number of cells increases (see Appendix VIII), it is com-
putationally expensive to store a matrix Am̂ for each mode
m̂. Fortunately, it is possible to compute the predicted state
estimate ρ̂t+1:t and the predicted covariance estimate P t+1:t

in linear time and quadratic time respectively, without form-
ing any dense matrix Am̂. This relies on the tridiagonality of
Am̂ and the homogeneity of the segment of road considered,
which requires to store only the seven possible modes at each
cell.5

In particular, equation (III.7) gives a simple procedure to
compute ρ̂t+1:t = Fm̂[ρ̂t:t] in linear time from ρ̂t:t, JT , w,
ct, and m̂ such that ρ̂t:t ∈ Pm̂.

The double product Am̂P
t:t(Am̂)T can be computed in

quadratic time from P t:t and JT . With the entries of Am̂P
t:t

indexed from 0 to n+ 1:

(Am̂P
t:t)i,j =


Lm̂i
·

 pi−1,j

pi,j

pi+1,j

 if (i, j) ∈ {1, · · · , n}2

0 otherwise
(IV.5)

where Lm̂i
is the m̂i-th row of JT , m̂i the i-th entry of

m̂, and pi,j is the entry (i, j)-th entry of P t:t. And the
computation of the second matrix multiplication with entries
indexed from 0 to n+ 1 is:

4A data-cleaning scheme is designed based on the causes of errors in
loop detectors data deployed by PeMS (http://pems.dot.ca.gov). The raw
data is then converted into density ρti = oti/g

t
i where the occupancy oti is

the fraction of time a reference point is occupied in cell i at time t and the
g-factor gti is the average length of vehicle crossing this point. For more
information, see http://traffic.berkeley.edu.

5In the case of a heterogeneous road (i.e. a different flux function for each
cell), up to all nine possible local modes for each cell have to be stored,
which is still bound by 9× n, where n is the number of cells.

(Am̂P
t:t(Am̂)T )i,j

=

{
(qi,j−1 qi,j qi,j+1) · LTm̂j

if (i, j) ∈ {1, · · · , n}2
0 otherwise

(IV.6)
where qi,j is the entry (i, j)-th entry of Am̂P

t:t. We can
note that the first line and first column of P t:t have only
zero elements because the boundary condition ρ̂t0 = ut is
deterministic (i.e. cov(ut, ρ̂ti) = 0 for i = 1, · · · , n), and
similarly the last line and last column of P t are null since
the boundary condition ρ̂tn+1 = dt is deteministic.

The three equations (III.7, IV.5, IV.6) show that both time
complexity and space complexity of the prediction step are
O(n2).

C. Mathematical analysis

Estimation of the mode: Contrary to other models [14], [21]
in which the transition from the mode at time t to the one at
time t+1 follows a Markov model, the mode in our model is
obtained by finding the polyhedron Pm such that ρ̂t:t ∈ Pm

(see update equation (IV.1)). This is simply a reformulation
of the Godunov scheme as seen in Section III and the choice
of this deterministic model relies on the assumption that
the Godunov scheme is a good physical model for traffic
estimation.
Gaussian assumption: In the hybrid Kalman filter (H-KF),
a Kalman filter is applied to the mode given by the update
equation (IV.1). Specifically, we assume here that the system
of linear equations of the current mode holds for the whole
space S, in which case the Gaussian assumption is valid for
the updated state. In reality, the model is piecewise affine
and such a transformation on a Gaussian distribution yields
a mixture of truncated Gaussians, which does not have a
practical analytical formula.

V. NUMERICAL RESULTS

Fig. V.1: Left: experimental data location: 18-mile long stretch of I-880 in
the Bay Area on the Mobile Century site. Right: contour plot of the density
from the 29 PeMS stations (Y-axis) every 30s (X-axis).

In this section, we implement the density-based Godunov
scheme on an 18-mile section of I-880 Northbound in
the Bay Area, California (Figure V.1) combined with the
hybrid Kalman filtering presented in section IV. We use
density measurements along the I-880 from 29 loop detectors
(PeMS) every 30s on March 5th, 2012 between 7am and 8am
to compute density values and integrate them in the model.
Each cell has a length of 198m and the time step is 5s.The
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Fig. V.2: a) Computational time for an increasing section of the I-880 (measured in the number of cells) for the H-KF (dashed line), the EnKF with 50
ensembles (continuous line), the EnKF with 100 ensembles (dashed-dotted line), and the EnKF with 150 ensembles (dotted line). b) Comparison between
the density measurements (dashed line) and estimates (bold line) at one cell. Top: at cell 87, bottom: at cell 104.

output of the model is compared with the Ensemble Kalman
filtering (EnKF) with 100 ensembles, which is commonly
used in the traffic monitoring community [32].

A. Computational time

The running times of the implementation of both the H-
KF and the EnKF estimators on an Intel R© Core

TM
i5 480M

2.67GHz are shown in Figure V.2 a, for increasing portions
of the I-880 starting from East Industrial in Fremont, CA
(60 cells (∼7.5miles) span from East Industrial to Dumbarton
Bridge, and 113 cells (∼14miles) reaches San Mateo Bridge).

Mandel’s report [20] shows that the total computational
complexity of the EnKF algorithm is O(m3+m2N+mN2+
nN2) where n is the dimension of the state, m the number
of observations and N the number of ensembles. A similar
analysis shows that the computational complexity of the H-
KF is O(mn2 + m3 + nm2). As the density measurements
along the highway are sparse (i.e. m� n, N ), the computa-
tional complexities become O(N2+nN2) and O(n2) for the
EnKF and the H-KF respectively. The time complexities of
the EnKF and the H-KF are roughly linear and quadratic in
the dimension n respectively. However, when N is fixed and
n increases, the constant term in N2 + nN2 is large, which
explains the large relative difference between both running
times when n is small (cf Figure V.2 a). When n is large,
the EnKF performs better.

B. Output of the Hybrid Kalman filtering estimation

Fig. V.3: Output of the EnKF (left) and the hybrid Kalman filtering (right)
on the I-880. The time step is on the X-axis and the number of cells is on
the Y-axis.

Figure V.3 shows the contour plot of the output of the
EnKF and the H-KF estimators, which consists in the density
in the time-space domain. The regions with high density
are represented in red and the regions with low density in

blue. Both estimators give similar higher resolution scalar
fields of the density (1440 time steps by 141 cells) by
assimilating sparse density measurements (240 time steps by
29 PeMS stations, cf Figure V.1). Moreover, by removing
measurements at an arbitrary cell, Figure V.2 b empirically
shows that the estimation algorithm performs well since the
density estimate is close to the actual measurement.

VI. CONCLUSION AND FUTURE WORK

In this work we considered the Godunov scheme for the
discretization of the so-called Lighthill-Whitham-Richards
equation with a triangular diagram for the state estimation
of discretized hyperbolic scalar partial differential equations.

Assuming the parameters are the same for each cell of the
discretized model, we have shown that the space of all states
can be decomposed into polyhedra in which the nonlinear
dynamical system can be expressed in affine form. We have
also provided a description of the modes: their number grows
exponentially as the dimension increases, and each one of
them can be represented as an intersection of a linear number
of half-spaces.

We have applied a basic form of hybrid Kalman filtering
to demonstrate some computational capabilities enabled by
the piecewise affine decomposition. Despite some approxi-
mations in the estimation of the mode and in the Gaussian
assumption, the statistical filter performs well on the running
time and on the accuracy of the estimation. This motivates
the application of filters which are more tuned to the actual
piecewise affine system such as a multiple mode KF, or an
interacting multiple mode KF.
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VIII. APPENDIX
Suppose that the pair (ρ0, ρ1) is in the region W, then the list of possible

combinations in Table III.1 shows that (ρ1, ρ2) can be either in W or L.
Similarly, if (ρ0, ρ1) is in the region L, (ρ1, ρ2) can be either in W or
L, and for (ρ0, ρ1) in D, (ρ1, ρ2) can be either in W, L, or D. As an
example, figure VIII.1 describes all the possible sixteen combinations for
the first three pairs (ρ0, ρ1), (ρ1, ρ2), and (ρ2, ρ3).

We can recursively compute the number of “modes” Mk with respect
to k, where k is the number of cells of the discretized link. Let us denote
by wk , lk , and dk the number of modes for which (ρk, ρk+1) is in W, L,
and D respectively (nk = wk + lk + dk). Then we have these equations:
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WW L W D W L W L D L W D W L D

W L W D W L D

W L D(ρ0, ρ1)

(ρ1, ρ2)

(ρ2, ρ3)

Fig. VIII.1: The sixteen possible modes for the first three pairs (ρ0, ρ1),
(ρ1, ρ2), and (ρ2, ρ3).

w0 = l0 = d0 = 1
wk+1 = wk + lk + dk
lk+1 = wk + dk for k ≥ 0
dk+1 = lk + dk

(VIII.1)

Using matrix notations and equation (VIII.1):

 wk
lk
dk

 = Ak ×

 w0

l0
d0

 where A =

 1 1 1
1 0 1
0 1 1

 (VIII.2)

It is possible to compute Ak explicitly by diagonalizing the matrix A,
to obtain an explicit expression for wk , lk , and dk in the form of a.βk +
b.γk + c.δk . However, this analytical expression is unwieldy, so we will
just derive lower and upper bounds to nk . It can be proved that dk ≤ nk/2
for k ≥ 0, then we can prove recursively that 3 · 2k ≤ nk ≤ 3 · (2.5)k .

number of cells 1 2 5 10 20
number of modes 7 16 182 10426 34206521

bound without analysis 7 49 16807 282475249 8 · 1016

TABLE VIII.1: Number of modes for a homogeneous road.

Even if we have found the minimal polyhedral partition of the space,
the number of modes grows exponentially as the number of cells increases,
so it is difficult to store all the possible modes. However, at any time step,
the mode of each cell can be determined among the 7 possible modes and
constructed sequentially building up the general mode of the segment of
road.

REFERENCES

[1] K. Agyemang-Duah and F. Hall. Some issues regarding the numerical
value of freeway capacity. International Symposium on Highway
Capacity, 1991.

[2] A. Balluchi, L. Benvenutti, M. D. di Benedetto, C. Pinello, and
A. L. Sangiovanni-Vincentelli. Automative engine control and hybrid
systems: challenges and opportunities. Proc. IEEE, 88 (7):888–912,
2000.

[3] M. Cassidy and R. Bertini. Some traffic features at freeway bottle-
necks. Transportation Research, 33:25–42, 1999.

[4] C. Chen, P. Varaiya, and J. Kwon. An empirical assessment of
traffic operations. 16th International Symposium on Transportation
and Traffic Theory, pages 105–123, 2005.

[5] Rong Chen and Jun S. Liu. Mixture Kalman filters. Royal Statistical
Society, 62:493–508, 2000.

[6] C. F. Daganzo. The cell transmission model: a dynamic representation
of highway traffic consistent with the hydrodynamic theory. Trans-
portation Research Part B 28, no. 4, 28:269–287, 1994.

[7] C. F. Daganzo. The cell transmission model, part II: Network traffic.
Transportation Research Part B 29, no. 2, 29:79–93, 1995.

[8] M. Garavello and B. Piccoli. Traffic Flow on Networks. American
Institute of Mathematical Sciences, 2006.

[9] D. Gazis and C. Knapp. On-line estimation of traffic densities from
time-series of flow and speed data. Transp. Sci., 5 (3):283–301, 1971.

[10] E. Godlewski and P-A. Raviart. Numerical approximation of hyper-
bolic systems of conservation laws. Applied Mathematical Sciences,
1996.

[11] S.K. Godunov. A finite difference method for the numerical compu-
tation of discontinuous solutions of the equations of fluid dynamics.
Math. Sbornik, 47:271–306, 1959.

[12] B. D. Greenshields. A study of traffic capacity. Proceedings of the
14th annual meeting of the Highway Research Board, 14:448–477,
1934.

[13] F. Hall and K. Agyemang-Duah. Freeway capacity drop and the
definition of capacity. Transportation Research Record, pages 91–98,
1991.

[14] I. Hwang, H. Balakrishnan, and C. Tomlin. State estimation for hybrid
systems: applications to aircraft tracking. IEE Proc. Control Theory
and Applications, 153(5):556–566, Sep. 2006.

[15] J. P. Lebacque. The Godunov scheme and what it means for first order
traffic flow models. 13th International Symposium on Transportation
and Traffic Theory, pages 647–77, 1996.

[16] M. D. Lemmon, K. X. He, and I. Markovsky. Supervisory hybrid
systems. IEEE Control Systems Magazine, 19 (4):42–55, 1999.

[17] B. Lennartson, M. Tittus, B. Egardt, and S. Petterson. Hybrid systems
in process control. IEEE Control Systems Magazine, 16 (5):45–56,
1996.

[18] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhuser
Basel, 1992.

[19] M. J. Lighthill and G. B. Whitham. On Kinematic Waves II. A Theory
of Traffic Flow on Long Crowded Roads. Proceedings of the Royal
Society of London. Series A, Mathematical and Physical Sciences,
229:317–345, 1955.

[20] J. Mandel. Efficient Implementation of the Ensemble Kalman Filter.
CCM Report No. 231, 2006.

[21] L. Munoz, X. Sun, R. Horowitz, and Luis Alvarez. Traffic Density
Estimation with the Cell Transmission Model. Proceedings of the
American Control Conference, pages 3750–3755, June 2003.

[22] M. Papageorgiou, J.-M. Blosseville, and H. Hadj-Salem. Modelling
and real-time control of traffic flow on the southern part of Boulevard
Peripherique in Paris: Part I: Modelling. Transportation Research, 24
(5):345–359, 1990.

[23] P. I. Richards. Shock Waves on the Highway. Operations Research,
4:42–51, 1956.

[24] T. Schreiter, C. van Hinsbergen, F. Zuurbier, H. van Lint, and
S. Hoogendoorn. Data-model synchronization in extended Kalman
filters for accurate online traffic state estimation. 2010 Proceedings of
the Traffic Flow Theory Conference, Annecy, France, 2010.

[25] I. S. Strub and A. M. Bayen. Weak formulation of boundary
conditions for scalar conservation laws: an application to highway
traffic modeling. Int. J. Robust Nonlinear Control, 16:733–748, 2006.

[26] M. Szeto and D. Gazis. Application of Kalman filtering to the
surveillance and control of traffic systems. Transp. Sci., 6 (4):419–439,
1972.

[27] C. Tomlin, G. Pappas, and S. Sastry. Conflict resolution for air traffic
management: A study in multiagent hybrid systems. IEEE Trans.
Autom. Control, 43 (4), 1998.

[28] Y. Wang and M. Papageorgiou. Real-time freeway traffic state
estimation based on extended Kalman filter: a general approach.
Transportation Research, 39 (2):141–167, 2005.

[29] Y. Wang and M. Papageorgiou. Real-time freeway traffic state
estimation based on extended Kalman filter: A case study. Transp.
Sci., 41 (2):167, 2007.

[30] D. B. Work and A. M. Bayen. Impacts of the mobile internet
on transportation cyber-physical systems: Traffic monitoring using
smartphones. National Workshop for Research on High-Confidence
Transportation Cyber-Physical Systems: Automotive, Aviation, & Rail,
2008.

[31] D. B. Work, A. M. Bayen, and Q. Jacobson. Automotive cyber-
physical systems in the context of human mobility. National Workshop
on High-Confidence Automotive Cyber-Physical Systems, 2008.

[32] D. B. Work, S. Blandin, O. Tossavainen, B. Piccoli, and A. M. Bayen.
A Traffic Model for Velocity Data Assimilation. Applied Mathematics
Research eXpress, 2010.

2435


