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State Estimation for Polyhedral Hybrid Systems and
Applications to the Godunov Scheme for

Highway Traffic Estimation
Jérôme Thai and Alexandre M. Bayen

Abstract—This paper investigates the problem of estimating
the state of discretized hyperbolic scalar partial differential
equations. It uses a Godunov scheme to discretize the so-called
Lighthill–Whitham–Richards equation with a triangular flux func-
tion, and proves that the resulting nonlinear dynamical system can
be decomposed in a piecewise affine manner. Using this explicit
representation, the system is written as a switching dynamical
system, with a state space partitioned into an exponential number
of polyhedra in which one mode is active. We propose a feasible
approach based on the interactive multiple model (IMM) which
is a widely used algorithm for estimation of hybrid systems in the
scientific community. The number of modes is reduced based on
the geometric properties of the polyhedral partition. The k-means
algorithm is also applied on historical data to partition modes into
clusters. The performance of these algorithms are compared to
the extended Kalman filter and the ensemble Kalman filter in the
context of Highway Traffic State Estimation. In particular, we use
sparse measurements from loop detectors along a section of the
I-880 to estimate the state density for our numerical experiments.

Index Terms—Lighthill–Whitham–Richards (LWR), partial
differential equations (PDEs).

I. INTRODUCTION

PARTIAL differential equations (PDEs) are often used in
traffic as density based traffic models because they provide

a concise mathematical model to capture essential properties
of a wide variety of phenomena such as fluid flow, heat,
and electrodynamics. Based on the conservation of flow, the
Lighthill–Whitham–Richards (LWR) PDE [21], [25] and its
discretization using the Godunov scheme [14], [18], [27] have
been widely used in the scientific community for modelling
traffic, they also known as the Cell Transmission Model (CTM)
[6], [7] in the transportation literature. State of the art traffic
estimation techniques for this model include the application
of the extended Kalman filter (EKF) to the LWR PDE by
Schreiter et al. [26], and to non-scalar traffic model by
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Papageorgiou [24]. The application of the EKF to the LWR
PDE model is problematic due to the non-differentiability of
its discretization, a problem which has been partially addressed
in [3] and [29]. The ensemble Kalman filter (EnKF) has also
been applied to a velocity-based model in [30], in order to
circumvent the difficulties of non-differentiability of numerical
solutions to these PDEs such as the one presented in this paper.

The Godunov scheme applied to the LWR model for a trian-
gular flux function can be proven to lead to a piecewise affine
(PWA) hybrid system, which is one of the contributions of this
paper. Each cell of the discretized system switches between
several linear models. We define this new class of systems
as multicellular hybrid systems. The resulting switching-mode
dynamical system combines discrete dynamics modeled by a
finite automaton for the transitions between the modes and con-
tinuous dynamics in the form of linear discretized dynamical
systems. Estimation of hybrid systems has been widely studied
in past work [16], [17]. In particular, such techniques have
been successfully used for aircraft tracking in [13] in which
Bar–Shalom’s interacting multiple model (IMM) algorithm
was used [1]. Similar hybrid estimation algorithms and their
applications are described in [12], [23], [28]. While the IMM
algorithm seems a natural approach for the estimation of hybrid
systems, it is intractable when applied to the discretized LWR
PDE (thus highway models) because the combination of the
modes of each cell induce an exponential number of modes.
A priori, each cell of the discretized model can be in seven
different modes, which leads to 7n modes, where n is the
dimension of the state thus creating serious computational
challenges in the estimation problem. One possible way to
address this is with the mixture Kalman filter algorithm [5]
which handles this complexity by randomly sampling in the
space of modes.

Our work contains four contributions. To the best of our
knowledge, this is the first time that an explicit piecewise
affine decomposition of the Godunov is formulated. 1) For a
fixed mode vector m, the Godunov scheme is locally affine,
and we have an explicit formulation of the linear dynamics.
2) The domains of the mode vectors Dom(m) are also ex-
pressed with explicit linear constraints, and they form a poly-
hedral partition of the state space. Even though the IMM is
a natural algorithm for hybrid estimation, it is not tractable
because of the exponential number of modes. Hence, the second
contribution consists in proposing two methods: 3) The first
one takes advantage of the geometric properties of the space of
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modes to reduce the set of modes to the mode of the current
estimate and its adjacent modes. 4) The second one uses a
clustering algorithm on historical data to reduce the set of
modes to a representative sets: then the reduced model only
switches between these modes.

The rest of the paper is organized as follows: Section II
presents the mathematical model used and unravels the PWA
expression of the Godunov scheme. Section III presents the
polyhedral properties of the space of modes. Section IV shows
that the IMM applied to the discretized system is not tractable.
Section V presents feasible algorithms inspired from IMM
using the PWA character of the Godunov scheme and k-means.1

II. HYBRID AUTOMATON

A. LWR Model

Lighthill, Whitham in 1955 [21], and Richards in 1956 [25]
introduced a macroscopic dynamic model of traffic based on
conservation of vehicles, using Greenshields’ hypothesis [10]
of a static flow/density relationship (1), known as the flux
function:

q(x, t) = Q (ρ(x, t)) (1)

where ρ(x, t) and q(x, t) denote the density and the flow of
vehicles at location x and time t respectively. The flux function
Q is assumed to be a function of the density only. The conser-
vation of mass can be rewritten as follows:

∂ρ(x, t)

∂t
+

∂Q (ρ(x, t))

∂x
= 0, ∀(x, t) ∈ [0, L]× R+

ρ(0, t) = u(t), ρ(L, t) = d(t) ∀t ∈ R+

ρ(x, 0) = ρ0(x), ∀x ∈ [0, L] (2)

where u(t), d(t) are the upstream and downstream densities,
respectively, and ρ0(x) is the initial state [21], [25]. This equa-
tion is commonly known as the Lighthill–Whitham–Richards,
or LWR, model. Different flux functions have been suggested.

At each boundary, the ability to prescribe the value of the
solution depends on the sign of the characteristic curve (if it is
entering the domain, it can be done in the strong sense, other-
wise it cannot be done). Thus, in order for the problem to be
well posed, one needs to prescribe the boundary conditions in
the weak sense, and they can either apply at the two boundaries,
at one boundary or at none of the boundaries, depending on the
value of the function in the interior of the domain. This result
is described in detail in [2] for a compact domain. It was later
instantiated for specific PDEs, in particular in the work of [15],
and in the specific case of traffic (concave flux function) in [27].

B. Assumptions and Notations

In the rest of this paper, we will focus on the analysis of the
Godunov scheme, which is a conservative numerical scheme
for solving PDE. We assume that traffic densities are between 0
and ρjam, i.e., the density ρ(x, t) is in [0, ρjam] for all x, t.

1Code available here: https://github.com/jeromethai/hybrid-LWR-estimation

Fig. 1. Speed and flow relationships for triangular flux function.

The widely-used triangular flux function described in [6] is
also chosen for our dynamic model and results are derived from
it. It is a function of the density ρ. It assumes a constant velocity
in free-flow and a hyperbolic velocity in congestion as shown
in Fig. 1:

Q(ρ) =

{
vfρ if ρ ≤ ρc
−ωf (ρ− ρjam) if ρ > ρc

(3)

where ωf = vfρc/(ρjam − ρc) is the backward propagation
wave speed.

We also assume for simplicity and clarity that the segment of
road we are modeling is homogeneous, i.e., the parameters of
the flux function ωf , vf , ρjam, ρc, qc are uniform along the cells
of the discretized road. All the results derived in the rest of this
paper still remain valid for an heterogeneous road.

C. Godunov Scheme

A seminal numerical method to solve the above equations
is given by the Godunov scheme, which is based on exact
solutions to Riemann problems [8], [9]. This leads to the
construction of a nonlinear discrete time dynamical system. The
Godunov discretization scheme is applied on the LWR PDE,
where the discrete time step Δt is indexed by t, and the discrete
space step Δx is indexed by i:

ρt+1
i =ρti−

Δt

Δx

(
G
(
ρti, ρ

t
i+1

)
−G

(
ρti−1, ρ

t
i

))
, i=1, · · · , n.

(4)

In order to ensure numerical stability, the time and space steps
are coupled by the CFL condition [18]: cmax(Δt/Δx) ≤ 1
where cmax denotes the maximal characteristic speed.

The Godunov flux can be expressed as the minimum of the
sending flow S(ρ) from the upstream cell and the receiving flow
R(ρ) from the downstream cell through a boundary connecting
two cells of a homogeneous road (i.e., the upstream and down-
stream cells have the same characteristics). For the triangular
flux function

G(ρ1, ρ2) = min (S(ρ1), R(ρ2))

S(ρ) =

{
Q(ρ) = vfρ if ρ ≤ ρc
qc if ρ > ρc

R(ρ) =

{
qc if ρ ≤ ρc
Q(ρ) = −ωf (ρ− ρjam) if ρ > ρc

(5)

where ρ1 is the density of the cell upstream and ρ2 is the density
of the cell downstream.

As shown in Fig. 2(a), the application of the Godunov
scheme to the flux functions introduces intuitive concepts of
supply and demand at the boundary connecting two cells.
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Fig. 2. (a) Sending and receiving flows for triangular flux function. (b) Values of G(ρ1, ρ2) in the space [0, ρjam]2.

Given the partition of the space [0, ρjam]2 in different regions
W, L, and D as shown in Fig. 2(b), the function G(ρ1, ρ2)
takes different values.

Lemma 1: With a triangular flux function, the Godunov flux
(ρ1, ρ2) ∈ [0, ρjam]

2 �→ G(ρ1, ρ2) is piecewise affine:

G(ρ1, ρ2) =

⎧⎨
⎩

−ωf (ρ2 − ρjam) if (ρ1, ρ2) ∈ W
qc if (ρ1, ρ2) ∈ L
vfρ1 if (ρ1, ρ2) ∈ D

W :=

{
(ρ1, ρ2)|ρ2 +

vf
wf

ρ1 > ρjam, ρ2 > ρc

}

L := {(ρ1, ρ2)|ρ1 > ρc, ρ2 ≤ ρc}

D :=

{
(ρ1, ρ2)|ρ2 +

vf
wf

ρ1 ≤ ρjam, ρ1 ≤ ρc

}
. (6)

Proof: We recall that (ρ1, ρ2) ∈ [0, ρjam]
2. Equations (5)

imply

ρ1, ρ2 ≤ ρc =⇒ G(ρ1, ρ2)=min(vfρ1, qc)=vfρ1

ρ1, ρ2 ≥ ρc =⇒ G(ρ1, ρ2)=min (qc,−wf (ρ2 − ρjam))

= −wf (ρ2 − ρjam)

ρ1≥ρc, ρ2≤ρc =⇒ G(ρ1, ρ2)=min(qc, qc)=qc

ρ1≤ρc, ρ2≥ρc =⇒ G(ρ1, ρ2)=min (vfρ1,−wf (ρ2−ρjam)) .

The third implication proves our result for the region L.
Then, given ρ1 ≤ ρc, ρ2 ≥ ρc, G(ρ1, ρ2) = vfρ1 ⇐⇒ vfρ1 ≤
−wf (ρ2 − ρjam) ⇐⇒ρ2 + (vf/wf )ρ1 ≤ ρjam. Finally, we
note that {ρ1 ≤ ρc, ρ2 ≤ ρc} ∪ {ρ2 + (vf/wf )ρ1 ≤ ρjam} =
{ρ2 + (vf/wf )ρ1 ≤ ρjam, ρ1 ≤ ρc}, hence the definition of D
in (6). The result for W follows similarly. �

D. Godunov Scheme as a Hybrid Automaton

We now consider an entire link divided into n cells and we
add two ghost cells on the left and right sides of the domain.
Hence, the discrete state space is indexed by i=0, 1, · · · , n+ 1,
the state of the system is ρ=[ρ0, · · · , ρn+1]

T ∈ [0, ρjam]
n+2,

and the dimension is n+ 2. The density at cell i and time t
is then ρti, the ith entry of vector ρ, and the values of ρt0 and
ρtn+1 are given by the prescribed boundary conditions to be
imposed on the left and right side of the domain, respectively,
i.e., ρt0 = u(t) and ρtn+1 = d(t) for all t where u(t) and d(t)
are the upstream and downstream densities, respectively.

In the rest of this section we present a simple analysis for
the formulation of the discretized system as a piecewise affine
autonomous hybrid automaton. We will sometimes use the

lighter notation ρ+i = ρi − α(G(ρi, ρi+1)−G(ρi−1, ρi)) for
the Godunov scheme (4) with α = Δt/Δx. We rewrite (6) in
the state space [0, ρjam]

n+2:

G(ρi, ρi+1)

=

⎧⎨
⎩
−ωf (ρi+1−ρjam) if ρ∈Wi+1/2

qc if ρ∈Li+1/2

vfρi if ρ∈Di+1/2

for i = 0, · · ·n (7)

where Wi+1/2,Li+1/2,Di+1/2, i = 0, · · · , n, are 3(n+ 1)
polyhedra in [0, ρjam]

n+2:

Wi+1/2=

{
ρ ∈ [0, ρjam]

n+2|ρi+1+
vf
wf

ρi>ρjam, ρi+1>ρc

}

Li+1/2 =
{
ρ ∈ [0, ρjam]

n+2|ρi > ρc, ρi+1 ≤ ρc
}

Di+1/2=

{
ρ ∈ [0, ρjam]

n+2|ρi+1 +
vf
wf

ρi≤ρjam, ρi≤ρc

}
.

(8)

We note that we can express the polyhedra Wi+1/2,Li+1/2,
Di+1/2 in vector form:

Wi+1/2=
{
ρ|d(1)·[ρi, ρi+1, 1]

T >0,d(3)·[ρi, ρi+1, 1]
T >0

}
Li+1/2=

{
ρ|d(2)·[ρi, ρi+1, 1]

T >0,d(3)·[ρi, ρi+1, 1]
T ≤0

}
Di+1/2=

{
ρ|d(1)·[ρi, ρi+1, 1]

T ≤0,d(2)·[ρi, ρi+1, 1]
T ≤0

}
(9)

with coefficients

d(1) =

[
(ρjam − ρc)

ρc
, 1,−ρjam

]

d(2) = [1, 0,−ρc]

d(3) = [0, 1,−ρc]. (10)

Combining the Godunov scheme (4) and the Godunov flux in
PWA form (7):

Lemma 2: With a triangular flux function, the Godunov
scheme at cell i ∈ {1, · · · , n} can be formulated as a hybrid
automaton with linear components:

• mode mi ∈ Q with Q := {1, · · · , 9}2

• state ρi ∈ [0, ρjam]
• inputs (ρti−1, ρ

t
i+1) ∈ [0, ρjam]

2, t ≥ 0

• discrete dynamics ρt+1
i =L(mi)·[ρti−1, ρ

t
i, ρ

t
i+1]

T
+w(mi)

if (ρti−1, ρ
t
i, ρ

t
i+1) ∈ P (Dom(mi)) where L(·) : Q �→ R

3

2In this description, the mode mi takes on values in a finite set Q =
{1, · · · , 9} for completeness. We will see in Section III that the modes mi = 8
and mi = 9 are not accepted.
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TABLE I
GODUNOV SCHEME W.R.T. DISCRETE STATES mi AT CELL i, E.G., IF ρ ∈ Dom({mi = 4}) = Li−1/2 ∩Di+1/2 ={ρ|ρi−1 > ρc,

ρi ≤ ρc, ρi+1 + (vf/wf )ρi ≤ ρjam}, THEN ρt+1
i = L4 · [ρti−1, ρ

t
i, ρ

t
i+1]

T
+ w4 = (1− αvf )ρ

t
i + αvfρc

and w(·) : Q �→ R are defined in Table I, and P (·) is the
projection operator onto V ect(ei−1, ei, ei+1).

• domain of the modes Dom(mi) defined in the Table I
and (8).

We note that Dom(mi) refers to the subset of R
n+2 in

which the mode of cell i is mi. Since the linear constraints
that define Dom(mi) (see Table I) only concern variables
ρi−1, ρi, ρi+1, the projection onto V ect(ei−1, ei, ei+1) contains
all the information on the shape of Dom(mi).

Proof: We prove the result for mi = 4, the other cases fol-
low similarly. When ρ ∈ Dom({mi = 4}) = Li−1/2 ∩Di+1/2

following the definition of Dom(mi) in Table I, we have
G(ρi−1, ρi) = qc and G(ρi, ρi+1) = vfρi from (7) then

ρ+i = ρi − α (G(ρi, ρi+1)−G(ρi−1, ρi))

= ρi − α(vfρi − qc) = (1− αvf )ρi + αqc

hence ρ+i = L(4) · [ρi−1, ρi, ρi+1]
T + w(4) with L(4) :=

[0, 1− αvf , 0] and w(4) := αvfρc following the definitions of
L(mi) and w(mi) in Table I. �

We note that the condition (ρti−1, ρ
t
i, ρ

t
i+1) ∈ P (Dom(mi))

in the discrete dynamics is a reset relation at each time step: the
mode at time t is directly given by state ρt.

E. Discretized System as a Hybrid System

The mode of each cell can be listed in a vector m ∈
{1, · · · , 9}n in which the ith entry is the discrete state at cell
i. We call it the mode vector. As a result, the domain of the
mode vector m ∈ {1, · · · , 9}n is

Dom(m) =

n⋂
i=1

Dom(mi). (11)

For example, if n = 2, then the state ρ = [ρ0, ρ1, ρ2, ρ3] is in
[0, ρjam]

4 with boundary cells ρ0 and ρ3 and the mode vector
m is in {1, · · · , 9}4. More specifically

Dom({m = (2, 3)})
= Dom ({m1 = 2}) ∩Dom({m2 = 3})

= (W 1
2
∩ L1+1/2) ∩ (L1+1/2 ∩W2+1/2)

= W1/2 ∩ L1+1/2 ∩W2+1/2

=

{
ρ ∈ [0, ρjam]

4|ρ1 +
vf
wf

ρ0 > ρjam, ρ1 > ρc, ρ2 ≤ ρc,

ρ3 +
vf
wf

ρ2 > ρjam

}
. (12)

We will show later that the subsets Dom(m)’s form a partition
of [0, ρjam]n+2.

For each mode vector m, we construct the matrix
Am ∈ R

(n+2)×(n+2), and the row vectors bm, ct ∈ R
n+2 in

the form

Am=

⎡
⎢⎢⎢⎢⎣

0 · · · 0
L(m1)

. . .
L(mn)

0 · · · 0

⎤
⎥⎥⎥⎥⎦, bm=

⎡
⎢⎢⎢⎢⎣

0
w(m1)

...
w(mn)

0

⎤
⎥⎥⎥⎥⎦, c

t=

⎡
⎢⎢⎢⎢⎣

u(t)
0
...
0

d(t)

⎤
⎥⎥⎥⎥⎦

(13)

where L(mi), w(mi) are defined in Table I, and u(t), d(t) are
the upstream and downstream densities, respectively. This leads
to one of the main results of the paper:

Proposition 1: The discretized LWR equation using the
Godunov scheme and with a triangular flux function is an
autonomous hybrid automaton with affine components:

• discrete state m ∈ {1, · · · , 9}n;
• state ρt ∈ [0, ρjam]

n+2 at time t;
• inputs (u(t), d(t)) ∈ [0, ρjam]

2;
• discrete dynamics ρt+1 = Amρt + bm + ct if ρt ∈

Dom(m);
• domain of the discrete states Dom(m) defined in (11).

Proof: The formulation as a hybrid automaton is obtained
by stacking the states and modes in the hybrid automaton
formulation of the Godunov scheme into a vector, and the linear
transformations into a matrix. �

Finally, we note that the condition ρt ∈ Dom(m) in the
discrete dynamics is a reset relation at each time step: the mode
at time t is directly given by state ρt.
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Algorithm 1 Find the mode vector: rho2m(ρ). The parame-
ters d(1),d(2),d(3) ∈ R

3 in (10) describe the domain of each
mode vector [see Table I and (17), (10), (11)]

Require: current state ρ = [ρ0, · · · , ρn+1] ∈ [0, ρjam]
n+2

1: for i ∈ {0, · · · , n} do
2: x = [ρi, ρi+1, 1]

T

3: I = [d(1)x > 0,d(2)x > 0,d(3)x > 0] ∈ {0, 1}3
4: if I(1) ∧ I(3) then s(i) = W ρ ∈ Wi+1/2

5: if I(2) ∧ ¬I(3) then s(i) = L ρ ∈ Li+1/2

6: if ¬I(1) ∧ ¬I(2) then s(i) = D ρ ∈ Di+1/2

7: end for
8: for i = {1, · · · , n} do
9: if {s(i) = W} ∧ {s(i+ 1) = W} then mi = 1
10: if {s(i) = W} ∧ {s(i+ 1) = L} then mi = 2
11: if {s(i) = L} ∧ {s(i+ 1) = W} then mi = 3
12: if {s(i) = L} ∧ {s(i+ 1) = D} then mi = 4
13: if {s(i) = D} ∧ {s(i+ 1) = W} then mi = 5
14: if {s(i) = D} ∧ {s(i+ 1) = L} then mi = 6
15: if {s(i) = D} ∧ {s(i+ 1) = D} then mi = 7
16: end for
17: return m = [m1, · · · ,mn] ∈ {1, · · · , 7}n

III. DESCRIPTION OF THE MODE VECTORS

A. Accepted Mode Vectors

The following analysis is motivated by the fact that
Dom(m) = ∅ for some values of m, which means that some
of the mode vectors m’s are not accepted by the system.

Definition 1: We say that a mode vector m is accepted by
the system if and only if its domain Dom(m) is not empty.

Proposition 2: The mode vector m ∈ {1, · · · , 9}n is ac-
cepted by the system if and only if we have the following two
conditions:

mi ∈ {1, · · · , 7}, ∀i ∈ {1, · · · , n} (14)

∀i ∈ {1, . . . , n−1}, mi+1 ∈

⎧⎨
⎩

{1, 2} if mi ∈ {1, 3, 5}
{3, 4} if mi ∈ {2, 6}
{5, 6, 7} if mi ∈ {4, 7}.

(15)

Proof: From (8), it is easy to see that Wi−1/2 ∩Di+1/2 =
Li−1/2 ∩ Li+1/2 = ∅ for all i = 1, . . . , n. Hence, Dom({mi =
8}) = Dom({mi = 9}) = ∅ (see Table I). In other words, m
is not accepted if it has an entry in {8,9} which gives the first
condition.

We note that for a fixed i, the polyhedra Wi+1/2,Li+1/2,
Di+1/2 partition [0, ρjam]

n+2. Since Dom(mi) ∩Dom(mi+1)
is of the form

Dom(mi) ∩Dom(mi+1)

=(Pi−1/2∩Pi+1/2)∩(P′
i+1/2∩Pi+1+1/2)⊂Pi+1/2∩P′

i+1/2

with Pi+1/2,P
′
i+1/2 ∈ {Wi+1/2,Li+1/2,Di+1/2}, then m

is accepted if Pi+1/2 = P′
i+1/2. In other words, Dom(mi) =

Pi−1/2 ∩Pi+1/2 and Dom(mi+1) = P′
i+1/2 ∩Pi+1+1/2

must overlap. This gives condition (15).
Reciprocally, if m satisfies conditions (14) and (15), then

we have overlaps between Dom(mi) and Dom(mi+1). Hence,
Dom(m) is of the form

Dom(m) =

n⋂
i=0

Pi+1/2

Pi+1/2 ∈ {Wi+1/2,Li+1/2,Di+1/2}, i = 0, . . . , n. (16)

The intersection of any pair of two consecutive polyhedra
in (16) has to be among the first seven subsets in Table I.
Hence, for all i = 1, . . . , n, the projection of Dom(m) onto
V ect(ei−1, ei, ei+1) is one of the seven subsets of R3 shown in
Fig. 3, which are all nonempty. Hence, Dom(m) is the product
of nonempty spaces; hence, it is nonempty. �

From the analysis above, we also conclude that under con-
ditions (14) and (15), the domain of an accepted mode vector
can be decomposed in the form (16). This is illustrated in the
derivation of Dom({m = (2, 3)}) in example (12) above.

From (14), the space of discrete states of the Godunov
scheme at each cell is reduced to {1, . . . , 7} and the space in
which the mode vector m lies is reduced to {1, . . . , 7}n.

Definition 2: For an accepted mode vector m and the
associated Dom(m) =

⋂n
i=0 Pi+1/2, a mode string s =

s(0)s(1)s(2) · · · s(n) is associated with m if s(i) = W
(resp. L,D) if Pi+1/2 = Wi+1/2(resp.Li+1/2,Di+1/2) and
a mode string is accepted if and only if s(i)s(i+ 1) ∈
{WW,WL,LW,LD,DW,DL,DD} for all i, from the anal-
ysis done in Proposition 2.

Proposition 3: The number of accepted mode vectors is
asymptotically 3.1778 · (2.2470)n. (Proof in the Appendix (see
Fig. 4)).

Proposition 4: The polyhedra Dom(m) associated with ac-
cepted mode vectors m form a partition of [0, ρjam]n+2.

Proof: Let m and m′ be two distinct accepted mode
vectors and s, s′ the associated strings. We pick i ∈
{0, . . . , n} such that s(i) �= s′(i). Then Dom(m) ⊂ Pi+1/2

and Dom(m′) ⊂ P′
i+1/2, where Pi+1/2 and P′

i+1/2 are two
distinct polyhedra among Wi+1/2, Li+1/2, Di+1/2. Hence,
Dom(m) and Dom(m′) are disjoint, and for any ρ ∈
[0, ρjam]

n+2, we can find its associated accepted mode vector
m such that ρ ∈ Dom(m); hence, the different Dom(m) span
the whole state space. �

Algorithm 2 mode vector m to mode string: m2s(m)

Require: accepted mode vector m.
1: if m1 ∈ {1, 2} then s(0) = W P1/2 = W1/2 in (16)
2: if m1 ∈ {3, 4} {then s(0) = L P1/2 = L1/2 in (16)
3: if m1 ∈ {5, 6, 7} then s(0) = D P1/2 = D1/2 in (16)
4: for i ∈ {1, . . . , n} do
5: mi∈{1, 3, 5} then s(i)=W Pi+1/2=Wi+1/2 in (16)
6: mi ∈ {2, 6} then s(i) = L Pi+1/2 = Li+1/2 in (16)
7: mi ∈ {4, 7} then s(i) = D Pi+1/2 = Di+1/2 in (16)
8: end for
9: return the mode string s(0)s(1) · · · s(n)
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Fig. 3. Projection of Dom(mi) onto V ect(ei−1, ei, ei+1) for i ∈ {1, . . . , 7}. For example, in the top left figure, if (ρi−1, ρi, ρi+1) is in the orange
polyhedron, then ρ ∈ Wi−1/2 ∩Wi+1/2 = Dom({mi = 1}), the mode mi is 1 (see Table I).

Algorithm 3 mode string to mode vector: s2m(s(0) · · · s(n))

Require: accepted mode string s(0) · · · s(n).
1: apply lines 8 to 16 of Algorithm 1
2: return the mode vector m

B. Minimal Representation

We now introduce the concepts of minimal representation
and adjacent polyhedra.

Definition 3 (Faces of a Polyhedron): A supportive hyper-
plane of a closed convex set C is a hyperplane ∂H such that
C ∩ ∂H �= ∅ and C ⊆ H, where H is one of the two closed
half-spaces (associated with the hyperplane). Given a (closed)
polyhedron P, the intersection with any supportive hyperplane
is a face of P. Moreover, a vertex is a zero-dimension face,
an edge a one-dimension face, and a facet is a face of di-
mension d− 1 if P is of dimension d. For a full-dimensional
polyhedron, a facet is of dimension n+ 1 (recall that the space
[0, ρjam]

n+2 is of dimension n+ 2).
Definition 4 (Minimal H-Representation): There exist in-

finitely many H-descriptions of a (closed) convex polytope. For
a full-dimensional convex polytope, the minimal H-description
is unique and is given by the set of the facet-defining half-
spaces [11].

We now want to find the minimal representation of
Dom(m) =

⋂n
i=0 Pi+1/2 for all accepted modes m. Each

one of the 3(n+ 1) polyhedra Wi+1/2,Li+1/2,Di+1/2, i =
0, . . . , n defined in (8) is intersection of two half-spaces:

Wi+1/2 =Hi+1/2 ∩Hi+1

Li+1/2 =Hi ∩Hc
i+1

Di+1/2 =Hc
i ∩Hc

i+1/2 (17)

Fig. 4. Sixteen accepted mode strings for the first three pairs (ρ0, ρ1),
(ρ1, ρ2), and (ρ2, ρ3). For more details, see Propositions 2 and 3.

where

Hi=
{
ρ ∈ [0, ρjam]

n+2|ρi > ρc
}
, i = 0, . . . , n+ 1

Hi+1/2=

{
ρ∈[0, ρjam]n+2|ρi+1+

vf
wf

ρi>ρjam

}
, i=0, . . . , n

(18)

and Hc
i , Hc

i+1/2 are the complementary of Hi and
Hi+1/2, respectively. The projections of these half-spaces on
V ect(ei, ei+1) are illustrated in Fig. 5.

In example (12), we have

Dom({m = {2, 3}})
= W 1

2
∩ L1+1/2 ∩W2+1/2

= (H 1
2
∩H1) ∩ (H1 ∩Hc

2) ∩ (H2+1/2 ∩H3)

= H 1
2
∩H1 ∩Hc

2 ∩H2+1/2 ∩H3

= H 1
2
∩H1 ∩Hc

2 ∩H2+1/2.

Since Hc
2 ∩H2+1/2 ⊂ H3, we can remove H3 from the in-

tersection. After removing this redundant constraint, the last
equality gives the minimal representation of Dom({m =
{2, 3}}).

While finding the minimal representation of a nonempty
polyhedron can be difficult in general, it is easy for the
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Fig. 5. Projection of the half-spaces Hi, Hi+1/2, Hi+1 on the plane V ect(ei, ei+1).

polyhedra Dom(m) associated with accepted mode vectors
m. In the form Dom(m) =

⋂n
i=0 Pi+1/2, we sequentially

derive the minimal representation of each polyhedron of the de-
creasing sequence {

⋂k
i=0 Pi+1/2}k≥0

by successively adding
the non-redundant constraints in Pk+1/2 ∈ {Wk+1/2,Lk+1/2,

Dk+1/2} to the minimal representation of
⋂k−1

i=0 Pi+1/2. The
minimal representation is given by Algorithm 4.

Algorithm 4 Minimum representation of Dom(m) :
minRep(m)

Require: accepted mode vector m.
1: H = {}
2: if m1 ∈ {1, 2} then H = H ∪ {H1/2,H1}
3: if m1 ∈ {3, 4} then H = H ∪ {H0,H

c
1}

4: if m1 ∈ {5, 6, 7} then H = H ∪ {Hc
0,H

c
1/2}

5: for k ∈ {1, . . . , n} do
6: if mk = 1 then H = H ∪ {Hk+1}
7: if mk = 2 then H = H ∪ {Hc

k+1}
8: if mk = 3 then H = H ∪ {Hk+1/2}
9: if mk = 4 then H = H ∪ {Hc

k+1/2}
10: if mk = 5 then H = H ∪ {Hk+1/2,Hk+1}
11: if mk = 6 then H = H \ {Hc

k−1} ∪ {Hk,H
c
k+1}

12: if mk = 7 then H = H \ {Hc
k−1/2} ∪ {Hc

k+1/2,H
c
k}

13: end for
14: return the minimal representation H

Proposition 5: For every accepted mode vector m,
Algorithm 4 returns the minimal representation of the closure
of Dom(m). (Proof given in the Appendix)

C. Adjacent Polyhedra

Definition 5 (Adjacent Polyhedra): Two polyhedraP and P′

in a polyhedral partition of the space are said to be k-adjacent
if they have a face of dimension k in common, i.e., there
exists a supportive hyperplane ∂H for both P and P′ and the
intersection P ∩P′ ∩ ∂H is of dimension k. Then P and P′

are said to be ∂H-adjacent.
For an accepted mode vector m and its associated polyhe-

dron Dom(m), it is of interest to find the polyhedra of the
partition adjacent to it. Algorithm 5 returns all the polyhedra
of the partition (n + 1)-adjacent to Dom(m). First, the mode
string s(0) · · · s(n) and the minimal representation of Dom(m)

are computed with Algorithms 2 and 4. Then for all H ∈ H,
the algorithm computes the mode string of the polyhedron of
the partition ∂H-adjacent to Dom(m), and finds the associated
mode vector mH with Algorithm 3 (see Fig. 6 for an illustration
of the Algorithm).

Algorithm 5 Find all the polyhedra adjacent to Dom(m):
adj(m)

Require: accepted mode vector m
1: s(0) · · · s(n) = m2s(m)
2: H = minRep(m)
3: for H ∈ H do
4: s′(0) · · · s′(n) = s(0) · · · s(n)
5: fori ∈ {0, . . . , n} do
6: if H = Hi then s′(i) = D
7: if H = Hc

i then s′(i) = W
8: if H = Hi+1 then s′(i) = L
9: if H = Hc

i+1 then s′(i) = W
10: if H = Hi+1/2 then s′(i) = D
11: if H = Hc

i+1/2 then s′(i) = L
12: end for
13: mH = s2m(s′(0) · · · s′(n))
14: end for
15: return adjacent polyhedra {mH}H∈H

Definition 6: Two accepted mode vectors m and m′ are
adjacent if the closures of their respective domain Dom(m)
and Dom(m′) are (n + 1)-adjacent.

Proposition 6: For every accepted mode vector m,
Algorithm 5 returns all the accepted mode vectors adjacent to
m. (Formal proof given in the Appendix.)

Since Algorithm 4 adds at most 2 constraints per iteration,
minRep(m) has at most 2(n+ 1) constraints; hence, at most
2(n+ 1) accepted mode vectors are adjacent to m.

IV. HYBRID ESTIMATION ALGORITHMS

A. Kalman Filtering Algorithm for Each Mode Vector

In discrete time and space, the dynamics of the traffic flow
along a homogeneous section of highway is well described by
the Godunov scheme applied to the LWR equation with trian-
gular flux function (see Prop. 1). The small uncertainties on the
parameters of the model Am and bm can be reasonably covered
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Fig. 6. We want all the polyhedra of the partition adjacent to a fixed polyhe-
dron. First, we find all the K facet-defining hyperplanes of purple, i.e., minimal
representation. Then for each facet, we find the only polyhedron that shares this
facet with purple. Hence, K is also the number of polyhedra of the partition
adjacent to purple.

by a zero-mean Gaussian noise ηt ∼ N (0, Qt) with covariance
Qt. The discrete dynamics in mode vector m become

ρt+1 = Amρt + bm + ct + ηt. (19)

The mode vector m is no longer fixed by ρt, but a probability
distribution over all accepted mode vectors is maintained to take
into account the uncertainty in mode estimation; that is, at each
time step t, the model is in several different mode vectors with
positive probabilities. We add an observation model

zt = Htρt + χt (20)

where χt ∼ N (0, Rt) is the zero-mean observation noise with
covariance matrix Rt, and Ht is the dt × (n+ 2)-dimensional
linear observation matrix which encodes the dt observations
(each one of them being at a discrete cell on the discretization
domain) for which the density is observed during discrete time
step t, and n is the dimensionality of the system. In the traffic
case, sensing devices (such as loop detectors) are placed at
several locations along a section of highway, and their positions
are encoded in the matrix Ht. For example, in the discrete
case for n = 3, if one sensor is in cell 1 and another in cell
3, then both sensors provide observations zt1 = ρt1 + χt

1 and
zt2 = ρt3 + χt

2, which is in matrix form(
zt1
zt2

)
=

(
0 1 0 0 0
0 0 0 1 0

)
ρt +

(
χt
1

χt
2

)
(21)

where the state is ρt = (ρt0, ρ
t
1, . . . , ρ

t
5)

T . In this small exam-
ple, the observation matrix is Ht = (0) 1000 00010 and the
number of observations is dt = 2.

In the rest of the section, we use the standard notations
mj for the different mode vectors, and subscript j denotes
quantities that are pertaining to mode mj . Note that mj refers
to the whole mode vector m and not the entries of m.

Let ρ̂t:t and P t:t be the a posteriori state estimate and error
covariance matrix at time t. The predicted state estimate ρ̂t+1:t

j

and covariance estimate P t+1:t
j of the prediction step in mode

mj are

Prediction : ρ̂t:t+1
j = Ajρ̂

t:t + bj + ct

P t:t+1
j = AjP

t:t(Aj)
T +Qt. (22)

The measurement residual rt+1
j , residual covariance St+1

j ,

Kalman gain Kt+1
j , updated state estimate ρ̂t+1:t+1

j , and up-

dated estimate covariance P t+1:t+1
j of the update step in mode

j are

Residuals : rt+1
j = zt+1 −Ht+1ρ̂t:t+1

j

St+1
j = Ht+1P t:t+1

j (Ht+1)T +Rt+1

Kalman gain : Kt+1
j = P t:t+1

j (Ht+1)T (St+1
j )−1

Updates : ρ̂t+1:t+1
j = ρ̂t:t+1

j +Kt+1
j rt+1

j

P t+1:t+1
j = (I −Kt+1

j Ht+1)P t+1:t
j .

(23)

In [19], a measure of the likelihood of the Kalman filter in
mode j is given by the mode likelihood function Λt+1

j , where
N (x; a, b) is the probability density function of the normal
distribution with mean a and variance b

Λt+1
j = N

(
rt+1
j ; 0, St+1

j

)
. (24)

The noise might result in densities outside bounds. We
project onto [0, ρjam]

n+2, i.e., the equation is implicitly
ρ̂t+1:t+1
j = Π(ρ̂t:t+1

j +Kt+1
j rt+1

j ) where Π(·) is the projec-
tion operator. This is a legitimate because densities cannot be
negative nor exceed a maximum value ρjam.

B. Interactive Multiple Model KF

Let us denote by {m(t) = mj} the event that the system is
in the mode mj at time t. We then assume that the model is a
discrete-time stochastic linear hybrid system in which the mode
evolution is governed by the finite state Markov chain

μt+1 = Πμt (25)

where πij = P (m(t+1) = mj |m(t) = mi) for all mi,mj ∈
M is the mode transition matrix, μt

j = P (m(t) = mj) for all
mj ∈ M is the mode probability at time t; and the set of
accepted modes is M.

Effective estimation techniques for stochastic hybrid systems
are based in multiple models since it is natural to apply a
statistical filter for each of the modes. The Interactive Multiple
Model (IMM) algorithm [1], [4], [20] is a cost-effective (in
terms of performance versus complexity) estimation scheme in
which there is a mixing/interacting step at the beginning of the
estimation process, which computes new initial conditions for
the Kalman filters matched to the individual modes at each time
step as illustrated in Fig. 7.

We consider the IMM algorithm in which Mt is the set of
modes for which the Kalman filter is applied at time step t. The
set Mt is the set of modes mj with positive mode probabilities
Mt = {mj |μt

j > 0}. In the standard IMM, a filter is applied to
every mode. The components of the mixing step are the mixing
probability μ

t|t+1
ij of being in mode i at time t given that the

mode at time t+ 1 is j, the mixed condition ρ̂t:t
0j and P t:t

0j for
the state estimate and covariance of mode j at time t, and the
“spread-of-the-means” Xj in the expression of P t:t

0j . They are
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Fig. 7. Illustration of the structure of IMM algorithm for a two-mode system
from [27].

computed for j ∈ Mt+1 w.r.t. ρ̂t:t
i and P t:t

i , the state estimate
and its covariance of Kalman filter i at time t:

μ
t|t+1
ij =

1

Zj
πijμ

t
i for i ∈ Mt with Zj =

∑
i∈Mt

πijμ
t
i

ρ̂t:t
0j

=
∑
i∈Mt

ρ̂t:t
i μ

t|t+1
ij

P t:t
0j

=
∑
i∈Mt

P t:t
i μ

t|t+1
ij +Xj

Xj :=
∑
i∈Mt

(
ρ̂t:t
i − ρ̂t:t

0j

)(
ρ̂t:t
i − ρ̂t:t

0j

)T

μ
t|t+1
ij . (26)

We apply the Kalman filter in each mode j ∈ Mt+1 (KFj) as
described with ((22), (23)) and the resulting mode likelihood
functions Λt+1

j are obtained from ρ̂t+1:t+1
j and P t+1:t+1

j with
(24). The mode probability μt = {μt

j} is then updated through

μt+1
j =

1

Z
Λt+1
j

∑
i∈Mt

πijμ
t
i for j ∈ Mt+1 (27)

where Z is a normalization constant and Λt+1
j is the mode

likelihood function defined in (24). The output of the IMM
algorithm are the state estimate ρ̂t+1:t+1 which is a weighted
sum of the estimates from the Kalman filters in each mode and
its covariance P t+1:t+1, and the mode estimate m̂t+1 is the
mode which has the highest mode probability. They are given
by the combination step

ρ̂t+1:t+1 =
∑

j∈Mt+1

ρ̂t+1:t+1
j μt+1

j

P t+1:t+1 =
∑

j∈Mt+1

P t+1:t+1
j μt+1

j +X

X :=
∑

j∈Mt+1

(
ρ̂t+1:t+1
j − ρ̂t+1:t+1

)

×
(
ρ̂t+1:t+1
j − ρ̂t+1:t+1

)T
μt+1
j

m̂t+1 := argmaxj∈Mt+1 μt+1
j . (28)

In [13], [19], the IMM algorithm is used as a hybrid estimator
for air traffic control (ATC) tracking. The models used include
one for the uniform motion and one (or more) for the maneuver.
However, the discretized PDE model described in Section II has
an exponential number of modes, which induces an exponential
time complexity of the IMM.

C. Extended Kalman filter

In the simplest case, we assume that the only possible mode
at the next time is the mode mj of the estimate, i.e., Mt+1=
{mj} and μt+1

j =1 with ρ̂t:t∈Dom(mj). We apply the
Kalman filter only to this mode. With Mt={mi}, (26)
become

ρ̂t:t
0j

= ρ̂t:t
i , P t:t

0j
= Pi. (29)

We apply the Kalman filter only to mode mj to obtain ρ̂t+1:t+1
j

and P t+1:t+1
j . Finally, the outputs of the combination step given

by (28) are simply ρ̂t+1:t+1 = ρ̂t+1:t+1
j , P t+1:t+1 = P t+1:t+1

j ,

and m̂t+1 = mj .
In this model, the IMM algorithm is exactly an Extended

Kalman filter (EKF) applied to our discretized system presented
in Proposition 1. The linear model in mode m such that
ρ̂t:t ∈ Dom(m) coincides exactly with the linearization of the
discrete dynamics around ρ̂t:t.

Despite the exponential number of modes, we can compute
the predicted state estimate ρ̂t+1:t

j and the predicted covariance

estimate P t+1:t
j in mode mj [see (22)] in linear time and

quadratic time, respectively, without generating any dense ma-
trix because Aj is completely defined by mode vector mj and
Aj is tridiagonal (see Algorithm 7). Hence, the time complexity
of the prediction step is O(n2), with constant space complexity.
With d the number of observations (or number of sensors), the
time complexity of the update step of the Kalman filter given by
(23) is O(dn2 + d3 + nd2), and so as the two steps combined
of the KF.

In comparison, the Ensemble Kalman Filter (EnKF) is a
popular estimation algorithm for nonlinear dynamical systems.
It is commonly used in the traffic monitoring community [30].
The EnKF is based on a Monte Carlo approximation of the
Kalman filter which approximates the covariance matrix of
the state vector with the sample covariance of the ensemble.
The prediction step consists in applying the system’s dynamics
to each sample, which has complexity O(Nn2), where N is the
number of samples (ensemble members). Mandel’s report [22]
shows that the computational complexity of the update step of
the EnKF algorithm is O(d3+d2N+dN2+nN2). So the total
complexity of the EnKF is O(d3+d2N+dN2+nN2+Nn2).
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Algorithm 6 describes the EKF. The parameters L(1), . . . ,
L(7) ∈ R

3, w(1), . . . , w(7) ∈ R, given in Table I describe the
linear modes of our hybrid system.

Algorithm 6 (Explicit) Extended Kalman filter

Require: initial state ρ0 ∈ [0, ρjam]
n+2, boundary condi-

tions (u(t), d(t))t≥0, state covariance {Qt}t≥0, observations
{zt}t≥0, observation matrix {Ht}t≥0, observation covariance
{Rt}t≥0.

1: for t ∈ {0, 1, 2, · · ·} do
2: m = rho2m(ρ̂t) {mode estimate, see algo. 1}
3: (ρ̂t+1, P t+1)=KF(m, ρ̂t, P t, · · ·) {KF, see algo. 8}
4: end for
5: return (ρ̂t, P t)t≥0

Algorithm 7 Prediction step of Kalman filter in mode m :
predict(m,ρ, P, u+, d+, Q)

Require: mode vector m = [m1, . . . ,mn] ∈ {1, . . . , 7}n, cur-
rent state ρ = [ρ0, . . . , ρn+1] ∈ [0, ρjam]

n+2, current state
estimate covariance P , next boundary conditions u+, d+ ∈ R,
current state noise covariance Q.

1: ρ+0 = u+

2: ρ+n+1 = d+

3: for i ∈ {1, . . . , n} do
4: ρ+i = L(mi)× [ρi−1, ρi, ρi+1]

T + w(mi)
5: end for
6: M := zeros(n+2, n+2) {create temporary matrix M}
7: for (i, j) ∈ {1, . . . , n}2 do
8: Mij = L(mi)× [Pi−1,j , Pi,j , Pi+1,j ]

T {do A× P}
9: end for
10: for (i, j) ∈ {1, . . . , n}2 do
11: P+

ij =[Mi,j−1,Mi,j ,Mi,j+1]×L(mj)
T {do (AP )AT }

12: end for
13: P+ = P+ +Q {predict state covariance}
14: return ρ+, P+

Algorithm 8 Kalman filter in mode m :KF(m, ρ̂t, P t, u(t+
1), d(t+ 1), Qt, zt+1, Ht+1, Rt+1)

Require: mode vector m, current state ρ̂t, current state esti-
mate covariance P t, next boundary conditions u(t+ 1), d(t+
1), current state noise covariance Qt, next measurement zt+1,
next observation matrix Ht+1, next observation covariance
Rt+1.

1: (ρ̂t:t+1, P t:t+1)=predict(ρ̂t, P t, {· · ·}) {see algo. 7}
2: (ρ̂t+1, P t+1,Λt+1)=update(ρ̂t:t+1, {· · ·}) {see (23)}
3: return ρ̂t+1, P t+1,Λt+1

D. Extended Kalman filter: Numerical Results

In traffic estimation, the density measurements along the
highway are usually sparse. For example, in the 18-mile stretch
of I-880 Northbound in the Bay Area, CA [see Fig. 9(a)], the

Mobile Millennium traffic monitoring system receives mea-
surements from 29 loop detectors (PeMS) every 30 s on March
5th, 2012 between 7am and 8am. This section of highway
is discretized into cells of length 198 m, hence n = 148 and
m = 29, and the EnKF with 100 ensembles is currently used for
traffic estimation, so N = 100 and m ≤ min(n,N). Hence, the
time complexities of the KF (or EKF) and EnKF are O(mn2)
and O(n2N + nN2), respectively. With N large (> 50), the
complexity analysis predicts that the EKF should be faster than
the EnKF.

The running times of the implementation of both the EKF
and the EnKF estimators on an Intel Core i5 480M 2.67 GHz are
shown in Fig. 8(a), for increasing portions of the I-880 starting
from East Industrial in Fremont, CA. For example, 60 cells
(∼7.5 miles) span from East Industrial to Dumbarton Bridge,
and 113 cells (∼14 miles) reaches San Mateo Bridge. The EKF
is significantly faster than the EnKF with 100 samples, which
is implemented in the Mobile Millennium. This confirms our
complexity analysis of both algorithms.

Fig. 9(c), (d) shows the contour plots of the output of the
EnKF and the EKF estimators, which consists in the density
in the time-space domain. The regions with high densities are
represented in red and the regions with low densities in blue.
Both estimators give very similar higher resolution scalar fields
of the density (1440 time steps by 141 cells) by assimilating
sparse density measurements (240 time steps by 29 PeMS sta-
tions, see Fig. 9(b)). Moreover, by removing measurements at
an arbitrary cell, Fig. 8(b) shows that the estimation algorithm
performs well since the density estimate is close to the actual
measurement.

In summary, the explicit representation as a switched hybrid
system gives a powerful framework for tracking the mode
evolution and preforming hybrid estimation. For instance, the
EKF can be implemented easily by applying the KF in the mode
vector of the state estimate. However, straight application of
the IMM algorithm [19] is not tractable because the complexity
is O(τn(2.247)

n) where τn is the complexity of the KF and
(2.247)n is the asymptotic number of modes.

V. REDUCED IMM

A. Reduction to Adjacent Modes

We presented an algorithm to construct the minimal rep-
resentation of Dom(m), which enables to find the adjacent
modes. Moreover, two adjacent modes only differ by at most
two entries. Hence, when the discretized model is in quasi-
steady state, and n is relatively small, only one cell switches
mode at the next time step, so the state is most likely to jump
to an adjacent mode vector. This suggests to consider only the
mode of the state estimate and its adjacent modes. Hence, the
number of modes considered is less than 2(n+ 1).

We can further reduce the number of modes by taking into ac-
count the state covariance P and the distance between the state
estimate and the facets of the polyhedron. Let H be the minimal
representation of the mode vector m̂ of the state estimate (i.e.,
ρ̂ ∈ Dom(m̂)), and let H ∈ H with equation H = {ρ|a · ρ−
b ≤ 0} and ‖a‖2 = 1. Then the distance from the supportive
hyperplane ∂H is: d(ρ̂, ∂H) = min ‖ρ̂− ∂H‖2 = |b− a · ρ̂|.



THAI AND BAYEN: STATE ESTIMATION FOR POLYHEDRAL HYBRID SYSTEMS 321

Fig. 8. (a) Computational time for an increasing section of the I-880 (measured in the number of cells) for the EKF (dashed line), the EnKF with 50 ensembles
(continuous line), the EnKF with 100 ensembles (dashed-dotted line), and the EnKF with 150 ensembles (dotted line). (b) Comparison between the density
measurements (dashed line) and estimates (bold line) at cell 87 and cell 104.

Fig. 9. (a) Experimental data location: 18-mile long stretch of I-880 in the Bay Area on the Mobile Century site. (b) Contour plot of the density from the
29 PeMS stations every 30 s on March 5th, 7–8am. Each vertical line in the contour plot reports the measurements from the 29 sensors along the highway at a
specific time. (c) Output of the EnKF d) Output of the EKF. The time step is on the x-axis and the number of cells is on the y-axis. Each vertical line of the
diagram is a snapshot of the state estimate of the highway at a specific time.

The probability distribution of the state along the normal a to
∂H is Ke−((a·(ρ−ρ̂))2/2aTPa), so the probability that the state
is inside of half-space H along the normal a is

K

|b−a·ρ̂|∫
−∞

e−
t2

2aT Pa dt =
1

2

(
1 + erf

(
|b− a · ρ̂|√
2aTPa

))

where erf is the error function. Since erf is an increasing
function, we keep only the ∂H-adjacent modes for which the
following quantity is small (see Algorithm 9)

r(ρ̂,H) =
|b− a · ρ̂|√
2aTPa

, H ∈ H. (30)

Algorithm 9 Find all adjacent polyhedra close to ρ̂:
adj2(m, ρ̂, P, β)

Require: mode estimate m̂, state estimate ρ̂, state estimate
covariance P , tolerance β

1: s(0) · · · s(n) = m2s(m̂)
2: H = minRep(m̂)
3: for H ∈ H do
4: if H = Hi then r = |ρi − ρc|/

√
2Pii

5: if H = Hi+1/2 then r = |ρi+1 + (vf/wf )ρi −
ρjam|/

√
2(vf/wf )2Pii + 4(vf/wf )Pi,i+1 + 2Pi+1,i+1

6: if r > β then remove H from H
7: end for
8: execute lines 3 to 14 of Algorithm 5
9: return adjacent polyhedra close to state estimate

{mH}H∈H

This is a refinement of the EKF. Instead of relying on one
possible mode, we consider a set of possible adjacent modes
at time t and apply the KF to each one of them. However, the
adjacent modes differ by only one or two entries, so they only
represent a restricted set of close possibilities centered around
the mode estimate. Hence, the reduced IMM based on adjacent
modes is still very similar to the EKF.

B. Representative Mode Vectors With Clustering Algorithm

An intuitive method consists in using a clustering algorithm
to reduce the space of modes to a representative set MK .
Historical data of traffic density estimate on March 1st, 2012
[see Fig. 10(i)] provides T = 9355 observations or samples
of the state vector, where T is the number of time steps in the
observed data. We partition these T samples into K clusters
using the popular k-means algorithm. The centroid of each
cluster, which may not necessarily be a member of the data
set, are density vectors that represent particular states of the
highway which are representative of its evolution. They are
shown in Fig. 10(a), (d). We have the index of the cluster on
the x-axis and the position along the highway on the y-axis.
For instance, the first cluster represents a density vector of the
highway mostly in free flow whereas the last cluster represents
the density vector of the highway mostly in congestion in the
top part.

Then, we derive the modes of these K centroids, and we
assume that our system can only be in these K modes. They
are illustrated in Fig. 10(e). We have the index of the modes
on the x-axis, and the position on the highway along the y-
axis. Each column represents a modal regime of the highway.
For example, in the first mode vector (in the first column),
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Fig. 10. (i) Traffic density estimate on March 1st, 2012 from 7am to 7pm. (ii) Traffic density estimate on March 5th, 2012 from 7am to 7pm. a,b,c) 20 clusters of
the density space using k-means on March 1st, 2012 from 7 to 8am, the corresponding modes, and the log likelihood. d,e,f) 20 clusters of the density space using
k-means on March 1st, 2012 from 7am to 7pm.

the cells are in mode 7 in the upstream part, and the cells in
the downstream are in mode 1. When ρi−1, ρi, ρi+1 > ρc for a
particular cell i, the Godunov flux (7) is in congestion regime
at both interfaces i− 1|i and i|i+ 1 and cell i is in mode 1
(see Table I). Conversely, mi = 7 when the Godunov flux is in
free flow regime at both interfaces: ρi−1, ρi, ρi+1 < ρc. Hence,
the regions in which mi = 1 (resp. mi = 7), colored in red
(resp. blue), represent cells that are in congestion (resp. free
flow) regime. The cells are in the other modes {2, 3, . . . , 6}
correspond to a transition regime between free flow and con-
gestion. We apply the IMM with this reduced set of modes
to estimate the traffic on March 5th. This is a valid approach
since the traffic conditions are similar during weekdays [see
Fig. 10(i), (ii)].

Algorithm 10 Clustering historical data:
cluster({ρt}t∈{1,...,T })

Require: observed data set {ρt}t∈{1,...,T }
1: partition {ρt}t∈{1,...,T } into K clusters and get centroids

{ρ̄k}k∈{1,...,K}
2: for k ∈ {1, . . . ,K} do m̄k = rho2m(ρ̄k); end for
3: return set of K representative modes

MK = {m̄k}k∈{1,...,K}

To determine the optimal number of clusters, we have applied
the above procedure to one hour of observed data, on March 1st
from 7am to 8am. The density centroids and their mode are
shown in Fig. 10(a), (b). Then we applied the IMM algorithm
on March 5th from 7am to 8am and compared it against the state
estimate given by the EnKF for different numbers of clusters.
We have calculated the log-likelihood which is a measure of
the performance of the estimation scheme. We see that the
optimal number of clusters is 3, because adding more clusters
will not increase the performance of the estimation algorithm

[see Fig. 10(c)]. We have also applied the procedure to 12 hours
of observed data. In this case, the optimal number of clusters
increases to 5. This is expected because we have a greater
variety of regimes in 12 hours. This proves the efficiency of the
IMM algorithm applied with this representative modes, because
the complexity is a small factor of the EKF.

C. Implementation and Numerical Results

Algorithm 11 presents the four variants of the IMM algo-
rithm discussed above. With only the mode of the state estimate
(variant = ‘EKF’), the IMM is reduced to the EKF algorithm.
If we add the adjacent modes (RIMM1), we obtain an im-
provement on the EKF with at most 2(n+ 1) modes. When
we only consider the adjacent modes close to the state estimate
(RIMM2), then the number of modes depends on the tolerance
β in Algorithm 9. In the last variant (RIMM3), discussed in
Section V-B, we suppose that the system can only switch
between K representative mode vectors. We implement our
algorithms on the same experimental data location as in IV-D.
As mentioned in [19], the choice of the transition probabilities
only affects slightly the performance of the IMM algorithm.
The guideline for a proper choice is to match roughly the
transition probabilities with the actual mean sojourn time of
each mode. In RIMM1 and RIMM2, it is difficult to estimate
the transition probabilities because of the exponential number
of modes, so we suppose that the system is equally likely
to transition to all the modes. In RIMM3, we take sample
transition probabilities from the observed data:

π̃ij =
γ +

∑T
t=1 I(ρ

t ∈ Ci, ρt+1 ∈ Cj)
γK +

∑T−1
t=1 I(ρt ∈ Ci)

(31)

where the sets {Ck}k are the Voronoi cells centered on centroids
{ρ̃k} computed in Algorithm 10, I is the indicator function, and
γ controls the smoothing from the uniform transitions.
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Fig. 11. Contour plot of the density given by (a) the EnKF with 100 ensembles on May 5th, 10am-7pm, (b) the RIMM3 with five clusters on May 5th, at
10am–1pm, 1–4pm, 4–7pm, (c) the RIMM2 with β = 1 on May 5th, 7–8am, (d) the RIMM3 with 20 clusters using the k-means algorithm on May 5th, 7–8am.
Analysis of each time step of the RIMM2 with β = 1: (e) plot of the mode estimate, (f) number of modes selected by RIMM2, (g) computational time, (h) number
of cells with density close to ρc.

Algorithm 11 IMM with reduced number of modes:
IMM(algorithm)

Require: initial state ρ0, boundary conditions {u(t), d(t)}t≥0,
state covariance {Qt}t≥0, observations {zt}t≥0, observation
matrix {Ht}t≥0, observation covariance {Rt}t≥0.

1: M0 = {rho2m(ρ0)} {initial set of modes is the mode
of ρ0}

2: for t ∈ {0, 1, 2, · · ·} do
3: m = rho2m(ρ̂t) {Algo 1}
4: if ‘EKF’ then Mt+1 = {m}
5: if ‘RIMM1’ then Mt+1 = {m} ∪ adj(m) {Algo 5}
6: if ‘RIMM2’ then Mt+1 = {m} ∪ adj2(m, ρ̂t, P t, β)

{Algo 9}
7: if ‘RIMM3’ then Mt+1 = MK {Algo 10}
8: for mj ∈ Mt+1 do
9: (ρ̂t

0j , P
t
0j) = mixing((ρ̂t

i, P
t
i , μ

t
i)i∈Mt) {see (26)}

10: (ρ̂t+1
j , P t+1

j ,Λt+1
j ) = KF(mj , ρ̂

t
0j , P

t
0j , · · ·)

{Algo. 8}
11: μt+1

j = modeProbUpdate(Λt+1
j ) {see (27)}

12: end for
13: (ρ̂t+1, P t+1, m̂t+1) =

combination((ρ̂t+1
j , P t+1

j , μt+1
j )

j∈Mt+1) {see (28)}
14: end for
15: return (ρ̂t, P t)t≥0

The EnKF is a popular estimation algorithm based on
Monte-Carlo approximation of the Kalman filter. The re-
sults are compared with the EnKF estimate presented in
Section IV-C. Figs. 9(c), (d), 11(c), (d) present the four esti-
mates which consist in the density in the time-space domain.
The regions with high (resp. low) density are represented in
red (resp. blue). The estimators give similar higher resolution
scalar fields of the density (1440 time steps by 141 cells)

by assimilating sparse density measurements (240 time steps
by 29 PeMS stations. The shock wave propagation is more
noticeable in the output of RIMM estimators in the congested
regions.

The density centroids have also been computed to get a set
of 5 representative mode vectors for each of the 10am–1pm,
1–4pm, 4–7pm time periods on March 1st, and we applied
RIMM3 to estimate the density on March 5th at the same time
periods. The estimates are very similar [see 11(a), (b)].

Fig. 11(e) shows the mode estimate computed in the com-
bination step of the IMM. Each column represents a modal
regime of the highway at a specific time. Finally, Fig. 11(f), (g),
(h) show that the number of modes selected, the computational
times, and the number of cells with density close to ρc at each
time step are proportional.

VI. CONCLUSION

We introduce a new class of algorithms to estimate dis-
cretized hyperbolic PDEs. When the Godunov scheme is used
to discretize the LWR PDE with a triangular flux function, we
showed that the resulting nonlinear dynamical system can be
decomposed in piecewise affine components. While the IMM
seems a natural approach, it becomes intractable because of
the exponential number of modes. We then study the validity
domain of each mode and show that the state space can be
divided into an exponential number of polyhedra.

Feasible heuristics are suggested for the estimation of hybrid
multi-cellular systems based on the reduction of the number
of modes. On one hand, we take advantage of the geometric
properties of the partition into polyhedra to reduce the set of
modes to a feasible set of adjacent modes centered around the
mode of the state estimate. On the other hand, a clustering
algorithm is applied in order to group the modes in clusters,
and we show that when the historical data is chosen properly,
the optimal number of clusters is less than 5. Hence, the
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implementation of the reduced IMM algorithm shows that it is
tuned to the discretized model due to its PWA structure.

We have constructed a framework for the estimation of the
discretized LWR PDE which enables: 1) the use of Kalman
filtering on each of the linear modes, 2) the use of statistical
analysis in the space of modes to make the IMM tractable. We
believe this work offers several directions of future research: it
can inspire other feasible heuristics for the state estimation in
other multi-cellular hybrid systems models. In particular, piece-
wise affine approximations of other flux functions combined
with the Godunov scheme induce similar hybrid systems with
an exponential number of modes and an adjacent polyhedral
representation of the state space. Such representation is similar
to the binary space partition (BSP) widely used in computa-
tional geometry, which could be used to determine the mode of
the estimate.

APPENDIX

A. Proof of Proposition 3

We count the number of accepted mode strings recursively
on the length k of the string. Let Nk be the number of accepted
strings, Fig. 4 shows the 16 accepted strings of length 3. Let
us denote by wk (resp. lk, dk) the number of accepted strings
which last element is W (resp. L,D). Then for all k ≥ 0

w0 = l0 = d0 = 1

wk+1 = wk + lk + dk

lk+1 = wk + dk

dk+1 = lk + dk

=⇒

⎡
⎣wk

lk
dk

⎤
⎦=Ak×

⎡
⎣w0

l0
d0

⎤
⎦, A=

⎡
⎣ 1 1 1
1 0 1
0 1 1

⎤
⎦ (32)

hence, Nk = wk + lk + dk = eTAkewitheT = [111]. Diag-
onalizing the matrix A gives A = V DV −1 with D :=
diag(λ1, λ2, λ3) where λ1, λ2, λ3 are the eigenvalues of A in
increasing order. Since λ3 is the only eigenvalue above 1 in
absolute value, we have

Dk=diag
(
λk
1 , λ

k
2 , λ

k
3

)
∼diag

(
0, 0, λk

3

)
when k−→+∞

hence eTAke≈eTV diag
(
0, 0,λk

3

)
V −1e=λk

3(V
T e)3(V

−1e)3

≈ 3.1778 · (2.2470)k.

B. Proof or Proposition 5

In this section and the following one, we consider the closure
Hk,Hk+1/2,H

c
k,H

c
k+1/2 of the half-spaces defined in (18),

and for simplicity we still denote them without bar.
Lemma 3: The following inclusions for the half-spaces Hk,

Hk+1/2, Hk+1 for k ∈ {0, . . . , n} hold:

Hk ∩Hk+1 ⊂ Hk+1/2

Hc
k ∩Hk+1/2 ⊂ Hk+1

Hc
k+1/2 ∩Hk+1 ⊂ Hc

k

Hc
k ∩Hc

k+1 ⊂ Hc
k+1/2. (33)

Proof: The proof is easy. See Fig. 5 for an illustration of
these inclusions. �

Proof of Proposition 5: We fix an accepted mode vector m
and we fix the associated decomposition (16), which gives the
sequence Pk+1/2, k ∈ {0, . . . , n}. Let H be the set of half-
spaces (or linear inequalities) in [0, ρjam]

n+2 defined in algo-
rithm 4. First, we express Dom(m) in the form Dom(m) =⋂n

i=0 Pi+1/2, then we prove by induction that at the kth iter-
ation of the for loop in algorithm 4, the intersection of all the
half-spaces in the current H is the minimal representation of⋂k

i=0 Pi+1/2.
Initialization k = 1: if m1 ∈ {1, 2}, then we have H =

{H1/2,H1} from the algorithm and P1/2 = W1/2 from Ta-
ble I. The expression ∩H∈HH = H1/2 ∩H1 is clearly the
minimal representation of W1/2 from (17). The cases m1 ∈
{3, 4} and m1 ∈ {5, 6, 7} follow similarly.

Step k: The algorithm provides H− and H which are the min-
imal representations of

⋂k−2
i=0 Pi+1/2 and

⋂k−1
i=0 Pi+1/2, respec-

tively. We want to show that the algorithm updates H to H+,
such that H+ is the minimal representation of

⋂k
i=0 Pi+1/2.

We have seven cases:
a) If mk = 1, then from Table I and (17)

Pk−1/2 =Wk−1/2 = Hk−1/2 ∩Hk

Pk+1/2 =Wk+1/2 = Hk+1/2 ∩Hk+1

in the expression (16), hence H ⊂ H− ∪ {Hk−1/2,Hk}.
In this case, algorithm 4 adds constraint Hk+1 to H, so
H+ ⊂ H− ∪ {Hk−1/2,Hk,Hk+1}. Then

Hk−1/2∩Hk∩Hk+1 =(Hk−1/2∩Hk)∩ (Hk+1∩Hk+1/2)

=Wk−1/2∩Wk+1/2

where the third equality is from Hk ∩Hk+1 ⊂ Hk+1/2

in (33). Hence, H+ is a representation of ∩k
i=0Pi+1/2.

Finally, H+ is minimal because the added constraint
Hk+1 is the only constraint on ρk+1, so it is not redundant
with the constraints in H.

b) If mk = 2, then Pk−1/2 and Pk+1/2 in the expression
(16) are

Pk−1/2 =Wk−1/2 = Hk−1/2 ∩Hk

Pk+1/2 =Lk+1/2 = Hk ∩Hc
k+1

and constraint Hc
k+1 is added to H in algorithm 4, so

H+ ⊂ H− ∪ {Hk−1/2,Hk,H
c
k+1}, and

Hk−1/2 ∩Hk ∩Hc
k+1 =(Hk−1/2 ∩Hk) ∩

(
Hk ∩Hc

k+1

)
=Pk−1/2 ∩Pk+1/2

so ∩H∈H+H = ∩k
i=0Pi+1/2, i.e., H+ is a representation

of ∩k
i=0Pi+1/2. This is the minimal representation be-

cause the added constraint Hc
k+1 is the only constraint

on ρk+1.
c) If mk = 3, the analysis is similar to case mk = 1.
d) If mk = 4, the analysis is similar to case mk = 2.
e) If mk = 5, then Pk−1/2 = Dk−1/2 = Hc

k−1 ∩Hc
k−1/2

and Pk+1/2 = Wk+1/2 = Hk+1/2 ∩Hk+1 in expres-
sion (16). Algorithm 4 adds constraints Hk+1/2,Hk+1

to H; hence, H+ is a representation of ∩k
i=0Pi+1/2. It
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is easy to see that the constraints Hk+1/2 ∩Hk+1 are not
redundant; hence, H+ is the minimal representation of
∩k
i=0Pi+1/2.

f) If mk = 6, then Pk−1/2 = Dk−1/2 = Hc
k−1 ∩Hc

k−1/2

and Pk+1/2 = Lk+1/2 = Hk ∩Hc
k+1 in expression (16).

We have H ⊂ H− ∪ {Hc
k−1,H

c
k−1/2}. Algorithm 4

removes constraint Hc
k−1 from H (if H contains it)

and adds constraints Hk,H
c
k+1, hence H+ ⊂ H− ∪

{Hc
k−1/2,Hk,H

c
k+1}. The only potential redundancies

in H+ would be between Hc
k−1/2 and the newly added

constraints Hk,H
c
k+1. It is easy to verify that there is no

redundant constraint in H+. Finally, since we have the
inclusion Hc

k−1/2 ∩Hk ⊂ Hc
k−1 from (33)

Hc
k−1/2 ∩Hk ∩Hc

k+1=
(
Hc

k−1∩Hc
k−1/2

)
∩
(
Hk ∩Hc

k+1

)
=Dk−1/2 ∩ Lk+1/2

g) hence H+ is the minimal representation of ∩k
i=0Pi+1/2.

If mk = 7, the analysis is similar to case mk = 6.

Hc
k−1∩Hc

k∩Hc
k+1/2=

(
Hc

k−1∩Hc
k−1/2

)
∩
(
Hc

k∩Hc
k+1/2

)

=Dk−1/2 ∩Dk+1/2.

hence H+ is the minimal representation of ∩k
i=0Pi+1/2. This

finishes the proof.

C. Proof of Proposition 6

Lemma 4: The following inclusions for the half-spaces Hi,
Hi+1/2, Hi+1 defined in (18) for i ∈ {0, . . . , n} hold:

Hc
i+1/2 ∩Hi+1 ⊂ Di+1/2 Hi+1/2 ∩Hc

i+1 ⊂ Li+1/2

Hc
i ∩Hc

i+1 ⊂ Di+1/2 Hi ∩Hi+1 ⊂ W i+1/2

Hi+1/2 ∩Hc
i ⊂ W i+1/2 Hc

i+1/2 ∩Hi ⊂ Li+1/2.

(34)

Proof of Proposition 6: We fix the mode vector m, its
domain Dom(m) = ∩n

i=0Pi+1/2, its mode string s, and its
minimal representation H. Let H ∈ H. Since algorithm 4 (min-
Rep) only adds constraints of the form Hi,Hi+1/2,H

c
i ,H

c
i+1/2

in (18) when finding the minimal representation, and the
minimal representation is unique, we must have H ∈
(∪n+1

i=0 {Hi,H
c
i}) ∪ (∪n

i=0{Hi+1/2,H
c
i+1/2}). We have 4 dif-

ferent cases (the 4 cases when H is a constraint at the bound-
aries are not covered)

a) Suppose H = Hi for i ∈ {1, . . . , n}. Since Hi only ap-
pears in Wi−1/2 and Li+1/2 in (17), then algorithm 4
only adds Hi to the minimal representation if Pi−1/2 =
Wi−1/2 = Hi−1/2 ∩Hi and Pi+1/2 = Li+1/2 = Hi ∩
Hc

i+1. We define the polyhedron

P= ∩
j∈{0,...,n}\{i−1,i}

Pj+1/2∩
(
Hc

i∩Hc
i+1

)
∩
(
Hi−1/2 ∩Hc

i

)

by substituting the constraint Hi in Dom(m) =
∩n
i=0Pi+1/2 by the opposite constraint Hc

i . Since Hi is in
the minimal representation, P must be proper (otherwise
Hi would be redundant).

We have P ⊂ j ∈ {0, . . . , n} \ {i− 1, i} ∩Pj+1/2∩
(Li−1/2 ∩Di+1/2) from the inclusions in (34); hence,
the subset on the right-hand side is proper. Since this
subset is also of the form ∩Pj+1/2, it is the domain
of an accepted mode vector, and so a polyhedron of
the partition. By construction, it is (n + 1)-adjacent to
Dom(m). Its associated mode string is obtained from s
by replacing entry s(i− 1) = W with L when line 8 in
the for loop is executed at iteration i− 1, and by replacing
s(i) = L with D when line 6 is executed at iteration i.
The case H = Hc

i for i ∈ {1, . . . , n} is similar.
b) Suppose H = Hi+1/2 for i ∈ {0, . . . , n}. Since Hi+1/2

only appear in Wi+1/2, we have Pi+1/2 = Wi+1/2 =
Hi+1/2 ∩Hi+1. Let P := j �= i ∩Pj+1/2 ∩ (Hc

i+1/2 ∩
Hi+1) ⊂ j �= i∩Pj+1/2∩Di+1/2, then j �= i∩Pj+1/2∩
Di+1/2 is proper, and it is a polyhedron of the partition
(n + 1)-adjacent to Dom(m) by construction. Its associ-
ated mode string is obtained by replacing s(i) = W with
D when line 10 of the algorithm is executed at iteration i.
The case H = Hc

i+1/2 for i ∈ {0, . . . , n} is similar. This
finishes the proof.

ACKNOWLEDGMENT

The authors would like to thank Professor Claire Tomlin
from University of California, Berkeley for insightful discus-
sions on hybrid systems and the members of the staff of the
California Institute for Innovative Transportation for its contri-
butions to develop, build, and deploy the Mobile Millennium
system on which this paper relies.

REFERENCES

[1] Y. Bar-Shalom and X. R. Li, Estimation and Tracking: Principles,
Techniques, and Software. Norwood, MA, USA: Artech House, 1993.

[2] C. Bardos, A. Y. Leroux, and J. C. Nedelec, “First order quasilinear equa-
tions with boundary conditions,” Commun. Partial Different. Equat. 4,
vol. 9, pp. 1017–1034, 1979.

[3] S. Blandin, A. Couque, A. Bayen, and D. Work, “On sequential data
assimilation for scalar macroscopic traffic flow models,” Physica D, 2012.

[4] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model algo-
rithm for systems with Markovian switching coefficients,” IEEE Trans.
Autom. Control, vol. 33, no. 8, pp. 780–783, Aug. 1988.

[5] R. Chen and J. S. Liu, “Mixture Kalman filters,” R. Statist. Soc., vol. 62,
pp. 493–508, 2000.

[6] C. F. Daganzo, “The cell transmission model: A dynamic representation
of highway traffic consistent with the hydrodynamic theory,” Transport.
Res. Part B 28, vol. 28, no. 4, pp. 269–287, 1994.

[7] C. F. Daganzo, “The cell transmission model, part II: Network traffic,”
Transport. Res. Part B 29, vol. 29, no. 2, pp. 79–93, 1995.

[8] E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic
Systems of Conservation Laws. New York, NY, USA: Applied Mathe-
matical Sciences, 1996.

[9] S. K. Godunov, “A finite difference method for the numerical computation
of discontinuous solutions of the equations of fluid dynamics,” Math.
Sbornik, vol. 47, pp. 271–306, 1959.

[10] B. D. Greenshields, “A study of traffic capacity,” Proc. 14th Annu. Meet-
ing Highway Res. Board, vol. 14, pp. 448–477, 1934.

[11] B. Grünbaum, Convex Polytopes. New York, NY, USA: Springer, 2003.
[12] R. M. Hawkes and J. B. Moore, “Performance bounds for adaptive esti-

mation,” Proc. IEEE, vol. 64, no. 8, pp. 1143–1150, Aug. 1976.
[13] I. Hwang, H. Balakrishnan, and C. Tomlin, “State estimation for hybrid

systems: Applications to aircraft tracking,” IEE Proc. Control Theory
Applicat., vol. 153, no. 5, pp. 556–566, Sep. 2006.

[14] J. P. Lebacque, “The Godunov scheme and what it means for first order
traffic flow models,” in 13th Int. Symp. Transport. Traffic Theory, 1996,
pp. 647–677.



326 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 2, FEBRUARY 2015

[15] P. LeFloch, “Explicit formula for scalar non-linear conservation laws with
boundary condition,” Math. Meth. Appl. Sci., vol. 10, pp. 265–287, 1988.

[16] M. D. Lemmon, K. X. He, and I. Markovsky, “Supervisory hybrid sys-
tems,” IEEE Control Syst. Mag., vol. 19, no. 4, pp. 42–55, Aug. 1999.

[17] B. Lennartson, M. Tittus, B. Egardt, and S. Petterson, “Hybrid systems
in process control,” IEEE Control Syst. Mag., vol. 16, no. 5, pp. 45–56,
1996.

[18] R. J. LeVeque, Numerical Methods for Conservation Laws. Basel,
Switzerland: Birkhäuser, 1992.

[19] X. R. Li and Y. Bar-Shalom, “Design of an interacting multiple model
algorithm for air traffic control tracking,” IEEE Trans. Control Syst.
Technol., vol. 1, no. 3, pp. 186–194, Sep. 1993.

[20] X. R. Li and Y. Bar-Shalom, “Performance prediction of the interacting
multiple model algorithm,” IEEE Trans. Aerosp. Electron. Syst, vol. 29,
no. 3, pp. 755–771, Jul. 1993.

[21] M. J. Lighthill and G. B. Whitham, “On kinematic waves II. A theory
of traffic flow on long crowded roads,” Proc. R. Soc. London. Series A,
Math. Phys. Sci., vol. 229, pp. 317–345, 1955.

[22] J. Mandel, “Efficient implementation of the ensemble Kalman filter,”
CCM Rep. No. 231, 2006.

[23] P. S. Maybeck, Stochastic Models, Estimation, and Control, vol. 2. New
York, NY, USA: Academic, 1982.

[24] M. Papageorgiou, J.-M. Blosseville, and H. Hadj-Salem, “Modelling
and real-time control of traffic flow on the southern part of Boulevard
Peripherique in Paris: Part I: Modelling,” Transport. Res., vol. 24, no. 5,
pp. 345–359, 1990.

[25] P. I. Richards, “Shock waves on the highway,” Operat. Res., vol. 4,
pp. 42–51, 1956.

[26] T. Schreiter, C. van Hinsbergen, F. Zuurbier, H. van Lint, and
S. Hoogendoorn, “Data-model synchronization in extended Kalman filters
for accurate online traffic state estimation,” in Proc. Traffic Flow Theory
Conf., Annecy, France, 2010.

[27] I. S. Strub and A. M. Bayen, “Weak formulation of boundary conditions
for scalar conservation laws: An application to highway traffic modeling,”
Int. J. Robust Nonlinear Control, vol. 16, pp. 733–748, 2006.

[28] D. D. Sworder and J. E. Boyd, Estimation Problems in Hybrid Systems.
Cambridge, U.K.: Cambridge Unive. Press, 1999.

[29] J. Thai, B. Prodhomme, and A. M. Bayen, “State estimation for the
discretized LWR PDE using explicit polyhedral representations of the
Godunov scheme,” in Proc. Amer. Control Conf., 2013.

[30] D. B. Work, S. Blandin, O. Tossavainen, B. Piccoli, and
A. M. Bayen, “A traffic model for velocity data assimilation,” Appl.
Math. Res. eXpress, 2010.

Jérôme Thai received the Engineering degree in ap-
plied mathematics from Ecole Polytechnique, Paris,
France, in May 2010, the M.S. degree in operations
research from Columbia University, New York, NY,
USA, in December 2011. He is currently pursuing
the Ph.D. degree in the Department of Electrical
Engineering and Computer Sciences, University of
California, Berkeley, CA, USA.

His research interests are at the intersection of
machine learning, game theory, and estimation and
control of cyber-physical systems, with applications

to transportation.

Alexandre M. Bayen received the Engineering de-
gree in applied mathematics from Ecole Polytech-
nique, Paris, France, in July 1998 and the M.S.
and Ph.D. degrees in aeronautics and astronautics
from Stanford University, Stanford, CA, USA, in
June 1999 and December 2003, respectively.

He was a Visiting Researcher at NASA Ames
Research Center from 2000 to 2003. Between
January 2004 and December 2004, he worked as the
Research Director of the Autonomous Navigation
Laboratory at the Laboratoire de Recher-ches Bal-

istiques et Aerodynamiques, (Ministere de la Defense, Vernon, France), where
he holds the rank of Major. He is an Associate Professor in the Department of
Electrical Engineering and Computer Sciences, and the Department Civil and
Environmental Engineering at the University of California, Berkeley, Berkeley,
CA, USA. He has authored one book and over 100 articles in peer-reviewed
journals and conferences.

Dr. Bayen is the recipient of the Ballhaus Award from Stanford University,
2004, of the CAREER award from the National Science Foundation, 2009 and
he is a NASA Top 10 Innovators on Water Sustainability, 2010. His projects
Mobile Century and Mobile Millennium received the 2008 Best of ITS Award
for “Best Innovative Practice” at the ITS World Congress and a TRANNY
Award from the California Transportation Foundation, 2009. He is the recipient
of the Presidential Early Career Award for Scientists and Engineers (PECASE)
award from the White House, 2010. Mobile Millennium has been featured more
than 100 times in the media, including TV channels and radio stations (CBS,
NBC, ABC, CNET, NPR, KGO, the BBC), and in the popular press (Wall Street
Journal, Washington Post, LA Times).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


