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Abstract—This paper presents a game theoretic framework for
studying Stackelberg routing games on parallel networks with hor-
izontal queues, such as transportation networks. First, we intro-
duce a new class of latency functions that models congestion due
to the formation of physical queues. For this new class, some re-
sults from the classical congestion games literature (in which la-
tency is assumed to be a non-decreasing function of the flow) do not
hold. In particular, we find that there may exist multiple Nash equi-
libria that have different total costs. We provide a simple polyno-
mial-time algorithm for computing the best Nash equilibrium, i.e.,
the one which achieves minimal total cost. Then we study the Stack-
elberg routing game: assuming a central authority has control over
a fraction of the flow on the network (compliant flow), and that
the remaining flow (non-compliant) responds selfishly, what is the
best way to route the compliant flow in order to minimize the total
cost? We propose a simple Stackelberg strategy, the Non-Com-
pliant First (NCF) strategy, that can be computed in polynomial
time. We show that it is optimal for this new class of latency on
parallel networks. This work is applied to modeling and simulating
congestion relief on transportation networks, in which a coordi-
nator (traffic management agency) can choose to route a fraction of
compliant drivers, while the rest of the drivers choose their routes
selfishly.

Index Terms— Game theory, Nash equilibrium, network
analysis and control, routing, Stackelberg game, transportation
networks.

[. INTRODUCTION AND MAIN RESULTS

A. Motivation and Related Work

OUTING games model the interaction between players
on a network, where the cost for each player on an edge
depends on the total congestion of that edge. Extensive work
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has been dedicated to the study of Nash equilibria (or user op-
timal assignments) for routing games, in which players selfishly
choose the routes that minimize their individual costs (latencies)
[4]1,[7], [8]. In general, Nash equilibria are inefficient compared
to a system optimal assignment that minimizes the total cost on
the network [16]. This inefficiency has been characterized for
different classes of latency functions and network topologies
[27], [29]. This helps understand the inefficiencies caused by
congestion on numerous real-life networks, such as communi-
cation networks and traffic networks.

In order to reduce the inefficiencies due to selfish routing,
many instruments have been studied, including congestion
pricing [21], capacity allocation [15], and Stackelberg routing
[2], [14], [25], [29]. In the Stackelberg routing game, a subset
of the players, corresponding to a fraction of the total flow,
hereafter called the compliant flow, is centrally assigned by
a coordinator (leader), and then the remaining players (fol-
lowers) choose their routes selfishly. The objective of the leader
is to assign the compliant flow in a manner that minimizes a
system-wide cost function, while anticipating the followers’
selfish response. This setting is relevant in the planning and
operation of transportation and communication networks.. In
transportation networks, advances in traveler information sys-
tems have made it possible to interact with individual drivers
and exchange information through GPS-enabled smartphone
applications or vehicular navigation systems [31]. These de-
vices can be used by a a traffic control center to provide routing
advice that can improve the overall efficiency of the network.
Naturally, the question arises on how the traffic control center
should coordinate with the compliant drivers while accounting
for the selfish response of other drivers: hence the importance
of the Stackelberg routing framework. One might argue that
the drivers who are offered routing advice are not guaranteed
to follow the suggested routes, especially when these routes do
not have minimal latency (in order to improve the system-wide
efficiency, some drivers will be assigned routes that are sub-op-
timal in the Nash sense). However, in some cases, it can be
reasonably assumed that a fraction of the drivers will choose
the routes suggested by the coordinator, despite immediate fair-
ness concerns. For example, some drivers may have sufficient
external incentives to be compliant with the coordinator. In
addition, the compliant flow may also include altruistic drivers
who care about the system-wide efficiency (e.g., pollution
levels).

Stackelberg routing on parallel networks has been studied ex-
tensively for the class of non-decreasing latency functions, and
it is known that computing the optimal Stackelberg strategy is
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Fig. 1. Map of a parallel highway network connecting San Francisco to San
Jose.

NP-hard in the size of the network [25]. This led to the de-
sign of polynomial time approximate strategies such as Scale
and Largest Latency First [25], [29]. While this class of latency
functions provides a good model of congestion for a broad range
of networks with vertical queues, such as communication net-
works, it does not entirely capture congestion in networks with
horizontal queues, such as transportation networks, in which
queuing results in an increase in density [9], [17], [19], [24],
[31], which in turn affects the latency. In order to better model
the effects of density, we introduce a new class of latency func-
tions, and we study Stackelberg routing games for this new class
on parallel networks. User-equilibria for routing games with
horizontal queues have been studied for example in [5], [12],
[20], [30]. However, to the best of our knowledge, Stackelberg
routing with horizontal queues has not been addressed so far.

We restrict our present study to parallel networks. This simple
network topology is of practical importance in several situa-
tions, including traffic planning on parallel highway networks
that connect two highly populated areas [6]. Fig. 1 shows one
such network that connects San Francisco to San Jose. We will
consider this network in Section V.

B. Congestion on Horizontal Queues

The classical model for vertical queues assumes that the la-
tency £, () on a link n is a non-decreasing function of the
flow x,, on that link [3], [4], [8], [26], [29]. However, for net-
works with horizontal queues [17], [19], [24], the latency not
only depends on the flow, but also on the density. For example,
on a transportation network, the latency depends on the density
of cars on the road (e.g., in cars per meter), and not only on the
flow (e.g., in cars per second), since for a fixed value of flow, a
lower density means higher velocity, hence lower latency. These
effects of changing density are not captured by models of ver-
tical queues. In this section we describe a simplified model of
congestion that takes into account both flow and density.

Let p,, be the density on link 7, assumed to be uniform, for
simplicity, and let the flow x,, be given by a continuous, concave
function of the density

oy, 2 [0, ] = [0, 2]
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> 0 is the maximum flow or capacity of the link,
is the maximum density that the link can hold. The

max

Here, z);

and p)'**

P
Ty EZ ! gn
-Ina: |
il - - -~ |
|
|
|
|
|
an | Qp,
b
p;rit pz‘axpn p;rit pf‘“ﬂn .,L,;}L)axxn
P
Ty éfz X gn
xgnax L :
|
|
|
|
(n l Qn
p;rit pg‘axpn prT:Lrit pf‘“ﬂn xfaxxn
P
xp /4 ! 4y
ma: |
T | |
|
|
|
|
Qp, | Ay,
p;rit pgaxpn p;rit px;]axpn .T;}Llaxa;n

Fig. 2. Examples of flux functions for horizontal queues (left) and cor-
responding latency as a function of the density €7 (p,,) (middle) and as a
function of the flow and the congestion state £,, (z,,. m . ) (right). The free-flow
(respectively congested) regime is shaded in green (respectively red).

function =¥, is determined by the physical properties of the link.
It is termed the flux function in conservation law theory [11],
[18] and the fundamental diagram in traffic flow theory [9], [13],
[23]. In general, it is a non-injective function. We make the fol-
lowing assumptions:

+ There exists a unique density p&** € (0, p@*) such that
T2 (pit) = 2™ called critical density. When p,, €
[0, p<ti*], the link is said to be in fiee-flow, and when p,, €
(perit, pmaxy it is said to be congested.

* In the congested regime, x? is continuous decreasing
from (p<tit, pmax)  onto (0,z™%). In particular,
lim,, ,pmax 2, (p,) = O (the flow reduces to zero
when the density approaches the maximum density).

These are standard assumptions on the flux function, following
traffic flow theory [9], [13], [23]. Additionally, we assume
that in the free-flow regime, «#, is linearly increasing in p,,,
and since 7 (pc™t) = x™%* we have in the free-flow regime
2 (pn) = xP%p, /pit (as a result, the flux function is
non-differentiable at the critical density). The assumption of
linearity in free-flow is the only restrictive assumption, and
it is essential in deriving the results on optimal Stackelberg
strategies. Although somewhat restrictive, this assumption
is common, and the resulting flux model is widely used in
modeling transportation networks, such as in [9], [22]. Fig. 2
shows examples of such flux functions.

Since the density p,, and the flow x,, are assumed to be uni-
form on the link, the velocity v, is given by v,, = 2, /p», and
the latency is simply given by L.,/v, = L, pn/x, where L,
is the length of link n. Thus to a given value of the flow, there
may correspond more than one value of the latency, since the
flux function is non-injective in general. To illustrate this with
an example, we consider a transportation setting. A given value
a,, of flow of cars on a road-segment can correspond to

« either a large concentration of cars moving slowly (high
density, the road is congested), in which case the latency is
large,
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* or few cars moving fast (low density, the road is in free-
flow), in which case the latency is small.
Therefore, the basic premise that the latency is a function of the
flow does not hold for networks with horizontal queues, i.e., net-
works in which the density may change and impact the latency.

C. Latency Function for Horizontal Queues

Given a flux function x£, the latency can be easily expressed
as a non-decreasing function of the density

60,00 - Ry
ann
Pn H[ﬁ Pn) = . (1)
) = o)

From the assumptions on the flux function, we have the
following.

e In the free-flow regime, the flux function is linearly in-
creasing, T,(pn) = (8% /pcr)p . Thus the latency is
is single-valued in free-flow, £2(p,) = Ly, pctit /2 max We
will denote its value by a,, £ Ly, pCrt /xmex called hence-
forth the free-flow latency.

+ In the congested regime, z* is bijective from (p<rit
to (0, z2*). Let

pgong . (07:1;21&)() N (p;rir’pglax)

max )

apn
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be its inverse. It maps the flow x,, to the unique congestion
density that corresponds to that flow. Thus in the congested
regime, latency can be expressed as a function of the flow,
Ly — £P(p2"8(x,)). This function is decreasing as the
composition of the decreasing function pi""¢ and the in-
creasing function ££.

We can therefore express the latency as a function of the flow
if we additionally specify the congestion state using a binary
variable m,, € {0, 1}, such that m,, = 0 if n is in free-flow,
and m,, = 1 if n is congested.

Definition 1: HOSF Latency Class: A function

£y Dy, =Ry

(@, ) —lp Xy, my,)

(2)
defined on the domain!
D, = [0, 2] x {0} U (0, z%%) x {1}

is a HQSF latency function if it satisfies the following
properties:
(A1) In the free-flow regime, the latency #,,(-, 0) is single-
valued.
(A2) In the congested regime, the latency z,, — ¢,,(x,, 1)
is decreasing on (0, ).
(A3) limy,, _ymax £, (2, 1) = ay, = £, (2, 0).

T
IThe latency in congestion £,,(-. 1) is defined on the open interval (0, z2*).
In particular, if r,, = 0 or #,, = z** then the link is always considered to
be in free-flow. When the link is empty (,, = 0), it is naturally in free-flow.
When it is at maximum capacity (., = #™*) it is in fact on the boundary of

the free-flow and congestion regions, and we say by convention that the link is
in free-flow.
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Fig. 3. Network with /N parallel links under demand r.

Property (Al) is equivalent to the assumption that the flux
function is linear in free-flow, and is the only restrictive property
in the sense discussed above, hence the name of the latency
class. Property (A2) results from the expression of the latency
as the composition ££ (p<°"8(z,,)), where ¢# is increasing, and
018 is decreasing. Property (A3) is equivalent to the continuity
of the underlying flux function z?,.

Although it may be more natural to think of the latency as a
non-decreasing function of the density, the above representation
in terms of flow z,, and congestion state m,, will be useful in
deriving properties of the Nash equilibria of the routing game.

Finally, we observe, as an immediate consequence of these
properties, that the latency in congestion is always greater than
the free-flow latency: Va,, € (0, 2**), £, (x,,1) > a,. Some
examples of HQSF latency functions (and the underlying flux
functions) are illustrated in Fig. 2. For a detailed derivation of
an example latency function in a traffic setting, see Appendix A.

D. Model

We consider a non-atomic routing game on a parallel net-
work, shown in Fig. 3. Here non-atomic means that the game
involves a continuum of players, where each player corresponds
to an infinitesimal (non-atomic) amount of flow, [27], [28]. The
network has a single source and a single sink. Connecting the
source and sink are N parallel links indexedbyn € {1,..., N}.
We assume, without loss of generality, that the links are ordered
by increasing free-flow latencies. To simplify the discussion, we
further assume that free-flow latencies are distinct. Therefore
we have a1 < as < -+ < apn. The network is subject to a
constant positive flow demand » at the source. We will denote
by (N, r) an instance of the routing game played on a network
with N parallel links subject to demand r. The state of the net-
work is given by a feasible flow assignment vector z € Rﬂf
such that 23:1 z, = r where z,, is the flow on link n, and a
congestion state vector m € {0,1}" where m,, = 0 if the link
is in free-flow and m,, = 1 if the link is congested, as defined
above. All physical quantities (density and flow) are assumed to
be static and uniform on the link.

Every non-atomic player chooses a route in order to minimize
his/her individual latency [26]. If a player chooses link n, his/her
latency is given by £, (2, my,), where £,, is a HQSF latency
function. We assume that players know the latency functions.

Pure Nash equilibria of the game (which we will simply refer
to as Nash equilibria) are assignments (z, m) such that every
player cannot improve his/her latency by switching to a different
link.

Definition 2: Nash Equilibrium: A feasible assignment
(x,m) € RY x {0,1}" is a Nash equilibrium of the routing
game instance (N,r) if Vn € supp(z), Vk € {1.....N},
ﬁn(f[,',“ m’n) S Ek(Tk mk)
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Fig. 4. Example of Nash equilibria for a three-link network. One equilibrium
(left) has one link in free-flow and one congested link. A second equilibrium
(right) has three congested links.

Here supp(x) = {n € {1,...,N}|z,, > 0} denotes the
support of £. As a consequence of this definition, all links in
the support of # have the same latency £y, and links that are not
in the support have latency greater than or equal to £;. We will
denote by NE(N, r) the set of Nash equilibria of the instance
(N, r). We note that a Nash equilibrium for the routing game
is a static equilibrium, we do not model dynamics of density or
flow. Fig. 4 shows an example of a routing game instance and
resulting Nash equilibria.

While a Nash equilibrium achieves minimal individual laten-
cies, it does not minimize, in general, the system cost or total
cost defined as follows:

Definition 3: The total cost of an assignment (&, m) is the
total latency experienced by all players

N
C(Ia m) = Z -’I;nzn(wrn mn)~

n=1

(€))

As detailed in Section II, under the HQSF latency class, the
routing game may have multiple Nash equilibria that have dif-
ferent total costs. We are interested, in particular, in Nash equi-
libria that have minimal cost, which are referred to as best Nash
equilibria (BNE).

Definition 4. Best Nash Equilibria: The set of best Nash equi-
libria is the set of equilibria that minimize the total cost, i.e.,

“

arg min
(z,m)ENE(N,r)

BNE(N,r) = C(z,m).

E. Stackelberg Routing Game

In the Stackelberg routing game, a coordinator (a central au-
thority) is assumed to have control over a positive fraction «
of the total flow demand r. We call o the compliance rate. The
coordinator wants to route the compliant flow ar in a way that
minimizes the system cost, while anticipating the response of
the rest of the players, assumed to choose their routes selfishly
after the strategy of the coordinator is revealed. We will refer to
the flow of selfish players (1 — «)r as the non-compliant flow.
More precisely, the game is played as follows:

 First, the coordinator (the leader) chooses a Stackelberg

strategy, i.e., an assignment 8 € IR‘I of the compliant flow
(such that Zszl 8, = ar).

» Then, the Stackelberg strategy s of the leader is revealed,

and the non-compliant players (followers) choose their

routes selfishly and form a Nash equilibrium (£(8), m(s)),
induced? by strategy 8. By definition, the induced equilib-
rium (t(8), m(s)) satisfies

Vn € supp (£(8)), Vke {l,...,N},

‘€n (Sn + tn(’s)7 m’n(s)) S Kk (sk + tk:(5)7 mk(s)) . (5)

The total flow on the network is 8 + (8), thus the total cost
is C(s + t(8), m(s)). Note that a Stackelberg strategy 8 may
induce multiple Nash equilibria in general. However, we define
the assignment (£(s), m(8)) to be the best such equilibrium (the
one with minimal total cost, which will be shown to be unique
in Section III).

We will use the following notation:

e (N,r,«a) is an instance of the Stackelberg routing game
played on a parallel network with N links under flow de-
mand 7 with compliance rate . Note that the routing game
(N, r) is a special case of the Stackelberg routing game
with @ = 0.

« S(N,r,a) C RY is the set of Stackelberg strategies for the
Stackelberg instance (N, r, o).

e S*(N,r,a) is the set of optimal Stackelberg strategies de-
fined as

S*(N,r,«) = argmin C (8 +t(s),m(s)).
SES(N,rw)

Q)

F. Main Result

We now define a candidate Stackelberg strategy, which we
call the non-compliant first strategy (NCF), and which we prove
to be an optimal Stackelberg strategy. The NCF strategy corre-
sponds to first computing the best Nash equilibrium (%, /) of the
non-compliant flow for the routing game instance (N, (1—a)r),
then finding a particular strategy # that induces (£, ).

Definition 5: The Non-Compliant First Strategy: Con-
sider the Stackelberg instance (N,r,a). Let () be
the best Nash equilibrium of the non-compliant flow,
{(t,m)} = BNE(N,(1 — a)r), and k = maxsupp(t)
be the last link in its support. Then the non-compliant first
strategy, denoted by NCF(N, 7, a), is by definition the Stack-

elberg strategy given by

E— E
knl
NCF(N,rya) = | 0,..., 0, o™ — F, 0025 oy,
-1
ar — (Z amax —tk) .,0,...,0) @)
n=k
where [ is the maximal index in {k+1,..., N} such that ar —

max

(Cnlp o =) > 0.

In words, the NCF strategy saturates links one by one, by
increasing index starting from link k, the last link used by the
non-compliant flow in the best Nash equilibrium of (N, (1 —

2We note that a feasible flow assignment s of compliant flow may fail to
induce a Nash equilibrium (¢, m) and therefore is not considered to be a Stack-
elberg strategy.
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TABLE 1
MAIN ASSUMPTIONS AND RESULTS FOR THE STACKELBERG ROUTING GAME ON A PARALLEL NETWORK

Setting Vertical queues Horizontal queues, single-valued in free-flow (HQSF)
Model T 4(x) (x,m) > l(x,m)
latency is a function of the flow | latency is a function of the flow = < [0,2™2%] and the
z € [0, xmax | congestion state m € {0,1}.
Assumptions | « > f(x) is continuously non- | x > £(x,0) is single-valued.
decreasing. x + £(x,1) is continuously decreasing.
z — xf(x) is convex. lim,_, gmax £(z,1) = £(x™3%,0).
Setof Nash Essential uniqueness: if x,x’ are | No essential uniqueness in general.
equilibria Nash equilibria, then C(z) = | The number of Nash equilibria is at most 2N (Proposition 4)
C(z) 4], [8]. The best Nash equilibrium is a single-link-free-flow equilibrium
(Lemma 2)
Optimal NP hard [25] The NCF strategy is optimal and can be computed in polyno-
Stackelberg mial time. (Theorem 1)
strategy The set of optimal Stackelberg strategies can be computed in
polynomial time (Theorem 2)

an

ay

aj—1

ag
Ak—1

451

17981 t Tn

Fig. 5. Non-compliant first (NCF) strategy & and its induced equilibrium. Cir-
cles show the best Nash equilibrium (%, m) of the non-compliant flow (1 —a)r:
link % is in free-flow, and links {1, ..., k — 1} are congested. The Stackelberg

strategy 8 = NCF(.V, r, o) is highlighted in blue.

a)r). Thus it will assign 2" — #; to link k, then rp) to link

E+1, s to link k + 2 and so on, until the compliant flow is
assigned entirely (see Fig. 5). The following theorem states the
main result.

Theorem 1: The NCF Strategy is an Optimal Stackel-
berg Strategy: Under the class of HQSF latency functions,
NCF(N,r, «) is an optimal Stackelberg strategy for the Stack-
elberg instance (N, 7, ).

We give a proof of Theorem 1 in Section III. We will also
show that for the class of HQSF latency functions, best Nash
equilibria can be computed in polynomial time in the size N
of the network, and as a consequence, the NCF strategy can
also be computed in polynomial time. This stands in contrast to
previous results under the class of non-decreasing latency func-
tions, for which computing the optimal Stackelberg strategy is
NP-hard [25]. Table I summarizes the main differences between
the classical setting (vertical queues) and the setting studied in
this paper (horizontal queues, under the additional assumption
that latency is single-valued in free-flow).

II. NASH EQUILIBRIA

In this section, we study Nash equilibria of the routing game.
We show that under the class of HQSF latency functions, there
may exist multiple Nash equilibria that have different costs.
Then we partition the set of equilibria into congested equilibria
and single-link-free-flow equilibria. Finally, we characterize the
best Nash equilibrium and show that it can be computed in
quadratic time in the number of links.

A. Structure and Properties of Nash Equilibria

We first give some properties of Nash equilibria. The fol-
lowing proposition is straightforward.

Proposition 1: Total Cost of a Nash Equilibrium: Let
(z,m) € NE(N.r) be a Nash equilibrium for the instance
(N,r). Then there exists £o > 0 such that ¥n € supp(z),
Lo (2, my) = by and Vn & supp(z), £,(0,0) > £y. The total
cost of the equilibrium is then C'(x, m) = rf;.

Proposition 2: Let (x,m) € NE(N,r) be a Nash equilib-
rium. Then & € supp(z) = Vn < k, link n is congested.

Proof: By contradiction, if m,, = 0, then £,(z,,m,) =
an < ap < €r(xp, my), which contradicts Definition 2 of a
Nash equilibrium. [ |

Corollary 1: Support of a Nash Equilibrium: Let (z,m) €
NE(N, r) be a Nash equilibrium and & = maxsupp(z) be
the last link in the support of & (i.e., the one with the largest
free-flow latency). Then we have supp(z) = {1,...,k}.

Proof: Since k € supp(z), we have by Proposition 2 that
Vn < k, link n is congested, thus n € supp(z) (by definition,
a congested link cannot be empty). [ |

No Essential Uniqueness: For the HQSF latency class, the es-
sential uniqueness property? does not hold, i.e., there may exist
multiple Nash equilibria that have different costs, an example is
given in Fig. 4.

Single-Link-Free-Flow Equilibria and Congested Equilibria:
The example shows that in general, there may exist multiple
Nash equilibria that have different costs, different congestion

3The essential uniqueness property states that for the class of non-decreasing
latency functions, all Nash equilibria have the same total cost. See for example
[4], [8], [26].
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state vectors, and different supports. However, not every con-
gestion state vector m € {0,1}" can be that of a Nash equi-
librium: let (. m) € NE(N,r) be a Nash equilibrium, and let
: = max supp(#) be the index of the last link in the support of
. Then by Proposition 2, we have that Vi < k, m; = 1, and
Vi > k, m; = 0. Thus we have
Iﬁ
e Eitherm = (1,...,1, 0,0,...,0) i.e., the last link in
the support is in free-flow, all other links in the support
are congested. In this case we call (x,m) a single-link-
free-flow equilibrium, and denote the set of such equilibria
by NE¢(N, 7). 7
e« Orm = (1,...,1, 1,0,...,0) i.e, all links in the sup-
port are congested. In this case we call (£, m) a congested
equilibrium, and denote the set of such equilibria by
NE.(N,r).

B. Existence of Single-Link-Free-Flow Equilibria

Let (x£,m) be a single-link-free-flow equilibrium, and
let & = maxsupp(xz). We have from Proposition 2
that links {1,....k — 1} are congested and link % is in
free-flow. Therefore we must have Vn € {1,...,k — 1},
L, (#n, 1) = Li(21,0) = ag. This uniquely determines the flow
on the congested links:

Definition 6: Congestion Flow: Letk € {2,...,N}. Then
Vn € {1,...,k — 1}, there exists a unique flow x, such that
Ly (&, mn) = ap. We denote this flow by (k) and call it
k-congestion flow on link n. It is given by

En(k) = £,(-, 1) ag). ®)

We note that #,,(k) is decreasing in k, since £,(-,1)7! is
decreasing.

Proposition 3: Single-Link-Free-Flow Equilibria: (x,m)
is a single-link-free-flow equilibrium if and only if 3k €

{1,....N}suchthat0 < r — Zi‘l: &n(k) < 2™, and

k—1
x= (%1(k)....,§:k_1(k),r—Z:i:n(k),() ..... o) ©)
n=1
ﬁ
m=(1,...,1, 0,...,0). (10)

Ilustrations of (10) and (9) are shown in Fig. 6.

Next, we give a necessary and sufficient condition for the
existence of single-link-free-flow equilibria.

Lemma 1: Existence of Single-Link-Free-Flow Equilibria:
Let

k—1
A
=  ms i Zn(k) . 11
ke{nﬁ“*_iw}{lk + ) )} (11)

n=1

A single-link-free-flow equilibrium exists for the instance
(N,r) if and only if r < rNE(N).

Proof: If asingle-link-free-flow equilibrium exists, then by
Proposition 3, it is of the form given by (10) and (9) for some k.

by

a4
ag

(£

ay

Tn

Fig. 6. Example of a single-link-free-flow equilibrium. Link 3 is in free-flow
and links 1 and 2 are congested. The common latency on all links in the support
is as.

The flow on link % is then given by r — Zi;i Zn (k) <z,
Therefore r < z}*** + Zﬁ: #n(k) < rNE(N).

We prove the converse by induction on the size IV of the net-
work. Let P denote the property: ¥r € (0, 7NE(N)], there ex-

ists a single-link-free-flow equilibrium for the instance (V, r).

For N = 1, it is clear that if 0 < r < 2zP"** there is a
single-link-free-flow equilibrium simply given by (z1,m1) =
(r,0).

Now let N > 1, assume P holds and let us show P 41. Let
0 < r < 7ME(N + 1) and consider an instance (N + 1, 7).

Case 1: Ifr < rVE(NV), then by the induction hypothesis Py,
there exists a single-link-free-flow equilibrium (x,m) for the
instance (N, ). Then (2’, m’) defined as £’ = (1,...,2xn,0)
and m’ = (mi,...,mxy,0) is clearly a single-link-free-flow
equilibrium for the instance (N + 1,7).

Case 2: If rNE(N) < r < vNE(N 4 1) then by Proposition
3, an equilibrium exists if

N
0<r— Z:i‘n(N +1) <23

n=1

(12)
First, we note that since 7™F(N) < ¥NE(N + 1), then

N
PPN 1) =2+ ) 2 (N +1).
n=1
Thus
.
r<rNEN 1) = 2R+ ) @a(N + 1)

n=1

which proves the second inequality in (12). To show the first
inequality, we have

N-1
r > NE(N) > 23 4 Y E (V)
n=1

N—-1
>in(N+1)+ > &u(N+1)

n=1
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where the last inequality results from the fact that £, (N) >
En(N+1) and £5%** > &5 (N +1) by Definition 6 of congestion
flow. This achieves the induction. ]

Corollary 2: The maximum demand 7 such that the set of
Nash equilibria NE(N, ) is non-empty is 7NE(N).

Proof: By the previous lemma, rNE(N) is a lower
bound on the maximum demand. To show that it is also an
upper bound, suppose that NE(N,7) is non-empty, and let
(z,m) € NE(N,r) and ¥ = maxsupp(z). Then we have
supp(z) = {1,..., k} by Corollary 1, and by Definition 2 of a
Nash equilibrium, Vn < k, £, (2. my) = €e(zp,me) > ag,
therefore z,, < #,(k). We also have z;, < #i**. Combining
the inequalities, we have

k
— § :fL'n max+ E th S
n=1

E(N).

C. Number of Equilibria

Proposition 4: An Upper Bound on the Number of Equilibria:
Consider a routing game instance (N, r). For any given & €
{1,..., N}, there is at most one single-link-free-flow equilib-
rium and one congested equilibrium with support {1, ....k}. As
a consequence, by Corollary 1, the instance (N, r) has at most
N single-link-free-flow equilibria and /N congested equilibria.

Proof: We prove the result for single-link-free-flow equi-
libria, the proof for congested equilibria is similar. Let £ €
{1,.... N}, and assume (z,m) and (&', m’) are single-link-
free-flow equilibria such that max supp(z) = maxsupp(z’) =
k. We first observe that by Corollary 1, & and 2’ have the same
support {1,...,k}, and by Proposition 2, m = m’. Since link
k is in free-flow under both equilibria, we have £ (zx, my) =
L (), m)) = ax, and by Definition 2 of a Nash equilibrium,
any link in the support of both equilibria has the same latency
ag, i.e., Vn < k, £, (2n, 1) = £;(x),,1) = ai. Since the latency
in congestlon is injective, we have Vn < k, xz, = x,, therefore
S [ |

D. Best Nash Equilibrium

In order to study the inefficiency of Nash equilibria, and the
improvement of performance that we can achieve using optimal
Stackelberg routing, we focus our attention on best Nash equi-
libria and price of stability [1] as a measure of their inefficiency.

Lemma 2: Best Nash Equilibrium: For a routing game in-
stance (N, 7), r < rNE(N), the unique best Nash equilibrium
is the single-link-free-flow equilibrium that has smallest support

BNE(N,r) =

argmin  {maxsupp(x)}.

(2,m)ENE:(N,r)

Proof: We first show that a congested equilibrium cannot
be a best Nash equilibrium. Let (z,m) € NE(N,r) be a

congested equilibrium and let & = maxsupp(z). By Propo-
sition 1, the cost of (&, m) is C(&.m) = £ (xp, 1)r > apr.
We observe that (&, m) restricted to {1,...,%} is an equilib-

rium for the instance (k,r), thus by Corollary 2, r < rNEE,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 3, MARCH 2014

and by Lemma 1, there exists a single-link-free-flow equi-
librium (z',m’) for (k,r), with cost C(=’, m) < agr.
Clearly, (x",m'") defined as " = (z},...,%}.,0,...,0) and
m'’ = (my,...,m,,0,...,0), is a single-link- free-ﬂow
equilibrium for the orlgmal instance (N,r), with cost
Clz",m")y = C&',m') < arr < C(z,m), which proves
that (2, m) is not a best Nash equilibrium. Therefore best Nash
equilibria are single-link-free-flow equilibria. And since the
cost of a single-link-free-flow equilibrium (2, m) is simply
C(z,m) = agr where & = maxsupp(z), it is clear that
the smaller the support, the lower the total cost. Uniqueness
follows from Proposition 4. ]

Complexity of Computing the Best Nash Equilibrium:
Lemma 2 gives a simple algorithm for computing the best
Nash equilibrium for any instance (IV,): simply enumerate
all single-link-free-flow equilibria (there are at most NV such
equilibria by Proposition 4), and select the one with the smallest
support. This is detailed in Algorithm 1.

Algorithm 1 Best Nash Equilibrium

procedure bestNE (N, r)
Inputs: Size of the network N, demand r
Outputs: Best Nash equilibrium (x, m)
fork € {1,...,N}
let (&, m) = freeFlowConfig(k)
ifwy, € [0, 272%]
return (z,m)
return No-Solution
procedure freeFlowConfig (k)
Inputs: Free-flow link index %

Outputs: Assignment (£, m) = (z"* m*)
forn € {1,...,N}
ifn <k
Ty = En(k), m, =1
elseif n ==
Ty =1 — Zi;i Ty, g =0
else

L =0, m, =0
return (x,m)

The congestion flow values {#,(k),1 < n < k < N}
can be precomputed in O(N?). There are at most N calls to
freeFlowConfig, which runs in O(N) time, thus be stNE
runs in O(N?) time. This shows that the best Nash equilibrium
can be computed in quadratic time.

III. OPTIMAL STACKELBERG STRATEGIES

In this section, we prove our main result that NCF strategy is
an optimal Stackelberg strategy (Theorem 1). Furthermore, we
show that the entire set of optimal strategies S*(V, r, a) can be
computed in a simple way from the NCF strategy.

Let (,7m) be the best Nash equilibrium for the instance
(N, (1 — a)r). Tt represents the best Nash equilibrium of the
non-compliant flow (1 — a)» when it is not sharing the network
with the compliant flow. Let & = max supp(£) be the last link
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in the support of £. Let 8 be the NCF strategy defined by (7).
Then the total flow & = 8 + £ is given by

Z (gz-l(l?), g (), a2 e ey,
k-1 -1
r= Y @ (k)= > an™,0,...,0| (13)
n=1 n==k%F
and the corresponding latencies are
k
n
Afs---y Qpy OF4qy--- AN (14)

Fig. 5 shows the total flow &, = 8,, + £,, on each link. Under
(z,7m), links {1,...,k — 1} are congested and have latency ay,
links {k,...,1 — 1} are in free-flow and at maximum capacity,
and the remaining flow is assigned to link /.

We observe that for any Stackelberg strategy 8 € S(N, r, o),
the induced best Nash equilibrium (¢(s). m(8)) is a single-link-
free-flow equilibrium by Lemma 2, since (£(8), m(8)) is the best
Nash equilibrium for the instance (N, ar) and latencies

Z’n, : -Dn _>H+

L (8n + @n, ) (15)

(T )

where Dn i [0 ~max] X {O} U ( ~max) % {1} and & ~max é

max
&Z

A — sy,

A. Proof of Theorem 1: The NCF Strategy Is an Optimal
Stackelberg Strategy

Let 8 € S(N,r,a) be a Stackelberg strategy and (¢, m) =
(t(s8),m(s)) be the best Nash equilibrium of the non-compliant
flow, induced by 8. Let z = 8 + £(8) and = 8 + ¢ be the total
flows. To prove Theorem 1, we seek to show that C'(z, m) >
C(Z,m).

The proof is organized as follows: we first compare the sup-
ports of the induced equilibria (Lemma 3), then show that links
{1,...,1—1} are more congested under assignment (z, m) than
under (Z,m), in the following sense: they hold less flow and
have greater latency (Lemma 4). Then we conclude by showing
the desired inequality.

Lemma 3: Let k =
Then k& > k.

In words, the last link in the support of #(8) has higher
free-flow latency than the last link in the support of £.

Proof: We first note that (s + #(s),m) restricted to
supp(#(8)) is a Nash equilibrium. Then since link & is in
free-flow we have ¢(sx + (x(8),mi) = ai, and since
k € supp(#(s)), we have by definition that any other link has
greater or equal latency. In particular, ¥n € {1,...k — 1},
Lo (8p + Lo(s ) My, ) > ag, thus s, +tn( ) %, (k). Therefore
we have anl S+ ta(8) < Zn 1acn (k) + z*. But
Zf;:l(sn + tn(S)) 2 ZnEsupp(t)f ( ) = (1 - Oé)’l' since

supp(#) C {1,...,k}. Therefore (1 — a)r < S-F21 2, (k) +

max supp(t) and k& = maxsupp(f).

2;%*. By Lemma 1, there exists a single-link-free-flow equi-
librium for the instance (N, (1 — «)r) supported on the first &
links. Let (£,7h) be such an equilibrium. The cost of this equi-
librium is (1 — a)rfy where £y < ay, is the free-flow latency of
the last link in the support of £. Thus C'(¢,7h) < (1 — a)ra.
Since by definition (£,m) is the best Nash equilibrium for the
instance (N, (1 — «)r) and has cost (1 — a)raj, we must have
(1 —a)rag < (1 — a)rag,ie., ap < ap. ]

Lemma 4: Under assignment (£, m), the links {1, ...,/ —1}
have greater (or equal) latency and hold less (or equal) flow
than under (z,m), i.e., Vo € {1,...,1 — 1}, Ln(zn, mn) >
Lo (T, M) and 2, < Ty

Proof: Since k € supp(t), we have by definition
of a Stackelberg strategy and its induced equilibrium that
Vo € {1.....k = 1}, (2. my) > ez me) > ag,
see (5). We also have by definition of the candidate
assignment (Z,7m) and the resulting latencies given
by (14), vn € {1,...,k — 1}, n is congested and
0 (2, my) = ag. Thus using the fact that & > k, we have
Vo€ {1,....k =1}, Lo(n, mp) > ar > ag = €o(Tn, Mn),
and z,, < 2,(k) < &,(k) = 7,,.

We have from (13) thatVn € {k. ..., I—1},nisin free-flow
and at maximum capacity under (&, m) (i.e., T, = 2 and
0,(Zn) = a,). ThusVn € {k,...,1 — 1}, ,(J:T,,,mn) > a, =
Lo (T, M) and z, < 2% = Z,. This completes the proof of
the lemma. ]

We can now show the desired inequality. We have

N
= Z Tl (T, Moy
n=1

-1 N

= Z -’17'n£n('7»‘n7 777"71,) + z -Tnﬂn(mna Tn’n)

n=1 n=I

-1 N
E mngn(jn m l) + E Tpal
n=1

n=I

v

(16)

where the last inequality is obtained using Lemma 4 and the
fact that Vn € {{,..., N}, £,(x, my) > an > a;. Then rear-
ranging the terms we have

-1

Clz,m) > Z(l‘n = T n (B, T,

n=1
-1 N
+ E j'nén(jnp 7’7/7%) + § Tpnay.
n=1 n=l

Then we have Vn € {1,....1 -1},
(fljn - jn) (gn(a_;’n,; ﬁln) - CLl) Z 0

[by Lemma 4, x,,
(14)]. Thus

— &, < 0, and we have £, (Z,,, M., ) < a; by

-1

Z(mn = Zn )l

n=1

rn77nn Z Tn — T (]l (17)
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and we have

-1 N

-1
C(x,m) > Z(.Ln — T )y + Z Tl (T, Mop) + Z Tl

n=1 n=1 n=I

n -1 -1
=y E Ty — E Tn | + E -fnﬁn (-fna 777,”)
n=1

n=1 n=1
-1
=a; | r— E Ty
n=1

But a;(r — Zf:l Tn) = T4(T,my) since supp(Z)
{1,....1} and ¢;(Z;, ;) = a;. Therefore

-1

Z Tl (Zn, Mip)-

n=1

-1
Clx.m) > 2y(21,770) + Y Enly (T, 110n) = C(2, ).

n=1

This completes the proof of Theorem 1. [ |

Therefore the NCF strategy is an optimal Stackelberg
strategy, and it can be computed in polynomial time since it is
generated in linear time after computing the best Nash equi-
librium BNE(N, (1 — a)r), which was shown to be quadratic
in V.

The NCF strategy is, in general, not the unique optimal Stack-
elberg strategy. In the next section, we show that any optimal
Stackelberg strategy can in fact be easily expressed in terms of
the NCF strategy.

B. Set of Optimal Stackelberg Strategies

In this section, we show that the set of optimal Stackelberg
strategies S*(V, r, &) can be generated from the NCF strategy.
This shows in particular that the NCF strategy is robust, in a
sense explained below.

Let 8 = NCF(N,r, «) be the non-compliant first strategy,
{(t,m)} = BNE(N, (1—«)r) be the Nash equilibrium induced
by 8, and k = maxsupp(#) the last link in the support of the
induced equilibrium, as defined above. By definition, the NCF

strategy 8 assigns zero compliant flow to links {} ek — 1},
and saturates links one by one, starting from £ (see (7) and
Fig. 5).

To give an example of an optimal Stackelberg strategy other
than the NCF strategy, consider a strategy 8 defined by 8 = 8+¢
where

€1,0,...,0, —€1,0,...,0

andis suchthat s; = e; € [0,%1(k)], and s = §;—e€1 > O (see
Fig. 7). Strategy 8 will induce £(s) = ¢ — ¢, and the resulting
total cost is minimal since C'(s + ¢(s8)) = C(8+ e+t —¢€) =
C(8 + t). This shows that s is an optimal Stackelberg strategy.
More generally, the following holds:
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Fig. 7. Example of an optimal Stackelberg strategy $ = 8 — €. The circles
show the best Nash equilibrium (£, m ). The strategy 8 is highlighted in green.

Lemma 5: Consider a Stackelberg strategy 8 of the form s =
8 4 € where

- E+1
k-1 n
€= 61,62,...,€k_1,—26ﬂ, 0,..., 0 (18)
n=1
and € is such that
e € [0,8,(K)] Vne{l,...,k-1} (19)
k-1
55 > €n- (20)

n=1

Then 8 is an optimal Stackelberg strategy.

Proof: We show that 8 = 8 4 € is a feasible assignment of
the compliant flow «r, and that the induced equilibrium of the
followers is (£(s), m(s)) = (¢t — €,1m).

Since S2_ e, = 0 by definition (18) of €, we have
Zgzl Sy = 22:1 5, = ar. We also have

e Vne{l,....k—1}, 5, = e, € [0,4,(k)] by (19). Thus

8y € [0, iex],

* sp = 55 + €5 > 0by (20), and s < 55 <z,

e Vnelk+1,...,N}, 5, =5, € [0, 2],
This shows that s is a feasible assignment. To show that s in-
duces (t — €,7m), we need to show that ¥n € supp(t — €),
vk e {1,...,N}

0o(8n +en+Tn — nomn) < 05k + € + T — €x, 1g,).

This is true Vn € supp(t), by definition of (¢,7%) and (5). To
conclude, we observe that supp(f — €) C supp(?). ]

This shows that the NCF strategy is robust to perturbations:
even if the strategy § is not realized exactly, it may still be op-
timal if the perturbation € satisfies the conditions given above.

The converse of the previous lemma is true. This gives a nec-
essary and sufficient condition for optimal Stackelberg strate-
gies, given in the following theorem.
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Theorem 2: The Set of Optimal Stackelberg Strategies: The
set of optimal Stackelberg strategies S*(N, r, o) is the set of
strategies 8 of form 8 = & + € where 8 = NCF(N, r, @) is the
non-compliant first strategy, and € satisfies (18), (19), and (20).

Proof: We prove the converse of Lemma 5. Let
8 € S*(N,r,a) be an optimal Stackelberg strategy,
(t,m) = (¥(s),m(s)) the equilibrium of non-compliant
flow induced by 8, & = max supp(#) the last link in the support
of 2, and £ = s + ¢ the total flow assignment.

We first show that # = Z. By optimality of both 8 and 8, we
have C(z, m) = C(&,m), therefore inequalities (16) and (17)
in the proof of Theorem 1 must hold with equality. In particular,
to have equality in (16) we need to have

-1
Z Ly (U (Lo M) — L (T, o))
n=1

N
+ ZZL‘n (bn(@p,mp) —a) =0, (21)
n=l

The terms in both sums are non-negative. Therefore

Tn (Zn(mna 7nn) _[//n (-’17;'”7 ﬁ7/rL)) =0

al) =0

Vne{l,...,l—1} (22)

Ty (L (00 — vne{l,...,N} (23)

and to have equality in (17) we need to have
(= Fp) (U (Zpymy) —a) =0 Vne{l,...,1-1}. 24)

Letn € {1,...,1 — 1}. From the expression (14) of the
latencies under &, we have £,,(%.,,, M., ) < a;, thus from equality
(24) we have z,, — T, = 0. Now letn € {{ +1,...N}. We
have by definition of the latency functions, £,,(x,,, my,) > a, >
ay, thus from equality (23), x,, = 0. We also have from the
expression (13), z,, = 0. Therefore z,, = Z,¥n # [, but since
x and Z are both assignments of the same total flow r, we also
have x; = z;, which proves x = Z.

Next we show that & = k. We have from the proof of The-
orem | that k& > k. Assume by contradiction that & > k. Then
since k£ € supp(t), we have by definition of the induced fol-
lowers’ assignment in (5), Vo € {1,.... N}, bo(zp,my,) >
Li(xi, my). And since £y (zr, mg) > ap > aj, we have (in
particular for n = k) £z (x5, mg) > ag, i.e., link k is congested
under (&, m), thus z > 0. Finally, since #;(Z;, mg) = az, we
have 4z (Zg,mz) > £5(Zg, my). Therefore vy (£z (v, mg) —
(5 (%, mg)) > 0, since k < k < I, this contradicts (22).

Now let e = 8 — 3. We want to show that € satisfies (18), (19),
and (20).

First, we have ¥n € {1,...,k — 1}, 5, = 0, thus ¢, =
$n—58n = 8,. WealsohaveVn € {1,...,k—1},0 < s, < 2,
T, = ¥, (since x = %), and Z,, = 4,,(k) [by (13)]. Therefore
0 < 8, < 2,(k). This proves (19).

Second, we have Vi € {k +1,...,N},t, = t, = 0 (since
k= E), and z,, = ¥, (sincex = Z) thuse, =
Tp —tn — Tp + 1, = 0.

Third, we have Y. _, e, = 0 since 8 and 3 are assign-
ments of the same compliant flow ar, thus e = — 3,z €0 =
- Zi;i €n. This proves (18).

Finally, we have (20) since s; > 0 by definition of s. [ |

Sn — Sn =

IV. PRICE OF STABILITY UNDER OPTIMAL
STACKELBERG ROUTING

To quantify the inefficiency of Nash equilibria, and the im-
provement that can be achieved using Stackelberg routing, sev-
eral metrics have been used including price of anarchy [26], [27]
and price of stability [1]. We use price of stability as a metric,
which is defined as the ratio between the cost of the best Nash
equilibrium and the cost of the social optimum.# Let (x*, 0) de-
note the social optimum of the instance (N, r)—the social op-
timum is simply the free-flow assignment that saturates links
one by one by increasing index (see Appendix B). Let 8 be the
non-compliant first strategy NCF(N, r, &), and (£(8), m(8)) the
induced equilibrium of the followers. The price of stability of
the Stackelberg instance NCF(N, r, ox) is

C (3 +1(s).m(3))
C(z*,0)

POS(N,r,a) =

where 3 is the NCF strategy, and (£, /) its induced equilibrium.
The improvement achieved by optimal Stackelberg routing with
respect to the Nash equilibrium («v = 0) can be measured using
value of altruism [2], defined as

POS(]V r, ())

VOA(N, r,0r) = =it
(Nyr,a) POS(N, 7, )

This terminology refers to the improvement achieved by having
a fraction « of altruistic (or compliant) players, compared to a
situation where everyone is selfish.

We give the expressions of price of stability and value of al-
truism in the case of a two-link network, as a function of the
compliance rate « € [0, 1] and demand r.

Case I: 0 < (1—a)r < z2**: Inthis case, link 1 can accom-
modate all the non-compliant flow, thus the induced equilibrium
of the followers is (£(8), m(8)) = (((1 —«a)r,0),(0,0)), and by
(7) the total flow induced by 3 is 8 + #(8) = (¥, r — pjre¥)
and coincides with the social optimum. Therefore, the price of
stability is one.
Case 2: zP** < (1 —a)r < 54+ 71(2): Observe that this
case can only occur if #5'** + #1(2) > £"**. In this case, link
1 cannot accommodate all the non-compliant flow, and the in-
duced Nash equilibrium (¢(8), m(8)) is then supported on both
links. It is equal to (2>~ m?) = ((21(2),(1 — a)r —
%1(2)),(1,0)), and the total flow is (8 + £(8) = (£,(2),r —
#1(2)), with total cost asr [Fig. 8(b)]. The social optimum is
(", m*) = (2P, r — 21%°*),(0,0)) (see Appendix B), with
total cost a1 £** +as (r — z***) [Fig. 8(a)]. Therefore the price
of stability is

a9 1

raz — o (ag —a1) o (1 _ a_1) )
"

az

POS(2,r,a) =

We observe that for a fixed flow demand r > z"**, the price
of stability is an increasing function of @y /a4 . Intuitively, the
inefficiency of Nash equilibria increases when the difference in

“4Price of anarchy is defined as the ratio between the costs of the worst Nash
equilibrium and the social optimum. For the case of non-decreasing latency
functions, the price of anarchy and the price of stability coincide since all Nash
equilibria have the same cost by the essential uniqueness property.



724

A1 &S ar g

(b)

Fig. 8. Social optimum (a) and best Nash equilibrium (b) when the demand
exceeds the capacity of the first link (r > x"2*). The area of the shaded regions
represents the total costs of each assignment.
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Fig. 9. Price of stability and value of altruism on a two-link network. Here we
assume that ,(2) + z5*** > z{"**. (a) Price of stability, « = 0; (b) Price of
stability, @ = 0.2; (c) Value of altruism, ov = 0.2.

free-flow latency between the links increases. And as a2 — aq,
the price of stability goes to 1.

When the compliance rate is « = 0, the price of stability at-
tains a supremum equal to as/ay, at r = (z1**)T [Fig. 9(a)].
This shows that selfish routing is most costly when the demand
is slightly above critical value 7N (1) = £1#*, This also shows
that for the general class of HQSF latencies on parallel net-
works, the price of stability is unbounded, since one can de-
sign an instance (2, r) such that the maximal price of stability
as/ay is arbitrarily large. Under optimal Stackelberg routing
(e > 0), the price of stability attains a supremum equal to
1/{a+(1—a)(ai/as)) atr = (£ /(1—«))T. We observe in
particular that the supremum is decreasing in «, and that when
a = 1 (total control), the price of stability is identically one.

Therefore optimal Stackelberg routing can significantly de-
crease price of stability when r € (2", 27***/(1 — «)). This
can occur for small values of the compliance rate in situations
where the demand slightly exceeds the capacity of the first link
[Fig. 9(c)].

The same analysis can be done for a general network: given
the latency functions on the links, one can compute the price of
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Fig. 10. Latency functions on an example highway network. Latency is in min-
utes, and demand is in cars/minute.

stability as a function of the flow demand r and the compliance
rate ¢, using the form of the NCF strategy together with Algo-
rithm 1 to compute the BNE. Computing the price of stability
function reveals critical values of demand, for which optimal
Stackelberg routing can lead to a significant improvement. This
is discussed in further detail in the next section, using an ex-
ample network with four links.

V. NUMERICAL RESULTS

In this section, we apply the previous results to a scenario of
freeway traffic from the San Francisco Bay Area. Four parallel
highways are chosen starting in San Francisco and ending in San
Jose: I-101,1-280, I-880, and I-580 (Fig. 1). We analyze the inef-
ficiency of Nash equilibria, and show how optimal Stackelberg
routing (using the NCF strategy) can improve the efficiency.

Fig. 10 shows the latency functions for the highway network,
assuming a triangular fundamental diagram for each highway
(see Appendix A for a derivation of the latency function from
a triangular fundamental diagram). Under free-flow conditions,
I-101 is the fastest route available between San Francisco and
San Jose. When I-101 becomes congested, other routes repre-
sent viable alternatives.

We computed price of stability and value of altruism (defined
in the previous section) as a function of the demand r for dif-
ferent compliance rates. The results are shown in Fig. 11. We
observe that for a fixed compliance rate, the price of stability is
piecewise continuous in the demand [Fig. 11(a)], with discon-
tinuities corresponding to an increase in the cardinality of the
equilibrium’s support (and a link transitioning from free-flow
to congestion). If a transition exists for link n, it occurs at crit-
ical demand » = {*)(n), defined to be the infimum demand
r such that n is congested under the equilibrium induced by

NCF(N, r, o).
It can be shown that (*)(n) = rNE(n)/(1 — «), and we
have in particular »™¥(n) = 7 (n). Therefore if a link n

is congested under best Nash equilibrium (r > 7™F(n)), op-
timal Stackelberg routing can decongest n if 7(*)(n) > 7. In
particular, when the demand is slightly above critical demand
r(®(n), link n can be decongested with a small compliance
rate. This is illustrated by the numerical values of price of sta-
bility on Fig. 11(a), where a small compliance rate {«x = 0.05)
achieves high value of altruism when the demand is slightly
above the critical values. This shows that optimal Stackelberg
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Fig. 12. Price of stability (a) and value of altruism (b) as a function of the
compliance rate o and demand r. Iso-« lines are plotted fora = (.03 (dashed),
« = 0.15 (dot-dashed), and «x = 0.5 (solid).

routing can achieve a significant improvement in efficiency, es-
pecially when the demand is near one of the critical values
@) (n).

Fig. 12 shows price of stability and value of altruism as a
function of the demand r € [0,7NF(N)] and compliance rate
a € [0,1]. We observe in particular that for a fixed value of
demand, price of stability is a piecewise constant function of
a. Computing this function can be useful for efficient plan-
ning and control, since it informs the central coordinator of

the critical compliance rates that can achieve a strict improve-
ment. For instance, if the demand on the example network is
1100 cars/min, price of stability is constant for compliance rates
a € [0.14,0.46]. Therefore if a compliance rate greater than
0.46 is not feasible, the controller may prefer to implement a
control strategy with & = 0.14, since further increasing the
compliance rate will not improve efficiency, and may incur ad-
ditional external cost (e.g., due to incentivizing more drivers).

VI. SUMMARY AND CONCLUDING REMARKS

We introduced a new class of latency functions to model con-
gestion on networks with horizontal queues, and studied the
resulting Nash equilibria for non-atomic, static routing games
on parallel networks. We showed that the essential uniqueness
property does not hold for the HQSF class of latency, and that
the number of equilibria is at most 2N. We also characterized
the best Nash equilibrium.

In the Stackelberg routing game, we proved that the
Non-compliant First (NCF) strategy is optimal, and that it can
be computed in polynomial time. We illustrated these results
using an example network for which we computed the decrease
in inefficiency that can be achieved using optimal Stackelberg
routing. This example showed that when the demand is near
critical values ¥VE(n), optimal Stackelberg routing can achieve
a significant improvement in efficiency, even for small values
of compliance rate.

On the one hand, these results show that careful routing of a
small compliant population can dramatically improve the effi-
ciency of the network. On the other hand, they also indicate that
for certain demand and compliance values, Stackelberg routing
can be completely ineffective. Therefore identifying the ranges
where optimal Stackelberg routing does improve the efficiency
of the network is crucial for effective planning and control.

We believe this work offers several directions of future re-
search: the work presented here only considers parallel net-
works under static assumptions (constant flow demand », and
static equilibria) and one question is whether these equilibria are
stable in the dynamic sense, and how one may steer the system
from one equilibrium to a better one: consider for example the
case where the players are stuck in a congested equilibrium, and
assume a coordinator has control over a fraction of the flow. Can
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the coordinator steer the system to a single-link-free-flow equi-
librium by decongesting a link? And what is the minimal com-
pliance rate needed to achieve this? Another question is how ro-
bust are these results? Do they hold for general network topolo-
gies? We believe that some of our results extend to general net-
work topologies, but we foresee interesting technical challenges
in formalizing these extensions.

APPENDIX

A. HQSF Latency Function From a Triangular Fundamental
Diagram of Traffic

In this section we derive one example of a HQSF latency
function £, in a traffic setting. We consider a triangular funda-
mental diagram, used to model traffic flow for example in [9],
[10], i.e., a piecewise affine flux function z£, given by

1 crit
p vf pn if p,, € [()7 pCri ]
.TIn(/)n) = max fn —pmF " c it
T per—pmms WPn € P P

The flux function is linear in free-flow with positive slope v
called free-flow speed, affine in congestion with negative slope
pS 2 gmex/(perit _ pmax) and continuous (thus vl pSrit =
x?%). By definition, it satisfies the assumptions in Section I-B.
The latency is given by Ly, pr /2 (prn) where Ly, is the length
of link n. It is then a simple function of the density

0 (pn) = o pn € [0,07"]
n\n W = <pcﬁr1t7pg1ax]

which can be expressed as two functions of flow: a constant
function £,,(-, 0) when the link is in free-flow, and a decreasing
function £, (-, 1) when the link is congested

L
K'n ZTp, ) = —
(#n,0) o
max 1
Kn(-’l‘nv 1) :Ln (pn + _> .
Tn vy,

This defines a function £,, that satisfies the assumptions of
Definition 1, and thus belongs to the HQSF latency class. Fig. 2
shows one example of a triangular fundamental diagram (top
left) and the corresponding latency function #,, (top right).

B. Social Optimal Assignments

Consider an instance (N,r) where the flow demand
7 does not exceed the maximum capacity of the net-
work, 1e, r < Zn z?**. A social optimal assignment
is an assignment that minimizes the total cost function
Cl®.m) = ), anln(2n,my), ie., it is a solution to the
following Social Optimum (SO) optimization problem:

N

minimize E Lo n (T, M)
o R
me{0,1} N

(SO)

N
subject to Z Ly = T.

n=1
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Proposition 5: (x*,m*) is optimal for (SO) only if Vn €
{1,....N},m} =0. |
Proof: This follows immediately from the fact the latency
on a link in congestion is always greater than the latency of the
link in free-flow £, (#,,1) > £, (2y, 0)VE, € (0, z2*). []
As a consequence of the previous proposition, and using the
fact that the latency is constant in free-flow 4, (2,.0) = an,
the social optimum can be computed by solving the following
equivalent linear program:

N
minimize
we[]7 [0.em] 2
N
subject to Z Tp =T

n=1

T O,

Then since the links are ordered by increasing free-flow

latency a; < --- < apn, the social optimum is simply
given by the assignment that saturates most efficient
links first. Formally, if &y = max{k|r > ZS:1 e
then the social optimal assignment is given by z* =
(@5, e o — io;ll zmex 0. .., 0).
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