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Abstract— We consider the single commodity non-atomic
congestion game, in which the player population is assumed
to obey the replicator dynamics. We study the resulting rest
points, and relate them to the Nash equilibria of the one-shot
congestion game. The rest points of the replicator dynamics,
also called evolutionary stable points, are known to coincide
with a superset of Nash equilibria, called restricted equilibria.
By studying the spectrum of the linearized system around rest
points, we show that Nash equilibria are locally asymptotically
stable stationary points. We also show that under the additional
assumption of strictly increasing congestion functions, Nash
equilibria are exactly the set of exponentially stable points.
We illustrate these results on numerical examples.

I. INTRODUCTION

Congestion games are a subclass of potential games that
can be used to model the strategic interaction of a population
of players who share resources, when the cost of a resource
is increasing in the total mass of players utilizing it. An
example of congestion game is the routing game, which
models congestion on a transportation or communication
network, in which every player chooses a route to be used
for commute or to send packets between an origin node
and a destination node. The total mass of players who are
utilizing a given edge on the network is called the load of
that edge, and it determines the edge congestion, that is, the
cost incurred by the player for utilizing that edge. Routing
games and their equilibria have been studied extensively, for
example in [11], [1]. A particular attention was dedicated to
studying the efficiency of Nash equilibria, for example in [9],
and on developing schemes to improve the equilibria either
through incentivization [6] or by controlling the route choice
of a subset of the population [8].

The set of Nash equilibria of the congestion games is
known to coincide with the set of minimizers of a convex
potential function. This was proved by Rosenthal for the
atomic routing game in [7], and later generalized. Thus
computing the set of Nash equilibria can be done efficiently
if one is given the exact formulation of the game, including
the congestion functions of every resource. However, in
realistic scenarios, it is unlikely that players have access to
this information. A more natural model is that of adaptive
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play, which is of particular interest in evolutionary game
theory, see for example [12] and the references therein.
Evolutionary dynamics are usually specified using an ODE
which describes the time-evolution of the population strategy
profile, as a function of the loss profile. More precisely, if
µ(t) is the strategy profile at time t, and `(µ(t)) is the loss
profile, an evolutionary dynamics is given by a vector field
µ 7→ F (µ) = G(`(µ), µ), such that µ̇(t) = F (µ(t)). Given
the dynamics, a natural question is whether the strategy
profile µ(t) converges to the set of Nash equilibria. This
question has been studied for the congestion game under
replicator dynamics in [3]. Fischer and Vöcking prove that
the set of rest points of the replicator dynamics is a superset
of Nash equilibria, which they call restricted equilibria.

In this paper, we study in more detail the stability of rest
points of the replicator dynamics in the single-commodity
case, by deriving the spectrum of the linearized dynamics
around rest points. In particular, we relate the eigenvalues
of the linearized system to the difference between the loss
of a given bundle and the average loss. As a consequence,
we show that Nash equilibria are exactly the set of stable
rest points, and that under the additional assumption of
strictly increasing congestion functions, Nash equilibria are
exponentially stable.

Evolutionary stability of Nash equilibria has been studied
in the more general context of potential games. In [10],
Sandholm shows that if V is a potential function for the
game, and the vector field F satisfies a positive correla-
tion condition with respect to V , then Nash equilibria are
rest points of the dynamics. If F further satisfies a non-
complacency condition, then every rest point is a Nash
equilibrium. The replicator dynamics only satisfy the positive
correlation condition, therefore this result can only be used
to conclude that Nash equilibria are rest points (but not the
converse), and a more detailed analysis is needed to obtain
stability or convergence rates.

We first define the congestion game in Section II, and give
preliminary results on the replicator dynamics in Section III.
Then, we study the linearization of the system about rest
points, and show stability results in Section IV. Finally, we
illustrate these results on a numerical example in Section V,
and give a summary of results and some concluding remarks.

II. THE CONGESTION GAME

Consider a measurable set of players (X ,M,m), and
assume that m(X ) is finite, and that m is a non-atomic
measure, that is, m({x}) = 0 for all x ∈ X . Without loss of
generality, we assume that m(X ) = 1. Let R be a finite set
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of resources, and let P ⊂ P (R) be a collection of subsets
of R, which we refer to as the set of bundles. We assume
that R does not contain the empty bundle. The action set of
every player is P , that is, every player chooses a bundle.

The losses of the players are then determined as follows:
∀r ∈ R, let cr be the congestion function of resource r.

Assumption 1: Congestion functions cr are assumed to be
continuously-differentiable, non-negative, non-decreasing.

Then given the joint actions of all players, A : X → P(R)
(assumed to be m-measurable), the loss of a player x ∈ X
who chooses the bundle p ∈ P is∑

r∈p
cr(φr(A))

where φr(A) is the resource load, determined by the joint
action of all players, defined by φr(A) =

∑
p∈P:r∈pm({x ∈

X : A(x) = p}). In words, φr is the total mass of players
utilizing resource r.

A. A macroscopic representation of the game

In order to use an evolutionary description of the strategy
dynamics, we shall derive a macroscopic description of the
game in terms of strategy distribution.

Let µ be the distribution of player strategies, that is, µp =
m({x ∈ X : A(x) = p}). Then µ is an element of ∆P , the
simplex on P . Then we have

φr = (Mµ)r

where M is an incidence matrix such that ∀r ∈ R and ∀p ∈
P ,

Mr,p =

{
1 if r ∈ p
0 otherwise

(1)

Note that we use P and R as index sets instead of integers
(but one could easily map each of these finite sets to a subset
of integers). Column p in M , denoted Mp, is simply a binary
representation of the resources in p. Then the loss of bundle
p ∈ P is ∑

r∈p
cr((Mµ)r) = (Mp)

T c(Mµ)

where c(Mµ) denotes the vector (cr((Mµ)r))r∈R. Finally,
we define the vector of losses, `(µ) = MT c(M̄µ). With this
notation, we have a concise description of the game: the joint
action of players determines the product distribution µ ∈
∆P , which, in turn, determines the losses of every bundle,
given by the vector `(µ) ∈ RP+.

B. Nash equilibria

A Nash equilibrium of the one-shot congestion game
is, by definition, a distribution µ ∈ ∆, such that for all
p ∈ support(µ), `p(µ) is the minimum of {`p′(µ), p′ ∈ P}.
In other words, all bundles with positive mass have the
same loss, and other bundles have greater or equal loss.
In particular, no positive mass of players can decrease their
loss by unilaterally switching to a different bundle. We will
denote N the set of Nash equilibria.

The set of Nash equilibria is known to be the set of
minimizers in ∆ of the following convex problem:

minimizeµ∈∆V (µ) =
∑
r∈R

∫ (Mµ)r

0

cr(φ)dφ (2)

Convexity follows from the assumption that the congestion
functions are non-negative non-decreasing. Optimality of N
can be obtained by observing that N coincides with the set
of points which satisfy the KKT conditions for problem (2).
Additionally, the problem satisfies constraint qualification by
Slater’s condition since the relative interior of the product of
simplexes, defined as

∆̊ = {µ ∈ ∆ : ∀p ∈ P, µp > 0} (3)

is non-empty. Therefore KKT conditions are necessary and
sufficient conditions for optimality (see [2] for example). For
a detailed proof of optimality of N , see [10].

III. REPLICATOR DYNAMICS

We now define the replicator dynamics. The strategy
distribution µ(t) is assumed to obey the following dynamics:
∀p ∈ P ,

µ̇p(t) = Fp(µ)

=
1

ρ

(
¯̀(µ(t))− `p(µ(t))

)
µp(t)

(4)

where
¯̀(µ) = 〈`(µ), µ〉 =

∑
p∈P

`pµp

is simply the average loss incurred by all players, and
ρ is a positive parameter. Therefore, equation (4) states
that the fraction of players who choose bundle p increases
whenever the difference `p(µ) − ¯̀(µ) is negative, that is,
bundle p has lower loss than the average loss incurred by the
entire population under distribution µ. For a more detailed
motivation of the replicator equation, and a discussion of its
properties, see [3] or Chapter III.29 in [5].

A. Properties of the solution trajectories

Equation (4) defines a vector field F : ∆→ HP , where

HP =

v ∈ RP :
∑
p∈P

vp = 0


is the linear hyperplane parallel to the simplex ∆P . Indeed,
we have for all µ ∈ ∆∑

p∈P
Fp(µ) =

∑
p∈P

`p(µ)µp − ¯̀(µ)
∑
p∈P

µp = 0

This proves that the derivatives remain in the direction of
the simplex.

Now, we consider the ODE system

µ̇ = F (µ)

µ(0) ∈ ∆̊
(5)

Here, we require that the initial condition be in the relative
interior of the simplex for the following reason: whenever
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µp(0) = 0, any solution trajectory will have µp(t) ≡ 0 by
equation (4). It is impossible for such trajectories to converge
to a Nash equilibrium µ? when µ?p > 0. In other words,
the replicator dynamics cannot expand the support of the
strategies, and a bundle p which initially has zero mass will
always have zero mass. Therefore it is natural to require that
all bundles initially have positive mass.

The following proposition ensures that the solutions re-
main in the relative interior and are defined on all times.

Proposition 1: The ODE (5) has a unique solution µ(t)
which remains in ∆̊ and is defined on R+.

Proof: First, since the congestion functions cr are
assumed to be continuously differentiable, so is the vector
field F . Thus we have existence and uniqueness of a solution
by the Cauchy-Lipschitz theorem.

To show that the solution remains in the relative interior
of ∆, we observe that:
• For all µ ∈ ∆, we have: d

dt

∑
p∈P µp(t) =∑

p∈P Fp(µ(t)) = 0 by the previous observation.
Therefore,

∑
p∈P µp(t) is constant and equal to 1.

• To show that µp(t) > 0 for all t in the solution domain,
assume by contradiction that there exists t0 > 0 and
p0 ∈ P such that µp0(t0) = 0. Since the solution
trajectories are continuous, we can assume, without loss
of generality, that t0 is the infimum of all such times
(thus for all t < t0, µp0(t) > 0). Now consider the new
system given by

˙̃µp =
1

ρ
(¯̀(µ̃)− `p(µ̃))µ̃p ∀p 6= p0

µ̃p(t0) = µp(t0) ∀p 6= p0

and µ̃p0(t) is constant equal to 0. Any solution of the
new system, defined on (t0− δ, t0], is also a solution of
equation (5). Since µ(t0) = µ̃(t0), we have µ ≡ µ̃ by
uniqueness of the solution. This leads to a contradiction
since by assumption, for all t < t0, µp(t) > 0 but
µ̃p(t) = 0.

This proves that µ remains in ∆̊. Furthermore, since ∆ is
compact, we have by Theorem 2.4 in [4] that the solution
is defined on R+ (otherwise it would eventually leave any
compact set).

B. Stationary points

We now identify stationary points of the dynamics:
Proposition 2: µ is a stationary point of the system (5)

if and only if the losses (`p(µ), p ∈ support(µ)) are equal.
The set of all such stationary points will be denoted RN .

Proof: From equation (4), we have

Fp(µ) = 0⇔ µp = 0 or `p(µ) = ¯̀(µ)

⇔ ∀p ∈ support(µ), `p(µ) = ¯̀(µ)

In particular, any Nash equilibrium satisfies this assumption,
and is a rest point for the replicator dynamics (this also
follows from the more general result given in [10]). However,
a rest point is not necessarily a Nash equilibrium, since one

may have a rest point with µp0 = 0 and `p0(µ) strictly lower
than ¯̀(µ).

A rest point µ† ∈ RN given by Proposition 2 is also
called restricted Nash equilibrium (hence the notation RN ),
since it is a Nash equilibrium for the congestion game if the
action set is restricted to support(µ†).

The set of equilibria can be partitioned into RN = N ∪
(RN \ N ). In the next section, we show that N is exactly
the set of stable rest points, and that any point in RN \ N
is unstable.

IV. STABILITY OF EQUILIBRIA

First, we can write F in the form

F : ∆→ HP
µ 7→ −dg(`(µ))µ+ µ¯̀(µ)

(7)

where dg : RP → RP×P is the operator which maps a vector
to the diagonal matrix whose diagonal elements are given
by the the vector entries. Observing that ¯̀(µ) = `(µ)Tµ =
1TP dg(`(µ))µ, where 1P is a vector in RP whose entries
are all equal to one, we can write

F (µ) = −dg(`(µ))µ+ µ1TP dg(`(µ))µ

= −
[
IP − µ1TP

]
dg(`(µ))µ

= −Ψ(µ)L(µ)µ (8)

where Ψ(µ) = IP − µ1TP and L(µ) = dg(`(µ)) are P × P
matrices. This matrix form of F will be useful when we
derive the Jacobian of the system.

A. Instability of non-Nash stationary points

Proposition 3: If µ is a stationary point of system (5) but
not a Nash equilibrium, then µ is unstable.

To prove this proposition, we derive the eigenvalues S of
the Jacobian of the vector field at stationary points. Note that
the vector field is continuously differentiable by assumption
on the congestion functions, so the Jacobian exists and is
continuous.

As observed in the previous section, F is defined on ∆P

and has values in HP , the linear hyperplane orthogonal to
the unit vector 1P . But F can also be viewed as a function
from RP to itself. We first derive the Jacobian of F viewed
as function from RP to RP , denoted ∇F (µ), and then
consider its restriction to HP to obtain S as the eigenvalues
of ∇F (µ)|HP .

Lemma 1: The Jacobian of F is given by

∇F (µ) = ¯̀(µ)IP −Ψ(µ) dg(µ)∇`(µ)−Ψ(µ)L(µ) (9)
Proof: Let DF (µ) be the differential of F at µ, and

let ep be a vector of the canonical basis. Then DF (µ)(ep) is
the directional derivative of F in the direction of ep. From
the matrix form of F given in equation (8), and using the
product rule of differentials, we have the expression (6) of
DF , given on the top of the next page, where we use the
following differentials:

DΨ(µ)(ep) = −ep1TP
DL(µ)(ep) = dg(∇`(µ)ep)
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DF (µ)(ep) = −DΨ(µ)(ep)L(µ)µ−Ψ(µ)DL(µ)(ep)µ−Ψ(µ)L(µ)ep by the product rule

= ep1
T
PL(µ)µ−Ψ(µ) dg (∇`(µ)ep)µ−Ψ(µ)L(µ)ep using the expressions of DΨ and DL

= ep`(µ)Tµ−Ψ(µ) dg(µ)∇`(µ)ep −Ψ(µ)L(µ)ep using that dg(u)v = dg(v)u

=
(
¯̀(µ)IP −Ψ(µ) dg(µ)∇`(µ)−Ψ(µ)L(µ)

)
ep

(6)

This proves the claim.
Now that we have the expression of the Jacobian, we are

ready to prove Proposition 3.
Proof: (of Proposition 3): Let µ be a stationary point of

Equation (5). Let P∗ be the support of µ and P� = P \P∗.
Without loss of generality, we assume that in the vector
representation of µ, the support corresponds to the first
elements. Finally, for a vector v ∈ RP , we write v∗ as a
shorthand for (vp)p∈P∗ and v� as a shorthand for (vp)p∈P� .
Finally, we write ∇∗ and ∇� the gradients with respect to
µ∗ and µ�, respectively. Then we can calculate the different
terms in the expression (9) of the Jacobian. The derivation
is given on the top of the next page in equation (10).

Combining these terms, we obtain that ∇F (µ) is an upper
block-triangular matrix of the form

∇F (µ) =

(
A C
0 B

)
with diagonal elements

A = (¯̀(µ)µ∗1TP� −Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ))

B = dg(¯̀(µ)1P� − `�(µ))

and upper-right elements

C = (µ∗`�(µ)T −Ψ∗(µ∗) dg(µ∗)∇�`∗(µ))

The stability of µ is determined by the restriction of

∇F (µ) to HP . Let α ∈ HP and write α =

(
α∗

α�

)
.

Then 1Tα∗ + 1Tα� = 0. We calculate ∇F (µ)α, and obtain
expression (12) on the top of the next page.

Let us denote Ã = −Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ) and C̃ =
−¯̀(µ)µ∗1T + C, then the restriction of ∇F (µ) to HP
coincides with the restriction of ∇̃F (µ) to HP , where
∇̃F (µ) is obtained by replacing, in equation (12), the block
A by Ã and C by C̃.

The benefit of the latter formulation is that the range
of ∇̃F (µ) is a subset of HP since 1T ∇̃F (µ) = 0 (see
equation (13), where we used the fact that 1TP∗Ψ

∗(µ) =
0 and that 1TP∗µ

∗ = 1). Therefore, HP is an invariant
subspace of ∇̃F (µ), and S is given by the spectrum of
∇̃F (µ), from which we remove 1 zero (corresponding to
the left eigenvector 1P ). Next, since ∇̃F (µ) is block-upper
triangular, we have

Sp(∇̃F (µ)) = Sp(Ã) ∪ {¯̀(µ)− `�p(µ)}p∈P�

Therefore,

S = Sp(Â) ∪ {¯̀(µ)− `�p(µ)}p∈P�

where Â is the restriction of Ã to HP∗ = 1⊥P∗ .

To conclude the proof, suppose that µ is a stationary point
but not a Nash equilibrium, i.e. µ ∈ RP \ N . Then there
exists p ∈ P� such that ¯̀(µ) − `�p(µ) > 0, and it follows
that S contains at least one positive eigenvalue, therefore µ
is unstable (by Theorem 3.7 in [4] for example).

B. Stability of Nash equilibria

In order to prove the converse of Proposition 3, we need
to study the eigenvalues of Â, the restriction to HP∗ of Ã =
−Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ).

Lemma 2: The matrix Ψ∗(µ∗) dg(µ∗) is symmetric
positive-semidefinite and its restriction to HP∗ is positive-
definite.

Proof: We have Ψ∗(µ∗) dg(µ∗) = dg(µ∗) − µ∗(µ∗)T
is symmetric. We also have 1TP∗Ψ

∗(µ∗) dg(µ∗)1P∗ = 0, and
for all y ∈ HP∗

yTΨ∗(µ∗) dg(µ∗)y =
∑
p∈P∗

µ∗py
2
p −

∑
p∈P∗

µ∗pyp

2

which, by Jensen’s inequality, is strictly positive except at
y = 0.

Lemma 3: The gradient ∇∗`∗(µ) is a symmetric positive-
semidefinite matrix. Furthermore, if all congestion functions
are strictly increasing and if the incidence matrix M is
injective, then it is positive-definite.

Proof: We have `∗(µ) = MT
∗ c(Mµ), where M∗ is the

submatrix with columns p ∈ P∗, the support of µ. Thus

∇∗`∗(µ) = MT
∗ ∇c(Mµ)M∗

where, by definition of c,

∇c(Mµ) = dg({c′r((Mµ)r)}r∈R).

Thus ∇∗`∗(µ) is symmetric, and since cr is non-increasing
for all r, it is a positive semi-definite matrix. Furthermore,
if all congestion functions are strictly increasing and M is
assumed to be injective, then ∇∗`∗ is positive definite.

Lemma 4: Let R and S be two symmetric matrices such
that R is positive-definite and S is positive-semidefinite.
Then the product RS is diagonalizable, has non-negative
eigenvalues and has the same number of zero eigenvalues
as S (with the same eigenvectors).

Proof: Since R is positive definite, there exists a
positive definite matrix R̄ such that R = R̄2. Then we have

R̄−1RSR̄ = R̄SR̄

thus RS is similar to the symmetric matrix R̄SR̄, and is
diagonalizable.
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Ψ(µ) =

(
IP∗ 0
0 IP�

)
−
(
µ∗

0

)
(1TP∗ 1TP�) =

(
Ψ∗(µ∗) −µ∗1TP�

0 IP�

)
dg(µ)∇`(µ) =

(
dg(µ∗) 0

0 0

)(
∇∗`∗(µ) ∇�`∗(µ)
∇∗`�(µ) ∇�`�(µ)

)
=

(
dg(µ∗)∇∗`∗(µ) dg(µ∗)∇�`∗(µ)

0 0

)
Ψ(µ) dg(µ)∇`(µ) =

(
Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ) Ψ∗(µ∗) dg(µ∗)∇�`∗(µ)

0 0

)
Ψ(µ)L(µ) =

(
Ψ∗(µ∗) −µ∗1TP�

0 IP�

)(
dg(`∗(µ)) 0

0 dg(`�(µ))

)
=

(
¯̀(µ)IP∗ − ¯̀(µ)µ∗1TP� −µ∗`�(µ)T

0 dg(`�(µ))

)
(10)

∇F (µ) = ¯̀(µ)IP −Ψ(µ) dg(µ)∇`(µ)−Ψ(µ)L(µ)

=

(
−Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ) + ¯̀(µ)µ∗1TP� −Ψ∗(µ∗) dg(µ∗)∇�`∗(µ) + µ∗`�(µ)T

0 ¯̀(µ)IP� − dg(`�(µ))

)
(11)

∇F (µ)

(
α∗

α�

)
=

(
−Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ) + ¯̀(µ)µ∗1TP� C

0 B

)(
α∗

α�

)
=

(
−Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ)α∗ + ¯̀(µ)µ∗1TP�α

∗ + Cα�

Bα�

)
=

(
−Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ)α∗ − ¯̀(µ)µ∗1TP�α

� + Cα�

Bα�

)
=

(
−Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ) −¯̀(µ)µ∗1TP� + C

0 B

)(
α∗

α�

)
(12)

1TP∇̃F (µ) = (1TP∗ 1TP�)

(
−Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ) −¯̀(µ)µ∗1TP� −Ψ∗(µ∗) dg(µ∗)∇�`∗(µ) + µ∗`�(µ)T

0 ¯̀(µ)IP� − dg(`�(µ))

)
=
(
0 1TP∗ [−¯̀(µ)µ∗1TP� + µ∗`�(µ)T ] + 1TP� [

¯̀(µ)IP� − dg(`�(µ))]
)

=
(
0 −¯̀(µ)1TP� + `�(µ)T + ¯̀(µ)1TP� − `�(µ)T

)
=
(
0 0

)
(13)

Consider the function h : x 7→ RSx and the inner product
〈x; y〉 = xTR−1y. We have

〈h(x); y〉 = xTSRR−1y = xTSy

Thus if λ is an eigenvalue of h with eigenvector x, then

〈h(x);x〉 = λ〈x;x〉

i.e. λ = xTSx
xTR−1x

which is non-negative since S � 0 and
R � 0. Furthermore, λ = 0 if and only if Sx = 0, which
proves the claim.

We can now show that the set of Nash equilibria is, in
fact, exactly the set of asymptotically stable equilibria.

Proposition 4: Assume that the congestion functions are
strictly increasing and that the incidence matrix M is in-
jective. Then µ is a Nash equilibrium if and only if µ is a
locally exponentially stable stationary point of the replicator
dynamics (5).

Proof: Proposition 3 provides one direction of the
proof: if µ is a locally exponentially stable stationary point,
then µ asymptotically stable, and by Proposition 3, µ is a
Nash equilibrium. To show the converse, suppose that µ
is a Nash equilibrium. Then it is a stationary point of the

system (5). To show that it is asymptotically stable, recall
that the eigenvalues of the Jacobian are given by:

S = Sp(Â) ∪ {¯̀(µ)− `�p(µ)}p∈P�

where Â is the restriction of −Ψ∗(µ∗) dg(µ∗)∇∗`∗(µ) to
HP∗ . By Lemma 2, Ψ∗(µ∗) dg(µ∗) has a positive definite
restriction to HP∗ , and by Lemma 3, ∇`∗(µ) is positive
definite. Therefore applying Lemma 4, we have that all
eigenvalues of Â are real negative. Therefore µ is asymp-
totically stable (for example by Theorem 4.7 of [4]).
If the congestion functions are not strictly increasing or
the incidence matrix is not injective, then the gradient
∇∗`∗(µ) = MT

∗ ∇c(Mµ)M∗ may have zero eigenvalues. By
Lemma 4, we have that Â is diagonalizable, has 0 as an
eigenvalue with the same multiplicity as ∇∗`∗(µ), but one
may not conclude stability of µ in general.

Note that the incidence matrix may not be injective in
general, since M ∈ {0, 1}R×P , and |P| = 2|R| in the
worst case. The expression of the spectrum suggests that
if we could find a more concise representation of the game,
by reducing the number of bundles, the reduced game may
converge faster. This is discussed in the next section.

1927



C. Reducing the size of the game

We observe that if a bundle p0 is a conic combination
of other bundles, then the congestion game without p0 is
equivalent, in a sense, to the original game, allowing us to
reduce the size of the bundle set P .

More precisely, consider a given bundle p0 ∈ P , and let
P̄ = P \{p0}. Assume p0 is a conic combination of bundles
in P̄ , that is, Mp0 =

∑
p∈P̄ λpMp for some non-negative

coefficients λp. First, we must have
∑
p∈P̄ λp ≥ 1: since

p0 is non-empty (by assumption, no bundle is empty), there
exists r such that Mrp0 = 1. But

Mrp0 =
∑
p∈P̄

λpMrp ≤
∑
p∈P̄

λp

since Mr,p ∈ {0, 1}, which proves the claim.
Proposition 5: If ν ∈ ∆P̄ is a Nash equilibrium for the

game without p0, then ν (augmented with a 0 on p0) is also
a Nash equilibrium of the original game.

Proof: We have for all p ∈ support(ν), the loss `p(ν)
is equal to ¯̀(ν) the minimum loss across all bundles in P̄ .
Then if cν is the vector of resource congestions, the loss of
bundle p0 under distribution ν is

`p0(ν) = MT
p0cν =

∑
p∈P̄

λpMp

T

cν =
∑
p∈P̄

λp`p(ν)

≥

∑
p∈P̄

λp

 ¯̀(ν) ≥ ¯̀(ν)

Thus ν augmented by 0 on p0 is an equilibrium of the
original game.

Proposition 6: If µ ∈ ∆P is a Nash equilibrium for the
original game, then ν ∈ ∆P̄ defined by

νp = µp +
λp∑
q∈P̄

µp0

is a Nash equilibrium for the game without p0.
Proof: First, ν is, by definition, a distribution over

P̄ . To show that it is a Nash equilibrium of the reduced
game, we argue that ν and µ induce the same resource
loads, that is, Mµ = M̄ν. To show this, we observe that
if p0 ∈ support(µ), we must have

∑
p∈P̄ λp = 1. Indeed,

if µp0 > 0, then by definition of a Nash equilibrium,
`p0(µ) ≤ `p(µ) for all p. But

`p0(µ) =
∑
p∈P̄

λp`p(µ) ≥
∑
p∈P̄

λp`p0(µ)

therefore
∑
p∈P̄ λp ≤ 1, which, combined with the previous

observation that
∑
p∈P̄ λp ≥ 1, proves the claim.

Now we consider two cases: if µp0 = 0, then we have
immediately M̄ν = Mµ. If µp0 > 0, then we have
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Fig. 1. Trajectory of µ(t) (top) and evolution of loss functions (bottom).
We have convergence to the set of Nash equilibria: on the support of the
limit distribution, all bundle losses are equal.

∑
p∈P̄ λp = 1 and

M̄ν =
∑
p∈P̄

νpMp =
∑
p∈P̄

µpMp + µp0

∑
p∈P̄

λpMp


≥
∑
p∈P̄

µpMp + µp0Mp0 = Mµ

Therefore the distribution ν induces the same resource loads
as µ, hence the same bundle losses, and ν is a Nash
equilibrium of the reduced game.

With the previous propositions, one can reduce the size of
the game by removing p0 from the set of bundles, and obtain
an equivalent game. Applying this argument repeatedly, we
can reduce P to a minimal set P̂ . One way to compute such a
minimal set is to find a Hilbert basis of the family {Mp}p∈P ,
H = {Mp}p∈P̄ , and use P̄ as the reduced set of bundles.

V. NUMERICAL EXAMPLE

Suppose we have 3 resources R = {r1, r2, r3}, with
quadratic congestion functions

c1(φ1) =
1

2
(φ1 + 1)2

c2(φ2) = (1 + φ2)2

c3(φ3) = 2(1 + φ3)2

and consider the following bundles

p1 = {r1, r2}, p2 = {r2, r3}, p3 = {r3, r1}, p4 = {r3, r1}
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Fig. 2. Trajectory of µ(t) in the simplex ∆P (represented as a tetrahedron).
Starting from different initial conditions, we have convergence to different
points in N (represented with a red dashed line).

In particular, we have p4 = p3. This is a degenerate case to
illustrate some of the phenomena. In particular, we do not
have uniqueness of the Nash equilibrium in this case. The
set of Nash equilibria is given by

N = {µ : µ1 = .757, µ2 = 0, µ3 + µ4 = .2426}

If we apply the replicator dynamics with ρ = 1 from the
initial condition µ0 =

(
.2 .3 .1 .4

)T
, we obtain the

trajectories shown in Figure 1.
Starting from different initial conditions in the interior of

the simplex ∆̊, we have convergence to different points in
the set of Nash equilibria N . This is illustrated in Figure 2.

If we start on the boundary of the simplex, we may
have convergence to stationary points which are not Nash
equilibria. Any facet of the simplex is invariant for the
dynamics (and so is any intersection of facets). Therefore
a stationary point which is unstable in the entire simplex
may be stable if we restrict the dynamics to an invariant
facet. This is illustrated in Figure 3.

VI. CONCLUSION

We studied the Jacobian of the vector field of the replicator
dynamics applied to the single-commodity congestion game.
We showed that the set of Nash equilibria is exactly the
set of asymptotically stable stationary rest points of the
dynamics. We also showed that if the congestion functions
are strictly increasing and the incidence matrix is injective,
then Nash equilibria are exponentially stable. These results
were derived for the single-commodity congestion game,
and a natural question is whether one can generalize to
the multi-commodity case. Lyapunov arguments have been
used to show that the trajectories will converge to the set of
rest points (restricted Nash equilibria), however, explicitly
studying the eigenvalues of the Jacobian seems challenging
due to the coupling in the dynamics between populations.

Fig. 3. Stationary points in the simplex. Nash equilibria are represented
using a red dashed line, and other stationary points are in dashed green
lines. Solid lines show sample trajectories. In particular, the entire facet
{µ : µ1 = µ2 = 0} is stationary.
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