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Abstract— This work describes a type of distributed feedback
control algorithm that acts on a vertical queueing network where flow
dynamics may greatly outpace the rate of feedback and actuation.
The modeled network has a known, finite set of feasible actuations
for the binary controllers located at each network node. It also has
known expected demands, split ratios, and maximum service rates.
Previous work proposed the application of a max pressure controller
to maximize throughput on such a network without the need for
centralized computation of a control policy. Here we extend the max
pressure controller to satisfy practical constraints on the frequency of
switching and guarantees on proportional actuation. We fundamentally
alter the formulation of max pressure to a setting where the controller
may only update at a rate significantly slower than the dynamics
of queue formation. Furthermore, the set of allowable controllers is
extended to any convex combination of available signal phases to
account for signal changes within a single signal “cycle”. We show that
this proposed extended max pressure controllers stabilize a vertical
queueing network (queue lengths remain bounded in expectation)
given slightly increased restrictions on admissible network demand
flows. This work is motivated by the application of controlling traffic
signals on arterial road networks. Max pressure provides an intriguing
alternative to existing feedback control systems due to its distributed
implementation and theoretical guarantees, but cannot be directly
applied as originally formulated due to hardware and safety constraints.
We ultimately apply our extension of max pressure to a simulation of
an existing arterial roadway and provide comparison to the control
policy that is currently deployed on this site.

I. INTRODUCTION

This article investigates the design and stability of decen-
tralized controller for vertical queueing networks. In a verti-
cal queueing network, agents traveling across the network are
stored in “point queues” which do not inhabit a “horizontal”
position along the length of a network edge, but instead are
considered to be stored in “vertical” stacks at each node.
Such models are inherited from fields such as supply chain
management or internet routing, but are also representative of
signalized urban traffic networks [1][2][3]. The concept of a
stabilizing network controller, or one which ensures that the
mean length of all queues in the network remain bounded,
is relevant to many applications such as communications
networks [4][5][6] or industrial systems [7][8][9][10].

In the present work we examine a vertical queueing model
in which only a finite set of non-conflicting turning move-
ments (or phases) can be permitted to flow simultaneously
across each network node. Phase actuation is dictated by a
controller such as a traffic light. Specifically, we consider
application of a max pressure controller.

Max Pressure is a distributed network control policy
derived from the concept of a “back pressure controller”,
which was first studied in the context of routing packets
through a multi-hop communications network [11]. The

idea was applied to road traffic management more recently
by Varaiya [12] as well as Wongpiromsarn et al. [13].
The concept of max pressure control is intuitive: at each
intersection, priority is given to the signal phase which will
be able to service the most traffic given knowledge of both
available upstream demand and the subsequent feasibility of
downstream queues. It is a particularly attractive concept for
control of a signalized urban traffic network because it can be
operated in a distributed manner on local controller hardware
but still provides theoretical guarantees on network-wide per-
formance. Variaya’s original formulation of this controller,
however, does not fully consider the practical limitations on
the rate of queue measurement and signal actuation in vehicle
traffic networks. For example, a standard max pressure
controller has no bound on the rate of signal switches which
may occur relative to the rate of modeled queue formation
and dissipation in the network. In implementation, a traffic
signal incurs a penalty upon every change in actuation in the
form of capacity loss due to “intersection clearance time”:
a 2-3 second period where all movements are given a red
light in order to allow traffic from the previous phase to
clear the intersection before possibly conflicting traffic can
be permitted to enter. Max pressure also lacks the ability to
synchronize adjacent signals in a network by constraining the
actuation periods of critical phases to fixed relative offsets.
This feature is valued by traffic managers who wish to
promote continuity of flow and limit vehicle stops on a
preferred throughway. Furthermore, a standard max pressure
implementation provides no explicit lower bound on the
service rate of queues on minor approaches where demand
may be very low relative to the main direction.

These limitations motivate a new extension of the max
pressure control algorithm which bounds signal switches
and can maintain timed cyclical behaviors for signal coor-
dination and queue service equity. While a similar concept
was suggested in [12], this work further extends a simple
proportional phase controller to allow model dynamics to
explicitly act at a faster rate than the controller update period.
We then extend the stability proof of [12] to prove that
our cycle-based max pressure controller still provides the
desired guarantee of queue stability with a penalty to the
theoretical bound on queue lengths due to the decreased rate
of controller update.

The remainder of this article is organized as follows: Sec-
tions II-III describes the modeling framework and standard
max pressure controller from [12]; Section IV formulates
an extended cycle-based max pressure controller; Section
V proves that this extended controller stabilizes a vertical
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queueing network; finally, Section VI presents numerical
results provided by this controller using a microscopic traffic
simulation running in the Aimsun platform.

II. MODEL FRAMEWORK

We consider a network of arterial roads with infinite
storage capacity, modeled topologically as a graph with
road links being edges and intersections being vertices. An
individual link l ∈ L can be either at the entry of the network
(l ∈ Lent) or in the interior of the network (l ∈ L\Lent).
The inflow on entry links is a defined entirely by a random
demand dl, while the input flows of all other links depend
on queues on upstream links and the relevant set of physical
flow constraints are defined within the network. We require
that each link has an exit path, that is, a continuous set
of subsequent links on which vehicles can travel from the
link to eventually exit the network. Each link in the network
model can have multiple queues corresponding to individual
movements: all vehicles in a given queue on any link are
intending to advance onto the same subsequent link (though
not necessarily the same subsequent queue). We describe the
dynamics of these queues as a discrete time dynamical model
using the following notation:

• A movement (l,m) distinguishes an intention to travel from
link l to link m, (in that case, say that m ∈ Out(l) where
Out(l) is the set of links immediately downstream l);
• A queue x(l,m)(t) is the number of vehicles on link l

waiting to enter link m at timestep t, and X(t) is the set
(vector or matrix) of all the queue lengths on the network
at timestep t;
• A saturation flow c(l,m) is the expected number of vehi-

cles that can travel from link l to link m per time step given
maximum demand for the queue x(l,m), and C(l,m)(t)
is the realized saturation flow at time t;
• The turn ratio r(l,m) is the expected proportion of vehi-

cles that are leaving l which are intending to enter m, and
R(l,m)(t) is the realized turn ratio at time t;
• The demand vector d of dimension |Lent| specifies demands

at network entry links;
• The flow vector f of dimension |L| denotes flows on all

links of the network such that fl is the flow in link l.

Note that there is intuitively a linear relationship between
the expected link flow f and the boundary demand d:

f = dP (1)

where the (possibly non-unique) matrix P depends on ex-
pected routing proportions within the network.

Intersection Signal Controller

A road intersection is modeled as a node in our framework.
Controllers (traffic signals) are placed at every node to limit
the set of queues permitted to discharge at any given time.
A set of movements that can be simultaneously actuated
without flow conflicts is called a phase. Each permissible
phase for a given intersection can be represented as a binary

control matrix S that is defined as follows:

S(l,m) =

{
1 if movement (l,m) is activated

0 otherwise
(2)

We denote Un the known finite set of permissible control
matrices for node n. Note that in this article, we often drop
the subscript n for ease of notation.

Practically, only one phase can be actuated at any point in
time: at each model time step t, a single control matrix S(t)
encodes which set of queues approaching the intersection
are permitted to discharge during that time step. However,
in this work we consider a relaxed controller which operates
on a contiguous set of modeled time steps. This relaxed
controller is defined as a matrix Sr with each element
Sr(l,m) representing the fraction of the operational time
steps that are allocated to the movement {l,m}:

Sr(l,m) = λl,m ∈ [0, 1] (3)

Such a relaxed controller can be seen as a convex combina-
tion of all possible control matrices, Sr =

∑
S∈U λSS. In

general, the selection of such a controller can be based on
feedback representing the state of the network queues at a
previous time step.

Queue Dynamics

The evolution of network queue lengths X(t) can be seen
as a Markov chain: the state at time (t+ 1) is a function of
only the state at time t and external demand d,

X(t+ 1) = F (X(t), d) (4)

Define [ a ∧ b ] := min{a, b}. To describe queue dynamics
explicitly, we must make a distinction between entry links
and internal links: if l ∈ Lent,

x(l,m)(t+ 1) = x(l,m)(t) + dl(t+ 1) (5)
− [C(l,m)(t+ 1)S(l,m)(t+ 1) ∧ x(l,m)(t)]

and if l ∈ L\Lent,

x(l,m)(t+ 1) = x(l,m)(t)+ (6)∑
k

[C(k, l)(t+ 1)S(k, l)(t+ 1) ∧ x(k, l)(t)]R(l,m)(t+ 1)

− [C(l,m)(t+ 1)S(l,m)(t+ 1) ∧ x(l,m)(t)]

Demand Feasibility

We focus on networks for which the boundary inflow
demands d = (dl)(l∈Le) are feasible—that is, the network
is servicing a distribution of inflows for which it is possible
to find a controller that allows in average more departures
than arrivals at each link.

Define conv(U) to be the convex hull of the set of
permissible control matrices U . The following properties are
then shown in [12]:

Property 1: A matrix M is in conv(U) if and
only if ∃ a sequence of control matrices S =
{S(1), S(2), ..., S(t), ...|S(·) ∈ U} such that ∀(l,m)

M(l,m) = lim inf
T

1

T

T∑
t=1

S(l,m)(t) (7)
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The element M(l,m) in (7) can be interpreted as the long-
term average proportion of intersection capacity given to
movement (l,m). Hence define MS to be the long-term
control proportion matrix constructed as in (7) using a
specific control sequence S = {S(1), S(2), ..., S(t), ...}.

Property 2: A demand d is feasible if and only if ∃MS ∈
conv(U) and ε > 0 such that

c(l,m)MS(l,m) > flr(l,m) + ε. (8)

where f = dP as in (1).
Define D0 to be the set of all average demand vectors d =
{dl} that satisfy (8) and are therefore feasible.

A network is stable if the following quantity is bounded:

1

T

T∑
t=1

E
{
|X(t)|1

}
(9)

where |X|1 =
∑
l,m |x(l,m)| and the network state evolves

according to dynamics under state dynamics (5)-(6).

III. STANDARD MAX PRESSURE CONTROLLER

Consider a weight assigned to each queue (l,m) as a
function of all network queue lengths X:

w(l,m)(X(t)) = x(l,m)(t)−
∑

p∈Out(m)

r(m, p)x(m, p)(t) (10)

where Out(m) is the set of all links receiving flow from
link m. The pressure γ(S) that is potentially alleviated by a
control action S at time step t is defined as follows:

γ(S)(X(t)) =
∑
l,m

c(l,m)w(l,m)(X(t))S(l,m)(t) (11)

At each time step t, the standard max pressure controller
u∗(X(t)) explicitly choses the phase S∗ ∈ U that maximizes
γ(S)(X(t)):

S∗(t) = u∗(X(t)) = arg max{γ(S)(X(t))|S ∈ U} (12)

Varaiya [12] shows the following stability result for the
standard max pressure controller:

Theorem 3: The max pressure control u∗ is stabilizing
whenever the average demand vector d = {dl} is within the
set of feasible demands D0.

This theoretical guarantee is one of the many attractive
qualities of max pressure for controlling vehicular traffic
in urban road networks. Yet the controller as originally
formulated is not practical for application on a signalized
traffic network for three reasons:
a) it does not account for capacity reductions (lost time) due

to excessive signal switching,
b) it cannot enforce coordination between subsequent inter-

sections for purposes of maximizing flow continuity, and
c) it does not provide guarantees that low-demand queues

will be served within a finite time period.
These limitations motivate our extension of the standard
immediate feedback max pressure control algorithm. In the
following section, we define a new cycle-based max pressure
controller which bounds the number of signal switches per
fixed time period, provides capacity for standard signal
coordination methods, and can easily guarantee a minimum
service rate for all intersection phases. We then show that the

application of this controller yields a similar stability guaran-
tee to that shown by Varaiya for the standard controller given
slightly weaker conditions on demand flow. The structure of
this proof is as follows:

i. First, we formalize a calculation of the lost time incurred
by signal switching actions.

ii. Then we introduce a formulation of the cycle-based max
pressure algorithm and briefly describe how it inherently
rectifies issues a), b), and c) above.

iii. Next, we introduce the concept of a τ -updated controller
and we show that switching control only once every τ
time steps does not impact the set of feasible demands.

iv. We finally show that queue stability holds with a cycle-
based max pressure controller consisting of τ -updated
sequences of relaxed control matrices with minimum
proportion constraints.

IV. A CYCLE-BASED MAX PRESSURE CONTROLLER

For safety reasons, an intersection controller cannot switch
signal phase actuation immediately. Instead, it must incorpo-
rate a pause of R ≈ 2.5 seconds in which all signal phases
have a red light. This clearance time allows all vehicles in
the previously actuated phase to clear the intersection before
a conflicting phase can be permitted to use the intersection.
In the standard formulation of max pressure, the controller
chooses an appropriate action based feedback received at
every time step of the modeled dynamics. To accurately
capture queuing behaviors observed on arterial roadways,
a model would need to operate with a time discretization
of ∆t < 10 seconds. A signal switch at every time step
could therefore result in more than 25% loss of intersection
service capacity, which is not considered in the theoretical
examination presented in [12].

In this work, we explicitly specify the number of signal
switches that occur in a fixed number of model time steps
using the familiar concept of a signal cycle. As typical
with modern traffic signals, the cycle-based max pressure
controller rotates through all available signal phases within
a known time period. We define cycle time τ as a predefined
number of model time steps and require that each controller
phase S must be green for some proportion λS ≥ κS of the τ
steps, where the minimum green splits κS ∈ (0, 1) ∀ S ∈ U
are parameters selected by a network manager to enforce
equity in movement actuation.

The selection of a cycle time τ intuitively affects intersec-
tion capacity. Our proof of network stability in the following
sections relies on the fact that road links are undersaturated:
that is, the expected demand is served (on average) within a
signal cycle. To avoid link saturation, we pose the following
convex optimization problem (extended from that in [14]) to
determine minimum constrained feasible actuation time Λ∗:

Λ∗ = min
λ={λS}

∑
S∈U

λS

subject to λS ≥ κS ∀ S ∈ U

flr(l,m) <
∑
S

λSc(l,m)S(l,m)

(13)
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where κS ∈ [0, 1] ∀S ∈ U and
∑
S κS < 1. If Λ∗ > 1, the

demand is not feasible under the set of {κS} for any cycle
length. If Λ∗ < 1, then we can define a cycle length for
which flow is admissible without link saturation. However,
this cycle length τ must be significantly greater than Λ∗ to
account for clearance times. If we define L = d( R∆t · |U |)e
to be the total number of lost time steps per cycle, a feasible
cycle length τ must satisfy the following condition:

τ > L
1−Λ∗ (14)

Given an appropriate τ which satisfies (14), the cycle-based
max pressure controller is a relaxed control matrix that is
constructed as follows:

Sr∗(t) = uc∗(X(t)) =
∑
S∈U

λ∗SS, where (15)

{λ∗S} = arg max
λ1,...,λ|U|

∑
S∈U

λSγ(S)
(
X(bt/τc)

)
(16)

subject to λS ≥ κs,
∑
S

λS ≤ 1− L
τ

At time step t = nτ for integer n, the controller uc∗

uses feedback measurements x(t) to select a relaxed control
matrix Sr∗ with components λ∗S that satisfy (16). This
relaxed controller is then applied for the subsequent τ time
steps {t, t+1, . . . , t+τ−1} before the controller is updated.

Note that this controller is modeled such that all phases in
an intersection are simultaneously actuated at some propor-
tion of their maximum flow capacity. This is not possible in
practice, as many phases will have to make conflicting use of
the same intersection resources. Hence individual phases S
will have to be actuated in series, with each having a duration
corresponding to a number of “time units” that are equal to
cycle proportions (λSτ · ∆t). Feedback measurements will
then be a measure of “average” cycle queue length acquired
over a set of measurements spanning the previous cycle.

Because cycle-based max pressure can be implemented
such that phases occur in a predictable order, a controller
running cycle-based max pressure can be synchronized with
neighboring controllers to enforce a “green-wave progres-
sion” as is standard practice in existing traffic signal control
design.

V. STABILITY OF CYCLE-BASED MAX PRESSURE

Cycle-based max pressure is fundamentally different from
the standard max pressure formulation in [12] in two ways:
first, it only updates the controller once every signal cycle
(or τ model time steps); second, it applies a relaxed phase
actuation (which is some convex combination of standard
phase actuations). This section will address how each of these
modifications individually affects the stability of the resulting
controlled networks.

Properties of a τ -updated controller

Suppose that we impose that the control actuation S∗(t)
can only be updated every τ model time steps. A resulting
τ -updated control sequence is composed of a single control

matrix repeated for τ time steps of the model dynamics:

S(nτ + 1) = S(nτ + 2) = . . . = S((n+ 1)τ) (17)

In Appendix I, we prove that the set of demands that
can be accommodated using τ -updated control sequences is
the same set of feasible flows as in (8). This equivalence
becomes intuitive when one considers that our definition of
feasible flows considers only the long-term (more precisely,
infinite-term) average of both demand and service rates, and
any infinite control sequence with limited admissible phases
can be re-arranged to form a τ -updated sequence for some τ .
As we will show in the following sections, the only additional
impact of occasional updating will be an increased bound on
queue lengths relative to the standard max pressure setting.

Stability of cycle-based max pressure

Here we examine the stability of the cycle-based max
pressure controller using τ -updated sequences of relaxed
controllers with fixed minimum phase proportion constraints,
as formulated in (15)-(16).

Define convκ as the set of convex combinations of control
matrices with coefficients larger than κ:

convκ =
{∑

S

λSS
∣∣ λS > κS ∀S ∈ U

}
(18)

Also define a set of undersaturated admissible demands Dκ

with elements d such that f = dP and

flr(l,m) < c(l,m)Sr(l,m) (19)

This condition (also seen in (13)) ensures that a demand
d ∈ Dκ can in average be served within a single cycle by
a relaxed control matrix that maintains a specified minimum
time allocation for each phase.

Theorem 4: The cycle-based max pressure controller de-
fined in (15)-(16) stabilizes a network whenever the demand
is within a set of feasible undersaturated demands Dκ.
The remainder of this section proves Theorem 4 by finding
a bound on (9) given a cycle-based max pressure controller.
Begin by considering the expectation of the following func-
tion of queue state perturbation conditioned on the past queue
state:

|X(t+ 1)|2 − |X(t)|2 = |X(t) + δ(t)|2 − |X(t)|2 (20)

= 2X(t)T δ(t) + |δ(t)|2 = 2α(t) + β(t)

with δ(t) = X(t + 1) − X(t), α(t) = X(t)T δ(t), and
β(t) = |δ(t)|2. We continue by addressing bounds on β and
α separately.

First we consider β(t) = |δ(t)|2.
Lemma 5:

β(t) =
∣∣δ(t)∣∣2 ≤ NB2 (21)

where B = max
{
C(l,m),

∑
k C(k, l), d(l,m)

}
, N is the

number of queues in the network, C(l,m) is the maximum
value of the random service rate C(l,m)(t), and d(l,m) is
the maximum value of random demand d(l,m).
The proof of Lemma 5 is exactly the same as presented
in [12] and will therefore not be repeated here. Note that
because these bounds hold for any arbitrary S(l,m)(t) ∈
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[0, 1], this bound on β is trivially extended to any convex
combination of control matrices; hence it is still valid in our
extension.

Now we examine a bound on α(t) = X(t)T δ(t). Again
following [12], we define additional sub-terms:

E{α(t)|X(t)} =
∑
l∈L,m

w(l,m)(t) · (22)[
flr(l,m)− E

{[
C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)

]∣∣X(t)
}]

= α1(t) + α2(t), with

α1(t) =
∑
l∈L,m

[flr(l,m)− c(l,m)S(l,m)(t)]w(l,m)(t) (23)

α2(t) =
∑
l∈L,m

S(l,m)(t)w(l,m)(t) · (24)[
c(l,m)− E

{[
C(l,m)(t+ 1) ∧ x(l,m)(t)

]∣∣X(t)
}]

(25)

Lemma 6: For all l, m, t,

α2(t) ≤
∑
l∈L,m

c(l,m)C(l,m) (26)

The proof of Lemma 6 again directly follows that presented
in [12]; an extension from a binary controller S ∈ {0, 1} to
a relaxed controller Sr ∈ [0, 1] is trivial.

In fact, the extension made here only affects the α1(t)
term. To demonstrate a bound on α1(t) given application of a
cycle-based max pressure controller uc∗, we first examine the
stability of a standard max pressure controller using relaxed
controllers with minimum phase proportion constraints and
a stricter limitation on network demands. We will then show
that a τ -updated cycle-based max pressure controller also
stabilizes a network, but results in an increase in queue length
bounds that is proportional to cycle length τ .

Define an intermediate “relaxed max pressure” policy
in which relaxed controllers are applied at the standard
max pressure update rate (once per time step of the model
dynamics). This situation was suggested in [12] to simulate
enforcing minimum phase proportions in a cycle formulation
of max pressure. Yet it still unrealistically models “cycle”
updates at the same rate as the model of queueing and
discharging behaviors on a realistic traffic network (hence
the introduction of the τ -updated formulation in this work).
Nonetheless, we use this intermediate formulation to demon-
strate that queue stability is still achieved upon use of a
relaxed controller.

Lemma 7: If a “relaxed” max pressure control policy Sr∗

is updated and applied at each time step t and the demand
d is in the set of feasible undersaturated demands Dκ, then
there exists an ε > 0, η > 0 such that

α1(t) ≤ −εη
∣∣X(t)

∣∣ (27)
Proof: Consider the relaxed max pressure control

matrix Sr∗ defined in (15) for τ = 1. By construction,
∀ Sr ∈ convκ∑

l,m

c(l,m)w(l,m)(X(t))Sr(l,m)

≤
∑
l,m

c(l,m)w(l,m)(X(t))Sr∗(l,m) (28)

with equality only if Sr = Sr∗. Thus ∀ (Sr ∈ convκ) 6= Sr∗,∑
l,m

[
flr(l,m)− c(l,m)Sr∗(l,m)(t)

]
w(l,m)(X(t))

<
∑
l,m

[
flr(l,m)− c(l,m)Sr(l,m)

]
w(l,m)(X(t))

(29)
If the demand flow is admissible according to (19), then
∃ Ŝ ∈ convκ and some small ε > 0 such that

c(l,m)Ŝ(l,m) =

{
flr(l,m) + ε if w(l,m)(X(t)) > 0

0 otherwise

Therefore,

α1(t) =
∑
l,m

[flr(l,m)− c(l,m)Sr∗(l,m)(t)]w(l,m)(X(t))

<
∑
l,m

[
flr(l,m)− c(l,m)Ŝ(l,m)(t)

]
w(l,m)(X(t))

= −ε
∑
l∈L,m

max{w(l,m)(X(t)), 0} (30)

+
∑
l∈L,m

flr(l,m) min{w(l,m)(X(t)), 0}

We assume that by our choice of Ŝ, flr(l,m) > ε. Hence
α1(t) < −ε

∑
l,m w(l,m)(t). Given the linearity of (10)

and the known properties of r(l,m)(t), it can be show that∑
l,m w(l,m)(t) ≥ η|X(t)| for some η > 0. This completes

the derivation of (27).

For ease of notation, now combine (21), (26) and (27) to
obtain the following expression given application of the
“relaxed max pressure” controller:

E
{
|X(t+ 1)|2 − |X(t)|2|X(t)

}
= E

{
2α(t) + β(t)

}
< −2εη |X(t)|+ 2

∑
l∈L,m

[c(l,m)C(l,m)] +NB2 (31)

where N and B are as in (21). Next we establish a bound
on queue growth in a single time step between controller
updates.

Lemma 8: Assuming a cycle-based max pressure con-
troller with an cycle steps τ beginning at time t, the following
bound on state perturbation holds for all p ∈ [0, τ − 1]:

E
{
|X(t+ p+ 1)|2 − |X(t+ p)|2

∣∣X(t) . . . X(t+ p)
}

< Y + h(p)− 2εη|X(t+ p)| (32)

for Y = 2
∑
l,m

c(l,m)C(l,m) +NB2 and (33)

h(p) = 2pNB
(
εη +

∑
l,m

[
flr(l,m) + c(l,m)

])
(34)

Proof: As in Lemmas 5-7 above, begin by dividing the
argument of (32) into three parts: |X(t+ p+ 1)|2 − |X(t+
p)|2 = 2(α1(t + p) + α2(t + p)) + β(t + p), where β, α1
and α2 are quantities that depend on the controller applied
at (t+ p):

β(t+ p) = |X(t+ p+ 1)−X(t+ p)|2 (35)
α1(t+ p) = w(l,m)(X(t+ p)) · (36)
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∑
l,m

(
flr(l,m)− c(l,m)S(l,m)(t)

)
α2(t+ p) = w(l,m)(X(t+ p)) ·

∑
l,m

(
c(l,m)S(l,m)(t) (37)

−E
{[
C(l,m)(t+ p+ 1) ∧ x(l,m)(t+ p)

]∣∣X(t+ p)
})

Bounds on the expectations of β(·) and α2(·) were previously
established for any binary or relaxed control matrix in (21)
and (26), respectively. Thus we already know that:

E
{
|X(t+ p+ 1)|2 − |X(t+ p)|2|X(t) . . . X(t+ p− 1)

}
< 2

∑
l,m

c(l,m)C(l,m) +NB2 + E
{

2α1(t+ p)
}

(38)
The remainder of the bound proposed in (32) originates from
the 2α1(t + p) term, which is directly dependent on the
explicit form of the controller S. Rewrite 2 ·α1 from (36) as
follows:

2
∑
l,m

w(l,m)(X(t+ p))[flr(l,m)− c(l,m)S(l,m)(t)]

= 2
∑
l,m

w(l,m)(X(t))[flr(l,m)− c(l,m)S(l,m)(t)]

+ 2
∑
l,m

{
w(l,m)

(
X(t+ p)−X(t)

)
·

[flr(l,m)− c(l,m)S(l,m)(t)]
}

(39)

= ξ1(t, p, S) + ξ2(t, p, S) for

ξ1(t, S) =2
∑
l,m

w(l,m)(X(t))[flr(l,m)− c(l,m)S(l,m)(t)]

ξ2(t, p, S) = 2
∑
l,m

{
w(l,m)

(
X(t+ p)−X(t)

)
·

[flr(l,m)− c(l,m)S(l,m)(t)]
}

By Lemma 7 we know that ξ1(t, S) < −2εη|X(t)|. Because
|X(t)| = |X(t + p) − (X(t + p) − X(t))| > |X(t + p)| −
|X(t+ p)−X(t)|, we find that

ξ1(t, p, S) < −2εη
(
|X(t+ p)| − |X(t+ p)−X(t)|

)
< −2εη|X(t+ p)|+ 2εη

p∑
i=1

|X(t+ i)−X(t+ i− 1)|

= −2εη|X(t+ p)|+ 2εη

p∑
i=1

|δ(t+ i− 1)| (40)

So by (40) and (21),

ξ1(t, S) < −2εη|X(t+ p)|

+ 2εηp
∑
l,m

max

{
C(l,m),

∑
k

C(k, l), d(l,m)

}
= 2εη ·

(
pNB − |X(t+ p)|

)
(41)

To bound ξ2, we study the term

w(l,m)(X(t+ p))− w(l,m)(X(t))

=

p∑
n=1

w(l,m)(X(t+ n))− w(l,m)(X(t+ n− 1))

=

p∑
n=1

{
x(l,m)(t+ n)− x(l,m)(t+ n− 1)

−
∑

s∈Out(m)

[x(m, s)(t+ n)− x(m, s)(t+ n− 1)]r(m, s)
}

=

p∑
n=1

w(l,m)(δ(t+ n− 1)) (42)

By (21) and the fact that w(·) is linear,

|w(l,m)(δ(t+ n− 1))| < NB (43)
Plugging (43) back into the definition of ξ2, we obtain

ξ2(t, p, S) = 2

(∑
l,m

(
[flr(l,m)− c(l,m)S(l,m)] ·

p∑
n=1

w(l,m)(δ(t+ n− 1))

)

< 2

p∑
n=1

∑
l,m

[flr(l,m)− c(l,m)S(l,m)] ·

∑
u,v

max
{
C(u, v),

∑
k

C(k, u), d(u, v)
}

= 2NB

p∑
n=1

∑
l,m

[flr(l,m)− c(l,m)S(l,m)] (44)

Also note that∣∣∣ p∑
n=1

∑
l,m

[flr(l,m)−c(l,m)S(l,m)]
∣∣∣ < p

∑
l,m

[flr(l,m)+c(l,m)]

so (44) becomes

ξ2(t, p, S) < 2NBp ·
(∑
l,m

[flr(l,m) + c(l,m)]
)

(45)

Substituting (41) and (45) into (38) yields (32).

Given Lemma 8, we show that for a time t within any
number K of τ -updated cycles, the following quantity is
bounded:
Kτ∑
t=1

E
{
|X(t+ 1)|2 − |X(t)|2|X(t)

}
=

K−1∑
t=1

τ−1∑
p=0

E
{
|X(t+ p+ 1)|2 − |X(t+ p)|2|X(t+ p)

}
<

K−1∑
t=1

τ−1∑
p=0

(Y + h(p)− 2εη|X(t+ p)|)

< −2εη

Kτ∑
t=1

|X(t)|+ (K − 1)
(
τY +

τ−1∑
p=0

h(p)
)

(46)

which, when taking the expectation, yields

E
{
|X(Kτ + 1)|2 − |X(1)|2

}
< −2εη

Kτ∑
t=1

E
{
|X(t)|

}
+ (K − 1)(τY +

τ−1∑
p=0

h(p)) (47)

Rearranging gives

1

Kτ

Kτ∑
t=1

E
{
|X(t)|

}
<

1

2εηKτ
E
{
|X(1)|2 − |X(Kτ + 1)|2

}
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+
τ − 1

2εηKτ

( τ−1∑
p=0

h(p) + τY
)]

(48)

<
1

2εη Kτ
E
{
|X(1)|2

}
+

1

2εητ

(
τ−1∑
p=0

h(p) + τY

)
(49)

By (9), the bound

1

Kτ

Kτ∑
t=1

E
{
|X(t)|

}
<

1

2εητ

[
1
K
E
{
|X(1)|2

}
+

τ−1∑
p=0

h(p) + τY

]
establishes that the cycle-based max pressure controller
uc∗(X(t)) defined in (15) will stabilize a vertical queueing
network with dynamics X(t) as in (5)-(6). However, the
maximum expected queue lengths will be higher in the case
of a cycle-based max pressure than in the frequent update
setting by a term that increases linearly in cycle length τ :

1

2εητ

τ−1∑
p=0

h(p) = (τ − 1)NB
(
1 +

1

εη

∑
l,m

[
flr(l,m) + c(l,m)

])

VI. NUMERICAL IMPLEMENTATION

A cycle-based max pressure controller was implemented
on a network of 11 signalized intersections modeled in
Aimsun, a micro-simulation platform commonly used by
practitioners. The calibrated model was generated as part of
the I-15 Integrated Corridor Management project undertaken
by the San Diego Association of Governments in San Diego,
CA. The cycle-based controller was set to run with a cycle
length of 90 seconds and minimum time constraints of 10
seconds for each of the 3-4 available standard signal control
phases.

Fig. 1. The chosen network was calibrated to represent realistic demands
and physical parameters observed on a stretch of Black Mountain Road near
the I-15 freeway in San Diego, California.

Various performance metrics were compared between
model runs using the cycle-based max pressure controller
and two alternative controllers: a fixed-time control plan
that divides each signal cycle equally between all available
phases, and a “fully-actuated” control system such as that
which is currently operational on the real road network
represented by the model. The fully actuated-controller is
essentially a flexible fixed-time plan in which green times
can be shortened or extended in real time to promote
continuity of flows in response to instantaneous link demand
measurements.

The comparison of network vehicle counts in Figure 2
suggests that the uniformly-allocated fixed time controller
caused significantly fewer vehicles to be served than the
other two controllers, which were comparable to each other
in vehicle service rates. This difference made it difficult

to fairly compare other performance metrics between the
uniform fixed-time controller and the other two options.
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Fig. 2. During congestion, cycle-based max pressure demonstrated service
rates that are higher than the uniformly allocated fixed-time controller and
consistent with a fully-actuated control system.
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Fig. 3. Cycle-based max pressure outperforms the fully actuated system
during periods of high demand. While max pressure caused more vehicle
stop events, stoppage times were similar to those observed using the standard
fully-actuated controller.

Differences between the fully-actuated and cycle-based
max pressure controllers were observed in measurements of
delays and queue lengths. While the fully-actuated system
appeared to produce less delay and shorter queues than max
pressure during periods of relatively low network demand,
max pressure was equally as effective or even more effective
at reducing delays and queue lengths given larger demands.
Figure 3 shows how delays were reduced and had less
variance over time when the max pressure controller was
applied than with the fully-actuated controller. However,
cycle-based max pressure consistently induced more stops
during a vehicle’s journey across the network, which is
expected given the design objectives of the fully-actuated
system. Total stoppage times were higher with max pressure
given low demand, but improved over the existing controller
during peak demand.
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VII. CONCLUSION

In this work we have defined an extension of the max
pressure controller required for application on a real network
of signalized traffic intersections. Given only the constraint
that the network demands are serviceable in average, we
have proven that updating a max pressure controller which
allocates a fixed minimum proportion of service to each
permissible phase at a slower rate than that which governs
traffic flow will not destroy the stabilizing properties of the
controller.

Max pressure provides theoretical guarantees on network-
wide performance that are lacking in other existing signal
control algorithms. Our implementation in the referenced
micro-simulation platform furthermore demonstrates how
it could comply with the hardware and communications
constraints commonly encountered in existing roadway in-
frastructure. These numerical simulations reveal that an im-
plementation of cycle-based max pressure competes with the
existing standard feedback controller in many performance
metrics, especially during periods of high congestion. It also
appears to provide less variance in delays than the existing
alternative. Future work will involve further analysis of the
effect of cycle length on the performance of cycle-based max
pressure, as well as performance improvements that can be
achieved via the addition of common signal coordination
practices in a network running cycle-based max pressure.
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APPENDIX I
FEASIBLE FLOWS WITH A τ -UPDATED CONTROLLER

Lemma 9: All flows which satisfy Property 2 given a
controller u updated at every model time step will also satisfy
Property 2 with a τ -updated controller for some τ .

Proof: Given the set admissible phases U , define:
• U is the set of control sequences with distinct elements
{S(1), S(2) . . . S(t) . . . |S(·) ∈ U},
• Uτ is the set of τ -updated control sequences
{S(1), S(1), . . . , S(τ + 1), S(τ + 1), . . . , S(nτ + 1),
S(nτ + 1), . . . |S(·) ∈ U},

Also define the following sets of long-term control propor-
tion matrices, which are similar to the formulation in (7):

MU =
{
lim inf

T

1

T

T∑
t=1

S(t)
∣∣∣{S(1), S(2), . . . , S(t), . . .} ∈ U}

MUτ =
{
lim inf

T

1

T

T∑
t=1

S(t) ·∣∣∣{S(1), S(1), . . . , S(τ + 1), S(τ + 1), . . .} ∈ Uτ
}

By Property 2, a demand d is only feasible if there
exists a control sequence S such that the corresponding
long-term control proportion matrix MS satisfies (8). Here
we show MU = MUτ , and therefore any flows that are
admissible given an unrestricted controller in U can also be
accommodated using a τ -updated controller in Uτ .

Obviously, MUτ ⊂ MU . To show equality, we must also
demonstrate that MU ⊂MUτ . Suppose there exists a control
sequence Ŝ = {S(1), S(2), . . .} ∈ U . By definition,

MŜ = lim inf
T

1

T

T∑
t=1

S(t) = lim inf
T

1

τT

τT∑
t=1

S̃(t)

where S̃ = {S(1), S(1), . . . , S(t), S(t), . . .}

= lim inf
T

1

T

T∑
t=1

S̃(t) ∈MUτ =⇒ MU ⊂MUτ
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