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Abstract. Traffic sensing systems rely more and more on user generated (in-

secure) data, which can pose a security risk whenever the data is used for
traffic flow control. In this article, we propose a new formulation for detect-

ing malicious data injection in traffic flow monitoring systems by using the
underlying traffic flow model. The state of traffic is modeled by the Lighthill-

Whitham-Richards traffic flow model, which is a first order scalar conservation

law with concave flux function. Given a set of traffic flow data generated
by multiple sensors of different types, we show that the constraints resulting

from this partial differential equation are mixed integer linear inequalities for

a specific decision variable. We use this fact to pose the problem of detect-
ing spoofing cyber attacks in probe-based traffic flow information systems as

mixed integer linear feasibility problem. The resulting framework can be used
to detect spoofing attacks in real time, or to evaluate the worst-case effects of
an attack offline. A numerical implementation is performed on a cyber attack

scenario involving experimental data from the Mobile Century experiment and

the Mobile Millennium system currently operational in Northern California.

1. Introduction. The convergence of mobile sensing, communication and com-
puting has led to the rise of a new class of systems known as cyberphysical systems,
which are physical systems sensed and actuated by “cyber” agents, an example
of which is the transportation network. Owing to their spatially and temporally
distributed nature, such systems are often modeled as distributed parmeter sys-
tems [23, 8, 19]. Estimating or controlling the state of a distributed parameter
systems a very complex problem in general. It requires the integration of noisy
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measurement data with dynamical models, usually encoded by a partial differen-
tial equation (PDE). Incorporating the constraints encoded by the model into the
estimation problem is difficult in general, since these constraints can be nonlinear,
nonconvex, or even non-explicit. Ultimately, the model constraints can always be
enforced through the use of Monte Carlo techniques, but these methods are chal-
lenging for large dimensional problems.

In transportation systems, a new form of sensing has emerged since a few years
in the form of probe vehicles. In this paradigm, the vehicles themselves transmit
their speed and location anonymously [26] to a central server, which uses this data
in conjunction with fixed sensor data [27] to generate real-time traffic maps. While
systems such as the Mobile Millennium system [26] have successfully demonstrated
the concept, multiple issues remain in terms of security [1, 2]. Unlike fixed sensors
which are difficult to tamper with, it is relatively easy for an attacker to generate
fake data and inject it in the system to modify the estimates with dire consequences,
in particular if the traffic estimates are used for optimal traffic control (traffic lights,
ramp metering). Indeed, probe-based systems do not require strong authentication
from the users to enhance user privacy [18].

Detecting such cyber attacks is a complex problem, since there is a wide range of
possible traffic velocities and a great diversity of possible traffic patterns. Detecting
fake data that follows some pattern (for instance if the faked data is periodic) or
that falls out of physically reasonable bounds is easy. However, detecting fake data
that is both random and consistent with a typical sensor measurement is difficult.
In this situation, detecting fake data injection can only be done by checking the
consistency of the data with respect to the model, which is assumed to hold perfectly
(i.e. without model uncertainty) in the present article. Note that the interpretation
of the results of this consistency check is complex: inconsistency may result from
genuinely faulty sensors or even from local violations of the traffic flow model.

In the present article, we use the underlying traffic flow model, encoded by the
Lighthill-Whitham-Richards (LWR) PDE to detect cyber attacks, assuming that
data is generated by a set of fixed sensors and a set of probe vehicles. We show
that the model-data consistency check problem can be posed as a Mixed Integer
Linear Program (MILP). The importance of this formulation is significant, since
it now provides an algorithmic solution method to this previously open problem,
that could only be solved using Monte Carlo techniques or through approximations.
We then illustrate these results by numerical implementations of the corresponding
MILPs using real data from the Mobile Century experiment [17] and from the Mobile
Millennium system [26].

The rest of this article is organized as follows. Section 2 defines the solution to the
HJ PDE investigated in this article, as well as its properties. Section 3 formulates
the initial, boundaries and internal conditions of the problem as a function of the
input data. We then derive the structure of the HJ PDE model constraints in
section 4, and pose the problem of detecting spoofing attacks as a Mixed Integer
Linear feasibility problem. Section 5 shows how one can use this framework to
detect a simulated spoofing attack on a real-life scenario, using experimental Mobile
Century data, freely available from [26].
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2. Model definition.

2.1. Traffic-flow modeling using scalar Hamilton-Jacobi equations. In the
remainder of the article, we assume that the spatial domain representing the high-
way section is defined by [ξ, χ], where ξ and χ respectively represent the upstream
and downstream boundaries of the domain. We assume that the state of the system
is described by a scalar function M(⋅, ⋅) of both time and space, known as Moskowitz
function [21, 22]. The Moskowitz function is a possible macroscopic description of
traffic flow, which appears linearly in the context of traffic. Let consecutive integer
labels be assigned to vehicles entering the highway at location x = ξ. The Moskowitz
function M(⋅, ⋅) is a continuous function satisfying ⌊M(t, x)⌋ = n where n is the label
of the vehicle located in x at time t [14, 15].

One of the most common models used to described traffic flow is know as the
Lighthill-Whitham-Richards (LWR) model. With this assumption, the Moskowitz
function satisfies a Hamilton-Jacobi (HJ) PDE evolution equation:

∂M(t, x)
∂t

− ψ (−∂M(t, x)
∂x

) = 0 (1)

The function ψ(⋅) defined in equation (1) is the Hamiltonian. Several classes of
weak solutions to equation (1) exist, such as viscosity solutions [12, 5] or Barron-
Jensen/Frankowska (B-J/F) solutions [6, 16] used in the present article. The B-J/F
solutions to equation (1) are fully characterized by a Lax-Hopf formula [4, 9], which
was initially derived using the control framework of viability theory [3].

In the remainder of this article, we assume that the Hamiltonian is given by the
following formula:

ψ(ρ) = { vfρ ∶ ρ ∈ [0, kc]
w(ρ − κ) ∶ ρ ∈ [kc, κ]

where

kc =
−wκ
vf −w

Such Hamiltonian is often referred to in the transportation literature as triangular
fundamental diagram [13, 15], and is commonly used to model traffic flow because
of its robustness.

2.2. Lax-Hopf formula for Hamilton-Jacobi equations. In order to charac-
terize the B-J/F solutions, we first need to define the Legendre-Fenchel transform
of the Hamiltonian ψ(⋅) as follows.

Definition 2.1. [Legendre-Fenchel transform] For a concave and upper semi-
continuous Hamiltonian ψ(⋅) defined as previously, the Legendre-Fenchel transform
ϕ∗ is given by:

ϕ∗(u) ∶= sup
p∈Dom(ψ)

[p ⋅ u + ψ(p)] (2)

The inverse transform is defined [4] by:

ψ(p) ∶= inf
u∈Dom(ϕ∗)

[ϕ∗(u) − p ⋅ u] (3)

Solving the HJ PDE (1) requires the definition of value conditions, which encode
the traditional concepts of initial, boundary and internal conditions.

Definition 2.2. [Value condition] A value condition c(⋅, ⋅) is a lower semicontin-
uous function defined on a subset of [0, tmax] × [ξ, χ].
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By convention, a value condition c(⋅, ⋅) as defined in Definition 2.2 satisfies
c(t, x) = +∞ if (t, x) ∉ Dom(c). The domain of definition of a value condition
represents the subset of the space time domain R+ × [ξ, χ] in which we want the
value condition to apply. For instance, imposing an upstream boundary condition
cupstream(⋅, ⋅) amounts to constraint the value of the state on the set Dom(cupstream)
= R+ × {ξ}.

In the remainder of this article, the solution Mc(⋅, ⋅) to (1) associated with a
value condition c(⋅, ⋅) is defined by the following Lax-Hopf formula [4, 9].

Proposition 2.3. [Lax-Hopf formula] Let ψ(⋅) be a concave and continuous
Hamiltonian, let ϕ∗(⋅) be the Legendre-Fenchel transform of ψ(⋅) given by equa-
tion (2), and let c(⋅, ⋅) be a value condition, as in Definition 2.2. The B-J/F solution
Mc(⋅, ⋅) to (1) associated with c(⋅, ⋅) is defined [4, 9] algebraically by:

Mc(t, x) = inf
(u,T )∈Dom(ϕ∗)×R+

(c(t − T,x + Tu) + Tϕ∗(u)) (4)

Equation (4) implies the existence of a B-J/F solution Mc(⋅, ⋅) for any value
condition function c(⋅, ⋅). However, the solution itself may be incompatible with
the value condition that we imposed on it, i.e. we do not necessarily have ∀(t, x) ∈
Dom(c),Mc(t, x) = c(t, x).

The structure of the Lax-Hopf formula (4), implies the following important prop-
erty, known as inf-morphism property.

Proposition 2.4. [Inf-morphism property] Let the value condition c(⋅, ⋅) be
minimum of a finite number of lower semicontinuous functions:

∀(t, x) ∈ [0, tmax] × [ξ, χ], c(t, x) ∶= min
j∈J

cj(t, x) (5)

The solution Mc(⋅, ⋅) associated with the above value condition can be decom-
posed [4, 9, 10] as:

∀(t, x) ∈ [0, tmax] × [ξ, χ], Mc(t, x) = min
j∈J

Mcj(t, x) (6)

2.3. Model constraints. In the remainder of this article, we decompose the value
condition c(⋅, ⋅) into block value conditions cj , j ∈ J each representing some mea-
surement data. The relation between block value conditions and measurement data
is presented in section 3. The inf-morphism property and Lax-Hopf formula (4)
imply the following compatibility property:

Proposition 2.5. [Model compatibility of block value conditions] Let c(⋅, ⋅) =
min
j∈J

cj(⋅, ⋅) be given, and let Mc(⋅, ⋅) be defined as in (4). The value condition c(⋅, ⋅)
satisfies ∀(t, x) ∈ Dom(c),Mc(t, x) = c(t, x) if and only if the following inequality
constraints are satisfied:

Mcj(t, x) ≥ ci(t, x) ∀(t, x) ∈ Dom(ci), ∀(i, j) ∈ J2 (7)

The proof of this proposition is available in [11].
When the above compatibility property is satisfied, all value conditions can be

imposed in the strong sense [24], i.e. the solution to the HJ PDE (1) will be identical
to the value conditions on their respective domains of definition.

In addition to the above proposition, the Moskowitz function Mc(⋅, ⋅) has to be
continuous by construction [22, 7], which yields additional compatibility conditions.
We outline these compatibility conditions in Section 4
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3. Explicit solutions to piecewise affine initial, boundary and internal
conditions. Multiple types of value conditions can be incorporated into the esti-
mation problem. In the present article, we include initial, boundary and internal
conditions. The initial and boundary conditions are typically measured (with some
error) using fixed sensors, such as inductive loop detectors, magnetometers or traffic
cameras. Note that an increasing proportion of traffic data is generated by mobile
sensors onboard vehicles, also referred to as probe data [25], which generate internal
conditions [9].

3.1. Definition of affine initial, boundary and internal conditions. The for-
mal definition of initial, boundary (upstream, downstream) and internal conditions
associated with the HJ PDE (1) is the subject of the following definition.

Definition 3.1. [Affine initial, boundary and internal conditions] Let us
define K = {0, . . . , kmax}, N = {0, . . . , nmax} and M = {0, . . . ,mmax}. For all k ∈ K,
n ∈ N and m ∈ M, we define the following functions, respectively called initial
(uniformly spaced in position by X), upstream, downstream (uniformly spaced in
time by T ) and internal conditions:

Mk(t, x)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∑k−1i=0 ρ(i)X
−ρ(k)(x − kX) if t = 0

and x ∈ [kX, (k + 1)X]
+∞ otherwise

(8)

γn(t, x)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑n−1i=0 qin(i)T
+qin(n)(t − nT ) if x = ξ

and t ∈ [nT, (n + 1)T ]
+∞ otherwise

(9)

βn(t, x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−1i=0 qout(i)T
+qout(n)(t − nT )
−∑kmax

k=0
ρ(k)X if x = χ

and t ∈ [nT, (n + 1)T ]
+∞ otherwise

(10)

µm(t, x)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lm + rm(t − tmin(m)) if x = xmin(m)
+vmeas(m)(t − tmin(m))
and t ∈ [tmin(m), tmax(m)]

+∞ otherwise

(11)

where vmeas(m) = xmax(m)−xmin(m)
tmax(m)−tmin(m)

The affine initial, upstream, downstream and internal conditions defined above
for the HJ PDE (1) are equivalent to constant initial, upstream and downstream
boundary conditions for the LWR PDE [20]. The domains of definition of these
functions are illustrated in Figure 1.

Note that for real-life problems, the initial, boundary and internal conditions are
not known exactly, which we will assume to be the case in the remainder of this
article. In particular, we do not know the exact values of the initial densities ρ(⋅),
the boundary flows qin(⋅) and qout(⋅), as well as the coefficients Lm and rm of the
internal conditions. Some coefficients such as qin(⋅) and qout(⋅) can be measured
with some uncertainty, but some other coefficients such as Lm and rm cannot be
measured experimentally. These variables will act as part of our decision variable
for the Mixed Integer Linear Program (MILP) derived in Section 4.
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Figure 1. Domains of the initial, upstream, downstream
and internal boundary conditions. The block upstream and
downstream boundary conditions respectively denoted by γn(⋅, ⋅)
and βn(⋅, ⋅) are defined on line segments corresponding to the up-
stream and downstream boundaries of the physical domain. In
contrast, the block initial conditions Mk(⋅, ⋅) are defined on line
segments corresponding to the initial time. The internal condi-
tions µm(⋅, ⋅) are defined on line segments inside the computational
domain. Note that the actual problem involves block initial condi-
tions covering the entire physical domain [ξ, χ], and block bound-
ary conditions covering the temporal domain [0, tmax], but that
these functions are unknown (or only partially known).

3.2. Analytical solutions to affine initial, boundary and internal condi-
tions. Given the affine initial, upstream, downstream and internal conditions de-
fined above, the corresponding solutions MMk

(⋅, ⋅), Mγn(⋅, ⋅), Mβn(⋅, ⋅) and Mµm(⋅, ⋅)
defined by the Lax-Hopf formula (4) can be computed explicitly [11, 20] as closed-
form expressions, which correspond to equations (13), (12), (14) and (15) below.

Mγn(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if t ≤ nT + x−ξ
v

∑n−1i=0 qin(i)T
+qin(n)(t − x−ξ

v
− nT ) if nT + x−ξ

v
≤ t

and t ≤ (n + 1)T
+x−ξ

v

∑ni=0 qin(i)T
+ρcv(t − (n + 1)T − x−ξ

v
) otherwise

(12)
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MMk
(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if x ≤ kX +wt
or x ≥ (k + 1)X + vt

−∑k−1i=0 ρ(i)X
+ρ(k)(tv + kX − x) if kX + tv ≤ x

and (k + 1)X + tv ≥ x
and ρ(k) ≤ ρc

−∑k−1i=0 ρ(i)X
+ρc(tv + kX − x) if kX + tv ≥ x

and kX + tw ≤ x
and ρ(k) ≤ ρc

−∑k−1i=0 ρ(i)X
+ρ(k)(tw + kX − x)
−ρmtw if kX + tw ≤ x

and (k + 1)X + tw ≥ x
and ρ(k) ≥ ρc

−∑ki=0 ρ(i)X
ρc(tw + (k + 1)X − x)
−ρmtw if (k + 1)X + tv ≥ x

and (k + 1)X + tw ≤ x
and ρ(k) ≥ ρc

(13)

Mβn(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ if t ≤ nT
+x−χ

w

−∑kmax
k=0

ρ(k)X +∑n−1i=0 qout(i)T
+qout(n)(t − x−χ

w
− nT )

−ρm(x − χ) if nT

+x−χ
w

≤ t
and t ≤ (n + 1)T

+x−χ
w

−∑kmax
k=0

ρ(k)X +∑ni=0 qout(i)T
+ρcv(t − (n + 1)T − x−χ

v
) otherwise

(14)

Mµm(t, x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lm+
rm (t − x−xmin(m)−v

meas
(m)(t−tmin(m))

v−vmeas(m)
− tmin(m))

if x ≥ xmin(m) + vmeas(m)(t − tmin(m))
and x ≥ xmax(m) + v(t − tmax(m))
and x ≤ xmin(m) + v(t − tmin(m))
Lm+
rm (t − x−xmin(m)−v

meas
(m)(t−tmin(m))

w−vmeas(m)
− tmin(m))

+kc(v −w)x−xmin(m)−v
meas

(m)(t−tmin(m))
w−vmeas(m)

if x ≤ xmin(m) + vmeas(m)(t − tmin(m))
and x ≤ xmax(m) +w(t − tmax(m))
and x ≥ xmin(m) +w(t − tmin(m))
Lm + rm (tmax(m) − tmin(m))+
(t − tmax(m))kc (v − x−xmax(m)

t−tmax(m)
)

if x ≤ xmax(m) + v(t − tmax(m))
and x ≥ xmax(m) +w(t − tmax(m))
+∞ otherwise

(15)
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The closed-form expressions of MMk
(⋅, ⋅), Mγn(⋅, ⋅), Mβn(⋅, ⋅) and Mµm(⋅, ⋅) are

very important: they enable one to compute the solution to the HJ PDE (1) semi-
analytically for a very low computational cost using the inf-morphism property [9,
20]. They also enable one to write the model compatibility constraint condition (7)
as a set of linear inequalities in a specific decision variable.

4. Derivation of the spoofing attack detection scheme as Mixed-Integer-
Linear-Programming. As outlined earlier, deriving the constraints of an HJ PDE
on initial/boundary/internal condition coefficients is complex in general, as the
constraints may not be explicit. In the present case, our objective is to verify that
a set of initial, boundary and internal conditions can be found such that the model
applies in the strong sense. These constraints, known as model constraints define
a set of allowable coefficients of the initial, boundary and internal conditions for
which the model applies in the strong sense.

In addition to these model constraints, the value of the coefficients of the ini-
tial/boundary/internal conditions is also constrained by the data. These data con-
straints are translating the fact that the actual value of these coefficients is within
some bounds that are a function of the observed data and of the sensor performance
characteristics. We present an example of such data constraints later in the article.

4.1. Model constraints. We now instantiate the model constraints using the ex-
plicit solutions defined above as well as the inf-morphism property.

Proposition 4.1. [Model constraints] The model constraints (7) can be ex-
pressed as the following finite set of convex inequality constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MMk
(0, pX) ≥Mp(0, pX) ∀(k, p) ∈ K2

MMk
(pT,χ) ≥ βp(pT,χ) ∀k ∈ K,∀p ∈ N

MMk
(χ−xk+1

v
, χ) ≥

βp(χ−xk+1v
, χ) ∀k ∈ K,∀p ∈ N s. t.

χ−xk+1
v

∈ [pT,
(p + 1)T ]

MMk
(pT, ξ) ≥ γp(pT, ξ) ∀k ∈ K,∀p ∈ N

MMk
( ξ−xk

w
, ξ) ≥ γp( ξ−xkw , ξ) ∀k ∈ K,∀p ∈ N s. t.

ξ−xk
w

∈ [pT, (p + 1)T ]

(16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MMk
(tmin(m), xmin(m)) ≥ µm(tmin(m), xmin(m))

∀k ∈ K,∀m ∈M
MMk

(tmax(m), xmax(m)) ≥ µm(tmax(m), xmax(m))
∀k ∈ K,∀m ∈M

MMk
(t1(m,k), x1(m,k)) ≥ µm(t1(m,k), x1(m,k))
∀k ∈ K,∀m ∈M s. t. t1(m,k) ∈ [tmin(m); tmax(m)]

MMk
(t2(m,k), x2(m,k)) ≥ µm(t2(m,k), x2(m,k))
∀k ∈ K,∀m ∈M s. t. t2(m,k) ∈ [tmin(m); tmax(m)]

MMk
(t3(m,k), x3(m,k)) ≥ µm(t3(m,k), x3(m,k))
∀k ∈ K,∀m ∈M s. t. t3(m,k) ∈ [tmin(m); tmax(m)]

MMk
(t4(m,k), x4(m,k)) ≥ µm(t4(m,k), x4(m,k))
∀k ∈ K,∀m ∈M s. t. t4(m,k) ∈ [tmin(m); tmax(m)]

(17)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mγn(pT, ξ) ≥ γp(pT, ξ) ∀(n, p) ∈ N2

Mγn(pT,χ) ≥ βp(pT,χ) ∀(n, p) ∈ N2

Mγn(nT + χ−ξ
v
, χ) ≥ βp(nT + χ−ξ

v
, χ) ∀(n, p) ∈ N2 s. t. nT+

χ−ξ
v

∈ [pT, (p + 1)T ]
(18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mγn(tmin(m), xmin(m)) ≥ µm(tmin(m), xmin(m))
∀n ∈ N,∀m ∈M

Mγn(tmax(m), xmax(m)) ≥ µm(tmax(m), xmax(m))
∀n ∈ N,∀m ∈M

Mγn(t5(m,n), x5(m,n)) ≥ µm(t5(m,n), x5(m,n))
∀n ∈ N,∀m ∈M s. t. t5(m,n) ∈ [tmin(m); tmax(m)]

(19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mβn(pT, ξ) ≥ γp(pT, ξ) ∀(n, p) ∈ N2

Mβn(nT + ξ−χ
w
, ξ) ≥ γp(nT + ξ−χ

w
, ξ) ∀(n, p) ∈ N2 s. t. nT+

ξ−χ
w

∈ [pT, (p + 1)T ]

Mβn(pT,χ) ≥ βp(pT,χ) ∀(n, p) ∈ N2

(20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mβn(tmin(m), xmin(m)) ≥ µm(tmin(m), xmin(m))
∀n ∈ N,∀m ∈M

Mβn(tmax(m), xmax(m)) ≥ µm(tmax(m), xmax(m))
∀n ∈ N,∀m ∈M

Mβn(t6(m,n), x6(m,n)) ≥ µm(t6(m,n), x6(m,n))
∀n ∈ N,∀m ∈M s. t. t6(m,n) ∈ [tmin(m); tmax(m)]

(21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mµm(pT, ξ) ≥ γp(pT, ξ) ∀(m,p) ∈M ×N (vii)(a)
Mµm(t7(m), ξ) ≥ γp(t7(m), ξ) ∀(m,p) ∈M ×N s. t.

t7(m) ∈ [pT, (p + 1)T ] (vii)(b)
Mµm(t8(m), ξ) ≥ γp(t8(m), ξ) ∀(m,p) ∈M ×N s. t.

t8(m) ∈ [pT, (p + 1)T ] (vii)(c)

(22)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mµm(pT,χ) ≥ βp(pT,χ) ∀(m,p) ∈M ×N (viii)(a)
Mµm(t9(m), χ) ≥ βp(t9(m), χ) ∀(m,p) ∈M ×N s. t.

t9(m) ∈ [pT, (p + 1)T ] (viii)(b)
Mµm(t10(m), χ) ≥ βp(t10(m), χ) ∀(m,p) ∈M ×N s. t.

t10(m) ∈ [pT, (p + 1)T ] (viii)(c)

(23)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mµm(tmin(p), xmin(p)) ≥ µp(tmin(p), xmin(p))
∀(m,p) ∈M2 (ix)(a)

Mµm(tmin(p), xmax(p)) ≥ µp(tmax(p), xmax(p))
∀(m,p) ∈M2 (ix)(b)

Mµm(t11(m,p), x11(m,p)) ≥ µp(t11(m,p), x11(m,p))
∀(m,p) ∈M2 s. t. t11(m,p) ∈ [tmin(p), tmax(p)] (ix)(c)

Mµm(t12(m,p), x12(m,p)) ≥ µp(t12(m,p), x12(m,p))
∀(m,p) ∈M2 s. t. t12(m,p) ∈ [tmin(p), tmax(p)] (ix)(d)

Mµm(t13(m,p), x13(m,p)) ≥ µp(t13(m,p), x13(m,p))
∀(m,p) ∈M2 s. t. t13(m,p) ∈ [tmin(p), tmax(p)] (ix)(e)

Mµm(t14(m,p), x14(m,p)) ≥ µp(t14(m,p), x14(m,p))
∀(m,p) ∈M2 s. t. t14(m,p) ∈ [tmin(p), tmax(p)] (ix)(f)

Mµm(t15(m,p), x15(m,p)) ≥ µp(t15(m,p), x15(m,p))
∀(m,p) ∈M2 s. t. t15(m,p) ∈ [tmin(p), tmax(p)] (ix)(g)

(24)
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where the coefficients t1(m,k), x1(m,k), t2(m,k), x2(m,k), t3(m,k), x3(m,k),
t4(m,k), x4(m,k), t5(m,n), x5(m,n), t6(m,n), x6(m,n), t7(m), t8(m), t9(m),
t10(m), t11(m,p), x11(m,p), t12(m,p), x12(m,p), t13(m,p), x13(m,p), t14(m,p),
x14(m,p), t15(m,p) and x15(m,p) are given by equations (25), (26) and (27) below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1(m,k) = xmin(m)−(k+1)X−vmeas
(m)tmin(m)

v−vmeas(m)

x1(m,k) = xmin(m)+
vmeas(m) (xmin(m)−(k+1)X−vmeas

(m)tmin(m)
v−vmeas(m)

− tmin(m))
t2(m,k) = xmin(m)−kX−vmeas

(m)tmin(m)
w−vmeas(m)

x2(m,k) = xmin(m)+
vmeas(m) (xmin(m)−kX−vmeas

(m)tmin(m)
w−vmeas(m)

− tmin(m))
t3(m,k) = xmin(m)−kX−vmeas

(m)tmin(m)
v−vmeas(m)

x3(m,k) = xmin(m)+
vmeas(m) (xmin(m)−kX−vmeas

(m)tmin(m)
v−vmeas(m)

− tmin(m))
t4(m,k) = xmin(m)−(k+1)X−vmeas

(m)tmin(m)
w−vmeas(m)

x4(m,k) = xmin(m)+
vmeas(m) (xmin(m)−(k+1)X−vmeas

(m)tmin(m)
w−vmeas(m)

− tmin(m))

(25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t5(m,n) = nTv−vmeas
(m)tmin(m)+xmin(m)−ξ
v−vmeas(m)

x5(m,n) = xmin(m)+
vmeas(m) (nTv−v

meas
(m)tmin(m)+xmin(m)−ξ
v−vmeas(m)

− tmin(m))
t6(m,n) = nTw−vmeas

(m)tmin(m)+xmin(m)−χ
w−vmeas(m)

x6(m,n) = xmin(m)+
vmeas(m) (nTw−v

meas
(m)tmin(m)+xmin(m)−χ
w−vmeas(m)

− tmin(m))
t7(m) = ξ−xmin(m)+wtmin(m)

w

t8(m) = ξ−xmax(m)+wtmax(m)
w

t9(m) = χ−xmin(m)+vtmin(m)
v

t10(m) = χ−xmax(m)+vtmax(m)
v

(26)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t11(m,p) = xmin(m)−xmin(p)+v
meas

(p)tmin(p)−v
meas

(m)tmin(m)
vmeas(p)−vmeas(m)

x11(m,p) = xmin(p) + vmeas(p)( − tmin(p)+
xmin(m)−xmin(p)+v

meas
(p)tmin(p)−v

meas
(m)tmin(m)

vmeas(p)−vmeas(m)
)

t12(m,p) = xmax(m)−xmin(p)+v
meas

(p)tmin(p)−vtmax(m)
vmeas(p)−v

x12(m,p) = xmin(p) + vmeas(p)( − tmin(p)+
xmax(m)−xmin(p)+v

meas
(p)tmin(p)−vtmax(m)

vmeas(p)−v
)

t13(m,p) = xmin(m)−xmin(p)+v
meas

(p)tmin(p)−vtmin(m)
vmeas(p)−v

x13(m,p) = xmin(p) + vmeas(p)( − tmin(p)+
xmin(m)−xmin(p)+v

meas
(p)tmin(p)−vtmin(m)

vmeas(p)−v
)

t14(m,p) = xmax(m)−xmin(p)+v
meas

(p)tmin(p)−vtmax(m)
vmeas(p)−w

x14(m,p) = xmin(p) + vmeas(p)( − tmin(p)+
xmax(m)−xmin(p)+v

meas
(p)tmin(p)−vtmax(m)

vmeas(p)−w
)

t15(m,p) = xmin(m)−xmin(p)+v
meas

(p)tmin(p)−vtmin(m)
vmeas(p)−w

x15(m,p) = xmin(p) + vmeas(p)( − tmin(p)+
xmin(m)−xmin(p)+v

meas
(p)tmin(p)−vtmin(m)

vmeas(p)−w
)

(27)

Proof. Note that ∀(k,n) ∈ [0, kmax] × [0, nmax],Dom(Mk) ∩ Dom(Mγn) = ∅ and
that ∀(k,n) ∈ [0, kmax] × [0, nmax],Dom(Mk) ∩ Dom(Mβn) = ∅. Thus, the set of
inequality constraints (7) can be written in the case of initial, upstream, downstream
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and internal conditions as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MMk
(0, x) ≥Mp(0, x) ∀x ∈ [pX, (p + 1)X],∀(k, p) ∈ K2

MMk
(t, χ) ≥ βp(t, χ) ∀t ∈ [pT, (p + 1)T ],∀(k, p) ∈ K ×N

MMk
(t, ξ) ≥ γp(t, ξ) ∀t ∈ [pT, (p + 1)T ],∀(k, p) ∈ K ×N

MMk
(t, x) ≥ µm(t, x) ∀t ∈ [tmin(m), tmax(m)], x = xmin(m)+

vmeas(m)(t − tmin(m))∀(k,m) ∈ K ×M
Mγn(t, ξ) ≥ γp(t, ξ) ∀t ∈ [pT, (p + 1)T ],∀(n, p) ∈ N2

Mγn(t, χ) ≥ βp(t, χ) ∀t ∈ [pT, (p + 1)T ],∀(n, p) ∈ N2

Mγn(t, x) ≥ µm(t, x) ∀t ∈ [tmin(m), tmax(m)], x = xmin(m)+
vmeas(m)(t − tmin(m))∀(n,m) ∈ N ×M

Mβn(t, ξ) ≥ γp(t, ξ) ∀t ∈ [pT, (p + 1)T ],∀(n, p) ∈ N2

Mβn(t, χ) ≥ βp(t, χ) ∀t ∈ [pT, (p + 1)T ],∀(n, p) ∈ N2

Mβn(t, x) ≥ µm(t, x) ∀t ∈ [tmin(m), tmax(m)], x = xmin(m)+
vmeas(m)(t − tmin(m))∀(n,m) ∈ N ×M

Mµk(t, x) ≥ µm(t, x) ∀t ∈ [tmin(m), tmax(m)], x = xmin(m)+
vmeas(m)(t − tmin(m))∀(k,m) ∈M2

(28)

The inequalities outlined in Proposition 4.1 result from the above constraints,
which can be written as a finite set of inequalities owing the piecewise affine structure
of the solutions (13), (12), (14) and (15).

Fact 4.2. [Linear inequality property] The model constraints defined by Propo-
sition 4.1 are linear in the variables ρ(1), ρ(2), . . . , ρ(kmax), qin(1), . . . , qin(nmax),
qout(1), . . . , qout(nmax), L1, . . . , Lmmax and r1, . . . , rmmax .

While the HJ PDE model constraints (7) ensure that the initial, boundary and
internal conditions can all be applied in the strong sense, they do not ensure the con-
tinuity of the solution (the solution to the HJ PDE (1) is only lower-semicontinuous
in general [4]). In this article, we look for continuous solutions following [22], since
they correspond to the physically meaningful solutions. The necessary and sufficient
conditions for the continuity of the function Mc(⋅, ⋅) defined by (6) are outlined in
Proposition (4.3) below.

Proposition 4.3. [Continuity constraints] Let a set of initial, boundary and
internal conditions be defined as in (8), and let the corresponding partial solutions
be defined as MMk

(⋅, ⋅), Mγn(⋅, ⋅), Mβn(⋅, ⋅) and Mµm(⋅, ⋅). Let us also assume
that the model constraints (7) are satisfied. Let Mp(⋅, ⋅) be defined as Mp(⋅, ⋅) =
mink,n,m∣m≠p(MMk

(⋅, ⋅),Mγn(⋅, ⋅),Mβn(⋅, ⋅),Mµm(⋅, ⋅)). The solution M(⋅, ⋅) to the
HJ PDE (5) defined by M(⋅, ⋅) = mink,n,m(MMk

(⋅, ⋅),Mγn(⋅, ⋅),Mβn(⋅, ⋅),Mµm(⋅, ⋅))
is continuous if and only if the following conditions are satisfied:

∀p ∈M, Mp(tmin(p), xmin(p)) = µp(tmin(p), xmin(p)) (29)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µm(tmin(m), xmin(m)) = min (MMk
(tmin(m), xmin(m)),

Mγn(tmin(m), xmin(m)),Mβn(tmin(m), xmin(m)),
Mµp(tmin(m), xmin(m))) ∀k ∈ K,∀n ∈ N,∀(m,p) ∈M2

µm(tmax(m), xmax(m)) = min (MMk
(tmax(m), xmax(m)),

Mγn(tmax(m), xmax(m)),Mβn(tmax(m), xmax(m)),
Mµp(tmax(m), xmax(m))) ∀k ∈ K,∀n ∈ N,∀(m,p) ∈M2

(30)

Furthermore, the inequality constraints (29) can be written as a set of mixed
integer linear inequalities involving the continuous variables ρ(1), ρ(2), . . . , ρ(kmax),
qin(1), . . . , qin(nmax), qout(1), . . . , qout(nmax), L1, . . . , Lmmax and r1, . . . , rmmax , as
well as auxiliary integer variables.
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The proof of (29) is straightforward, and follows directly [11] from the piecewise
affine structure of the partial solutions MMk

(⋅, ⋅), Mγn(⋅, ⋅), Mβn(⋅, ⋅) and Mµm(⋅, ⋅).
The fact that (29) can be written as a set of mixed integer linear inequalities

is more involved. It can be shown that since Mp(⋅, ⋅) = mink,n,m∣m≠p(MMk
(⋅, ⋅),

Mγn(⋅, ⋅),Mβn(⋅, ⋅),Mµm(⋅, ⋅)), equation (29) can be written as a set of inequali-
ties involving the continuous variables ρ(1), ρ(2), . . . , ρ(kmax), qin(1), . . . , qin(nmax),
qout(1), . . . , qout(nmax), L1, . . . , Lmmax and r1, . . . , rmmax , as well as boolean vari-
ables. An example of such derivation is shown in [7] for the case in which mmax = 1.
These inequalities can be further rewritten as mixed integer linear inequalities using
the piecewise affine dependency of the partial solutions with respect to the variables
ρ(1), ρ(2), . . . , ρ(kmax), qin(1), . . . , qin(nmax), qout(1), . . . , qout(nmax), L1, . . . , Lmmax

and r1, . . . , rmmax .
In the remainder of this article, we define y as the decision variable of the problem

(obtained by concatenating the continuous and integer variables), and symbolically
write the mixed integer linear constraints resulting from the model and the conti-
nuity constraints as

Ay ≤ b (31)

Note that the number of integer variables in y is a function of the configuration
of the internal conditions, and is not a function of kmax, nmax and mmax only.

4.2. Data constraints. Similarly, the unknown coefficients of the initial, boundary
and internal conditions have to satisfy data constraints to be compatible with the
observations. The data constraints express the relationship between the decision
variables and the observations.

Hypothesis 4.4. [Data constraints] In the remainder of our article, we assume
that the data constraints are linear in the unknown coefficients of the initial, bound-
ary and internal conditions, and can thus be written symbolically as

Cy ≤ d (32)

where y is the decision variable defined earlier.

Different choices of error models yield linear data constraints, such as the example
outlined below.

Example of convex data constraints — Consider a sensor measuring the
boundary flows (qin(0), ...qin(nmax)) with δq% relative uncertainty, a loop detector
measuring the initial density ρ(3) with δρ% absolute uncertainty, and no down-
stream sensor. In this case, the constraints are linear inequalities in the unknown
coefficients:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − δq/100)qmeasured
in (n) ≤ qin(n) ≤ (1 + δq/100)qmeasured

in (n)
∀n ∈ [0, nmax]

ρ(3)measured − δρ/100ρm ≤ ρ(3) ≤ ρ(3)measured + δρ/100ρm

(33)

◻
Other types of data constraints arise when the sensor performance characteristics

differ from the example shown above. The data constraints are not necessarily
linear if quadratic error models are considered, though most error models would
yield convex constraints.

The model and data constraints translate the constraints imposed by the HJ
PDE (1) and by the observations on the decision variable. In experimental situ-
ations, provided that the traffic flow closely follows the PDE, and that the error
constraints are representative of the sensor capabilities (in particular without sensor
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faults), these constraints have to be feasible. We will use this fact in the following
section as a proxy for cyber attack detection.

4.3. Spoofing cyber attack detection as a mixed integer linear feasibility
problem. Given the model, continuity and data constraints presented above, we
consider the following feasibility problem:

Find y

s. t. { Ay ≤ b
Cy ≤ d

(34)

Let us denote by ȳ the actual value of the decision variable corresponding to
the actual traffic flow scenario. Note that in experimental situations ȳ cannot be
measured, unless one has complete knowledge of the state of the system.

If (34) is infeasible, there is no set of initial, boundary and internal conditions
satisfying at the same time the model and data constraints. Thus, ȳ is either
violating the model constraints (i.e. Aȳ > b) or the data constraints (i.e. Cȳ > d),
or both. The interpretation is as follows:

● If ȳ violates the model constraints, then the actual traffic state function does
not follow the HJ PDE (1), which can be caused by modeling errors of the
flux function (most probable), or by phenomena that are not modeled by the
HJ PDE (1) (less likely).

● If ȳ violates the data constraints, our error model is incorrect. There can be
three main reasons for this to happen:

1. Incorrect error modeling, for instance caused by wrong sensor specifica-
tions

2. Sensor faults (the error model assumes that all sensors are working ac-
cording to their specifications, i.e. non faulty)

3. Spoofing attacks

If (34) is feasible, there exists a set of initial, boundary and internal conditions
compatible both with the traffic flow model and with the observed data. Note that
this does not guarantee that no spoofing attack occurs. Indeed, a spoofing attack
could occur, but the complete dataset (actual data and spoofed data) would some-
how be compatible with the model and the sensor error model. In the remainder of
this article, we assume that a spoofing attack is detected whenever (34) is infeasi-
ble, though in practice one has to exclude sensor faults or incorrect error modeling
before reaching such a conclusion.

5. Implementation. We now present an implementation of the spoofing attack
detection framework presented earlier on an experimental dataset. The dataset
includes fixed sensor data (obtained from inductive loop detectors in the present
case) and mobile sensor data.

5.1. Experimental setup. As previously, we check the feasibility of (34) as a
proxy for cyber attack detection, using the Mobile Century [26, 25] dataset. The
Mobile Century field experiment demonstrated the use of Nokia N-95 cellphones
as mobile traffic sensors in February 2008, and was a joint UC-Berkeley/Nokia

project.
For the numerical applications, a spatial domain of 3.858 km is considered, lo-

cated between the PeMS [27] VDSs (vehicle detection stations) 400536 and 400284
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on the Highway I - 880 N around Hayward, California. The data used in this imple-
mentation was generated on February 8th, 2008, between times 18 ∶ 30 and 18 ∶ 55
(local time). In our scenario, we consider inflow and outflow data qmeasured

in (⋅) and
qmeasured
out (⋅) generated by the above PeMS stations, i.e. we do not assume to know

any initial density data. We also consider internal condition data (i.e. probe vehi-
cle data), either real (i.e. extracted from the Mobile Century dataset) or spoofed
(drawn randomly according to a specific distribution). The layout of the spatial
domain is illustrated in Figure 2.

Figure 2. Spatial domain considered for the numerical im-
plementation. The upstream and downstream PeMS stations are
delimiting a 3.858 km spatial domain, outlined by a solid line. The
direction of traffic flow is represented by an arrow.

For all subsequent applications, the data constraints are chosen are assumed to
be linear: (1−e)qmeasured

in/out (n) ≤ qin/out(n) ≤ (1+e)qmeasured
in/out (n) ∀n ∈ [0, nmax], where

e = 0.01 = 1% is chosen the worst-case relative error of the flow sensors.
We divided the spatial domain into four segments of equal distance X=965 m.

We also set T=30 s as the aggregation time for the flow data (T is determined by
the granularity of PeMS data). All MILPs have been implemented using IBM Ilog

Cplex working on a Macbook operating MacOS X. The problems described in this
article are tractable: they typically involve hundreds of variables and thousands of
constraints, and are solved in a few tens seconds.

5.2. Cyber attack detection example. Our objective is to show the effects of
a spoofing attack on traffic flow estimates using mixed boundary flow and probe
vehicle data. For this specific application the objective function is chosen as the
total number of vehicles at initial time, defined by ∑kmax

i=0 ρ(i), though we are mostly
interested in the feasibility of the model and data constraints, which will act as a
proxy for detecting fake data injection. We consider 20 blocks of upstream (9) and
downstream (10) boundary conditions as well as 6 blocks of (real) internal (11)
conditions.
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As no spoofed data is injected, (34) is feasible, and the traffic density maps
corresponding to the minimum and maximum values of the objective function are
shown in Figure 3 below.

Figure 3. Scenarios corresponding to the minimum and
maximum number of vehicles (no spoofing attack). In all
subfigures, we compute the scenario for which the initial number
of vehicles is the largest (or the smallest), given the boundary data
as well as probe data (dashed segments) Top: minimized number
of vehicles. Bottom: maximized number of vehicles.

We now simulate the effects of a spoofing attack on the traffic estimates, as well
as its detection by the proposed scheme. For this, we progressively incorporate
spoofed probe data in the problem and check the solution to (34). An attack is
detected when (34) becomes infeasible.

For our specific scenario, infeasibility occurred after we added only 3 fake internal
conditions when the former were drawn from an normal distribution centered around
15 mph, with a standard deviation of 1.25 mph. Note that average speed reported
by the vehicles was around 40 mph, with a standard deviation of 10 mph. Since
the traffic speed was higher than the velocity of the fake internal conditions, these
additions tend to increase the estimated minimal possible density of vehicles on
the highway, as illustrated in Figure 4. In contrast, adding fake speed data that is
closer to the current traffic conditions is more likely to go undetected, as illustrated
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IC velocity range (mph) 0-10 10-20 20-30 30-40

♯ IC for infeasibility (set 1) 1 1 1 1

♯ IC for infeasibility (set 2) 1 1 2 4

♯ IC for infeasibility (set 3) 1 1 2 3

Table 1. Number of internal conditions required for in-
feasibility of (34) on different scenarios. We consider the same
problem as previously, with 6 blocks of real internal conditions, and
randomly generate sets of internal conditions associated with some
speed range. The faked internal conditions from the corresponding
sets are then added in order into (34), until the problem becomes
infeasible. Low numbers mean that an attack is detected almost
immediately, while large numbers indicate that some amount of
faked data can go unnoticed by the model/data consistency check.

with the scenario illustrated in Figure 4, bottom. In this specific scenario, six
fake internal conditions were randomly chosen with a mean value of 35 mph and
a standard deviation of 1.25 mph. These fake internal conditions have a stronger
effect on the estimation of the minimal number of vehicles than in the previous
case, and go undetected since they do not alter the velocity profile too significantly.
Hence, the best strategy for an attacker is not necessarily to inject fake data that
is too far away from the current traffic condition.

The mixed integer linear constraints arising from the model and from the data
define a feasible set in which the real coefficients of the initial, boundary and internal
conditions lie. Adding spoofing data will generate additional inequality constraints,
which will reduce the size of the feasible set. Hence, spoofing cyber attacks can
narrow down the estimates to a specific point of the feasible set, giving artificial
confidence in the (wrong) estimates generated by the system.

5.3. Effects of average speed and vehicle distribution on cyber attack
detection. We now illustrate on a specific example the ability of the algorithm to
detect a cyber attack resulting from a faked internal condition that would result in
a model violation. In this specific example, we consider 20 blocks of upstream (9)
and downstream (10) boundary conditions as well as 6 blocks of (real) internal (11)
conditions. We add a single internal condition associated with a very low speed
(compared to the speed estimated by the model in the area of influence of this
internal condition). As expected, problem (34) becomes infeasible with this new
internal condition. This example is illustrated in Figure 5.

We now illustrate the effects of the average velocity associated with the faked
internal conditions on cyber attack detection. As before, we consider 20 blocks
of upstream (9) and downstream (10) boundary conditions as well as 6 blocks of
(real) internal (11) conditions. We then generate 12 different sets of internal condi-
tions associated with different speed ranges of internal conditions (3 sets per speed
range), and progressively add these internal conditions until problem (34) becomes
infeasible. The results are summarized in table 1.

In this specific scenario, the vehicle speed range on the highway was between 30-
50 mph. Hence, very low speeds are very likely to cause an infeasibility of the model
and data constraints, and indeed an attacker sending such faked internal conditions
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Figure 4. Scenarios corresponding to the computed minimum

number of vehicles with spoofing attacks. The scenario is identical to 3
with the addition of spoofed data. Whenever spoofed data is considered, we

consider the scenario perturbed by the spoofed data for which an additional
piece of spoofed data leads to the detection of the attack by the proposed
scheme. Top: minimized number of vehicles with no fake internal condition.

Center: minimized number of vehicles with two additional fake internal con-
ditions chosen randomly with a mean value of 15 mph and a standard deviation

of 1.25 mph. Bottom: minimized number of vehicles with six additional fake

internal conditions chosen randomly with a mean value of 35 mph and a stan-
dard deviation of 1.25 mph.
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Figure 5. Example of cyber attack detection. This scenario shows how
a single internal condition associated with an unreasonable velocity (compared

with the model prediction) can result in an infeasibility of problem (34). Top:

maximized number of vehicles with no faked internal condition (corresponding
to lowest possible average velocity). Bottom: configuration of the internal

conditions resulting in an infeasibility of (34). The faked internal condition is

highlighted in black, and is corresponding to a speed that is much slower than
the worst-case speed forecasted by the model in this area.

in the system would be detected immediately. Of course, faked internal conditions
corresponding to speeds that are consistent with the average speed of traffic are
more likely to go undetected (as in the speed range 30 − 40 mph in table 1), but
not always, as illustrated by the first line of this table. In this specific cases, the
spatio-temporal locations of the internal conditions caused an infeasibility of (34).

6. Conclusion. In this article, we introduce a new numerical scheme for detecting
data-spoofing cyber attacks on systems modeled by first order scalar conservation
laws, such as the highway transportation network. We first present an equivalent
formulation of the problem based on a Hamilton-Jacobi equation. Using a semi-
analytical expression of the solutions to the Hamilton-Jacobi equation, we formulate
the problem of checking the consistency of the data with respect to the model as a
Mixed Integer Linear Program (MILP). The method does not require any approx-
imation or Monte-Carlo simulations to operate, and is tractable. We illustrate the
performance of the method on an experimental probe dataset.
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Future work will be dedicated to the generalization of the method to allow model
uncertainty. In general, the corresponding problem becomes nonconvex feasibility
program, which might still be tractable through relaxations or approximations.
Another important direction is the study of spoofing cyber attacks on transportation
networks, to take into account the coupling effect of junctions and possibly detect
such attacks earlier. Other applications of the framework presented in this article
are possible, such as the real time assessment of the vulnerability of a system to
spoofing attacks, or sensor fault detection.
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[9] C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary conditions

into Hamilton-Jacobi equation. Part I: Theory, IEEE Transactions on Automatic Control,
55 (2010), 1142–1157.

[10] C. G. Claudel and A. M. Bayen, Lax-Hopf based incorporation of internal boundary condi-
tions into Hamilton-Jacobi equation. Part II: Computational methods, IEEE Transactions on
Automatic Control, 55 (2010), 1158–1174.

[11] C. G. Claudel and A. M Bayen, Convex formulations of data assimilation problems for a

class of Hamilton-Jacobi equations, SIAM Journal on Control and Optimization, 49 (2011),
383–402.

[12] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Transac-
tions of the American Mathematical Society, 277 (1983), 1–42.

[13] C. Daganzo, The cell transmission model: a dynamic representation of highway traffic con-

sistent with the hydrodynamic theory, Transportation Research, 28B (1994), 269–287.

[14] C. F. Daganzo, A variational formulation of kinematic waves: basic theory and complex
boundary conditions, Transportation Research B, 39B (2005), 187–196.

[15] C. F. Daganzo, On the variational theory of traffic flow: well-posedness, duality and appli-
cations, Networks and Heterogeneous Media, 1 (2006), 601–619.

[16] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations,

SIAM Journal of Control and Optimization, 31 (1993), 257–272.
[17] J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson and A. M. Bayen, Evaluation of

traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment ,

Transportation Research Part C: Emerging Technologies, 18 (2010), 568–583.
[18] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J. C. Herrera, A. M. Bayen, M. Annavaram

and Q. Jacobson, Virtual trip lines for distributed privacy-preserving traffic monitoring, in

http://www.ams.org/mathscinet-getitem?mr=MR2734843&return=pdf
http://dx.doi.org/10.1007/978-3-642-00602-9_3
http://dx.doi.org/10.1007/978-3-642-00602-9_3
http://dx.doi.org/10.1145/1755952.1755976
http://dx.doi.org/10.1145/1755952.1755976
http://www.ams.org/mathscinet-getitem?mr=MR1134779&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2448465&return=pdf
http://dx.doi.org/10.1137/060659569
http://dx.doi.org/10.1137/060659569
http://www.ams.org/mathscinet-getitem?mr=MR1484411&return=pdf
http://dx.doi.org/10.1007/978-0-8176-4755-1
http://dx.doi.org/10.1007/978-0-8176-4755-1
http://www.ams.org/mathscinet-getitem?mr=MR1080619&return=pdf
http://dx.doi.org/10.1080/03605309908820745
http://dx.doi.org/10.1080/03605309908820745
http://www.ams.org/mathscinet-getitem?mr=MR1933756&return=pdf
http://dx.doi.org/10.1007/978-1-4612-0185-4
http://dx.doi.org/10.1007/978-1-4612-0185-4
http://www.ams.org/mathscinet-getitem?mr=MR2642079&return=pdf
http://dx.doi.org/10.1109/TAC.2010.2041976
http://dx.doi.org/10.1109/TAC.2010.2041976
http://www.ams.org/mathscinet-getitem?mr=MR2642080&return=pdf
http://dx.doi.org/10.1109/TAC.2010.2045439
http://dx.doi.org/10.1109/TAC.2010.2045439
http://www.ams.org/mathscinet-getitem?mr=MR2784693&return=pdf
http://dx.doi.org/10.1137/090778754
http://dx.doi.org/10.1137/090778754
http://www.ams.org/mathscinet-getitem?mr=MR0690039&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1983-0690039-8
http://dx.doi.org/10.1016/0191-2615(94)90002-7
http://dx.doi.org/10.1016/0191-2615(94)90002-7
http://dx.doi.org/10.1016/j.trb.2004.04.003
http://dx.doi.org/10.1016/j.trb.2004.04.003
http://www.ams.org/mathscinet-getitem?mr=MR2276255&return=pdf
http://dx.doi.org/10.3934/nhm.2006.1.601
http://dx.doi.org/10.3934/nhm.2006.1.601
http://www.ams.org/mathscinet-getitem?mr=MR1200233&return=pdf
http://dx.doi.org/10.1137/0331016
http://dx.doi.org/10.1016/j.trc.2009.10.006
http://dx.doi.org/10.1016/j.trc.2009.10.006
http://dx.doi.org/10.1145/1378600.1378604


802 E. S. CANEPA, A. M. BAYEN AND C. G. CLAUDEL

“Proceedings of the 6th International Conference on Mobile Systems, Applications, and Ser-
vices,” ACM, (2008), 15–28.

[19] M. Krstic and A. Smyshlyaev, Backstepping boundary control for first-order hyperbolic pdes

and application to systems with actuator and sensor delays, Systems & Control Letters, 57
(2008), 750–758.

[20] P. E. Mazare, A. Dehwah, C. G. Claudel and A. M. Bayen, Analytical and grid-free solu-
tions to the lighthill-whitham-richards traffic flow model , Transportation Research Part B:

Methodological, 45 (2011), 1727–1748.

[21] K. Moskowitz, Discussion of ‘freeway level of service as influenced by volume and capacity
characteristics’ by D.R. Drew and C. J. Keese, Highway Research Record, 99 (1965), 43–44.

[22] G. F. Newell, A simplified theory of kinematic waves in highway traffic, Part (I), (II) and

(III). Transporation Research B, 27B (1993), 281–313.
[23] R. C. Smith and M. A. Demetriou, “Research Directions in Distributed Parameter Systems,”

SIAM, Philadelphia, PA, 2000.

[24] I. S. Strub and A. M. Bayen, Weak formulation of boundary conditions for scalar conservation
laws, International Journal of Robust and Nonlinear Control, 16 (2006), 733–748.

[25] D. Work, S. Blandin, O. Tossavainen, B. Piccoli and A. Bayen, A distributed highway velocity

model for traffic state reconstruction, Applied Research Mathematics eXpress (ARMX), 1
(2010), 1–35.

[26] http://traffic.berkeley.edu/.
[27] http://pems.dot.ca.gov.

Received September 2012; revised March 2013.

E-mail address: edward.canepa@kaust.edu.sa

E-mail address: bayen@berkeley.edu

E-mail address: christian.claudel@kaust.edu.sa

http://www.ams.org/mathscinet-getitem?mr=MR2446460&return=pdf
http://dx.doi.org/10.1016/j.sysconle.2008.02.005
http://dx.doi.org/10.1016/j.sysconle.2008.02.005
http://dx.doi.org/10.1016/j.trb.2011.07.004
http://dx.doi.org/10.1016/j.trb.2011.07.004
http://www.ams.org/mathscinet-getitem?mr=MR2034168&return=pdf
http://dx.doi.org/10.1137/1.9780898717525
http://www.ams.org/mathscinet-getitem?mr=MR2263616&return=pdf
http://dx.doi.org/10.1002/rnc.1099
http://dx.doi.org/10.1002/rnc.1099
http://traffic.berkeley.edu/
http://pems.dot.ca.gov
mailto:edward.canepa@kaust.edu.sa
mailto:bayen@berkeley.edu
mailto:christian.claudel@kaust.edu.sa

	1. Introduction
	2. Model definition
	2.1. Traffic-flow modeling using scalar Hamilton-Jacobi equations
	2.2. Lax-Hopf formula for Hamilton-Jacobi equations
	2.3. Model constraints

	3. Explicit solutions to piecewise affine initial, boundary and internal conditions
	3.1. Definition of affine initial, boundary and internal conditions
	3.2. Analytical solutions to affine initial, boundary and internal conditions

	4. Derivation of the spoofing attack detection scheme as Mixed-Integer-Linear-Programming
	4.1. Model constraints
	4.2. Data constraints
	4.3. Spoofing cyber attack detection as a mixed integer linear feasibility problem

	5. Implementation
	5.1. Experimental setup
	5.2. Cyber attack detection example
	5.3. Effects of average speed and vehicle distribution on cyber attack detection

	6. Conclusion
	REFERENCES

