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Solutions to Estimation Problems for Scalar Hamilton—Jacobi
Equations Using Linear Programming

Christian G. Claudel, Member, IEEE, Timothée Chamoin, and Alexandre M. Bayen, Member, IEEE

Abstract—This brief presents new convex formulations for
solving estimation problems in systems modeled by scalar
Hamilton-Jacobi (HJ) equations. Using a semi-analytic formula,
we show that the constraints resulting from a HJ equation are
convex, and can be written as a set of linear inequalities. We use
this fact to pose various (and seemingly unrelated) estimation
problems related to traffic flow-engineering as a set of linear
programs. In particular, we solve data assimilation and data
reconciliation problems for estimating the state of a system
when the model and measurement constraints are incompati-
ble. We also solve traffic estimation problems, such as travel
time estimation or density estimation. For all these problems,
a numerical implementation is performed using experimental
data from the Mobile Century experiment. In the context of
reproducible research, the code and data used to compute the
results presented in this brief have been posted online and are
accessible to regenerate the results.

Index Terms— Linear programming, state estimation.

I. INTRODUCTION
A. Background and Motivation

STIMATING or controlling the state of a distributed

parameter system [7], [20], [24] is a very complex
problem in general. It somehow requires the combination of
data constraints, i.e., constraints on the possible trajectories of
the system derived from measurement data, with model con-
straints, which means constraints on the possible trajectories
of the system derived from the model. For the case in which
the dynamic of the system is encoded by a partial differential
equation (PDE), it is usually difficult to incorporate the model
constraints into the estimation problem, since these constraints
can be nonlinear, nonconvex, and even nonexplicit. Ultimately,
the model constraints could theoretically be enforced through
the use of Monte Carlo techniques, but these methods are
impractical for large dimensional problems.

For the case in which the dynamic of the system is described
by a Hamilton—Jacobi (HJ) PDE [12] for which the initial,
boundary, or internal conditions are piecewise affine, we have
proven [10] that the constraints of the model are convex. In
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addition, we showed that many data constraints could also be
encoded as convex inequality constraints, yielding a convex
optimization-based formulation for solving data assimilation
and data reconciliation problems.

In this brief, we show that the same framework can be
extended beyond data assimilation and data reconciliation, to
solve a variety of estimation problems of interest for our main
application, Lagrangian (mobile) traffic flow sensing [28]. For
each of the estimation problems of interest, we show how the
framework can be used to pose this particular problem as a
linear program (LP), or as a set of LPs. We then solve these
estimation problems using experimental data from the Mobile
Century experiment [19].

The rest of this brief is organized as follows. Section II
defines the solution to the HJ PDE investigated in this brief.
Section III presents the general convex optimization frame-
work used, and defines the linear or quadratic model and
data inequality constraints used for solving the estimation
problems. Section IV introduces three general estimation and
data consistency problems that can be solved using the pro-
posed framework. It also proves an important monotonicity
property which ensures that the uncertainty on the estimates
decreases as new data is added into the estimation problem.
The following sections present specific applications for traffic-
flow engineering problems. Section VI shows how the problem
of data assimilation and data reconciliation can be posed as
LPs. In Section VII, we estimate some functions of the state
of the system, such as the travel time or the total number
of vehicles present on a highway section using LPs. All of
the above problems are illustrated by numerical computations
performed using the Mobile Century data, freely available
from [28].

1I. HJ EQUATIONS

A. Definitions

We consider a spatial domain defined by [£, y]. We assume
that the state of the system is described by a scalar function
M(-, -) of both time and space, which satisfies a HJ PDE
evolution equation

OM(t, x) oM(z, x)
—y|l-———) =0
ot 0x

The function w used in (1) is called Hamiltonian.

From now on, we assume that the Hamiltonian is defined
as follows:

(1

if p <ke
otherwise.

vp,
This form of Hamiltonian is known as triangular funda-
mental diagram in the context of traffic flow modeling, and is

y(p) = )
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widely used in the literature [15]. The parameters v, k., w,
and k,, denote the free flow speed, critical density, congestion
speed, and maximal density, respectively.

Several classes of weak solutions to (1) exist, such as
viscosity solutions [3], [12], [13]. In this brief, we investi-
gate a special class of viscosity solutions known as Barron-
Jensen/Frankowska (B-J/F) solutions [6], [17]. The B-J/F
solutions to (1) can be represented by a Hopf—Lax formula [1],
[2], [8]. The Hopf-Lax solutions of HJ equations have been
introduced independently by Hopf and Lax. The validity of
Hopf-Lax formulas for weak solutions in the viscosity sense
was first proved in [4]. The issue of their uniqueness is
addressed in [1]. In this context, the Hopf-Lax formula [8], [9]
was initially re-derived directly from viability theory, using
a capture basin formulation of the problem presented in [2],
which enabled Aubin et al. [2] to make the link between its
formulation, and the B-J/F formulation (which itself provides
the link with viscosity, existence, and uniqueness). Note that
the equivalence with viscosity solutions holds only for initial
value problems or initial/boundary problems. Our brief does
not fall into these categories, as we investigate a problem in
which the initial condition is not specified, and in which the
value function is specified in the interior of the computational
domain.

B. Hopf-Lax Formula for HJ Equations

In order to characterize the B-J/F solutions, we first need
to define the Legendre—Fenchel transform of the Hamiltonian
v (-) as follows.

Definition 2.1 (Legendre—Fenchel Transform): For an up-
per semicontinuous concave Hamiltonian w (-), the Legendre—
Fenchel transform y*(-) is given by

* . su
) = peDOIlzl(y/

With our choice of Hamiltonian (2), the Legendre—Fenchel
transform y* is linear: w*(u) = k.(u 4+ v) on its effective
domain [22] of definition [—v, w].

Solving the HJ PDE (1) requires the definition of value
conditions, which encode the traditional concepts of initial,
boundary, and internal conditions.

Definition 2.2 (Value Condition): A value condition ¢(-, -)
is a lower semicontinuous function defined on a subset of
[0, tmax] % [, x].

By convention, a value condition c(-,-) as defined in
Definition 2.2 satisfies ¢(¢,x) = +oo if (t,x) ¢ Dom(c).
Thus, the effective domain of a value condition represents the
subset of the space time domain Ry x [, y] in which we want
the value condition to apply.

In the remainder of this brief, the solution Mc(-, -) to (1)
associated with a value condition ¢(-, -) is given by the Hopf—
Lax formula [2] and [8].

Proposition 2.3 (Hopf—-Lax Formula): Let w(-) be a con-
cave Hamiltonian, and let w*(-) be its Legendre—Fenchel
transform (3). Let ¢(,-) be a lower value condition, as in
Definition 2.2. The B-J/F solution Mc(-, -) to (1) associated

[P'“‘f‘l//(P)]. (3)

with ¢(-, -) is given [2], [8] by

M. (t, x) = inf (c(t = T,x +Tu)+ Ty*)).
(u, Ty eDom(y*) xRy
)

Equation (4) implies the existence of a B-J/F solution
M (-, -) for any value condition function c(-, -). However, the
solution itself may be incompatible with the value condition
that we imposed on it, i.e., we do not necessarily have
V(t,x) € Dom(c), Mc(z, x) = c(t, x).

The structure of the Hopf-Lax formula (4), implies the fol-
lowing important property, known as inf-morphism property.
The inf-morphism property can be formally derived through
capture basins, such as in [2].

Proposition 2.4 (Inf-Morphism Property): Let the value
condition c¢(-,-) be minimum of a finite number of lower
semicontinuous functions

V([,X) S [09 tmax] X [65 X]; C(t,.x) = ml?cj(tﬂx) (5)
JE

The solution M (-, -) associated with the above value con-
dition can be decomposed [2], [8], [9] as

Y(t, x) € [0, tmax] X [, x], Mc(t, x) = mi?Mcj (t,x). (6)
je

In the following section, we express the model constraints as
a set of inequality constraints using the inf-morphism property.

C. Model Constraints

In the remainder of this brief, we decompose the value
condition ¢(-, -) into block value conditions ¢;, j € J. The
relation between block value conditions and the physics of the
problem is presented in Section III. The inf-morphism property
and Hopf-Lax formula (4) imply the following compatibility
property.

Proposition 2.5 (Model Compatibility of Block Value Con-
ditions): Let ¢(-,+) = mi?cj(-, -) be given, and let Mc(-, -)

€
be defined as in (4). ]The value condition c(-,-) satisfies
VY(t,x) € Dom(c),M(¢,x) = c(t,x) if and only if the
following inequality constraints are satisfied:

M, (t,x) > ¢i(t,x)  V¥(t,x) € Dom(e;) V(i, j) e J.
)
The proof of this proposition is available in [10]. Note
that the model constraints (7) depend upon the choice of the

Hamiltonian w(-) through the Hopf-Lax formula (4).

III. CONVEX FORMULATION OF DATA AND
HJ PDE MODEL CONSTRAINTS

A. Expression of the Upstream, Downstream, and Internal
Boundary Conditions

In our specific application, the sensor data does not provide
the initial condition of the problem, since this would require us
instrumenting the whole spatial domain. Fixed traffic sensors
traditionally measure the inflow and outflow of vehicles at
the boundaries of the spatial domain, which are related to the
upstream and downstream boundary conditions. In addition
to fixed sensors, mobile sensors onboard vehicles track the
vehicle trajectory and thus generate internal conditions [8].
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The formal link between value condition blocks and measur-
able coefficients is shown in the following definition.

Definition 3.1 (Affine Upstream, Downstream, and Internal
Conditions): Let us define NV = {0,...,nmax} and M =
{0, ..., mmax}. For all n € N and m € M, we define the fol-
lowing functions, respectively, called upstream, downstream,
and internal conditions:

S Gin() At + gin(n) (1 — nAD),

if x=¢ and 1 € [nAt, (n+ 1)At]; ®)
| +0o0,
[ 3775 Gout() A + qow(n)(t — nAr) — A

if x=y andt € [nAt, (n + 1)At]; )
| +00, otherwise

Ly +rpm (l — tmin (m))
if x = Xmin (m)-}-wwl(

fmax (1) —tmin (M)

and ¢ € [tmin(m), tmax (m)];
| +-00,

)’n (t b )C):
otherwise

:Bn(ta-x)z

—tmin(m ))

M (1, x)= (10)

otherwise.

In the above definition, m represents the label of an element
of probe data, and is not related to the original Moskowitz
function.

Given a boundary value problem given by a HJ
equation (1) and a boundary condition c¢(-,-) :=
min(mb{l/‘yn( 9, mln [)’n( 9, min Um (s )) a solution, in
the B-J sense, is prov1ded by the Hopf-Lax formula (4). In
this brief, we show that the optimization problem resulting
from (7) is a LP for many applied problems, including traffic
estimation.

The variables used in (8)—(10) have the following physical
interpretation:

gin(n), average inflow between times nAr and (n + 1)At

gout(n), average outflow between times nAt and (n + 1) At

A, initial number of vehicles on the highway section
fmin(m), initial time at which the internal condition m applies

tmax (m), final time at which the internal condition m applies

Xmin (m), initial location at which the internal condition m applies (11)
Xmax (), final location at which the internal condition m applies

Ly, label of the vehicle m at time t,;n (m)

Tm, rate of change of the label of vehicle m.

Some of the coefficients used to define (8)—(10) can be
estimated (with some error) through traffic measurement data.
Inductive loop detectors [30] and speed radars located in &
and y can measure the inflow giy(n) and outflow goy(n) for
all time intervals [nAt, (n + 1)At]. The coefficients tpin (m),
max (M), Xmin(m), and xmax (m) can be obtained using vehicle
positioning systems, such as GPS-enabled cellphones onboard
vehicles [28]. In contrast, the coefficients A, L,,, and ry,
cannot be measured using conventional traffic sensors, but
can sometimes be constrained by additional assumptions, see
Section VII-B for instance.

B. Assumptions
In the remainder of this brief, we assume that the

Hamiltonian (-) is fixed, and given by (2) where v, w, and
k,, are fixed.

We also assume that the coefficients fmin(m), fmax(m),
Xmin(m), and xmax(m) are fixed for all m € M. However,
we do not assume that the coefficients gi, (i) and gouc(i) for
all i € N (boundary flows) are unknown. Similarly, the initial
number of vehicles A, as well as the vehicle labels and passing
rates L,, and r,, for m € M are also variables of our problem.

Remark: The most general estimation problem would call
for all coefficients used in (8)-(10) to be variables of the
problem. However, using unknown coefficients for tpmi,(m),
Imax (M), Xmin(m), and xmax(m) would make the problem
nonconvex. For our specific application, the assumption that
tmin(M), tmax(M), Xmin(m), and xmax(m) are all fixed does
not significantly affect the results, since these coefficients are
usually measured by GPS devices with an excellent accuracy
(compared to the other measurements). |

Given the above assumptions, we define a decision variable
y fully characterizing a set of upstream (8), downstream (9),
and internal conditions (10) as follows.

Definition 3.1 (Decision Variable): Let us define a finite set
of upstream, downstream, and internal conditions blocks as
in (8)—(10). The decision variable y associated with this set
of value condition blocks is defined by
yi= (gm0, ..

> din (”lmax)a QOut(l)a cees Clout(nmax),

Ll,rl,...,...,me,rmmax,A). (12)

C. Model Constraints

Given the decision variable (12), the H] PDE model con-
straints (7) for the Hamiltonian (2) can be written [10] as a
finite set of linear inequalities, namely

Amodel (W)Y < bmodel (W). (13)

The complete set of model constraints is available in [10].

D. Linear or Quadratic Data Constraints

Similar to the model constraints presented above, measure-
ment data also restricts the possible values that the coeffi-
cients (12) can take. The values of #min(:), fmax(*), Xmin(*),
Xmax(-) are assumed to be perfectly known (i.e., measured
without error). The measured values of gj,(-) and gou(-) are
denoted by g;7°*(-) and g7 (-), respectively. In the remainder
of this brief, we choose the following type of error model for

gin(-) and gout(*):

|

gin() — gin ) H

meaﬁ( ) = €max
( CaS(
| OO < 14
oul
where ||-|| is the standard L, norm
Nmax 1
F Oy = (Zlf(n)l”) (15)

n=1

Different choices of norms are possible, and all choices
p > 1 yield convex constraints by convexity of the norm.
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In particular, the choices p = 1 and p = 400 yield linear
constraints, which can be written as

Adatay < bdata for p =1 or p = +o00. (16)

The choice p = 2 yields quadratic convex constraints,
which can be written as

Yoy + P y+ri) <0, Q@) >0,

for i €{1,2} and p=2. (17)

Note that the error model (14), for p = 400 is commonly
used in practice. It corresponds to a situation in which we
assume that the relative error on each measurement of the
sensor is bounded by a constant value.

IV. FORMULATION OF ESTIMATION AND CONSISTENCY
PROBLEMS AS CONVEX PROGRAMS

As shown earlier, the data constraints can be expressed as
linear or quadratic inequalities in the decision variable, while
the model constraints can be expressed as linear inequalities
in the decision variable. This is precisely a contribution of
this brief. For compactness, we choose to investigate problems
associated with linear data constraints only (the extension to
convex quadratic constraints is straightforward), obtained for
p = +oo in (16).

We now define a fundamental convex feasibility problem,
called data and model compatibility problem, which will play
an important role in the following sections.

The objective of the data and model compatibility problem
is to check if the model and data constraints are compatible,
that is, if there exists a value of the decision variable (12)
which satisfies both the model and data constraints. Hence,
this requires us to check if the following LP is feasible:

Find y

Amodel(W)y < bmode1 ()

(13)
Adatay < bgata.

such that [

When the above problem is feasible, there exists some
values of the decision variable y for which the model and
data constraints are both satisfied, and this set is convex
(intersection of convex sets). Hence, one can estimate the min-
imum (respectively, maximum) of a piecewise affine convex
(respectively, concave) function of the decision variable using
a LP. We apply this property in Section VII to estimate upper
and lower bounds on functions of the decision variable.

In contrast, when (18) is infeasible, no set of value con-
ditions satisfying both the model and data constraints can
exist. However, by relaxing alternatively the model or data
constraints, one can define two problems of interest [10]. The
data assimilation problem consists in finding the set of value
conditions satisfying the data constraints, that is as close as
possible (in some norm sense) to satisfy the model constraints.
The model reconciliation problem is the converse problem: it
consists in finding the set of value conditions satisfying the
model constraints, that is as close as possible (in some norm
sense) to satisfy the data constraints. Both problems are solved
simultaneously in Section VI.

A. Estimation Problems

A number of traffic-flow related quantities can be written
as linear functions of the decision variable (12), and can be
estimated using linear programming, as shown in the following
proposition.

Proposition 4.1 (Estimation of Linear Functions of the
Decision Variable): Let f(-) be a linear function of the deci-
sion variable y given by (12), and defined by f(y) = d”y. The
possible values that f(-) can take under the linear model (13)
and data constraints (14) is the interval [ fmin, fmax], Where
Jfmin and fmax are solutions to the following LPs:

Min (or Max) d’y
A <b
such that model (¥)Y =< Pmodel (W) (19)
Adatay < bdata-

Note that the above estimation problem only has a sense if
the compatibility problem (18) is feasible.

B. Monotonicity Property of the Model Constraints With
Respect to New Data

An important property of the estimation problems of the
form (19) is monotonicity with respect to additional data,
outlined in the following proposition.

Proposition 4.2 (Monotonicity Property): Let mmax and
nmax D€ given positive integers, and let a set of block boundary
and internal conditions be defined as in (8)—(10) for 1 <m <
Mmax and 1 < n < nnax. Let the decision variable be defined
as in (12), and let f(-) be a function of this decision variable.
The upper bound on f(-) under the model (13) and data (16)
constraints (for p = 400) decreases as new data is added into
the estimation problem. The lower bound on f(-) under the
model (13) and data (16) constraints (for p = +00) increases
as new data is added into 347 the estimation problem.

Proof: Increasing the amount of data will add new model
and data constraints to the estimation problem, reducing the
feasible set, and thereby decreasing the upper bound and
increasing the lower bound of a function of the decision
variable. [ ]

We illustrate the above property in Section VII in the
cases of initial number of vehicles estimation and travel time
estimation.

V. EXPERIMENTAL SETUP AND IMPLEMENTATION

In the following sections, we illustrate the power of the
method with four different traffic flow estimation problems,
which can all be formulated as LPs or sequences of LPs. For
all of these estimation problems, we implement the method
on the experimental data from the Mobile Century [19] field
experiment.

In all numerical applications, we consider a 3.858-km
long spatial domain, located between the PeMS [30] stations
400 536 and 400284 on Highway /880N in Hayward, Cali-
fornia. The measurement data comes from two sources. The
flow data ¢2**(-) and gJ*(-) is generated by the PeMS
stations 400 536 and 400 284, respectively. The probe location
and timing data comes from GPS measurements generated by
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Fig. 1. Experiment site layout. The upstream and downstream PeMS stations

are delimiting a 3.858-km spatial domain, outlined by a solid line. The
direction of traffic flow is represented by an arrow.

Nokia N95 cellphones located onboard probe vehicles. The
layout is illustrated in Fig. 1.

The complete experimental setting is described in [19]. The
data set used in all numerical applications of this brief can be
freely downloaded from [28].

All LPs have been implemented using the pack-
age CVX [18] of MATLAB. The problems solved in this brief
are tractable: they typically involve thousands of variables and
constraints, and can be solved numerically in a few seconds
on a typical desktop computer.

VI. DATA ASSIMILATION AND RECONCILIATION
A. Problem Definition

In the field of distributed parameters system estimation, the
problems of data reconciliation [14] and data assimilation [16]
are closely linked. The data assimilation process consists in
finding the value of the state of the system that satisfies the
observations, and that is the closest to being a solution to the
evolution model. In contrast, the data reconciliation process
consists in finding a solution to the evolution model that is
the closest to the observations. Given the framework detailed
above, the data assimilation and reconciliation problems are
related to the solutions of the following convex optimization
program

Min  |[|y1 — y2llq

Amodel (W) ¥1 =< bmodel ()
Adatay2 < bdata-

such that (20)

In the above optimization program, we have to choose g = 1
or ¢ = +00 to obtain a linear objective. Two situations can
arise.

1) If the optimal value of (20) is 0, the model and data
constraints can be satisfied at the same time. In this
situation, the data assimilation and data reconciliation
problems coincide in a setting in which data and model
are compatible. The solution is not unique.

2) If the optimal value of (20) is nonzero, the optimal

. optimal optimal
solutions y, and y, enable us to compute the
upstream, downstream, and internal conditions, respec-
tively, associated with the data reconciliation and data

Data reconciliation
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Fig. 2. Solutions to data assimilation and data reconciliation problems.

We solve (20) using fixed detector data (generating upstream and downstream
boundary conditions) and probe vehicle data (generating internal conditions).
This experimental data was collected on February 8th, 2008. (a) Solution to
the data reconciliation problem, in which the model constraints are satisfied,
but the data constraints are not. (b) Solution to the data assimilation problem,
in which the data constraints are satisfied, but the model constraints are not.
Both problems are solved simultaneously by (20). (c¢) Difference (in number
of vehicles) between the solution to the data reconciliation problem and the
solution to the data assimilation problem.

assimilation problems. Note that these solutions may not
be unique. The value conditions associated with y?pnmal
satisfy the model constraints by construction, i.e., all
upstream boundary, downstream boundary, and internal
conditions blocks apply in the strong sense [2], [5].
They, do not, however, satisfy the data constraints, but
are as close as possible in the [|-[|, sense to satisfy
them. In contrast, the value conditions associated with
ygpnmal satisfy the data constraints by construction, but
do not satisfy the model constraints (they are as close

as possible to satisfy them in the || - ||, sense).
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B. Numerical Example

In this application, we consider the spatial domain defined
in Section V, between the times 11:40 AM and 12:05 PM for
data collected on February 8th, 2008. We use the following
Hamiltonian parameters: k. = 0.048 m Y, 0 =24.6m/s, w=
—4.5m/s, and a maximal relative error level of ey,x = 0.01.
We solve (20) for ¢ = 1, using 604 variables and 17 415
linear constraints. For this specific application, the optimal
value of (20) is +8.58, which ensures that the data assimi-
lation and data reconciliation problems are well defined. As
mentioned above, y‘fpnmal and ygpumal enable us to compute
the value conditions associated with the data assimilation
and data reconciliation problems. We compute the solutions
to (1) associated with these value conditions, and display them
in Fig. 2. The solution to the data reconciliation problem
at the top of Fig. 2 satisfies all the boundary and internal
conditions that are prescribed on it. The model applies in the
strong sense; however, the decision variable violates the data
constraints (16). In contrast, the upstream and downstream
boundary conditions do not apply everywhere in the solution
to the data assimilation problem [Fig. 2(b)]. In the illustrated
data assimilation example, the data constraints force some
value conditions (boundary and internal conditions) to be set
in a way that is incompatible with the model. This can be
seen for instance around time ¢+ = 1100 s: a back propagating
wave hits the upstream boundary condition at x = 11 000 m,
which prevents it from applying between times + = 1100 s
and t = 1400 s.

VII. TRAFFIC FLOW ESTIMATION PROBLEMS

The convex optimization framework presented in Section III
can also be used to estimate traffic conditions, such as the
boundary flows, the initial number of vehicles on a highway
section, or the travel time required to cross the spatial domain.
We now present two possible traffic estimation problems that
can be solved using the proposed framework.

A. Estimation of the Initial Number of Vehicles Using Convex
Programming

The initial number of vehicles A on the highway section can
be estimated through linear programming. Indeed, A appears
linearly in the decision variable (12), while the model (13) and
data constraints (16) are linear inequalities in (12). Since the
feasible set is convex by the constraints of (19), the possible
values of A such that the model and data constraints are
satisfied, are Amin < A < Amax, Where Apin and Apax are
solutions to the following optimization programs:

Min(respectively Max) A

Amodel (W)Y < Dmodel (W)

(21)
Adatay < bgata.

such that [

We illustrate the estimation process in Fig. 3, in which we
show the evolution of the interval [ Amin, Amax] @S We increase
the quantity of measurement data. In this problem, we consider

the spatial domain defined in Section V, between the times
11:40 AM and 12:10 PM. We solve (20) using 60 blocks
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Fig. 3. Initial number of vehicles estimation using linear programming. This
figure represents the evolution of the guaranteed upper and lower bounds
on the initial number of vehicles A as new internal condition data is added
into the estimation problem. The horizontal axis represents the number of
probe measurement data blocks s, (-, -) as defined in (10). As predicted by
Proposition 4.2, the upper bound (dashed line) on A decreases and the lower
bound (solid line) on A increases when additional data is added into the
estimation problem.

of upstream boundary conditions (8) and downstream bound-
ary conditions (9), and a variable number of internal condi-
tions (10).

B. Travel Time Estimation Using Convex Programming

The same framework can also be applied for estimating
other functions of the decision variable (12), such as the travel
time across the highway section. Unlike the initial number of
vehicles, the travel time is a nonlinear and nonconvex function
of the decision variable (12), which makes the estimation
problem more challenging.

In order to properly define a travel time function, we
first need to assume [21] that no vehicles can pass each
other, which implies in particular r,, = O for all m € M.
In this situation, known in the transportation engineering
as first-in, first-out (FIFO), the vehicle trajectories are the
isolines of the state function [21]. In order to properly define
the travel time function, we also have to assume that the
function £(-, -) = min,cpr fn (-, -) is strictly increasing. Note
that by (9), imposing this last condition amounts to impose
qout(:) > 0. With these two assumptions, the travel time can
be defined as follows. Let ¢ be given, and i = Lﬁj. The travel
time o (¢) is defined as t — ¢, where y; (¢, &) = B(z, x). Since
S (-, x) is strictly increasing, we can also define the travel time
as

O'(y, l‘) = min (S - t) (22)
seRy s. t. B(s,x)>yi(1,)
or alternatively
o(y,t) = max s —1). (23)

seRy s t. ﬁ(s,x)sy,-(t,é)(

Since (s, ) and y;(t, y) are functions of the decision
variable (12), the travel time function o (-, -) hereby defined
is a function of the decision variable (12), though not linear.
While we cannot estimate the travel time using a LP of the
form (19), we can still obtain valuable information on upper
and lower bounds of the travel time function using LPs, as
outlined in the following proposition.
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Proposition 7.1 (Upper and Lower Bounds on the Travel
Time Function): Let us assume that (18) is feasible, that is,
the model and data constraints are compatible. Let two times
t and 7 be given, and let j = | 5;]. We have that t — ¢ is
a lower bound on the travel time o (y,t) (under the model
and data constraints) if and only if the following problem is
infeasible:

Find y
Amodel(W)y < bmode1 ()
Adatay = bdata

i, x) =i, &) > 0.

such that 24)

Similarly, 7 — ¢ is an upper bound on the travel time
o(y,t) under the model and data constraints if and only if
the following problem is infeasible:

Find y
Amodel (W)Y < Dmodel (W)
Adatay = bdata

Bi(t, x) —7i(t, &) <0.

such that (25)

Proof: We prove that 7 —¢ is a lower bound on the travel
time function if and only if (24) is infeasible. Let us thus
assume that (24) is infeasible. This amounts to saying that
Bi(z, x) < yi(t,&) whenever the model and data constraints
Amodel (W)Y < Dmodel(y) and Adatay < bdata are both satisfied.
Hence, since f(z, ) = p;(r, x) by construction, this is
equivalent to saying that f(z, y) < yi(t,¢) whenever the
model and data constraints are both satisfied. By (23) of
o(y,t), this is equivalent to o(y,t) > 7 — t, whenever y
satisfies the model and data constraints, which completes the
proof. The proof relative to the upper bound is similar, and
involves (22) of o (y, t). [ |

Note that the feasibility programs (24) and (25) enable us
to compute the largest lower bound o4(y, ) and the smallest
upper bound oy(y,t) on the travel time by dichotomy. We
illustrate the above results by computing the upper and lower
bounds on the travel time function, using the experimental
setup of Section V, between times 11:40 AM and 12:10 PM.
For this, we check the feasibility of (24) and (25) for 7 = j At,
and plot in Fig. 4, respectively, the lowest and highest value
of jAt such that (25) and (24) are, respectively, infeasible.
The lowest value jmax At for which (25) is infeasible implies
that oy (y, t) is in the interval [(jmax — 1) At — ¢, jmax At — 1].
Similarly, the highest value jnin At for which (24) is infeasible
implies that o4(y, t) is in the interval [jminAt — ¢, (Jmin +
1)At — t]. As stated in Proposition 4.2, the distance between
the upper and lower bounds decreases as more data is added
into the estimation problem.

Remark: The largest lower bound (or smallest upper
bound) on travel time cannot be directly estimated using con-
vex programming. Indeed, by checking the feasibility of (24)
for increasing values of 7 = nAt, we can find the integer
j such that oq(y,?) € [jAt —t,(j + 1)At — ¢] (in this
situation, (24) is infeasible for r = j At, and becomes feasible
for 7 = jAtr+1). When such a j is identified, o4(y, t) is the
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Fig. 4. Travel time estimation using linear programming. The horizontal

axis represents the time ¢, while the vertical axis represents the travel time.
The upper and lower bounds on the travel time function are represented
by a dashed and solid line, respectively. (a) We consider 60 upstream and
downstream boundary conditions blocks and 20 internal condition blocks.
(b) We increase the number of internal condition blocks to 45. As can be
seen, the corresponding bounds on the travel time function are improved since
more data is added into the estimation problem, following Proposition 4.2.

solution to the following optimization program:

Min ——
Gout (J)
Amodel (W)Y < bmodel (W)
such that { Adatay < Ddata (26)

Bilgmy» %) — 7i(t,$) < 0.

The decision variable of (26) can be written as (y, z), where
y is the decision variable defined by (12). The constraints
Amodel (W)Y < bmodel(¥) and Agatay < bdara are both linear in
the new decision variable (they indeed depend only upon y).
The constraint £;((z/qout(j)), x) — yi(t, &) < 0 is also linear,
since it can be written as

j—1
. Z .
> qout®) At + Gou () ( — — JAr)
k=0 Gout (J)
i—1

—A = gin() At — gin(i)(t —i A1) <0. (27)
k=0

The objective is, however, nonconvex, since (z, g) — z/q is
not convex. Problem (26) thus cannot be solved using convex
programming, but may still be solved numerically using other
optimization methods. [ ]

Remark: In experimental conditions, the vehicles may not
satisfy the FIFO assumption, and their travel time may be
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out of the bounds predicted by this algorithm whenever lane
shearing effects are significant. ]

VIII. CONCLUSION

This brief illustrated some applications of a new convex
optimization-based estimation framework for systems mod-
eled by a scalar HJ equation. Using a Hopf-Lax formula,
we showed that the constraints from the model, as well as
the constraints from the measurement data result in linear
inequality constraints for a specific decision variable. We then
posed and solved various traffic estimation problems as LPs.

Other applications of this convex optimization framework
were developed, such as the detection of sensor faults in real
time [11], as well as the detection of spoofing cyberattacks,
or the analysis of user privacy in probe-based traffic sens-
ing systems. Some of the above estimation programs were
implemented in the Mobile Millennium traffic information
system [27], [28] operated jointly by Nokia and UC Berkeley,
and providing real-time traffic information to the participating
public of California. Future work on the Mobile Millennium
system will involve the implementation of data assimila-
tion and data reconciliation programs for real-time inverse
modeling.
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