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Abstract. An extension of the Colombo phase transition model is proposed. The congestion
phase is described by a two-dimensional zone defined around a standard fundamental diagram. Gen-
eral criteria for building such a set-valued fundamental diagram are enumerated and instantiated on
several standard fluxes with different concavity properties. The solution to the Riemann problem in
the presence of phase transitions is obtained through the design of a Riemann solver, which enables
the construction of the solution of the Cauchy problem using wavefront tracking. The free-flow phase
is described using a Newell–Daganzo fundamental diagram, which allows for a more tractable defini-
tion of phase transition compared to the original Colombo phase transition model. The accuracy of
the numerical solution obtained by a modified Godunov scheme is assessed on benchmark scenarios
for the different flux functions constructed.
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1. Introduction.
First order scalar models of traffic. Hydrodynamic models of traffic go back to the

1950s with the work of Lighthill and Whitham [31] and Richards [38], who built the
first model of the evolution of vehicle density on the highway using a first order scalar
hyperbolic partial differential equation (PDE) referred to as the LWR PDE. Their
model relies on the knowledge of an empirically measured flux function, also called
the fundamental diagram in transportation engineering, for which measurements go
back to 1935 with the pioneering work of Greenshields [22]. Numerous other flux
functions have since been proposed in the hope of capturing effects of congestion
more accurately, in particular, Greenberg [21], Underwood [44], Newell [34], Daganzo
[10], and Papageorgiou [47]. The existence and uniqueness of an entropy solution
to the Cauchy problem [39] for the class of scalar conservation laws to which the
LWR PDE belongs go back to the work of Oleinik [35] and Kruzhkov [27] (see also
the seminal article of Glimm [18]), which was extended later to the initial-boundary
value problem [2] and specifically instantiated for the scalar case with a concave flux
function in [29], in particular for traffic in [40]. Numerical solutions of the LWR
PDE go back to the seminal Godunov scheme [20, 30], which was shown to converge
to the entropy solution of the first order hyperbolic PDE (in particular, the LWR
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108 BLANDIN, WORK, GOATIN, PICCOLI, AND BAYEN

PDE). In the transportation engineering community, the Godunov scheme in the
case of a triangular flux is known under the name of cell transmission model (CTM),
which was brought to the field by Daganzo in 1995 [10, 11] (see [28] for the general
case) and is one of the most used discrete traffic flow models in the literature today
[5, 13, 24, 32, 33, 36, 46].

Set-valued fundamental diagrams. The assumption of a Greenshields fundamental
diagram or a triangular fundamental diagram, which significantly simplifies the anal-
ysis of the model algebraically, led to the aforementioned theoretical developments.
Yet, experimental data clearly indicate that while the free-flow part of a fundamental
diagram can be approximated fairly accurately by a straight line, the congested regime
is set-valued and can hardly be characterized by a single curve [45]. An approach for
modeling the set-valuedness of the congested part of the fundamental diagram consists
of using a second equation coupled with the mass conservation equation (i.e., the LWR
PDE model). Such models go back to Payne [37] and Whitham [48] and generated
significant research efforts, which led, however, to models with inherent weaknesses
that were later pointed out by Del Castillo [15] and Daganzo [12]. These weaknesses
were ultimately addressed in several responses [1, 36, 49], leading to sustained research
in this field.

Motivation for a new model. Despite the existing research, modeling issues re-
main in most 2 × 2 models of traffic available today. For instance, the Aw–Rascle
model [1] can introduce vanishing velocities below jam density, which is not a classical
assumption in traffic theory [17]. In agreement with the remarks from Kerner [25, 26]
affirming that traffic flow presents three different behaviors, free-flow, wide moving
jams, and synchronized flow, Colombo proposed a 2× 2 phase transition model [7, 8]
which considers congestion and free-flow in traffic as two different phases, governed
by distinct evolutionary laws (see also [19] for a phase transition version of the Aw–
Rascle model). The well-posedness of this model was proved in [9] using wavefront
tracking techniques [4, 23]. In the phase transition model, the evolution of the param-
eters is governed by two distinct dynamics; in free-flow, the Colombo phase transition
model is a classical first order model (LWR PDE), whereas in congestion a similar
equation governs the evolution of an additional state variable, the linearized momen-
tum q. The motivation for an extension of the 2 × 2 phase transition model comes
from the following items, which are addressed by the class of models presented in this
article.

(i) Phases gap. The phase transition model introduced by Colombo in [7] uses
a Greenshields flux function to describe free-flow, which despite its simple analytical
expression yields a fundamental diagram which is not connected and thus a complex
definition of the solution to the Riemann problem between two different phases. We
solve this problem by introducing a Newell–Daganzo flux function for free-flow, which
creates a nonempty intersection between the congested phase and the free-flow phase,
called the metastable phase. It alleviates the inconvenience of having to use a shock-
like phase transition in many cases of the Riemann problem between two different
phases.

(ii) Definition of a general class of set-valued fundamental diagrams. The work
achieved in [8] enables the definition of a set-valued fundamental diagram for the
expression of the velocity function introduced. However, experimental data show that
several types of fundamental diagram exist, with different congested domain shapes.
In this article we provide a method for building an arbitrary set-valued fundamental
diagram, which in a special case corresponds to the fundamental diagram introduced
in [7]. This enables one to define a custom-made set-valued fundamental diagram.
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Organization of the article. The rest of the article is organized as follows. Sec-
tion 2 presents the fundamental features of the Colombo phase transition model [8],
which serves as the basis for the present work. In section 3, we introduce the modifi-
cations to the Colombo phase transition model, and introduce the notion of standard
state which provides the basis for the construction of a class of 2 × 2 traffic models.
We also assess general conditions which enable us to extend the results obtained for
the original Colombo phase transition model to these new models. Finally, section 3
presents a modified Godunov scheme which can be used to solve the equations numer-
ically. The following two sections instantiate the constructed class of models for two
specific flux functions, which are the Newell–Daganzo (affine) flux function (section 4)
and the Greenshields (parabolic concave) flux function (section 5). Each of these sec-
tions includes a discussion of the choice of parameters needed for each of the models,
the solution to the Riemann problem, a description of the specific properties of the
model, and a validation of the numerical results using a benchmark test. Finally,
section 6 presents some concluding remarks.

2. The Colombo phase transition model. The original Colombo phase tran-
sition model [7, 8] is a set of two coupled PDEs valid in a free-flow regime and a
congested regime, respectively:

(2.1)

⎧⎪⎨
⎪⎩
∂tρ+ ∂x(ρ vf (ρ)) = 0 in free-flow (Ωf ),{
∂tρ+ ∂x(ρ vc(ρ, q)) = 0

∂tq + ∂x((q − q∗) vc(ρ, q)) = 0
in congestion (Ωc),

where the state variables ρ and q denote, respectively, the density and the linearized
momentum [8]. Ωf and Ωc are the respective domains of validity of the free-flow and
congested equations of the model and are defined below. The term q∗ is a character-
istic parameter of the road under consideration. An empirical relation expresses the
velocity v as a function of density in free-flow, v := vf (ρ), and as a function of density
and linearized momentum in congestion, v := vc(ρ, q). Following the usual choices for
traffic applications [16], the following functions are used:

vf (ρ) =
(
1− ρ

R

)
V and vc(ρ, q) =

(
1− ρ

R

) q

ρ
,

where R is the maximal density or jam density and V is the maximal free-flow speed.
The relation for free-flow is the Greenshields model [22] mentioned earlier, while the
second relation has been introduced in [7]. Since Ωc has to be an invariant domain [39]
for the congested dynamics from system (2.1), and according to the definition of v,
the free-flow and congested domains are defined as

{
Ωf = {(ρ, q) ∈ [0, R]× [0,+∞[ , vf (ρ) ≥ Vf− , q = ρ V } ,
Ωc =

{
(ρ, q) ∈ [0, R]× [0,+∞[ , vc(ρ, q) ≤ Vc+ , Q−−q∗

R ≤ q−q∗

ρ ≤ Q+−q∗

R

}
,

where Vf− is the minimal velocity in free-flow and Vc+ is the maximal velocity in
congestion such that Vc+ < Vf− < V . R is the maximal density and Q− and Q+

are, respectively, the minimal and maximal values for q. The fundamental diagrams
in (ρ, q) coordinates and in (ρ, ρ v) coordinates are presented in Figure 2.1.

Remark 2.1. The congested part of system (2.1) is strictly hyperbolic if and only
if the two eigenvalues of its Jacobian are real and distinct for all states (ρ, q) ∈ Ωc.
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110 BLANDIN, WORK, GOATIN, PICCOLI, AND BAYEN

Ωf

Ωcq∗

Q+

Q−

ρ

q

R

Ωf

Ωc

ρ v

ρ

R

Fig. 2.1. Colombo phase transition model. Left: Fundamental diagram in state space coordi-
nates (ρ, q). Right: Fundamental diagram in density flux coordinates (ρ, ρ v).

Remark 2.2. The 1-Lax curves are straight lines going through (0, q∗) in (ρ, q)
coordinates, which means that along these curves shocks and rarefactions exist and
coincide [41]. One must note that the 1-Lax field is not genuinely nonlinear (GNL).
Indeed the 1-Lax curves are linearly degenerate (LD) for q = q∗ and GNL otherwise,
with rarefaction waves propagating in different directions relative to the eigenvectors
depending on the sign of q − q∗. The 2-Lax curves, which are straight lines going
through the origin in (ρ, ρ v) coordinates, are always LD.

3. Extension of the Colombo phase transition model. The approach, de-
veloped by Colombo, provides a fundamental diagram which is thick in congestion
(Figure 2.1) and thus can model clouds of points observed experimentally (Figure 3.1).
We propose extending this approach by considering the second equation in conges-
tion as modeling a perturbation [49, 50]. The standard state (Definition 3.1) would
be the usual one-dimensional fundamental diagram, with dynamics described by the
conservation of mass. Perturbations can move the system off standard state, leading
the diagram to span a two-dimensional area in congestion. A single-valued map is
able to describe the free-flow mode, which is therefore completely described by the
free-flow standard state.

Definition 3.1. We denote by standard state the set of states described by a
one-dimensional fundamental diagram and the classical LWR PDE. In the following
we refer to the standard velocity and standard flux as the velocity and flux, respectively,
at the standard state.

In this section we present analytical requirements on the velocity function in
congestion, which, given the work done in [8], enable us to construct a 2 × 2 phase
transition model. These models provide support for a physically correct, mathemat-
ically well-posed initial-boundary value problem which can model traffic phenomena
where the density and the flow are independent quantities in congestion, allowing for
multiple values of the flow for a given value of the density. Our framework allows
one to define the two-dimensional zone span by the congestion phase according to
the reality of the local traffic nature, which is not always possible with the original
Colombo phase transition model.

3.1. Analysis of the standard state. We consider the density variable ρ to
belong to the interval [0, R], where R is the maximal density. Given the critical
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0 100 225
0

2000

3600

Q
(veh/hr)

ρ(veh/mile)

Fig. 3.1. Fundamental diagram in density flux coordinates from a street in Rome. In congestion
(high densities) the flux is multivalued. Count C and velocity v were recorded every minute during
one week. Flux Q was computed from the count. Density ρ was computed from flux and velocity
according to the expression Q = ρ v (see [3] for an extensive analysis of this dataset).

density1 σ in (0, R], we define the standard velocity vs(·) on [0, R] by

vs(ρ) :=

{
V for ρ ∈ [0, σ],

vsc(ρ) for ρ ∈ [σ,R],

where V is the free-flow speed and vsc(·) is in C∞((σ−, R),R+). It is important to
note that vsc(·) is a function of ρ only, as is the case for the classical fundamental
diagram. The standard flux Qs(·) is thus defined on [0, R] by

Qs(ρ) := ρ vs(ρ) =

{
Qf (ρ) := ρ V for ρ ∈ [0, σ],

Qs
c(ρ) := ρ vsc(ρ) for ρ ∈ [σ,R].

In agreement with traffic flow features, the congested standard flux Qs
c(ρ) must satisfy

the following requirements (which are consistent with those given in [14]).
(i) Flux vanishes at the maximal density : Qs

c(R) = 0.
This condition encodes the physical situation in which the jam density has been
reached. The corresponding velocity and flux of vehicles on the highway is zero.

(ii) Flux is a decreasing function of density in congestion: dQs
c(ρ)/dρ ≤ 0.

This is required as a defining property of congestion. It implies that dvsc(ρ)/dρ ≤ 0.
(iii) Continuity of the flux at the critical density: Qs

c(σ) = Qf (σ).
Even if some models account for a discontinuous flux at capacity (the capacity drop
phenomenon [26]), we assume, following most of the transportation community, that
the flux at the standard state is a continuous function of density.

(iv) Concavity of the flux in congestion: Qs
c(·).

The flux function at the standard state Qs
c(·) must be concave on [σ, σi] and convex on

[σi, R], where σi is in (σ,R]. Given the experimental datasets obtained for congestion
(Figure 3.1), it is not clear in practice if the standard flux is concave or convex in
congestion. The assumption made here is motivated by Remark 3.14.

1Density for which the flux is maximal at the standard state. At this density the system switches
between free-flow and congestion.
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112 BLANDIN, WORK, GOATIN, PICCOLI, AND BAYEN

Remark 3.2. In this article we instantiate the general model proposed on the
most common standard flux functions (i.e., linear or concave) but the framework
developed here applies to flux functions with changing concavity such as the Li flux
function [42], although it yields a significantly more complex analysis.

3.2. Analysis of the perturbation.

3.2.1. Model outline. In this section we introduce a perturbation q to the
standard velocity in congestion.

Definition 3.3. The perturbed velocity function vc(·, ·) is defined on Ωc by

(3.1) vc(ρ, q) = vsc(ρ) (1 + q),

where vsc(·) ∈ C∞((σ−, R),R+) is the congested standard velocity function.
The standard state corresponds to q = 0, and the evolution of (ρ, q) is described

similarly to the classical Colombo phase transition model [8] by

(3.2)

⎧⎪⎨
⎪⎩
∂tρ+ ∂x(ρ v) = 0 in free-flow,{
∂tρ+ ∂x(ρ v) = 0

∂tq + ∂x(q v) = 0
in congestion,

with the following expression of the velocity:

(3.3) v =

{
vf (ρ) := V in free-flow,

vc(ρ, q) in congestion.

The perturbed velocity function defines the velocity in congestion, whereas a Newell–
Daganzo function describes the velocity in free-flow. The analytical expression of
the free-flow and congested domains as defined in (3.4) is motivated by the analysis
conducted in Table 3.1 and the necessity for these domains to be invariants [39] for
the dynamics (3.2) in order to have a well-defined Riemann solver [43]:

(3.4)

{
Ωf = {(ρ, q) | (ρ, q) ∈ [0, R]× [0,+∞[ , vc(ρ, q) = V , 0 ≤ ρ ≤ σ+} ,
Ωc =

{
(ρ, q) | (ρ, q) ∈ [0, R]× [0,+∞[ , vc(ρ, q) < V , q−

R ≤ q
ρ ≤ q+

R

}
.

σ± is defined by vc(σ±, σ± q±/R) = V , and we assume that V > 0 and q− ≤ 0 ≤ q+.
A definition of the complete set of parameters can be found in section 3.3 (see also
Figure 3.2 for an illustration in the Newell–Daganzo case).

Definition 3.4. The set {(ρ, q) | vc(ρ, q) = V, σ− ≤ ρ ≤ σ+} defines the meta-
stable phase. This phase defines transition states between the congestion phase and
the free-flow phase.

Remark 3.5. The left boundary of the congested domain is a convex curve in
(ρ, q) coordinates (shown in Figure 2.1 for the Colombo phase transition model and
in Figure 3.2 for the new model derived). Thus Ωc is not convex in (ρ, q) coordinates.

The analysis of the congestion phase of the model (3.2) is outlined in Table 3.1.

3.2.2. Physical and mathematical considerations. Physical interpretation
and mathematical conditions translate into the following conditions.

Condition 3.6 (positivity of speed). In order to maintain positivity of vc(·, ·) on
the congested domain, one must have

(3.5) ∀ q ∈ [q−, q+], 1 + q > 0,

D
ow

nl
oa

de
d 

05
/1

3/
13

 to
 1

28
.3

2.
18

6.
28

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GENERAL PHASE TRANSITION MODEL FOR HIGHWAY TRAFFIC 113

Table 3.1

Congestion phase: algebraic properties of the general phase transition model.

Eigenvalues λ1(ρ, q) = ρ (1+q)∂ρvsc(ρ)+vsc (ρ) (1+2 q) λ2(ρ, q) = vsc(ρ) (1 + q)

Eigenvectors r1 =

(
ρ

q

)
r2 =

(
vsc(ρ)

−(1 + q) ∂ρvsc(ρ)

)

Nature of the
Lax curves

∇λ1.r1 = ρ2 (1 + q)∂2
ρρv

s
c(ρ) + 2 ρ (1 +

2 q) ∂ρvsc(ρ) + 2 q vsc(ρ)
∇λ2.r2 = 0

Riemann-
invariants

q/ρ vsc(ρ) (1 + q)

−1

0

σ− σ σ+ ρ

q

R

q+

q−
 

 

σ− σ σ+ R ρ

ρ v

Fig. 3.2. Newell–Daganzo standard flux function. Left: Fundamental diagram in state space
coordinates. Right: Fundamental diagram in flux-density coordinates. The standard state is the
usual triangular diagram. The congestion phase is two-dimensional (striped domain).

which is satisfied if and only if q− > −1.
Condition 3.7 (strict hyperbolicity of the congested system). In order for the

congested part of (3.2) to be strictly hyperbolic, one must have

∀ (ρ, q) ∈ Ωc, λ1(ρ, q), λ2(ρ, q) ∈ R and λ1(ρ, q) �= λ2(ρ, q).

Given the expression of the eigenvalues outlined in Table 3.1, and modulo a rearrange-
ment, this yields

(3.6) ∀ (ρ, q) ∈ Ωc, ρ ∂ρv
s
c(ρ) + q (vsc(ρ) + ρ ∂ρv

s
c(ρ)) �= 0.

Since vsc(·) is positive and ρ vsc(·) is a decreasing function of ρ, this can always be
satisfied for small enough values of q, and when instantiated for specific expressions
of vsc(·), will result in a bound on the perturbation q.

Condition 3.8 (shape of Lax curves). For modeling consistency, we require the
1-Lax curves to be LD or to have no more than one inflexion point (σi, qi). In the latter
case they should be concave for ρ ≤ σi and convex for ρ ≥ σi. Since ∇λ1.r1 is the
second derivative of the 1-Lax curve with respect to ρ, this condition can be enforced,
for any (ρ, q) in the congested domain, by checking the sign of the expression

(3.7) ∇λ1.r1 = ρ (2 ∂ρv
s
c(ρ) + ρ ∂2

ρρv
s
c(ρ)) + q (2 vsc + 4 ρ ∂ρv

s
c(ρ) + ρ2 ∂2

ρρv
s
c(ρ)),

which has the sign of the first term for q small enough. So if 2 ∂ρv
s
c(ρ)+ρ ∂2

ρρv
s
c(ρ) > 0,

the rarefaction waves go right in the (ρ, q) or (ρ, ρ v) plane. When vsc(·) is such that
2 ∂ρv

s
c(ρ) + ρ ∂2

ρρv
s
c(ρ) = 0, the heading of rarefaction waves changes with the sign of
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q (such is also the case for the original phase transition model), and in this case the
1-curves are LD for q = 0.

This condition consists of ensuring that expression (3.7) is either identically zero
(LD curve), or has no more than one zero and is an increasing function of the density.

Remark 3.9. One may note that Condition 3.7 on the strict hyperbolicity of
the system is satisfied whenever Condition 3.6 on the positivity of speed is satisfied.
Indeed, (3.6) can be rewritten as ∀(ρ, q) ∈ Ωc, ρ ∂ρv

s
c(ρ) + q∂ρQ

s
c(ρ) �= 0, which since

the first term is negative, is equivalent to ∀(ρ, q) ∈ Ωc, ρ ∂ρv
s
c(ρ) + q∂ρQ

s
c(ρ) < 0. For

nonzero values of ∂ρQ
s
c(ρ), it yields q > −ρ ∂ρv

s
c(ρ)/∂ρQ

s
c(ρ) = −1 + vsc(ρ)/∂ρQ

s
c(ρ),

which is always satisfied when q− > −1, because the second term of the right-hand
side is negative.

Remark 3.10. In this model, traffic is anisotropic in the sense that no wave
travels faster than vehicles (λ1(ρ, q) < λ2(ρ, q) = vc(ρ, q)). The speed of vehicles is
always positive, and they stop only at maximal density.

3.3. Definition of parameters. The parameters of the proposed model are
the

(i) free-flow speed V ,
(ii) maximal density R,
(iii) critical density σ at standard state,
(iv) critical density for the lower bound of the diagram σ−,
(v) critical density for the upper bound of the diagram σ+.

These parameters can be identified from experimental data and enable the definition
of the parameters q− and q+. Figure 3.2 graphically summarizes the definition of the
parameters chosen. One must note that the constraints on q−, q+ detailed in (3.5),
(3.6), and (3.7) translate into constraints on σ−, σ+, which cannot be freely chosen.

3.4. Cauchy problem. In this section we define a solution to the Cauchy prob-
lem for the system (3.2). Following [8], we use a definition derived from [4].

Definition 3.11. Given T in R+ and u0 in L1(R; Ωf ∪Ωc)∩BV (R; Ωf ∪Ωc), an
admissible solution to the corresponding Cauchy problem for (3.2) is a function u(·, ·)
in L1([0, T ]× R; Ωf ∪ Ωc) ∩BV ([0, T ]× R; Ωf ∪ Ωc) such that the following hold.

(i) For all t in [0, T ], t �→ u(t, .) is Lipshitz continuous with respect to the L1

norm.
(ii) For all functions ϕ in C1

c ([0, T ]× R �→ R) with compact support contained
in u−1(Ωf ),

∫ T

0

∫
R

(u(t, x) ∂tϕ(t, x) +Qf(u(t, x))∂xϕ(t, x)) dxdt +

∫
R

u0(x)ϕ(0, x)dx = 0.

(iii) For all functions ϕ in C1
c ([0, T ]× R �→ R

2) with compact support contained
in u−1(Ωc),

∫ T

0

∫
R

(u(t, x) ∂tϕ(t, x) +Qc(u(t, x))∂xϕ(t, x)) dxdt+

∫
R

u0(x)ϕ(0, x)dx = 0.

(iv) The set of points (t, x) for which there is a change of phase is the union of
a finite number of Lipschitz curves pi : [0, T ) �→ R such that if ∃i �= j and ∃τ ∈ [0, T ]
such that pi(τ) = pj(τ), then for all t ∈ [τ, T ] we have pi(t) = pj(t).
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(v) For all points (t, x) where there is a change of phase, let Λ = ṗi(t
+), and

introducing the left and right flow at (t, x),

F l =

{
ρ(t, x−)V if ρ(t, x−) ∈ Ωf ,

ρ(t, x−) vc(ρ(t, x−), q(t, x−)) if ρ(t, x−) ∈ Ωc,

F r =

{
ρ(t, x+)V if ρ(t, x+) ∈ Ωf ,

ρ(t, x+) vc(ρ(t, x
+), q(t, x+)) if ρ(t, x+) ∈ Ωc,

the following relation must be satisfied:

(3.8) Λ · (ρ(t, x+)− ρ(t, x−)) = Fr − Fl.

Remark 3.12. This definition matches the standard Lax entropy solution for
an initial condition with values in Ωf or Ωc. Equation (3.8) is a Rankine–Hugoniot
relation needed to ensure mass conservation at the phase transition.

Theorem 3.13. Let Ωf and Ωc be defined by (3.4), and let vc(·, ·) be defined by
(3.1). If Condition 3.7 is satisfied, then for all u0 ∈ L1(R; Ωf ∪Ωc)∩BV (R; Ωf ∪Ωc),
the corresponding Cauchy problem for (3.2) has an admissible solution (see Defini-
tion 3.11) u(·, ·) such that u(t, ·) ∈ BV (R; Ωf ∪ Ωc) for all t ∈ [0, T ].

Proof. A solution is constructed through a standard wavefront tracking procedure
by iteratively gluing together the solution to Riemann problems corresponding to
piecewise constant approximations of the solution. Measuring total variation along
the trajectories of these solutions allows us to conclude on the convergence of the
sequence of successive approximations. The interested reader is referred to [4] for
more details on wavefront tracking techniques and to [8, 9] for more insights on proofs
of existence for systems of conservation laws with phase transition.

3.5. Model properties. The main differences between the original Colombo
model [8] and the class of models introduced in this article result from the following
design choices.

Choice of q∗ = 0. This is a change of variable which has several consequences.
Related computations become more readable. The congested standard state is q = 0.
According to (3.1), the meaning of the perturbation q is also more intuitive. Positive
values of q correspond to elements of flow moving at a greater speed than the standard
speed for this density, and negative values of q correspond to slower elements of flow.
In the traffic context, this can be understood as groups of drivers being characterized
by their degree of agressivity, q, which leads them to drive faster or slower than the
standard driver.

Newell–Daganzo flux function in free-flow. This allows the free-flow and congested
domain of the fundamental diagram proposed in the present work to be connected
and to define a metastable phase, as illustrated in Figure 3.3. This yields a well-
posed Riemann problem which can be solved in a simple way (see Remark 2 of [8]).
Moreover, the derived models need fewer parameters and thus are easier to calibrate.
Finally, it is consistent with the fact that a gap between phases is not observed in
experimental data; see Figure 3.1.

The expression of the function vc is not fully specified. This allows us to cus-
tomize the model depending on the features observed in practice. As explained in
Remark 3.14 below, the concavity of the 1-Lax curves is related to driving behavior.
In the class of models we introduce, since vc(·, ·) is not fully specified, in the limit of
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Ωf

Ωc

ρ

ρv

Ωf

Ωc

ρ v

ρ

Fig. 3.3. Different free-flow phases. Left: Fundamental diagram from the original Colombo
phase transition model. Right: Fundamental diagram of the model derived in the present article in
the particular case of a Newell–Daganzo standard state flux in the congestion phase.

Conditions 3.6, 3.7, and 3.8, it is possible to define the perturbed phase transition
model, which corresponds to the observed driver agressivity.

Remark 3.14. A physical interpretation can be given to the concavity of the flux
function. In congestion, when the density increases toward the maximal density, the
velocity decreases toward zero. This yields a decreasing slope of the flux function in
congestion. The way in which a driver’s velocity decreases impacts the concavity of
the flux, as per the expression of the second derivative of the standard flux function,
d2Qs

c(ρ)/dρ
2 = ρ d2vsc(ρ)/dρ

2 + 2 dvsc(ρ)/dρ.
(i) If for a given density increase, the drivers reduce their speeds more at high

densities than at low densities (modeling aggressive drivers who wait until high density
to reduce speed), then the velocity function is concave and the flux function is concave.

(ii) If the drivers reduce their speeds less at high densities than at low densi-
ties (modeling careful drivers who anticipate and reduce their speed early), then the
velocity function is convex, and the flux function may be convex.

(iii) An affine flux is given by a velocity function which satisfies ρ d2vsc(ρ)/dρ
2 +

2 dvsc(ρ)/dρ = 0.

3.6. Numerics. Because of the nonconvexity of the domain Ωf ∪Ωc (illustrated
in Figure 3.2), using the classical Godunov scheme [30] is not feasible due to the
projection step of the scheme. We propose using a modified version of the scheme
(see [6]) which mimics the two steps of the classical Godunov scheme and adds a final
sampling step.

(i) The Riemann problems are solved on a regular time space mesh. When two
space-consecutive cells do not belong to the same phase, the position of the phase
transition at the next time step is computed.

(ii) The solutions are averaged on the domains defined by the position of the
phase transitions arising from Riemann problems at neighboring cells (Figure 3.4).

(iii) A sampling method is used to determine the value of the solution in each
cell of the regular mesh.
This process addresses the issues of the classical Godunov scheme with nonconvex
domains. Numerical results have shown that it gives accurate results on benchmark
tests (we refer the reader to [6] for more details on the test cases used).

Let us denote by Δt the time discretization and by Δx the space discretization
satisfying the Courant–Friedrichs–Lewy condition [30]. We call xj = jΔx for j ∈ Z
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tn+1

tn

xjxj−1

xn+1
j−1/2 xn+1

j+1/2

xj+1

Fig. 3.4. Phase transitions enter cell Cn
j from both sides.

and tn = nΔt for n ∈ N. We call xj−1/2 = xj − Δx/2 and we define a cell Cn
j =

{tn} × [xj−1/2, xj+1/2[, which has length Δx. We call un
j the value of u := (ρ, q) at

(tn, xj), and, by extension, in Cn
j . The speed of the phase transition between each

pair of cells (Cn
j , C

n
j+1) is denoted νnj+1/2 (νnj+1/2 equals zero if un

j and un
j+1 belongs

to the same phase). If we call xn+1
j−1/2 = xj−1/2+νnj−1/2 Δt, we can define cell C

n+1

j as

C
n+1

j = {tn+1}× [xn+1
j−1/2, x

n+1
j+1/2[, which has length Δxn

j = xn+1
j+1/2 −xn+1

j−1/2, as shown

in Figure 3.4. The solution to the Riemann problem between cells Cn
j is averaged

on cells C
n+1

j , which by construction enclose states which are either free-flowing or
congested, according to the modified Godunov scheme.

We define the following:
(i) uR(ν

n,+
j−1/2, u

n
j−1, u

n
j ) is the solution to the Riemann problem between un

j−1

and un
j , at

x−xj−1/2

t−tn
= νnj−1/2, taken at the right of the phase transition.

(ii) g(νn,−j+1/2, u
n
j , u

n
j+1) := f(uR(ν

n,−
j+1/2, u

n
j , u

n
j+1)) with f(ρ, q) = (ρ v, q v) and

the definition of v from (3.3), as the numerical flux between cells Cn
j and Cn

j+1, at
x−xj+1/2

t−tn
= νnj+1/2, taken at the left of the phase transition.

The averaging step of the modified Godunov scheme reads as

Δxn
j u

n+1
j = Δxun

j −Δt
(
g
(
νn,−j+1/2, u

n
j , u

n
j+1

)
− νnj+1/2 uR

(
νn,−j+1/2, u

n
j , u

n
j+1

))
+ Δt

(
g
(
νn,+j−1/2, u

n
j−1, u

n
j

)
− νnj−1/2 uR

(
νn,+j−1/2, u

n
j−1, u

n
j

))
.

One can notice that when there is no phase transition, νnj−1/2 = νnj+1/2 = 0, Δx =
Δxn

j , and we obtain the classical Godunov scheme. The last step is the sampling phase

to define the solutions on the cells Cn+1
j . Following [6], for cell Cn+1

j we randomly

pick a value between un+1
j−1 , u

n+1
j , and un+1

j+1 according to their rate of presence in cell

Cn+1
j . This is done using the Van der Corput sequence (an)n∈N (3.9), which is a

low-discrepancy sequence in the interval [0, 1]:

(3.9) un+1
j =

⎧⎪⎪⎨
⎪⎪⎩
un+1
j−1 if an ∈ ]0,max( Δt

Δxn
j
νnj−1/2, 0)],

un+1
j if an ∈ ]max( Δt

Δxn
j
νnj−1/2, 0), 1 + min( Δt

Δxn
j
νnj+1/2, 0)[,

un+1
j+1 if an ∈ [1 + min( Δt

Δxn
j
νnj+1/2, 0), 1[.

Remark 3.15. In the general case the congested domain Ωc is not convex in (ρ, q)
coordinates due to the convexity of the metastable border of the domain as illustrated
in Figure 3.2. It is therefore necessary to add a projection step as a fourth step to
the modified Godunov scheme. The projection (ρp, qp) of state (ρ, q) is defined as the
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118 BLANDIN, WORK, GOATIN, PICCOLI, AND BAYEN

solution in the metastable phase of the system{
qp
ρp

= q
ρ ,

vc(ρp, qp) = V.

The error metric chosen to assess the numerical accuracy of the scheme is the
C0(R, L1(R,R2)) relative error between the computed solution and the analytical
solution. We call u and uc the exact and computed solutions respectively. For the
computational domain [x0, x1], the error at T is computed as follows:

E(T ) =
supt∈[0,T ]

∫ x1

x0
‖u(t, x)− uc(t, x)‖1dx

supt∈[0,T ]

∫ x1

x0
‖u(t, x)‖1dx

.

4. The Newell–Daganzo phase transition model. In this section, we use
a Newell–Daganzo velocity function for congestion, i.e., a velocity function for which
the flux is affine with respect to the density. We instantiate the corresponding phase
transition model for this flux function and derive a corresponding Riemann solver,
which we implement and test on a benchmark case.

4.1. Analysis. We propose using the standard velocity function

vsc(ρ) =
V σ

R − σ

(
R

ρ
− 1

)
,

which is clearly the unique function yielding an affine flux and satisfying the re-
quirements from section 3.1 on the vanishing point, trend, continuity, and concavity
property of the standard flux.

For a perturbed state, the velocity function reads as

(4.1)

{
vf (ρ) = V for (ρ, q) ∈ Ωf ,

vc(ρ, q) =
V σ
R−σ (Rρ − 1) (1 + q) for (ρ, q) ∈ Ωc,

where Ωf and Ωc are defined by (3.4). The corresponding fundamental diagram is
shown in Figure 3.2. The standard flux is affine with the density, but the 1-Lax
curves outside the standard state are either convex or concave in (ρ, ρ v) coordinates,
depending on the sign of the perturbation.

Remark 4.1. Note that the expression of the velocity in Figure 3.2 is given by
(4.1) and depends on the phase and is therefore set-valued for ρ > σ−, which is the
lowest density value at which congestion can arise.

The conditions from section 3.2 that are necessary to have positive speed and
strict hyperbolicity of the congested part of the system (3.2) reduce to

q− > −1.

4.2. Solution to the Riemann problem. Following [8], we construct the so-
lution to the Riemann problem for the system (3.2) with the velocity function defined
by (4.1) and the initial datum

(ρ, q)(0, x) =

{
(ρl, ql) if x < 0,

(ρr, qr) if x > 0.
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We denote by u the vector (ρ, q). We define um by the solution in Ωc of the system

(4.2)

{
qm
ρm

= ql
ρl
,

vc(um) = vc(ur),

which yields a quadratic polynomial in ρm. We address the general case where the
solution um of system (4.2) can coincide with ul or ur.

Case 1. ul ∈ Ωf and ur ∈ Ωf . For all values of (ρl, ρr), the solution consists of a
contact discontinuity from ul to ur.

Case 2. ul ∈ Ωc and ur ∈ Ωc.
(i) If ql > 0 and vc(ur) ≥ vc(ul), then the solution consists of a 1-rarefaction

wave from ul to um and a 2-contact discontinuity from um to ur.
(ii) If ql > 0 and vc(ul) > vc(ur), then the solution consists of a shock wave

from ul to um and a 2-contact discontinuity from um to ur.
(iii) If ql = 0, then the solution consists of a 1-contact discontinuity from ul to

um and a 2-contact discontinuity from um to ur.
(iv) If 0 > ql and vc(ur) > vc(ul), then the solution consists of a shock wave

from ul to um and a 2-contact discontinuity from um to ur.
(v) If 0 > ql and vc(ul) ≥ vc(ur), then the solution consists of a 1-rarefaction

wave from ul to um and a 2-contact discontinuity from um to ur.
Case 3. ul ∈ Ωc and ur ∈ Ωf .
(i) If 0 > ql, then the solution consists of a shock wave from ul to um and a

contact discontinuity from um to ur.
(ii) If ql = 0, then the solution consists of a 1-contact discontinuity from ul to

um and a contact discontinuity from um to ur.
(iii) If ql > 0, then the solution consists of a 1-rarefaction wave from ul to um

and a contact discontinuity from um to ur.
Case 4. ul ∈ Ωf and ur ∈ Ωc Let um− be defined by the solution in Ωc of the

system {
qm−
ρm− = q−

R ,

vc(um−) = vc(ur),

and let Λ(ul, um−) be the Rankine–Hugoniot phase transition speed between ul and
um− defined by (3.8).

(i) If Λ(ul, um−) ≥ λ1(um−), then the solution consists of a phase transition
from ul to um− and a 2-contact discontinuity from um− to ur.

(ii) If Λ(ul, um−) < λ1(um−), then let up be defined by the solution in Ωc of the
system {

qp
ρp

= q−
R ,

Λ(ul, up) = λ1(up).

The solution consists of a phase transition from ul to up, a 1-rarefaction wave from
up to um−, and a 2-contact discontinuity from um− to ur.

4.3. Model properties. The properties of the Newell–Daganzo model can be
abstracted from the definition of the Riemann solver in the previous section.

The nature of the Lax curves in congestion is identical to the original Colombo
model and the Newell–Daganzo phase transition model (see Figure 3.3). Thus the
solution for each model differs only when a free-flow state is involved. Three differences
appear in that case:
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(i) For a given density corresponding to the free-flow phase, the associated
velocity differs in general between the two models.

(ii) Within the free-flow phase, only contact discontinuity can arise in the Newell–
Daganzo phase transition model, whereas rarefaction waves and shockwaves can arise
in the original Colombo model.

(iii) A transition from congestion to free-flow always involves a shock-like phase
transition in the Colombo model (and thus the solution is composed of three waves
in general), whereas the transition occurs through a metastable state in the Newell–
Daganzo phase transition model, and involves only a “congestion to metastable” wave
and a “metastable to free-flow” contact discontinuity.

These properties are illustrated in the next section on a Riemann problem.
As in the original Colombo phase transition model [8], the 1-Lax curves are LD

for q = 0, and the direction of the rarefaction waves changes according to the sign of
q. This yields interesting modeling capabilities, but requires the Riemann solver to
be more complex than the one described in the following section.

Remark 4.2. As illustrated in Figure 3.2, the flux is linear in congestion at the
standard state as per the Newell–Daganzo flux function. Remark 3.14 states that
this shape models neutral drivers (aggressivity-wise). When the traffic is above the
standard state (meaning that the velocity is higher than it is for the same density
at the standard state), the 1-Lax curves are concave in (ρ, ρ v) coordinates (meaning
that the drivers are more aggressive). So, such a fundamental diagram shape seems
to be in accordance with the intuition that, for a given density, the most aggressive
drivers tend to have a greater speed. This is symmetrically true for less aggressive
drivers, also accounted for by this model.

4.4. Benchmark test. In this section we compare the numerical solution given
by the modified Godunov scheme with the analytical solution to a Riemann problem.
We use the phase transition model (3.2) in the Newell–Daganzo case (4.1) with the
following choice of parameters: V = 45, R = 1000, σ− = 190, σ = 220, σ+ = 270. The
benchmark test is a phase transition from congestion to free-flow with the following
left and right states.

(i) ul = (800,−0.1), which corresponds to congestion below standard state with
ρ = 800 and v = 2.9.

(ii) ur = (100), which corresponds to a free-flow state with ρ = 100 and v = 45.
This configuration gives rise to a shock wave between ul and a congested state um

followed by a contact discontinuity between um and ur (Riemann case 3, first subcase),
as shown in Figure 4.1.

We also present the solution given by the original Colombo model with the follow-
ing parameters: Vc+ = 45, Vf− = 57, V = 67, q∗ = 0, Q− = −0.88, and Q+ = 1.15.
The congested phases in the two models are identical with this choice of parameters.
One may note that because the fundamental diagram in free-flow differs between the
original Colombo model and the Newell–Daganzo phase transition model (see Fig-
ure 3.3), the speed corresponding to the right initial state in the Riemann problem is
greater in the Colombo model.

The solutions to the Riemann problem for each model differ on several points.
First, the intermediary state um belongs to the metastable phase in the Newell–
Daganzo model, whereas it belongs to the free-flow phase for the Colombo model.
Second, the wave from the intermediary state um to the right state ur is a rarefaction
wave in the Colombo model (as illustrated in Figure 4.1), whereas it is a contact
discontinuity in the Newell–Daganzo phase transition model.
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Fig. 4.1. Exact solution (continuous line), computed solution (dashed line), and exact solution
for the Colombo model (dotted line) for density (left) and speed (right). Between the two initial
states, for the class of models presented in this article, a state um = (215.4,−0.03) appears, which
corresponds to the intersection of the 1-Lax curve going through ul with the metastable phase. In
this graph T = 0.4 and Δx = 0.0013.

Table 4.1

Numerical error. Relative error between exact solution and the modified Godunov scheme so-
lution for the benchmark described above, for different discretizations.

Cell � E(T )

50 5.8 10−04

100 2.0 10−04

200 6.4 10−05

400 2.0 10−05

The values of the error E(T ), as described in section 3.6 for T = 4 (a typical time
for which all interactions have moved out of the computational domain) are outlined
in Table 4.1.

5. The Greenshields phase transition model. In this section we use a
Greenshields model to describe the velocity function in congestion, i.e., we use a
concave quadratic flux function. We present the standard and perturbed flux func-
tions, derive the corresponding Riemann solver which we test on a benchmark case,
and describe the properties of the Greenshields phase transition model.

5.1. Analysis. We use a quadratic relation to describe the congestion standard
state, which for physical considerations needs to satisfy the requirements from sec-
tion 3.1. This leads us to choose the flux as a quadratic function of the form

ρ vsc(ρ) = (ρ−R) (a ρ+ b)

such that the vanishing condition at ρ = R is satisfied. Continuity at the critical
density σ yields

b =
σ V

σ −R
− a σ,

so the flux at the standard state reads as

ρ vsc(ρ) = (ρ−R)

(
a (ρ− σ) +

σ V

σ −R

)
,
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with a variation interval for a defined by the second and third conditions of section 3.1
as

a ∈
[
− σ V

(σ −R)2
, 0

[
.

Note that for the specific case in which R = 2 σ and a is defined by the fact that the
derivative of the flux equals zero at σ (which reads as a = −σ V/(σ−R)2), we obtain
the classical Greenshields flux.

Following the general form given in system (3.3), we write the perturbed velocity
function as

(5.1)

{
vf (ρ) = V for (ρ, q) ∈ Ωf ,

vc(ρ, q) =
(
1− R

ρ

) (
a (ρ− σ) + σ V

σ−R

)
(1 + q) for (ρ, q) ∈ Ωc,

with a ∈
[
− σ V

(σ−R)2 , 0
[
, and where Ωf and Ωc are defined by (3.4). The corresponding

fundamental diagram is presented in Figure 5.1.

0
−1

0

σ− σ σ+ ρ

q

R

q+

q−

0
0

σ− σ σ+ R ρ

ρ v

Fig. 5.1. Phase transition model with a Greenshields standard state. Left: State space coor-
dinates. Right: Flux-density coordinates. Thin solid line: Free-flow. Bold solid line: Congestion
standard state. Thin dashed line: Upper bound of congestion. Thin dot-dashed line: Lower bound
of congestion. The standard flux is concave, and all the 1-Lax curves are concave in (ρ, ρ v) coordi-
nates. In (ρ, q) coordinates the free-flow phase is not a straight line but has a very light convexity.

Remark 5.1. The expression of the velocity function given by system (5.1) enables
a set-valued velocity function for ρ > σ−. For a given density the variable velocity
can take several values. The lower bound of the congestion phase is concave, unlike
for the model presented in section 4. This feature may be more appropriate for usual
experimental datasets.

The requirements from section 3.2 here reduce to

q− > − aR
σ V
σ−R + a (2R− σ)

.

While for the Newell–Daganzo phase transition model the bound on the perturbation
is given by the fact that the speed had to be positive, here the bound is given by the
requirement on the constant concavity of the 1-Lax curves.

Remark 5.2. The lower bound on the perturbation is an increasing function of
the parameter a, so this parameter should be chosen as small as possible to allow for
more freedom, namely amin = −σ V/(σ − R)2, which yields the lowest lower bound
qmin
− = R/(2 σ − 3R).
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5.2. Solution to the Riemann problem. We consider the Riemann problem
for system (3.2) with the velocity function from (5.1) and the initial datum

(5.2) (ρ, q)(0, x) =

{
(ρl, ql) if x < 0,

(ρr, qr) if x > 0.

We follow the method used in [8] to construct the solution. We define um by the
solution in Ωc of the system

(5.3)

{
qm
ρm

= ql
ρl
,

vc(um) = vc(ur),

which yields a quadratic polynomial in ρm with one root in [0, R]. In the general case,
the solution um of the system (5.3) can be equal to ul or ur.

Case 1. ul ∈ Ωf and ur ∈ Ωf . For all values of (ρl, ρr) the solution consists of a
contact discontinuity from ul to ur.

Case 2. ul ∈ Ωc and ur ∈ Ωc.
(i) If vc(ur) ≥ vc(ul), then the solution consists of a 1-rarefaction wave from ul

to um and a 2-contact discontinuity from um to ur.
(ii) If vc(ul) > vc(ur), then the solution consists of a shock wave from ul to um

and a 2-contact discontinuity from um to ur.
Case 3. ul ∈ Ωc and ur ∈ Ωf . The solution consists of a 1-rarefaction wave from

ul to um and a contact discontinuity from um to ur.
Case 4. ul ∈ Ωf and ur ∈ Ωc. Let um− be defined by the solution in Ωc of the

system {
qm−
ρm− = q−

R ,

vc(um−) = vc(ur).

The solution consists of a phase transition from ul to um− and a 2-contact disconti-
nuity from um− to ur.

Remark 5.3. The analysis in the case of a convex standard flux function, which
we do not address in this article, is closely related to this case, modulo the sign of the
parameter a and the concavity of the 1-Lax curves.

5.3. Model properties. The structure of the solution to the Riemann problem
presented in the previous section explains the distinction with the original phase
transition model.

(i) Since the 1-Lax curves are concave within the congestion phase, shock waves
occur only from a low density on the left to a high density on the right. This is similar
to classical traffic models with concave flux.

(ii) The concavity of the 1-Lax curves yields simple transitions from a free-flow
state to a congested state. These phase transitions are composed of a shock-like phase
transition followed by a contact discontinuity, whereas a rarefaction wave can appear
between the two in the original phase transition model or in the Newell–Daganzo
phase transition model.

(iii) Similarly to the Newell–Daganzo phase transition model, within the free-flow
phase, the Greenshields phase transition model exhibits only contact discontinuities.

Another consequence of the fact that the 1-Lax curves are concave is that the
Riemann solver is much simpler than in the Newell–Daganzo case, with only five
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different types of solutions, compared to the Newell–Daganzo case which has eleven
different types of solutions.

Remark 5.4. According to Remark 3.14, this flux function models aggressive
drivers only, who drive along concave 1-Lax curves. In practice, it is able to model a
class of clouds of points observed experimentally, where the congested domain has a
concave lower border in (ρ, ρ v) coordinates.

5.4. Benchmark test. In this section we compare the numerical results given
by the modified Godunov scheme on a benchmark test with its analytical solution. We
use the phase transition model (3.2) in the Greenshields case (5.1) with the following
choice of parameters: V = 45, R = 1000, σ− = 190, σ = 200, and σ+ = 215.
We choose a = −0.01. The resulting values for the extrema of the perturbation are
q− = −0.34 and q+ = 0.44. The benchmark test is a phase transition from free-flow
to congestion, with the following left and right states.

(i) ul = (180), which corresponds to a free-flow state with ρ = 180 and v = 45.
(ii) ur = (900, 0.2), which corresponds to a congested situation above standard

state with ρ = 900 and v = 2.4.
This configuration gives rise to a phase transition between ul and a congested

state um followed by a 2-contact discontinuity between um and ur (Riemann case 4),
which is illustrated in Figure 5.2.

We also present the solution to the Riemann problem for the original Colombo
model with parameters Vc+ = 45, Vf− = 57, V = 67, q∗ = 0, Q− = −0.32, and Q+ =
0.44. The speed in free-flow differs between the two models. The phase transition
speed is negative for both models but is greater in the case of the Greenshields phase
transition model, which models more aggressive drivers which have a higher flux in
congestion for the same density value. The second wave has the same speed in the
two models.

Table 5.1 summarizes the values of the error E(T ), as defined in section 3.6, for
different sizes of the discretization step, at T = 4.

−0.5 0 0.5
0

200

400

600

800

1000

x

ρ

 

 
Free−flow to congestion: density profile at T

−0.5 0 0.5
0

10

20

30

40

50

60

Free−flow to congestion: velocity profile at T

x

v

 

 

Numerical solution
Exact solution
Colombo model

Numerical solution
Exact solution
Colombo model

Fig. 5.2. Exact solution (continuous line), computed solution (dashed line), and solution to
the Colombo model (dotted line) for density (left) and speed (right). Between the two initial states
a state um = (847.4,−0.24) appears, which corresponds to the intersection of the lower bound of the
diagram in congestion with the 2-Lax curve going through ur. In this graph T = 1 and Δx = 0.0013.
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Table 5.1

Relative error between exact solution and numerical solution for the test case explicitly described
previously, for different numbers of space cells.

Cell � E(T )

50 3.1 10−04

100 7.8 10−05

200 2.1 10−05

400 5.4 10−06

6. Conclusion. This article reviewed the fundamental features of the Colombo
phase transition model and proposed building a class of models upon it in which the
fundamental diagram is set-valued in the congested regime. The notion of standard
state, which provides the basis for the construction of the 2 × 2 phase transition
models, was introduced. General conditions which enable the extension of the original
Colombo phase transition model to this new class of 2 × 2 phase transition models
were investigated. A modified Godunov scheme which can be applied to models with
nonconvex state space was used to solve these equations numerically. The model was
instantiated for two specific flux functions, which include the Newell–Daganzo flux
function (affine) and the Greenshields flux function (quadratic concave). A discussion
of the choice of parameters needed for each of the models was conducted. The solution
to the Riemann problem was derived, and a validation of the numerical results using
benchmark tests was conducted. Open questions for this model include the capability
of the model to accurately reproduce traffic features experimentally measured on
highways. Experimental validations of the model should reveal its capabilities of
reproducing traffic flow more accurately than existing models. In addition, the specific
potential of the model to integrate velocity measurements (through proper treatment
of the second state variable of the problem) is a significant advantage of this model
over any first order model for which the density-flux relation is single valued. The
proper use of this key feature for data assimilation is also an open problem, which
could have very promising outcomes for highway traffic state estimation.
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