Sensitivity-Based Interval PDE Observer for Battery SOC Estimation

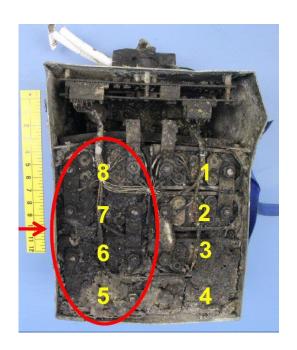
Hector Perez

CE 291F Control and Optimization of Distributed Parameter Systems
Department of Civil and Environmental Engineering
University of California, Berkeley
May 08, 2014

- Motivation
- Lithium Ion Battery Operation
- Single Particle Model
- Reduced Single Particle Model
- Backstepping PDE Observer
- PDE Observer Sensitivity Analysis
- Sensitivity Based Interval PDE Observer
- Results
- Conclusion

Motivation

- Need for renewable energy systems adoption is apparent
- Electric vehicle sales rising (596k sold in 2013 (US))
- Smart phones everywhere (5.2B around the globe)
- Need cost effective, high energy/power/life batteries
- Can make better batteries or get more out of current batteries

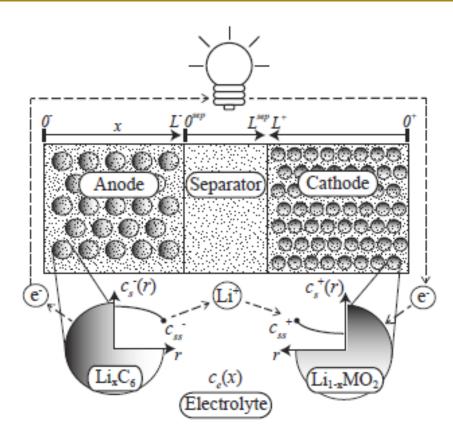


- Motivation
- Lithium Ion Battery Operation
- Single Particle Model
- Reduced Single Particle Model
- Backstepping PDE Observer
- PDE Observer Sensitivity Analysis
- Sensitivity Based Interval PDE Observer
- Results
- Conclusion

Lithium Ion Battery Operation

Discharge:

- Lithium ions flow internally from anode to cathode
- Electrons flow externally from anode to cathode
- Current flows
 externally from
 cathode to anode



- Motivation
- Lithium Ion Battery Operation
- Single Particle Model
- Reduced Single Particle Model
- Backstepping PDE Observer
- PDE Observer Sensitivity Analysis
- Sensitivity Based Interval PDE Observer
- Results
- Conclusion

Electrochemical Single Particle Model

Diffusion of Li in Solid Phase (Anode/Cathode):

$$\frac{\partial c_s^-}{\partial t}(r,t) = D_s^- \left[\frac{2}{r} \frac{\partial c_s^-}{\partial r}(r,t) + \frac{\partial^2 c_s^-}{\partial r^2}(r,t) \right]$$

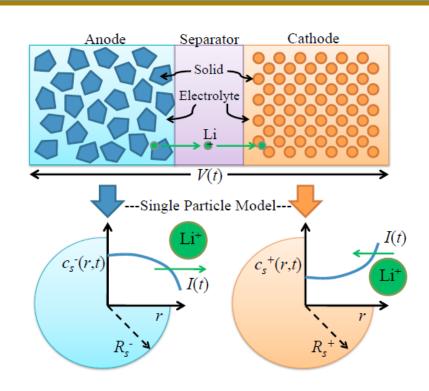
$$\frac{\partial c_s^+}{\partial t}(r,t) = D_s^+ \left[\frac{2}{r} \frac{\partial c_s^+}{\partial r}(r,t) + \frac{\partial^2 c_s^+}{\partial r^2}(r,t) \right]$$

Boundary Conditions:

$$\begin{split} \frac{\partial c_s^-}{\partial r}(0,t) &=& 0, \quad \frac{\partial c_s^-}{\partial r}(R_s^-,t) = \frac{I(t)}{D_s^- F a^- A L^-}, \\ \frac{\partial c_s^+}{\partial r}(0,t) &=& 0, \quad \frac{\partial c_s^+}{\partial r}(R_s^+,t) = -\frac{I(t)}{D_s^+ F a^+ A L^+} \end{split}$$

Output Voltage:

$$V(t) = \frac{RT}{\alpha F} \sinh^{-1} \left(\frac{I(t)}{2a^{+}AL^{+}i_{0}^{+}(c_{ss}^{+}(t))} \right)$$
$$-\frac{RT}{\alpha F} \sinh^{-1} \left(\frac{I(t)}{2a^{-}AL^{-}i_{0}^{-}(c_{ss}^{-}(t))} \right)$$
$$+U^{+}(c_{ss}^{+}(t)) - U^{-}(c_{ss}^{-}(t)) + R_{f}I(t)$$



State of Charge (Bulk Anode):

$$SOC(t) = \frac{3}{c_{s,max}^{-}} \int_{0}^{R_{s}^{-}} r^{2} c_{s}^{-}(r,t) dr$$

- Motivation
- Lithium Ion Battery Operation
- Single Particle Model
- Reduced Single Particle Model
- Backstepping PDE Observer
- PDE Observer Sensitivity Analysis
- Sensitivity-Based Interval PDE Observer
- Results
- Conclusion

Reduced Single Particle Model

- Model Simplification:
 - Achieve Model Observability
 - Approximate Cathode Diffusion by Equilibrium
 - Normalize in Space and Time
 - State Transformation

Reduced Single Particle Model

Space and Time Normalization:

$$\bar{r} = \frac{r}{R_s^-}, \qquad \bar{t} = \frac{D_s^-}{(R_s^-)^2} t.$$

State Transformation:

$$c(r,t) = rc_s^-(r,t)$$

Diffusion of Li in Solid Phase (Reduced):

$$\frac{\partial c}{\partial t}(r,t) = \varepsilon \frac{\partial^2 c}{\partial r^2}(r,t)$$

Boundary Conditions:

$$\begin{array}{lcl} c(0,t) & = & 0 \\ \\ \frac{\partial c}{\partial r}(1,t) - c(1,t) & = & -q\rho I(t) \end{array}$$

Where:

$$\rho = R_s^-/(D_s^- F a^- A L^-)$$

Output Voltage:

$$V(t) = \frac{RT}{\alpha^{+}F} \sinh^{-1} \left(\frac{I(t)}{2a^{+}AL^{+}i_{0}^{+}(\alpha c_{ss}^{-}(t) + \beta)} \right)$$
$$-\frac{RT}{\alpha^{-}F} \sinh^{-1} \left(\frac{I(t)}{2a^{-}AL^{-}i_{0}^{-}(c_{ss}^{-}(t))} \right)$$
$$+U^{+}(\alpha c_{ss}^{-}(t) + \beta) - U^{-}(c_{ss}^{-}(t)) - R_{f}I(t)$$

- Motivation
- Lithium Ion Battery Operation
- Single Particle Model
- Reduced Single Particle Model
- Backstepping PDE Observer
- PDE Observer Sensitivity Analysis
- Sensitivity-Based Interval PDE Observer
- Results
- Conclusion

Backstepping PDE Observer

Nominal State Estimator plus Boundary State Error Injection:

$$\frac{\partial \hat{c}}{\partial t}(r,t) = \varepsilon_0 \frac{\partial^2 \hat{c}}{\partial r^2}(r,t) + p_1(r) \left[\gamma_0 \varphi(V(t), I(t)) - \hat{c}(1,t) \right]$$

Initial Condition and Boundary Conditions:

$$\hat{c}(r,0) = \hat{c}_0(r)$$

$$\hat{c}(0,t) = 0$$

$$\frac{\partial \hat{c}}{\partial r}(1,t) - \hat{c}(1,t) = -q_0 \rho I(t) + p_{10} \left[\gamma_0 \varphi(V(t), I(t)) - \hat{c}(1,t) \right]$$

Observer Gains:

$$p_1(r) = \frac{-\lambda r}{2x} \left[I_1(x) - \frac{2\lambda}{x} I_2(x) \right], \text{ where } x = \sqrt{\lambda (r^2 - 1)}, \ p_{10} = \frac{3 - \lambda}{x} \text{ where } x = \sqrt{\lambda (r^2 - 1)},$$

Nominal Parameters:

$$\theta_0 = [\varepsilon_0, q_0, \gamma_0]^T = [1, 1, 1]^T$$

Output Function Inversion:

$$c_{ss}^{-}(t) = \varphi(V(t), I(t))$$

Nominal Solution:

$$\hat{c}(r,t;\theta_0)$$

Wish to study variations in nominal solution via Sensitivity Analysis

- Motivation
- Lithium Ion Battery Operation
- Single Particle Model
- Reduced Single Particle Model
- Backstepping PDE Observer
- PDE Observer Sensitivity Analysis
- Sensitivity-Based Interval PDE Observer
- Results
- Conclusion

PDE Observer in Partio-Integro Differential Equation (PIDE) Form:

$$\hat{c}(r,t) = \hat{c}_0(r) + \int_{t_0}^t \left[\varepsilon \hat{c}_{rr}(r,s;\theta) + p_1(r)(\gamma \varphi(V(t),I(t)) - \hat{c}(1,s;\theta))\right] ds$$

Boundary Conditions and Initial Condition:

$$\begin{array}{lcl} \hat{c}(r,t_0) & = & \hat{c}_0(r) \\ \\ \hat{c}(0,t) & = & 0 \\ \\ \hat{c}_r(1,t) - \hat{c}(1,t) & = & -q\rho I(t) + p_{10} \left[\gamma \varphi(V(t),I(t)) - \hat{c}(1,t) \right] \end{array}$$

Where:

$$\hat{c}_{rr} = \partial^2 \hat{c} / \partial r^2$$

Take Partial Derivative wrt. **E** on both sides:

$$\frac{\partial \hat{c}}{\partial \varepsilon}(r,t) = \int_{t_0}^{t} \left[\varepsilon \frac{\partial \hat{c}_{rr}}{\partial \varepsilon}(r,s;\theta) + \hat{c}_{rr}(r,s;\theta) - p_1(r) \frac{\partial \hat{c}}{\partial \varepsilon}(1,s;\theta)\right] ds$$

Initial Condition and Boundary Conditions:

$$\frac{\partial \hat{c}}{\partial \varepsilon}(r,t_0) = \frac{\partial \hat{c}}{\partial \varepsilon}(0,t) = 0$$

$$\frac{\partial \hat{c}_r}{\partial \varepsilon}(1,t) - \frac{\partial \hat{c}}{\partial \varepsilon}(1,t) = -p_{10} \frac{\partial \hat{c}}{\partial \varepsilon}$$

Where:

$$\hat{c}_r = \partial \hat{c}/\partial r$$

Let:

$$\hat{c}_{\varepsilon} = \partial \hat{c} / \partial \varepsilon$$

Change Order of Differentiation on RHS (first term):

$$\hat{c}_{\varepsilon}(r,t) = \int_{t_0}^{t} \left[\varepsilon \frac{\partial^2 \hat{c}_{\varepsilon}}{\partial r^2}(r,s;\theta) + \hat{c}_{rr}(r,s;\theta) - p_1(r)\hat{c}_{\varepsilon}(1,s;\theta) \right] ds$$

$$\hat{c}_{\varepsilon}(r,t_0) = \hat{c}_{\varepsilon}(0,t) = 0$$

$$\frac{\partial \hat{c}_{\varepsilon}}{\partial r}(1,t) - \hat{c}_{\varepsilon}(1,t) = -p_{10}\hat{c}_{\varepsilon}(1,t)$$

Differentiate wrt. Time:

$$\frac{\partial}{\partial t}c_{\varepsilon}(r,t) = \varepsilon \frac{\partial^2}{\partial r^2}\hat{c}_{\varepsilon}(r,t;\theta) + \hat{c}_{rr}(r,t;\theta) - p_1(r)\hat{c}_{\varepsilon}(1,t;\theta)$$

Initial Condition and Boundary Conditions:

$$\hat{c}_{\varepsilon}(r,t_0) = \hat{c}_{\varepsilon}(0,t) = 0$$

$$\frac{\partial \hat{c}_{\varepsilon}}{\partial r}(1,t) - \hat{c}_{\varepsilon}(1,t) = -p_{10}\hat{c}_{\varepsilon}(1,t)$$

Solution:

$$\hat{c}_{\varepsilon}(r,t)$$

When:

$$\theta = \theta_0$$

Then RHS depends only on nominal solution:

$$\hat{c}(r,t;\theta_0)$$

Define the Sensitivity Function as:

$$S_1(r,t) = \hat{c}_{\varepsilon}(r,t;\theta_0)$$

The Sensitivity PDE is:

$$S_{1_t}(r,t) = \varepsilon_0 S_{1_{rr}}(r,t;\theta_0) + \hat{c}_{rr}(r,t;\theta_0) - p_1(r) S_1(1,t;\theta_0)$$

$$S_1(r,t_0) = S_1(0,t) = 0$$

$$S_{1r}(1,t) - S_1(1,t) = -p_{10}S_1(1,t)$$

Similarly, define the next Sensitivity Function as:

$$S_2(r,t) = \hat{c}_q(r,t;\theta_0)$$

The Sensitivity PDE is:

$$S_{2_t}(r,t) = \varepsilon_0 S_{2_{rr}}(r,t;\theta_0) + p_1(r) S_2(1,t)$$

$$S_2(r,t_0) = S_2(0,t) = 0$$

$$S_{2r}(1,t) - S_2(1,t) = -\rho I(t) - p_{10}S_2(1,t)$$

Similarly, define the next Sensitivity Function as:

$$S_3(r,t) = \hat{c}_{\gamma}(r,t;\theta_0)$$

The Sensitivity PDE is:

$$S_{3_t}(r,t) = \varepsilon_0 S_{3_{rr}}(r,t;\theta_0) + p_1(r)\varphi(V(t),I(t)) - p_1(r)S_3(1,t)$$

$$S_3(r,t_0) = S_3(0,t) = 0$$

$$S_{3_r}(1,t) - S_3(1,t) = p_{10}\varphi(V(t),I(t)) - p_{10}S_3(1,t)$$

Note that:

$$S_1(r,t) = \hat{c}_{\varepsilon}(r,t;\theta_0)$$

$$S_2(r,t) = \hat{c}_q(r,t;\theta_0)$$

$$S_3(r,t) = \hat{c}_{\gamma}(r,t;\theta_0)$$

Quantify sensitivity of the estimated states to variations in the uncertain parameter values

- Motivation
- Lithium Ion Battery Operation
- Single Particle Model
- Reduced Single Particle Model
- Backstepping PDE Observer
- PDE Observer Sensitivity Analysis
- Sensitivity-Based Interval PDE Observer
- Results
- Conclusion

Sensitivity-Based Interval PDE Observer

When the parameters are close to their nominal values, we approximate the solution to the Observer PDE around the nominal solution to first order accuracy as:

$$\hat{c}(r,t;\theta) \approx \hat{c}(r,t;\theta_0) + S_1(r,t)(\varepsilon - \varepsilon_0) + S_2(r,t)(q-q_0) + S_3(r,t)(\gamma - \gamma_0)$$

Assume parameters are bounded:

$$\underline{\varepsilon} \leq \varepsilon \leq \overline{\varepsilon}, \quad \underline{q} \leq q \leq \overline{q}, \quad \underline{\gamma} \leq \gamma \leq \overline{\gamma}, \qquad \underline{\theta} = [0.9, 0.9, 0.9]^T \quad \overline{\theta} = [1.1, 1.1, 1.1]^T$$

Define the interval estimates as:

$$\underline{\hat{c}}(r,t) = \hat{c}(r,t) + S_1(r,t)(\underline{\varepsilon} - \varepsilon_0) + S_2(r,t)(q - q_0) + S_3(r,t)(\gamma - \gamma_0)$$

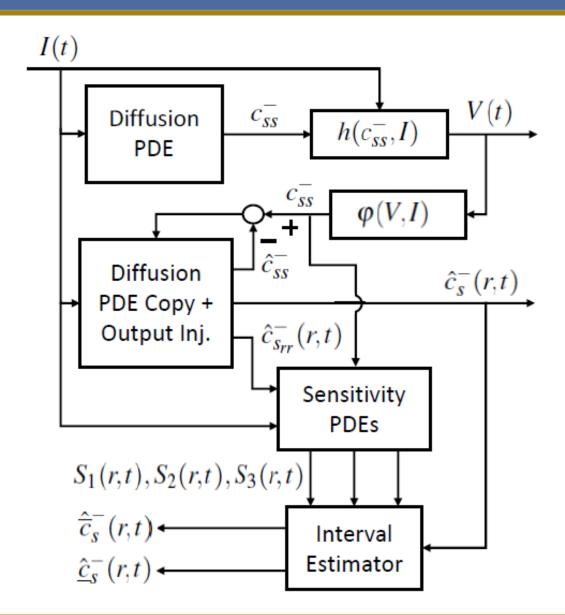
$$\hat{\overline{c}}(r,t) = \hat{c}(r,t) + S_1(r,t)(\overline{\varepsilon} - \varepsilon_0) + S_2(r,t)(\overline{q} - q_0) + S_3(r,t)(\overline{\gamma} - \gamma_0)$$

Interval estimates used to give interval estimates of:

$$\left(\underline{\widehat{SOC}}(t), \overline{\widehat{SOC}}(t)\right)$$

$$\left(\underline{\hat{V}}(t), \hat{\overline{V}}(t)\right)$$

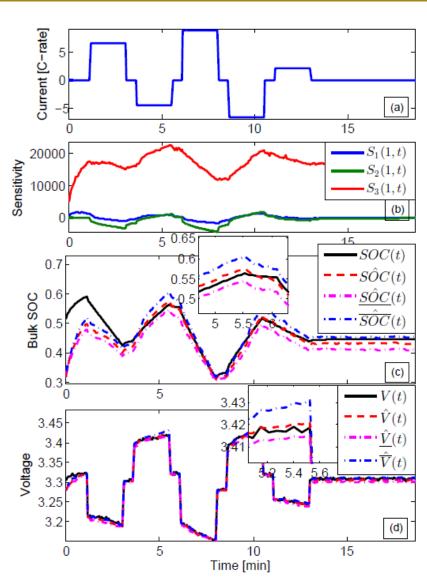
Sensitivity-Based Interval PDE Observer



- Motivation
- Lithium Ion Battery Operation
- Single Particle Model
- Reduced Single Particle Model
- Backstepping PDE Observer
- PDE Observer Sensitivity Analysis
- Sensitivity-Based Interval PDE Observer
- Results
- Conclusion

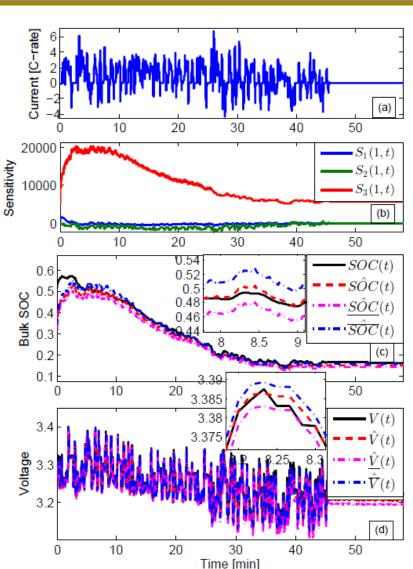
Results

- Pulse Charge/Discharge
 Cycle
- Observer system is most sensitive to perturbations in γ (S₃), followed by q (S₂), and finally ε (S₁)
- Interval estimates encapsulate real values



Results

- UDDS Charge/Discharge Cycle
- Observer system is most sensitive to perturbations in γ (S₃), followed by q (S₂), and finally ε (S₁)
- Interval estimates encapsulate real values

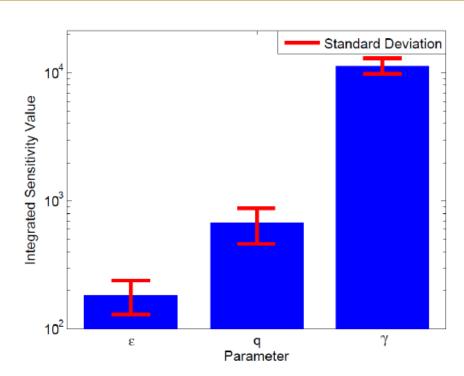


Results

- UDDS/US06/SC04/LA92/ DC1/DC2 Charge/Discharge Cycles
- Rank Parameters

$$S_{rank_i} = \frac{1}{T} \int_0^T |S_i(s)| ds$$

Verifies observer system is most sensitive to perturbations in γ (S₃), followed by q (S₂), and finally ε (S₁)



- Motivation
- Lithium Ion Battery Operation
- Single Particle Model
- Reduced Single Particle Model
- Backstepping PDE Observer
- PDE Observer Sensitivity Analysis
- Sensitivity-Based Interval PDE Observer
- Results
- Conclusion

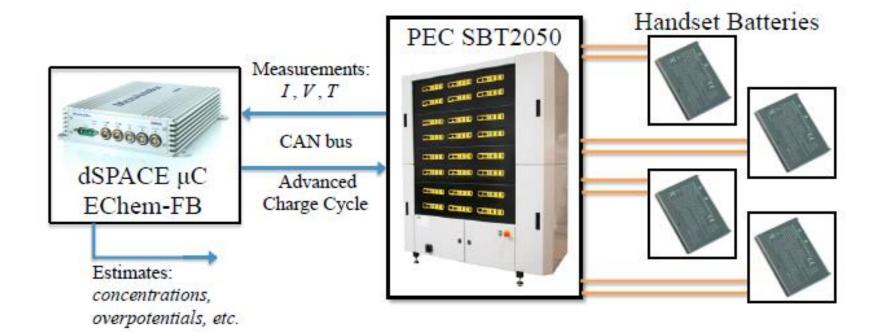
Conclusions

- Sensitivity analysis showed the effect of the parameters on state estimates
- Parameter ranking useful for system identification purposes
- Sensitivities used for interval estimates on battery SOC and voltage
- Interval estimates encapsulate real values

References

- [1] T. Ahonen, Tomi Ahonen Almanac 2012- Mobile Telecoms Industry Review. Lulu.com, 2012.
- [2] Electric Drive Transportation Association. (2012) Electric drive vehicle sales figures (U.S. Market) EV sales. [Online]. Available: http://electricdrive.org/index.php?ht=d/sp/i/20952/pid/20952
- [3] N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic, "Algorithms for advanced battery-management systems," IEEE Control Systems Magazine, vol. 30, no. 3, pp. 49 68, 2010.
- [4] K. Thomas, J. Newman, and R. Darling, Advances in Lithium-Ion Batteries. New York, NY USA: Kluwer Academic/Plenum Publishers, 2002, ch. 12: Mathematical modeling of lithium batteries, pp. 345–392.
- [5] K. A. Smith, C. D. Rahn, and C.-Y. Wang, "Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries," IEEE Transactions on Control Systems Technology, vol. 18, no. 3, pp. 654 663, 2010.
- [6] D. D. Domenico, A. Stefanopoulou, and G. Fiengo, "Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter," Journal of Dynamic Systems, Measurement, and Control, vol. 132, no. 6, p. 061302, 2010.
- [7] R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic, "Electrochemical Model Based Observer Design for a Lithium-Ion Battery," IEEE Transactions on Control Systems Technology, vol. 21, no. 2, pp. 289–301, March 2013.
- [8] S. J. Moura, N. Chaturvedi, and M. Krstic, "Adaptive PDE Observer for Battery SOC/SOH Estimation via an Electrochemical Model," ASME Journal of Dynamic Systems, Measurement, and Control, to appear, 2013.
- [9] J. C. Forman, S. J. Moura, J. L. Stein, and H. K. Fathy, "Genetic identification and Fisher identifiability analysis of the Doyle-Fuller-Newman model from experimental cycling of a LiFePO4 cells," Journal of Power, vol. 210, pp. 263–275, 2012.
- [10] C. Combastel, "A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes," in Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on, Dec 2005, pp. 7228–7234.
- [11] T. Raissi, D. Efimov, and A. Zolghadri, "Interval state estimation for a class of nonlinear systems," Automatic Control, IEEE Transactions on, vol. 57, no. 1, pp. 260–265, Jan 2012.
- [12] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
- [13] M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2008.
- [14] S. Santhanagopalan and R. E. White, "Online estimation of the state of charge of a lithium ion cell," Journal of Power Sources, vol. 161, no. 2, pp. 1346 1355, 2006.
- [15] S. J. Moura, N. Chaturvedi, and M. Krstic, "PDE Estimation Techniques for Advanced Battery Management Systems Part I: SOC Estimation," in Proceedings of the 2012 American Control Conference, Montreal, Canada, June 2012.
- [16] S. Moura, J. Stein, and H. Fathy, "Battery-Health Conscious Power Management in Plug-In Hybrid Electric Vehicles via Electrochemical Modeling and Stochastic Control," Control Systems Technology, IEEE Transactions on, vol. 21, no. 3, pp. 679–694, 2013.

Questions?



Finite Central Difference Method

Recall Sensitivity PDE:

$$S_{1_t}(r,t) = \varepsilon_0 S_{1_{rr}}(r,t;\theta_0) + \hat{c}_{rr}(r,t;\theta_0) - p_1(r) S_1(1,t;\theta_0)$$

Initial Condition and Boundary Conditions:

$$S_1(r,t_0) = S_1(0,t) = 0$$

 $S_{1r}(1,t) - S_1(1,t) = -p_{10}S_1(1,t)$

Let:

$$S_{1_i} = S_1(i\Delta r, t; \theta_0), \quad i = 0, 1, ..., N$$

First and Second Order Partial Derivative in Space:

$$S_{1_{r_i}} \approx \frac{S_{1_{i+1}} - S_{1_i}}{\Delta r}$$
 $S_{1_{rr_i}} \approx \frac{\frac{S_{1_{i+1}} - S_{1_i}}{\Delta r} - \frac{S_{1_i} - S_{1_{i-1}}}{\Delta r}}{\Delta r} = \frac{S_{1_{i+1}} - 2S_{1_i} + S_{1_{i-1}}}{\Delta r^2}$

Let First Order Partial Derivative in Time be:

$$S_{1_{t_i}} = \dot{S}_{1_i}$$

Turn PDE into set of ODEs:

$$\dot{S}_{1_{i}} = \varepsilon_{0} \left(\frac{S_{1_{i+1}} - 2S_{1_{i}} + S_{1_{i-1}}}{\Delta r^{2}} \right) + \hat{c}_{rr}(i\Delta r, t; \theta_{0}) - p_{1}(i\Delta r)S_{1N}$$

Let:

$$\alpha_1 = \frac{\varepsilon_0}{\Delta r^2}$$
 $\hat{c}_{rr}(i\Delta r, t) = \hat{c}_{rr}(i\Delta r, t; \theta_0)$

ODE is now:

$$\dot{S}_{1_i} = \alpha_1 (S_{1_{i+1}} - 2S_{1_i} + S_{1_{i-1}}) + \hat{c}_{rr} (i\Delta r, t) - p_1 (i\Delta r) S_{1N}$$

Note, this set of ODEs is defined for i = 1,...,N-1

The IC is defined as an AE:

$$S_{1_0} = 0$$

The BC is defined as an AE:

$$\frac{S_{1_N} - S_{1_{N-1}}}{\Delta r} - S_{1_N} = -p_{10}S_{1_N}$$

Which turns into:

$$(1 - \Delta r + \Delta r p_{10}) S_{1N} - S_{1N-1} = 0.$$

Rearranging the ODEs and AEs:

$$\dot{S}_1 = M_{1_1}S_1 + M_{1_2}S_{1_z} + B_{1_1}\hat{c}_{rr},$$

$$N_{1_3} = N_{1_1}S_1 + N_{1_2}S_{1_z}$$

Where:

$$\dot{S}_{1} = \begin{bmatrix} \dot{S}_{1_{1}} \\ \dot{S}_{1_{2}} \\ \vdots \\ \dot{S}_{1_{N-1}} \end{bmatrix} S_{1} = \begin{bmatrix} S_{1_{1}} \\ S_{1_{2}} \\ \vdots \\ S_{1_{N-1}} \end{bmatrix} S_{1_{z}} = \begin{bmatrix} S_{1_{0}} \\ S_{1_{N}} \end{bmatrix} \hat{c}_{rr} = \begin{bmatrix} \hat{c}_{rr}(\Delta r, t) \\ \hat{c}_{rr}(2\Delta r, t) \\ \vdots \\ \hat{c}_{rr}((N-1)\Delta r, t) \end{bmatrix} B_{1_{1}} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{1_{1}} = \begin{bmatrix} -2\alpha_{1} & \alpha_{1} & 0 & \dots & \dots & 0 \\ \alpha_{1} & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \alpha_{1} \\ 0 & \dots & \dots & 0 & \alpha_{1} & -2\alpha_{1} \end{bmatrix} \mathbf{M}_{1_{2}} = \begin{bmatrix} \alpha_{1} & -p_{1}(\Delta r) \\ 0 & -p_{1}(2\Delta r) \\ \vdots & \vdots \\ \vdots & -p_{1}((N-2)\Delta r) \\ 0 & (\alpha_{1} - p_{1}((N-1)\Delta r)) \end{bmatrix}$$

$$N_{1_2} = \begin{bmatrix} 1 & 0 \\ 0 & (1 - \Delta r + \Delta r p_{10}) \end{bmatrix} \quad N_{1_3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

For the set of AEs, we can solve for:

$$S_{1z} = N_{12}^{-1} N_{13} - N_{12}^{-1} N_{11} S_1 = -N_{12}^{-1} N_{11} S_1$$

Plug that into the set of ODEs:

$$\dot{S}_1 = M_{1_1}S_1 + M_{1_2}(-N_{1_2}^{-1}N_{1_1}S_1) + B_{1_1}\hat{c}_{rr}$$

Which simplifies to:

$$\dot{S}_1 = (M_{1_1} - M_{1_2} N_{1_2}^{-1} N_{1_1}) S_1 + B_{1_1} \hat{c}_{rr}$$

We define this as a SS system:

$$\dot{S}_1 = A_1 S_1 + B_1 \hat{c}_{rr}$$

Where:

$$A_1 = (M_{1_1} - M_{1_2} N_{1_2}^{-1} N_{1_1})$$

$$B_1 = B_{1_1}$$

The output to this system is:

$$S_{1_{0\rightarrow N}} = M_{1_{1out}}S_1 + M_{1_{2out}}S_{1_z}$$

Where:

$$M_{1_{10M}} = \begin{bmatrix} 0 & \dots & \dots & 0 \\ 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \\ 0 & \dots & \dots & 0 \end{bmatrix} M_{1_{20M}} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & 1 \end{bmatrix} S_{1_{0\to N}} = \begin{bmatrix} S_{1_0} \\ S_{1_1} \\ \vdots \\ S_{1_N} \end{bmatrix}$$

The output becomes:

$$S_{1_{0\to N}} = M_{1_{1out}}S_1 + M_{1_{2out}}(-N_{1_2}^{-1}N_{1_1}S_1)$$

$$S_{1_{0\to N}} = (M_{1_{1out}} - M_{1_{2out}} N_{1_2}^{-1} N_{1_1}) S_1$$

The output is then:

$$S_{1_{0\to N}}=C_1S_1$$

$$C_1 = (M_{1_{1out}} - M_{1_{2out}} N_{1_2}^{-1} N_{1_1})$$