Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

*

Computational Tools for the Verification of Hybrid Systems

Claire J. Tomlin and Stephen P. Boyd
Tan Mitchell, Alexandre Bayen, Mikael Johansson, and Lin Xiao
Stanford University, Stanford, CA 94305
{tomlin,boyd,imitchel,bayen,mikaelj,lxiao}@stanford.edu

Editors’ Summary

The hybrid systems framework provides an appealing means for verifying the safety of dynamical sys-
tems. The authors address safety verification as a reachability problem: Given an unsafe subset of the
system state space and an initial state, is the former reachable from the latter? If it is reachable despite

any controllable actions that we can take then the system is provably unsafe.

The continuous-time nonlinear dynamics of the system need to be considered in assessing reachability.
The authors’ formulation requires the solution of a Hamilton-Jacobi partial differential equation, and a
grid-based numerical solution approach based on level set methods is used for this purpose. Simulation
examples are presented for three flight management applications: two-aircraft collision avoidance, the

related problem of conflict resolution, and ensuring safety during final landing approach.

The exact reachability computation is prey to the curse of dimensionality: its computational complex-
ity is exponential with respect to the continuous dimension. The authors also present an alternative
approach, which is based on over-approximating the reachable set of states with a polyhedron. This is
also computationally intractable since the propagation of the system’s dynamics will result in a poten-
tially unlimited number of constraints (faces of the polyhedron), but the authors have developed a novel
technique for identifying and pruning redundant and irrelevant constraints. This technique promises
to be computationally feasible for very high dimensional problems. The basis of the approach is the
computation of the maximum volume ellipsoid contained in a polyhedron, a computation that can be

formulated as a convex optimization problem (for which global and efficient algorithms are available).

1 Introduction

For about the past ten years, researchers in the traditionally distinct fields of control theory and com-
puter science verification have proposed models, and verification and controller synthesis techniques
for complex, safety critical systems. The area of hybrid systems theory studies systems which involve

the interaction of discrete event and continuous time dynamics, and provides an effective modeling

“Research supported by the DARPA Software Enabled Control (SEC) Program administered by AFRL under contract
F33615-99-C-3014.

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

framework for complex continuous systems with large numbers of operating modes. Examples include
continuous systems controlled by a discrete logic such as the autopilot modes for controlling an aircraft,
systems of many interacting processes such as air or ground transportation systems in which discrete
dynamics are used to model the coordination protocols among processes, or continuous systems which

have a phased operation, such as biological cell growth and division.

The current and potential impact of hybrid systems lies in the confluence of computational methods from
control theory and from formal methods in computer science verification. In the examples mentioned
above, the system dynamics are complex enough that traditional analysis and control methods based
solely on differential equations are not computationally feasible; analysis based solely on discrete event
dynamics ignores critical system behavior. Our interest lies in developing computational tools for
analyzing and controlling the behavior of hybrid systems; our eventual goal is to develop a real-time tool
to provide online verification that a hybrid system satisfies its specified behavior. This goal addresses
one of the central themes of software-enabled control, in which we seek a systematic methodology for

the design, validation, and implementation of control software.

In our work to date, the system specification that we are most interested in is that of system safety,
which asks the question: Is a potentially unsafe configuration of the system reachable from an initial
configuration? More importantly for control theory, given a set of desired configurations, it is crucial to
be able to design the hybrid system control inputs to achieve these configurations. Previous work in this
area had focused on hybrid systems with very simple continuous dynamic equations (such as clocks, or
linear decoupled systems). Our research has three components: the problem formulation for computing
ezxact reachable sets of hybrid systems and the design of a software tool to perform such calculations; the
development of an algorithm for computing overapproximations of reachable sets which works efficiently
in high dimensions; the design of a real-time aircraft testbed for these algorithms. We will focus on
the first component in this paper, with references to our work in ellipsoidal overapproximations and the

implementation on the aircraft testbed.

2 Hybrid System Model

This section presents our hybrid system model: the main difference between our model and leading
models in the literature (see for example the work of Alur and Henzinger [1] on linear hybrid automata)
is that we include accurate, nonlinear models of the hybrid system continuous dynamics. The model

and algorithm have been developed jointly with Lygeros and Sastry, full details are presented in [2].

A hybrid automaton is a finite state machine with discrete states {q1, g2, ... ,qn}, in which each discrete
state has associated continuous dynamics & = f(g;,x,v), with x € R", and continuous inputs and
disturbances v = (u,d), where v € U and d € D.

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

Definition 1 (Hybrid Automaton) A hybrid automaton H is a collection
H = (Q,X,%,V,Init, f,Inv, R)

where

e QU X is the set of state variables, with Q) a finite set of discrete states, and X = R";

o 3 =3 UXy is a finite collection of discrete input variables, where 31 is the set of discrete control

inputs, and Yo is the set of discrete disturbance inputs;

o V =UUD is the set of continuous input variables, where U is the set of continuous control inputs,
and D is the set of continuous disturbance or uncontrollable inputs; we denote the spaces of input
(disturbance) trajectories as the sets of piecewise continuous functions U (D respectively), which

take values in U (D respectively);
e Init C Q X X is a set of initial states;

o f:QxX xV = X is a vector field describing the evolution of x for each q € Q; f is assumed
to be globally Lipschitz in X (for fized q € Q) and continuous in V;

e Inv C Q X X XX XV is called an invariant, and defines combinations of states and inputs for

which continuous evolution is allowed;

e R:QxXxXxV = 29X s g reset relation, which encodes the discrete transitions of the hybrid

automaton.

We refer to (q,x) € Q x X as the state of H and to ((01,092), (u,d)) € ¥ x V as the input of H. The
control actions (o1,u) model those inputs over which the designer has control, and the disturbance
actions (o9, d) model inputs over which the designer has no control, such as uncertainties in the actions
or behaviors of the other aircraft in the system. We assume that the designer has complete knowledge

of the bounds on these disturbance actions (X9, D).

Associated to the hybrid automaton H is a specification which describes the condition one would like
the system to satisfy. Our work has been motivated by verification and synthesis for safety critical
applications, and as such we have been primarily interested in safety specifications. These specifications
are encoded as subsets of the state space of the hybrid system: the unsafe set Gg C Q x X is that subset

in which the system is unsafe.

3 Exact Reach Set Computation using Level Sets

In this section, we describe the development of a general purpose tool for exact reachable set computation—

the core of which is a new variant of a “local level set” algorithm that efficiently computes an accurate

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

representation of the reachable set boundary. We demonstrate the numerical convergence of our com-
putation by analyzing the results as the continuous state space grid is made finer, a standard method of
validation for scientific computing codes. In this way, we show that high accuracy can be achieved at the
cost of increased computational time and space. We illustrate our tool on a single mode aircraft conflict
resolution example [3, 4], the three mode example of the previous section, as well as an example of a
six mode commercial aircraft auto-lander [5], which exhibits nondeterminism and cycles in its discrete

behavior.

Our motivation for this component of the research stems from the belief that for many applications
of hybrid systems, it is important to be able to accurately represent the reachable set. We have
dealt primarily in the safety verification of avionic systems, where accurate representation of the safe
region of operation translates into the ability to operate the system closer to the boundaries of that
region, at a higher performance level than previously allowed. For very high dimensional state spaces,
additional logic (such as projection operators) or new techniques (such as the convex overapproximations
of the next section) will be needed; however, our results in this paper show that it is feasible to do
exacting computation for hybrid systems with nonlinear continuous dynamics in three continuous state
dimensions and six discrete modes, and we believe it will be feasible to extend this up to five continuous

dimensions and large numbers of discrete modes.

3.1 Reachability for Hybrid Systems

In this section we summarize the general framework for handling the interaction between discrete and

continuous dynamics (following [2]).

Fundamentally, reachability analysis in discrete, continuous or hybrid systems seeks to partition states
into two categories: those that can reach a given target set, and those that cannot. We will label these
two sets of states G and E = G° respectively. Any inputs to the hybrid automata are assumed to lie
in bounded sets and to have the goal of locally maximizing or minimizing the reachable set: at each
iteration, the reachability algorithm chooses values for inputs &g that maximize the size of G and values
for inputs {g that minimize the size of G (and hence maximize the size of E). Any nondeterminism in
the transition relation is also utilized to consistently maximize or minimize G, depending on the goal
of the reachability computation. For hybrid automata, the discrete inputs ¢ and continuous inputs v
can be assigned to the two categories g = (oG, vg) and {g = (og, vg) according to whether they seek
to maximize or minimize G. For example, for our hybrid system model with control actions (o1, u) and

disturbance actions (o9, d), we would have that ég = (oG, vg) = (02,d), and &g = (og, vg) = (01, u).

The reachability computation follows an iterative, two stage algorithm shown graphically in Figure 1.
The outer iteration computes reachability over the discrete switches, producing iterates G; and E; at

iteration ¢ = 0, —1,—2,..., where a negative index is used to indicate that the algorithm is initialized

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

mode (mode, iteration) = (j, i)
1 2 K “iteration
slopiek
SISENSN
can switch i
SISO T,
[] .
e in another in another mode
mode
OO O

Figure 1: Iterative Reachability Algorithm: Showing detail of iteration for discrete mode j at iteration

i.

with a "target set” and run backward to compute those states which can reach the target set. The inner
iteration runs a separate continuous reachability problem in each of the discrete modes j = 1,2,... K

to compute the estimates G{ and E{ . We define the “switch” sets

. GZ contains all states in mode j from which a discrete transition to a state in G,_; (typically a
state in another mode) can be forced to occur through the application of a discrete input og; these

states will be defined by the invariant of mode j and the guards of the transitions from mode j.

° E{ contains all states from which a discrete transition to a state in E;_; can be forced to occur
through the application of a discrete input og; these states are also defined by the invariant of

mode j and the guards of transitions from mode j.
Then the goal of the continuous reachability tool is to identify the “flow” sets

. 63 (t) contains states from which for all vg there exists vg that will force the resulting trajectory
to flow into Gg_l U é{ within time ¢.

. E{ (t) contains states from which there exists vg that for all vg will force the resulting trajectories

to flow into EZ within time ¢ or to stay outside of Ggq U é{ for at least time t.

Note that in some problems the order of the existential and universal quantifiers in the definition above

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

must be reversed. Given these sets,

K
J_ J — i .
ot = jm Gl - e
K
Jo_ EJ — i .
e - i B0 - Ue.

where G% is the set of initial conditions of the reachability problem and Eé = (G%)C. Simple modifications

of this algorithm suffice to solve finite time reachability problems.

The procedure described above, developed in [2, 4], was motivated by the work of [6, 7] for reachability
computation and controller synthesis on timed automata, and that of [8] for controller synthesis on
linear hybrid automata. In that development the reachability problem’s objective was to determine
E—the largest controllable invariant subset of the state space—by computing the set of states G which
were reachable in backwards time from the set of predefined unsafe states. In terms of the definitions
above, control inputs from this problem lie in £ and disturbance inputs in {g. For safety, any model

nondeterminism would be used to maximize the unsafe set G.

3.2 Continuous Reachability using Level Sets

While practical algorithms for computing discrete reachability over many thousands of states have been
designed and implemented, determination of continuous reachability for even low dimensional systems
is still an open problem. The continuous portion of a hybrid reachability problem requires methods of
performing four key operations on sets: unions, intersections, tests of equality, and evolution according to
the discrete mode’s continuous flow field. The choice of representation for sets dictates the complexity
and accuracy of these operations; consequently, continuous reachability algorithms can be classified

according to how they represent sets.

For our exact representation scheme, we characterize the set being tracked implicitly by defining a “level
set function” J(z,t) throughout the continuous state space which is negative inside the set, zero on its
boundary, and positive outside, and which encodes the initial data in J(x,0). The intersection of two
such sets is simply the maximum of their level set functions at each point in state space, and the union
is the minimum; a variety of easily implemented equality tests are possible. Evolution of a level set
under a nonlinear flow field is governed by the Hamilton-Jacobi (HJ) partial differential equation (PDE)

(see, for example, [3])

—M = min{0, max min f(z, Vmin, l/maX)TVJ(x, t)},

at Vmin Vmax

= min{0, H(z,VJ(z,t))} (1)

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

where v, are those continuous inputs trying to minimize the size of the set being tracked, and vy, are
those inputs trying to maximize its size. The order of the optimization must be chosen appropriately for
the situation. The implicit representation has a number of advantages when compared with the explicit
representations that other researchers are pursuing, including a conceptually simple representation of
very general sets and a size which is independent of the complexity of the set (although it grows
exponentially with dimension). In addition, a set of sophisticated numerical techniques to accurately
solve PDEs may be drawn upon for computation. In the remainder of this section, we focus on the
representation (1), and assume that the modeler can compute the appropriate optimization over inputs
in (1) if given = and V.J(x,t).

The HJ PDE (1) is well known to have complex behavior. Even with smooth initial data J(z,0) and
continuous Hamiltonian H(z, V.J), the solution J(x,t) can develop discontinuous derivatives in finite
time; consequently, classical infinite time solutions to the PDE are generally not possible. In the quest
for a unique weak solution Crandall and Lions introduced the concept of the viscosity solution [9]. For
most problems of interest, finding the analytic viscosity solution is not possible (see [10] for cases in
which it is possible), and so we seek a numerical solution. We approximate the solution of (1) on a
Cartesian grid of nodes. Three terms in the equation must be approximated at each node, based on the
values of the level set function at that node and its neighbors: the gradient VJ, the Hamiltonian H,

9J (z,t)

and the time derivative =—7=. We discuss each of these separately.

In each dimension at each grid point there exist both left and right approximations of the gradient
V.J, depending on which neighboring grid points’ values are used in the finite difference calculation. We
label the vector of left approximations V.J~, the vector of right approximations V.J T, and will see below
that V.J—, VJT or some combination of the two will be used to compute the numerical Hamiltonian
H. The accuracy of a derivative approximation is measured in terms of the order of its local truncation
error; an order p method has error |V.J — V.J*| = O(AzP). At the current time, we have implemented
the basic first order accurate approximation for speed and a weighted, essentially non-oscillatory fifth
order accurate approximation for high fidelity. We have chosen to use the well studied Lax-Friedrichs

numerical Hamiltonian approximation H [11]
- _ -yt _
H(z,VJ~,VJ") = H(z, YY) - LT (VI — VI, (2)

where H(z, V.J) is given by (1) and the term containing the vector coefficient « is a high order numerical
dissipation added to damp out spurious oscillations in the solution. The time derivative of the PDE is
handled by the method of lines: the value of the level set function J at each node is treated as an ODE
‘fi—{ = H, with H given by (2). General ODE solvers, such as Runge-Kutta (RK) schemes, can then be
applied.

The Hamilton-Jacobi equation (1) describes the evolution of the level set function over all of space.
But we are only interested in its zero level set; thus, we can restrict our computational updates to

nodes near the boundary between positive and negative J(x,t)—an idea variously called “local level

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

sets” [12] or “narrowbanding” [13]. We have implemented a new variant of this method in our code.
Because the boundary is of one dimension less than the state space, considerable savings are available
for two and three dimensional problems. If the number of nodes in each dimension is n (proportional
to Az~!) and the dimension d, the total number of nodes is O(n¢); with the restriction on the timestep
necessary for numerical stability, the total computational cost is O(n?*!). With local level sets, we

reduce computational costs back down to O(n?).

3.3 Examples

In this section we present three examples: a validation of our numerical implementation on a single
mode, three dimensional aircraft collision avoidance example (see [4, 3] for details), and two multimodal
examples. Once a method of determining continuous reachability is available, the discrete iteration
of the algorithm described in Section 3.1 is relatively straightforward. In fact, for discrete transition
graphs with no cycles it is possible to order the continuous reachability problems such that no discrete
iteration is required (the three mode example below). In order to examine the complications induced
by discrete cycles—such as how to avoid zenoness, in what order to execute the continuous reachability
problems, and how to determine which switches are active— we present an example representing the

landing of a civilian airliner.

Numerical Validation of Aircraft Collision Avoidance

This example features a control aircraft trying to avoid collision with a disturbance aircraft, where both
aircraft have fixed and equal altitude, speed and turning radius—they may only choose which direction

they will turn:
Ty = —Uy + Vg COS Py + uYy, Yr = vg SNy — uTy, &r:d_ua

where v, = vy = 5 are the aircraft speeds, z, and y, are the relative planar location of the aircraft
and 1, is their relative heading. The inputs |u| < 1 and |d| < 1 are the control’s and disturbance’s
respective turn rates. The initial unsafe set .J(z,0) is the interior of the radius five cylinder centered on
the 1, axis. Choosing optimal inputs according to (1) with vg = vmax = d and Vg = Vpin = u, we get

the optimal Hamiltonian:
H(z,p) = —p1vy + p1v4 €08 ¥y 4 pavg sin, + [p1y, — pozr — p3| — |pal.

Using our C++ implementation, grid sizes corresponding to 50, 70, 100, 140, and 200 nodes in each
dimension were tried with a low order accurate scheme (first order space and time, hereafter referred to
as the “(1,1)” scheme) and a high resolution scheme (fifth order space and second order time, hereafter

the “(5,2)” scheme). On the eight million node finest grid—only around 10% of which is being actively

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

(1,1) scheme on 50° (inner), 100” {middle)
and 200° {outer) grids
(5,2) scheme on 1007 grid

10 12 14 16 18

Figure 2: Reachable Set for Aircraft Collision Avoidance Example

updated on any one timestep by the local level set algorithm—execution time for the (5,2) scheme was
about eighteen hours on a Sun UltraSparc II with lots of memory. Reducing the grid size in half results
in the expected eightfold savings in memory and time; hence, the coarsest grid takes only fifteen minutes
with the (5,2) scheme.

Results are visualized! by the zero level isosurface of the unsafe reachable set G, shown in Figure 2. On
the left is a head-on view of the (5,2) solution. On the right is a zoomed overhead view of the point of

the bulge computed by the (1,1) scheme for several grid sizes.

We compare solutions on the four coarser grids to the solution on the finest grid, using linear interpo-
lation on the finest grid if necessary. Figure 3 demonstrates that the scheme is converging to the finest
grid’s solution of (1) at approximately a linear rate in both average error and pointwise maximum error.
We cannot expect to show a higher order convergence rate because of the linear interpolation used to

evaluate the error.

Two conclusions can be drawn from Figures 2 and 3. First, for this example, low order schemes are not
at all competitive in terms of accuracy with the (5,2) scheme: our (5,2) implementation can produce

more accurate results in about fifteen minutes using only the coarsest grid. Second, the pointwise

!Pigure 2 and Figure 8 visualize some level set surfaces as triangular meshes; these are not the meshes on which the

Hamilton-Jacobi PDE was solved, but rather an artifact of three dimensional Matlab visualization techniques.

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

§ (5,2) Scheme

=2

f=21 o

= o

§1o BT -, o

s F T, ©
i) ok CE

Z T e

= -
o

8

L =

£107%

kS

o

,_)g —a— 1 norm

| ==x=: oo NOrM n
2: o AX

g10 70 100

w

@ &
o
,_.
IN
o

Grid Size n

Figure 3: Convergence of (5,2) Scheme to Finest Grid Solution (.J,, is the solution J(z,t) on a grid size

of n)

maximum error of the (5,2) scheme is always less than the grid spacing, so if a 507! = 2% error is

tolerable for this application, only this fastest, coarsest grid need ever be run.

Three Mode Conflict Resolution

Consider the following conflict resolution problem between two aircraft (i € {1,2}), which is presented
in [14]. Let (z,,yr, ¥y) € R? x [—7,) represent the relative position and orientation of aircraft 2 with
respect to aircraft 1. In terms of the absolute positions and orientations of the two aircraft, (z;,y;, ;)
for ¢ = 1,2, it may be verified that z, = cos(ze — z1) + sin1(y2 — y1),yr = —siny(xe — x1) +
cos 1 (Y2 — Y1), ¥r = Y2 — ¥1, and thus

Ty = —V1+V2C08Yr + WYy
Yr = wv2siny, — w1, (3)
7/.)7‘ = w2 —wi

where v; is the velocity along the body axis of aircraft ¢, and w; is the rate of change of heading. A
conflict occurs when a pair of aircraft incur a lateral spacing of less than 5 nautical miles; for safety of
the maneuver, the relative position (z,, y,) must remain outside of the interior of the 5 mile radius disk

centered at the origin:
{(@r,yr,r) x12~ + yz < 52} (4)

Consider the maneuver illustrated in Figure 4, with the protocol of the maneuver defined as follows:
the aircraft are nominally in Mode 1, in which the aircraft fly straight and level with given constant
velocities v; and constant heading v;; at a certain relative separation distance each aircraft turns to its
right, follows an arc of a circle in Mode 2, in which the velocity is held at a prescribed constant value

vj, until it intersects its original trajectory, then turns to its right and returns to its desired trajectory.

10

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

- -~ s AN ————— ¢

v w

1200 W 7‘ -~ s

Figure 4: Two aircraft in two modes of operation: in the first and third figures, the aircraft follow a
constant heading and velocity (in Mode 1); in the second figure, the aircraft follow a half circle (in Mode

Figure 5: In ¢; both aircraft follow a straight course, in ¢ a half circle, and in g3 both aircraft return

to a straight course.

The model allows instantaneous changes in heading which is an obvious abstraction of the true aircraft
dynamics and is treated here for clarity; a model with heading capture dynamics is presented in [14].
In each mode, the continuous dynamics may be expressed in terms of the relative motion of the two
aircraft (3): in Mode 1, w; = 0 for i = 1,2 and in Mode 2, w; = 1 for i = 1,2. We assume that both
aircraft switch modes simultaneously, so that the relative orientation ¢, is constant. This assumption
simply allows us to display the state space in two dimensions, making the results easier to present. The
problem statement is therefore: generate the relative distance between aircraft at which the aircraft
may switch safely from Mode I to Mode 2, and a turning radius r in Mode 2, to ensure that the 5

nautical mile separation is maintained.

The dynamics of the maneuver can be encoded by the hybrid automaton of Figure 5, where ¢g; corre-
sponds to Mode 1 before the maneuver, ¢o corresponds to Mode 2 “avoid mode”, and g3 corresponds
to Mode 1 after the avoid maneuver has been completed. There is one discrete control input o1, such
that the switch from o7 = 0 to o1 = 1 triggers the transition from ¢; to g2. The transition from ¢o to
q3 is required to take place after the aircraft have completed a half circle: note that with w; = 1, for

1 = 1,2, it takes w time units to complete a half circle. The continuous state space is augmented with a

11

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

timer z € R to force this transition. Let = = (2, ¥y, ¥, 2)7. At each transition, both aircraft change
heading instantaneously by 7 /2 radians; we represent this with the standard rotation matrix Rot(%).
As discussed in the previous section, we assume that v; is controllable, and vs is the disturbance input

with known bounds. Safety is defined in terms of the unsafe set:
Go = {q1,q2.q3} x {z € X : 2 +y? <5°} (5)

which encodes the fact that the two aircraft should never come within 5 nautical miles of each other.

The solution of the three mode conflict resolution example is presented in Figure 6. Each of the twelve
graphs in Figure 6 is a plot in the (z,,y,) axes, with each of the four rows representing an iteration of
the algorithm, and the three columns corresponding to discrete states qi, g2, and g3. The computation
is initialized with the set Go = {q1,q2,q3} x {x € R3 : 22 +y? < 5?}, which is shown as the dark shaded
disks. A fixed point is reached after three iterations. The dark shaded region in the fourth row, first
column of Figure 6 is the most interesting: it is a plot of the unsafe set of states in g;. As long as
the relative position of aircraft 2 with respect to aircraft 1 is not inside this region, then there exists a
control policy such that the conflict is resolved. If the relative position is inside the unshaded (white)
region, then switching instantaneously will lead to a conflict; the aircraft must remain in ¢; until the

relative state enters the light shaded region, then either switch to ¢o, or remain in ¢;.

Aircraft landing example

The autopilots of modern jets are highly automated systems which assist the pilot in constructing
and flying four-dimensional trajectories, as well as altering these trajectories on line in response to
air traffic control directives. The autopilot typically controls the throttle input and the vertical and
lateral trajectories of the aircraft to automatically perform such functions as: acquiring a specified
altitude and then leveling (ALT ACQ), holding a specified altitude (ALT HLD), acquiring a specified
vertical climb or descend rate (V/S), automatic vertical or lateral navigation between specified way
points (VNAV, LNAV), or holding a specified throttle value (THR HLD). The combination of these
throttle-vertical-lateral modes is referred to as the flight mode of the aircraft. A typical autopilot has
several hundred flight modes — it is interesting to note that these flight modes were designed to automate
the way pilots fly aircraft manually: by controlling the lateral and vertical states of the aircraft to set
points for fixed periods of time, pilots simplify the complex task of flying an aircraft. Those autopilot
functions which are specific to aircraft landing are among the most safety critical, as it is extremely
difficult, if not impossible, for the pilot to take over control of the aircraft when the aircraft is close to
the ground. Thus, the need for automation designs which guarantee safe operation of the aircraft has
become paramount. Testing and simulation may overlook trajectories to unsafe states. “Automation
surprises” have been extensively studied [15] after the unsafe situation occurs, and “band-aids” are

added to the design to ensure the same problem does not occur again. We believe that the ability to

12

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

compute accurate reachable sets inside the aerodynamic flight envelope under flight mode switching,

may be used to help prevent the occurrence of automation surprises.

A simple point mass model for aircraft vertical navigation is used, which accounts for lift L, drag D,
thrust 7', and gravity mg (see [4] and references therein). State variables are aircraft height z, horizontal
position z, velocity V = V22 + 22 and flight path angle v = tanfl(%). Inputs are thrust 1" and angle

of attack «, where aircraft pitch # = v 4+ «. The equations of motion can be expressed as follows:

Vv LT cosa— D(a, V') — mgsin~]
d 7| _ —L[Tsina + L(e, V) — mg cos 7] (6)
dt |z V cosvy

z Vsiny

The functions L(«, V') and D(«, V') are modelled based on empirical data [16] and Prandtl’s lifting line
theory [17]:

L(O{,V) = %pSV2CL(a)a D(aa V) = %IOSV2CD(C¥),

where p is the density of air, S is wing area, and C,(«) and Cp(«) are the dimensionless lift and drag

coefficients.

In determining Cr,(«) we will follow standard auto-lander design and assume that the aircraft switches
between three fixed flap deflections § = 0°, 6 = 25° and 6 = 50° (with slats either extended or
retracted), thus constituting a hybrid system with different nonlinear dynamics in each mode. This
model is representative of current aircraft technology; for example, in Airbus cockpits the pilot uses
a lever to select among four predefined flap deflection settings. We assume a linear form for the lift
coefficient C,(«) = hs + 4.2c, where parameters hge = 0.2, hgse = 0.8 and hzpe = 1.2 are determined
from experimental data for a DC9-30 [16]. The value of o at which the vehicle stalls decreases with
increasing flap deflection: o™ = 16°, ofts* = 13°, ot = 11°; slat deflection adds 7° to the ™" in
each mode. The left side of Figure 7 gives a graphical summary of the possible configurations. The
drag coefficient is computed from the lift coefficient as [17] Cp(«) = 0.041 + 0.045C% (o) and includes
flap deflection, slat extension and gear deployment corrections. So for a DC9-30 landing at sea level

and for all a € [-5°,a*®], the lift and drag terms in (6) are given by

L(o,V) = 68.6 (hs +4.20)V? D(a,V) = (2.81 +3.09 (hs + 4.20)*)V? (7)

Flap deflection dynamics model: In reality, the decision to move from one deflection setting to
another can occur at any time, but approximately 10 seconds are required for a 25° degree change in
flap deflection. For our preliminary implementation, we have chosen to ignore the continuous dynamics
associated with discrete mode switching, allowing the flaps and slats to move instantly to their com-

manded positions. However, if such instantaneous controlled switches were always enabled then the

13

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

system would be zeno; therefore, we introduce Delay, or transition modes 0, 25¢ and 50¢, which use the
envelopes and flight dynamics of the regular modes Ou, 25d and 50d and include a timer to model the
actual delay in flap change (the discrete automaton is shown on the right side of Figure 7). A regular
mode may make a controlled switch to a transition mode, so flight dynamics can be changed instantly.
Transition modes have only a timed switch at ¢ = f4elay, S0 controlled switches will be separated by at

least tqelay time units and the system is nonzeno. For the executions shown below, #qelay = 0.5 seconds.

Landing: The aircraft enters its final stage of landing close to 50 feet above ground level ([16, 18]).
Restrictions on the flight path angle, aircraft velocity and touchdown (TD) speed are used to determine

the initial safe set Eg:

(z2<0 landing or has landed (z>0 aircraft in the air
V> V;mu faster than stall speed V> V;mu faster than stall speed
V < ymax slower than limit speed U V < V™38 glower than limit speed (8)
\% sin’y > Z.O limited TD speed v > -3° limited descent flight path
L Y <0 monotonic descent LY <0 monotonic descent
We again draw on numerical values for a DC9-30 [16]: stall speeds Viiall = 78 m/s, Vitall = 61 m/s,
V;gg“ = 58 m/s, maximal touchdown speed Z; = 0.9144 m/s, and maximal velocity V™ = 83 m/s.

For passenger comfort, the aircraft’s input range is restricted to T' € [0 kN, 160 kN] and « € [0°, 10°].

The interior of the surface shown in the first row of Figure 8 represents Ej for each mode. The second
row of the figure shows the safe envelope E when there is no mode switching. Portions of Eg are excluded
from E for two reasons. States near z = 0 correspond to low altitudes and are too close to the ground
at steep flight path angles to allow control inputs time to prevent the plane from crashing. States close
to the stall velocity correspond to low speeds where there is insufficient lift and the flight path angle
becomes steeper than that allowed by the flight envelope. This latter condition holds throughout the
very narrow range of speeds allowed in mode Ou, with the result that only post-touchdown states (z < 0)
are controllable in this mode. The third row shows how E can be increased if switches are permitted
(for example, mode Ou becomes completely controllable). Mode 50d is the best to be in for landing and
there is no difference in E with or without switching enabled. The fourth row shows slices of the set in
the third row, taken at z = 3 meters. The light grey regions are unsafe G and the dark grey are safe E.
The figure shows that modes Ou and 25d are safe only because there exists a discrete switch to a safe

state in another mode.

4 Overapproximations of Reachable Sets

In the reachable set computation of the previous section, computational complexity introduced by

increasing the dimension of the continuous state is a limiting factor: the technique suffers from expo-

14

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

nential growth with respect to the continuous dimension. To challenge this curse of dimensionality, we

are investigating techniques for computing overapproximations to the reachable set of states.

In [19], we devise and implement a method based on projecting the reachable set of a high dimensional
system into a collection of lower dimensional subspaces where computational costs are much lower. We
formulate a method to evolve the lower dimensional reachable sets such that they are each an over-
approximation of the full reachable set, and thus their intersection will also be an overapproximation
of the reachable set: the method uses a set of lower dimensional Hamilton-Jacobi PDEs for which,
in any projection, the set of disturbance inputs is augmented with the unmodeled dimensions. For
the three dimensional aircraft collision avoidance problem of the previous section, the result of per-
forming the computation in the (z,,y,) space, and then back-projecting this set to form a cylindrical

overapproximation of the reachable set in three dimensions, is computed in less than a minute.

A second technique is to overapproximate nonlinear dynamics by linear dynamics with bounded distur-
bance, and to overapproximate reachable sets by polyhedra. Propagation of sets is then simply described
by the propagation, through linear dynamics, of linear inequalities describing the polyhedral set. With
this technique however, comes the problem of the potentially unlimited number of inequalities needed
to describe the polyhedral estimate. This problem has been addressed in the literature, yet previous
solutions fall short in several ways: exact pruning of polytopes [20] requires complex data structures
to be maintained and the number of “active” hyperplanes could still be unlimited; the use of simple
polyhedral shapes for bounding the polyhedral set [21] is itself computationally intensive; the ellipsoidal
overapproximation to the reachable set [22, 23, 24, 25], while an elegant and efficient representation of

the set, is generally too conservative an overapproximation.

We have developed a technique which combines the efficiency of the ellipsoidal data structure with the
tightness of polyhedral overapproximation. The heart of our technique is a novel pruning procedure
based on the Maximum Volume Ellipsoid (MVE) contained in the polyhedron. The basic idea of the
method is to rank the constraints by their distance (measured in the norm induced by the ellipsoid) to
the center of the MVE, and delete the ones that appear to be least relevant. Conceptually, constraints
that are far away from the center are less relevant than those that are close. This approach will allow

us to perform guaranteed pruning (where only provably redundant constraints are deleted).

For example, consider a discrete-time linear system (which represents a linear overapproximation of the

nonlinear systems of the previous section):
z(t+1) = Ax(t) + Bw(t)

where z(t) € R" is the state vector, w(t) € R? is a bounded disturbance, and A and B are matrices
with consistent dimensions. We assume that w(t) € W(t) for some bounded convex set W(t). Assume

that z(t) is known to lie in a polyhedron P(t), where P C R” is the intersection of a finite number of

15

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

half-spaces,

Using the parameterization of half-spaces introduced above, we can represent P in the form
P={x|fle<g,i=1,... ,m}={z|Fzx<g} (9)

where < denotes componentwise inequality. Now, an ellipsoid is defined as the image of a unit ball

under an affine transformation
E = {Pu+qll|ul <1} (10)

We assume that A is invertible, which is always the case if the dynamics is discretized from some

continuous-time system, and we propagate the set P(¢) through the dynamic matrix A:
AP(t) = {z| i) A e < gi(t), i=1,...,m(t)}
{z | F()A e < g(t)}-
To account for the bounded disturbance, we need to find the polytope AP(t) + BW(t). An easily
computed outer approximation of it is given by
Pipr = {2 i) A7 2 < gi(®) + 1 f()" AT By, i = 1,... ,m(t)}
= {z|F(t)z <g(t)}-

As P evolves through hybrid dynamics, its representation grows in dimension. To limit the computa-

tional requirements for storing and operating on P, it is therefore necessary to occasionally simplify the

description of P by dropping, or discarding, constraints. We will call this procedure polyhedral pruning.
The maximum volume inscribed ellipsoid (MVE)

We are interested in finding the maximum volume ellipsoid that is contained in a polyhedron. Let £ be
an ellipsoid of the form (10), and P be a polyhedron parameterized as in (9). Then, £ C P if and only
if

T .
sup fiz<g;, t1=1,...,m
€€

Using the parameterization of the ellipsoid, this condition can be expressed as

sup fZ-TPu+fZ-Tq§gi, i=1,...,m
[lul|2<1

Maximization of the left hand side expression gives the equivalent containment condition
IPfillz+ fla<gi, i=1,....m

16

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

Hence, we can find the MVE inside a polyhedron by solving the convex optimization problem

maximize log detP
subject to P =PT >0
|1Pfillo+ ffa<gi i=1,...,m

This problem follows in the general class of maxdet problems, which can be solved globally and efficiently
using the algorithms described in [26]. Moreover, specialized algorithms for computing the MVE have
been proposed in [27, 28]. The MVE gives an optimal (in terms of volume) ellipsoidal approximation
of the polyhedron. Clearly, the MVE also provides an inner bound on the polyhedron, since Enye C
P. More surprisingly, perhaps, is that the MVE also provides an outer bound of the polyhedron:
the ellipsoid obtained by scaling the MVE a factor n around its center is guaranteed to contain the

polyhedron:

Emve € P C gmve + n(gmve - vae)

This is a dual result to the celebrated Lowner-John ellipsoid [29, 30] (which treats the minimum volume
ellipsoid that contains a convex set). Thus, the MVE gives a good approximation of a polyhedron, and

provides simultaneous inner and outer bounds.
Polyhedral pruning using the MVE

The MVE also gives a natural measure for ranking the relevance of the constraints that define P. For
a halfspace H; = {x | fI'x < g;}, we define the relevance ranking n; as the largest factor by which the
ellipsoid can be enlarged and yet still lie within the halfspace:

i = max{a | Qmve + a(gmve - vae) - Hz}
It is easy to verify that the relevance ranking is given by

ni = (9: — fLa)/IIPfill2

This is, in fact, nothing more than the minimum distance from the halfspace to the center of the ellipsoid

in the P? metric. The relevance ranking has the following properties:
1. n; > 1 for all ¢
2., =1= fZ-Ta: < g; active

3. i >n= fle < g; redundant

We define a constraint to be redundant if the polyhedron P does not change when the constraint is

removed. We will say that the polyhedron is minimal if it does not contain any redundant constraints,

17

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

and we will say that a constraint is active if fl'z* = g; for some z* € P. A constraint is (strongly)
redundant if and only it is inactive for all € P. The last property allows us to discard redundant
constraints. There is a gray zone 1; € (1,n) for which the relevance ranking neither proves that
a constraint is active nor that it is redundant. In practice, guaranteed pruning can often be too
conservative in that it fails to discard many redundant constraints. We therefore propose to use the
ranking in a heuristic pruning procedure: given P = {x | fIx < g; i =1,...,m}, we compute Emye,
sort the inequalities by their relevance ranking, 7;, and keep the k& most relevant (the ones with smallest

n;). This yields an approximate simplified polyhedron 75, with P C P.

We believe this algorithm to be an effective method for computing fast polyhedral overapproximations

of reachable sets, in very high dimensions.

5 Summary

We have presented and numerically validated a tool for determining accurate approximations of reach-
able sets for hybrid systems with nonlinear continuous dynamics and adversarial continuous and discrete
inputs. By developing convergent approximations of such complex systems, we will be better able to
synthesize aggressive but safe controllers. As an example, the six mode auto-lander shows that for
envelope protection purposes the safest control decisions are to switch directly to full flap deflection,
but to maintain airspeed until touchdown. With the summary data from the reachability analysis, such
decisions can be made based on local state information; without it the auto-lander may not detect that
low speeds—while still within the flight envelope—lead inevitably to unsafe flight path angles. In this
arena, we have made real progress on problems in a few dimensions, where we have close to exact solu-
tions. We show that the computation may be made faster as we loosen the numerical approximation,
however, even with such approximation, these methods will not scale beyond five or six continuous

dimensions.

In response to this problem, we are developing methods that gracefully extend to problems with a much
higher dimension of the continuous state (these methods have been shown to work well in dimension up
to 100). While these are approximate methods, they are, however, non-heuristic: when they determine

that a reachable set does not intersect some other set, the result is certain.

Finally, in order to test our reachability tools, we are designing and building a system of three Unmanned
Aerial Vehicle (UAVs), with on-board sensing, navigation, and control systems enabling automatic flight.
The Stanford DragonFly UAV Project currently consists of two 10-foot wingspan, fixed wing, unmanned

aircraft, each equipped with GPS, inertial sensors, and on-board computers running QNX Neutrino.

18

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

References

[1]

[11]

R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid automata: An algorithmic ap-
proach to the specification and verification of hybrid systems,” in Hybrid Systems (R. L. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, eds.), LNCS, pp. 366-392, New York: Springer Verlag,
1993.

C. Tomlin, J. Lygeros, and S. Sastry, “A game theoretic approach to controller design for hybrid
systems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 949-970, July 2000.

I. Mitchell and C. Tomlin, “Level set methods for computation in hybrid systems,” in Hybrid
Systems: Computation and Control (B. Krogh and N. Lynch, eds.), LNCS 1790, pp. 310-323,
Springer Verlag, 2000.

C. J. Tomlin, Hybrid Control of Air Traffic Management Systems. PhD thesis, Department of
Electrical Engineering, University of California, Berkeley, 1998.

I. Mitchell, A. Bayen, and C. J. Tomlin, “Validating a Hamilton-Jacobi approximation to hybrid
system reachable sets,” in Hybrid Systems: Computation and Control (M. D. D. Benedetto and
A. Sangiovanni-Vincentelli, eds.), LNCS 2034, pp. 418-432, Springer Verlag, 2001.

O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete controllers for timed systems,” in
STACS 95: Theoretical Aspects of Computer Science (E. W. Mayr and C. Puech, eds.), no. 900 in
LNCS, pp. 229-242, Munich: Springer Verlag, 1995.

E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis for discrete and timed systems,”
in Proceedings of Hybrid Systems II, Volume 999 of LNCS (P. Antsaklis, W. Kohn, A. Nerode, and
S. Sastry, eds.), Cambridge: Springer Verlag, 1995.

H. Wong-Toi, “The synthesis of controllers for linear hybrid automata,” in Proceedings of the IEEE
Conference on Decision and Control, (San Diego, CA), 1997.

M. G. Crandall, L. C. Evans, and P.-L. Lions, “Some properties of viscosity solutions of Hamilton-
Jacobi equations,” Transactions of the American Mathematical Society, vol. 282, no. 2, pp. 487-502,
1984.

A. M. Bayen and C. J. Tomlin, “A construction procedure using characteristics for viscosity so-
lutions of the hamilton-jacobi equation,” in Proceedings of the IEEE Conference on Decision and
Control, (Orlando, FL), 2001.

M. G. Crandall and P.-L. Lions, “Two approximations of solutions of Hamilton-Jacobi equations,”
Mathematics of Computation, vol. 43, no. 167, pp. 1-19, 1984.

19

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

[12]

[13]

[14]

[15]

D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A PDE based fast local level set method,”
Journal of Computational Physics, vol. 165, pp. 410-438, 1999.

J. A. Sethian, Level Set Methods and Fast Marching Methods. New York: Cambridge University
Press, 1999.

C. J. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification of conflict resolution maneuvers,”

IEEE Transactions on Intelligent Transportation Systems, vol. 2, no. 2, pp. 110-120, 2001. June.

A. Degani, Modeling Human-Machine Systems: On Modes, Error, and Patterns of Interaction.
PhD thesis, Department of Industrial and Systems Engineering, Georgia Institute of Technology,
1996.

I. M. Kroo, Aircraft Design: Synthesis and Analysis. Stanford, California: Desktop Aeronautics
Inc., 1999.

J. Anderson, Fundamentals of Aerodynamics. New York: McGraw Hill Inc., 1991.

United States Federal Aviation Administration, Federal Aviation Regulations, 1990. Section 25.125
(landing).

I. Mitchell and C. J. Tomlin, “Overapproximating reachable sets by hamilton-jacobi projections,”
Journal of Scientific Computing, May 2002. Submitted.

N. A. Bruinsma and M. Steinbuch, “A fast algorithm to compute the Hy,-norm of a transfer

function matrix,” Systems and Control Letters, vol. 14, no. 5, pp. 287-293, 1990.

M. Milanese and G. Belforte, “Estimation theory and uncertainty intervals evaluation in presence
of unknown but bounded errors — linear families of models and estimators,” IEEE Transactions on
Automatic Control, vol. 27, no. 2, pp. 408-414, 1982.

F. C. Schweppe, “Recursive state estimation: Unknown but bounded errors and system inputs,”
IEEE Transactions on Automatic Control, vol. AC-13, no. 1, pp. 22-28, 1968.

H. S. Witsenhausen, “Sets of possible states of linear systems given perturbed observations,” IEEE
Transactions on Automatic Control, vol. 13, pp. 556-558, 1968.

G. M. Bakan and V. V. Volosov, “State estimation by the ellipsoid method from continuous-time

linear observations,” Cybernetics and Systems Analysis, vol. 31, no. 4, pp. 571-582, 1995.

N. Shishido and C. J. Tomlin, “Ellipsoidal approximations of reachable sets for linear games,” in
Proceedings of the IEEE Conference on Decision and Control, (Sydney, Australia), 2000.

20

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

[26] S.-P. Wu and S. Boyd, sppsoL: A Parser/Solver for Semidefinite Programming and Determinant
Mazimization Problems with Matriz Structure. User’s Guide, Version Beta. Stanford University,
June 1996.

[27] Y. Nesterov and A. Nemirovsky, Interior-point polynomial methods in convex programming, vol. 13
of Studies in Applied Mathematics. Philadelphia, PA: STAM, 1994.

[28] Y. Zhang, “An interior-point algorithm for the maximum-volume ellipsoid problem,” Technical
Report TR98-15, Rice University, Houston, Texas, 1998.

[29] F. John, “Extremum problems with inequalities as subsidiary conditions,” in Fritz John, Collected
Papers (J. Moser, ed.), pp. 543-560, Birkhauser, Boston, Massachussetts, 1985.

[30] M. Grotschel, L. Lovdsz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization.
Algorithms and Combinatorics, New York: Springer-Verlag, 1988.

21

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

1 rad/sec angular velocity in a,

10 10 10
T
P @ | @ |
c
-10 -10 -10
-10 0 10 -10 0 10
— 10 10 10
5
'E 0 0 0
)
= -10 -10 -10
-10 0 10 -10 0 10
o~ 10 10
s
E 0 0
)
£ .10 -10
-10 0 10 -10 0 10
2 10 10
g
s O 0
g
= -10 -10
-10 0 10 -10 0 10
ql q2

-10 0 10

y 4

-10 0 10

-10 0 10

-10 0 10
q3

Figure 6: The rows indicate the iterations of the algorithm, the columns indicate the discrete state.

Each figure displays a projection of part of the unsafe set onto the (z,,y,) axes. A fixed point is reached

after 3 iterations. Angular velocity w; =1 in ¢o.

22

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

CL (Dimensionless Lift Coefficient)

25r- —

Slats deflected ... |

Slats retracted @ @

flap deflection 3=50

flap deflection §=25
clean wing =0 : 1 @ @
5

angle of attack o (deg)
_0s I I I i
-5 0 5 10 15 20 2

057/4

Figure 7: Left: lift coefficient C7 (a) model for the DC9-30 [16]. Circles located at (of*®*, Cr (o))
indicate the stall angle and the corresponding lift coefficient in each mode. Right: Discrete transition
graph of slat and flap settings. Solid lines are controlled switches (og in this version of the reachability

problem) and dashed lines are uncontrolled switches (og).

23

Software-Enabled Control, Samad and Balas (Eds.), John Wiley, March 2003

Initial Safe Envelope

Maximal Controllable Safe Envelopes without Mode Switching

Maximal Controllable Safe Envelopes with Mode Switching

Slice at z = 3 meters

70 80

Mode 50d

60

70 80

Mode 25d

60

70 80

Mode Ou

60

Figure 8: Maximally controllable safe envelopes for the multimode landing example. From left to right

24

the columns represent modes Ou, 25d and 50d.

