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Abstract
Linear causal analysis is central to a wide range of important application spanning finance, the
physical sciences, and engineering Tsay (2005); Brillinger (1981); Mudelsee (2013). Much of the
existing literature in linear causal analysis operates in the time domain. Unfortunately, the direct
application of time domain linear causal analysis to many real-world time series presents three
critical challenges: irregular temporal sampling, long range dependencies, and scale. Real-world
data is often collected at irregular time intervals across vast arrays of decentralized sensors and
with long range dependencies Doukhan et al. (2003) which make naive time domain correlation
estimators spurious Granger (1988). In this paper we present a frequency domain based estimation
framework which naturally handles irregularly sampled data and long range dependencies while
enabling memory and communication avoiding distributed processing of time series data. By oper-
ating in the frequency domain we eliminate the need to interpolate and help mitigate the effects of
long range dependencies. We implement and evaluate our new work-flow in the distributed setting
using Apache Spark and demonstrate that we can accurately recover causal structure at scale on
massive financial data.

1. Introduction

In many applications of time series analysis Abergel et al. (2012); Tsay (2005); Mudelsee (2013),
tone is interested in estimating the mutual linear predictive properties of events from time series
data corresponding to a collection of data streams each of which is a series of pairs (timestamp,
observation). Observations practically often occur at random, unevenly spaced and unaligned time
stamps. In such a setting we therefore consider two underlying processes (Xt)t∈R and (Yt)t∈R that
are only observed at discrete and finite timestamps in the form of two collections of data points:
(xtx)tx∈Ix ,

(
yty
)
ty∈Iy .

In our setting, we want to determine whether knowledge of the past observations of a given
process (X) helps better predict the future observations of another process (Y ). We illustrate this
notion with two irregularly observed processes on Figure 1 which is the practical setting of a com-
pelling example for causal inference: prices of stocks. These prices are indeed only irregularly
observed as stock exchanges only report quotes and trades whenever a trading event occurs.

t

X Y

Observed processes
timestamp,value
20150102 11:57:13.560, 36.32
20150102 11:57:13.614, 36.25
20150102 11:57:13.615, 36.26
20150102 11:57:13.616, 36.35
20150102 11:57:13.617, 36.25
20150102 11:57:13.620, 36.24
20150102 11:57:13.622, 36.22
20150102 11:57:13.623, 36.25
20150102 11:57:13.631, 36.26

timestamp, value
20150102 11:57:13.537, 27.52
20150102 11:57:13.561, 27.53
20150102 11:57:13.563, 27.52
20150102 11:57:13.570, 27.48
20150102 11:57:13.612, 27.48
20150102 11:57:13.614, 27.52
20150102 11:57:13.616, 27.55
20150102 11:57:13.617, 27.49
20150102 11:57:13.620, 27.47
20150102 11:57:13.638, 27.48
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Does knowing the value of X at time t help predict for the value of Y at time t + h?

t+ht

Data set Y

Figure 1: Causal inference for irregularly observed processes.
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We adopt the cross-correlogram based causality estimation approach developed in Huth and
Abergel (2014), which is similar to Granger’s definition of causality as linear predictive ability of
(dXs<t) and (dYs<t) for the random variable dXt Granger (1969).

Let (X) and (Y ) be two Wiener processes. We consider that (X) has a causal effect on (Y )
if (dXs<t) is a more accurate linear predictor of dYt in square norm error than (dYs<t) is an accurate
linear predictor of dXt. In other words (X) “causes” (Y ) if and only ifE

[
(dXt − E(dXt|dYs, s < t))2

]
>

E
[
(dYt − E(dYt|dXs, s < t))2

]
. In order to quantify the magnitude of this statistical causation,

Huth and Abergel introduced in Huth and Abergel (2014) the Lead-Lag Ratio (LLR) between (X)
and (Y ) as LLRX⇒Y =

∑
h>0 ρ

2
XY (h)/

∑
h<0 ρ

2
XY (h) where ρXY (·) is the cross-correlation between

the second order stationary processes (X) and (Y ). The analysis conducted in Huth and Abergel
(2014) proved (X) “causes” (Y ) is equivalent to LLRX⇒Y < 1 thereby yielding an indicator of
causation intensity between processes. For this definition to make sense, it is crucial that the incre-
ments of the processes we consider are second order stationary. Theoretical arguments and a varied
series of examples in our experiments will show that the techniques we develop are also ready to
deal with other types of Long Range Dependent processes Doukhan et al. (2003).

1.1. Challenges with real world data:

Unfortunately, in practical applications, time series data sets often present three main challenges
that hinder the estimation of linear causal dependencies. Irregular Sampling: Observations are
collected at irregular intervals both within and across processes complicating the application of
standard causal inference techniques that rely on regularly spaced synchronous observations. Long
Range Dependencies (LRD): Long range dependencies can result in increased and non vanishing
variance in correlation estimates which misleads practitioners into identifying correlation where
there is none. Scale: Real-world time series are often very large and therefore are often stored in
distributed fashion.

In the following we show as in Huth and Abergel (2014) that naive interpolation of irregularly
sampled data may yields spurious causality inference measurements. We also prove that eliminating
LRD is crucial in order to obtain consistent correlation estimates. Unfortunately, standard time do-
main LRD erasure requires sorting the data chronologically and is therefore costly in the distributed
setting. These costs are further exacerbated by time domain fractional differentiation which scales
quadratically with the numbers of samples.

To address these three critical challenge we propose a Fourier transform based approach to
causal inference. Projecting on a Fourier basis can be done with a simple sum operator for irregu-
larly sampled data as described in Parzen (2012). A novel and salient byproduct of our estimation
technique is that there is no need to sort the data chronologically or gather the data of different
sensors on the same computing node. We use Fourier transforms as a signal compressing repre-
sentation where cross-correlations and causal dependencies can be estimated with sound statistical
methods while minimizing memory and communication overhead. Our method does not require
sub-sampling in which aliasing obscures short-range interactions.

In section 2 we prove that our method is communication avoiding and provides consistent spec-
tral estimators Brillinger (1981) for cross-dependencies. We first compress the time series locally
by projecting without interpolation or reordering directly onto a reduced Fourier basis. Spectral
estimation then occurs in the frequency domain prior to being translated back into the time domain
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with an inverse Fourier transform. The resulting output can be used to compute unbiased Lead-Lag
Ratios and thereby identify statistical causation.

In section 3, we provide a method to approximately erase LRD in the frequency domain, which
has tremendous computational advantages as opposed to time domain based methods. Our analysis
of LRD erasure as fractional pole elimination in frequency domain guarantees the causal estimates
we obtain are not spurious Doukhan et al. (2003); Granger (1988).

In section 4, we present a novel analysis of the trade-off between estimator variance and commu-
nication bandwidth which precisely assesses the cost of compressing time series prior to analyzing
them. A three-fold analysis establishes the statistical soundness of the contributions that address the
three issues mentioned above. Studying data on compressed representations comes at an expected
statistical cost. In our setting this supplementary variance can be decreased in an iterative manner
and with bounded memory cost on a single machine. These properties cannot be replicated to the
best of our knowledge by time domain based sub-sampling. Finally, we apply these methods to
massive real financial market trade tables.

2. Addressing the issues caused by irregular sampling

In this section, we first review existing techniques for interpolated time-domain estimation of second-
order statistics in the context of sparse and random sampling along the time axis. Interpolating data
is a usual solution in order to be able to use classic time series analysis Parzen (2012); Wiener
(1949); Friedman (1962); Linsay (1991). Unfortunately it can create spurious causality estimates.

2.1. Issues with second order statistics and interpolated data

In order to infer a linear model from cross-correlogram estimates by solving the Yule-Walker equa-
tions Brockwell and Davis (1986) or to compute a LLR (Eq. (1)) one needs to estimate the cross-
correlation structure of two time series. Let (X) and (Y ) be two centered stochastic processes
whose cross-covariance structure is stationary: γXY (h) = E (Xt−hYt) . If data is sampled regularly
(xn∆t, yn∆t)n=0...N−1 ( we use a lower case notation (x) to denote observations of the theoretical
process (X) ) a consistent estimator for γXY (h) is:

̂γXY (h) =
1

N − h− 1

N−1∑
n=h

x(n−h)∆tyn∆t (1)

(we use Â to denote an estimator for A). Classically, cross-correlation estimates can subsequently
be computed as a normalized version of this estimator Brockwell and Davis (1986).

Interpolating irregular records:
The standard consistent estimator Eq. (1) cannot be computed when (x) and (y) do not share

common timestamps. A classical way to circumvent the irregular sampling issue is therefore to
interpolate the records (xtx)tx∈Ix and

(
yty
)
ty∈Iy onto the set of timestamps (n∆t)n=0...N−1 there-

fore yielding two approximations
(
x̃n∆t

)
n=0...N−1

and (ỹn∆t)n=0...N−1 that can be studied as a

synchronous multivariate time series. An adapted cross-covariance estimate is then
̂̃
γXY (h) =

1
N−h−1

∑N−1
n=h ˜x(n−h)∆tỹn∆t. While there are many interpolation techniques, a commonly used
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method is last observation carried forward (LOCF) which, contrary to nearest or linear interpola-
tion, does not need future information and can therefore be used in an on-line predictor. We now
show how the LOCF interpolation technique creates spurious causality estimates.

Bias in LLR with irregularly sampled data: The LLR can be computed by several methods.
Cross-correlation measurements on a symmetric centered interval are sufficient statistics for this
estimator. Therefore one can use synchronous cross-correlation estimates on interpolated data in
order to compute the LLR. Carrying the last observation forward (LOCF) has been proven to
create a bias in lag estimation in Huth and Abergel (2014). In Figure 2, the LOCF interpolation
method introduces a causality estimation bias in which a process sampled at a higher frequency will
be seen as causing another process which is sampled less frequently. This is misleading because in
the experiment the Brownian motions we simulate have simultaneously correlated increments.

2.2. Issues with interval-matching for irregularly observed data

The Hayashi-Yoshida (HY) estimator was introduced in Hayashi et al. (2005) to address this spuri-
ous causality estimation issue. In particular, the HY estimator of cross-correlation does not require
data interpolation.

Correlation of Brownian motions: HY is adapted to measuring cross-correlations between
irregularly sampled Brownian motions. Considering the successor operator s for the series of times-
tamps of a given process, let [t, s(t)]t∈Ix and [t, s(t)]t∈Iy be the set of intervals delimited by con-
secutive observations of x and y respectively. The Hayashi-Yoshida covariance estimator over the
covariation of (X) and (Y ) is defined as

HY[0,t](x, y) =
∑

t∈Ix,t′∈Iy :ov(t,t′)

(xs(t) − xt) · (ys(t′) − yt′) (2)

where ov(t, t′) is true if and only if [t, s(t)] and [t′, s(t′)] overlap. The estimator can be trivially
normalized so as to yield a correlation estimate.

HY and fractional Brownian motions: No interpolation is required with HY but unfortunately
this estimator is only designed to handle full differentiation of standard Brownian motions. Figure
4 shows how HY fails to estimate cross-correlation of increments on a fractional Brownian motion
whereas the technique we present succeeds. In the following, we show how our frequency domain
based analysis naturally handles irregular observations and is able to fractionally differentiate the
underlying continuous time process. This is in particular necessary when one studies factional
Brownian motions with correlated increments. In the interest of concision, we refer the reader to
Flandrin (1989) for the definition of a fractional Brownian motion.

2.3. Solving the issues created by irregular sampling with Fourier transforms

Our alternative approach to estimating cross-correlograms is based on the definition of the Fourier
transform of a stochastic process. Considering a continuous time stochastic process (Xt)t∈[0...T ]

and a frequency f ∈ [0 . . . 2π], the Fourier projection of (X) for the frequency f is defined as
Pf (X) =

´ T
t=0Xte

−iftdt where i is the imaginary number. Much attention has been focused on
the benefits of the FFT algorithm which has been designed for the very particular base of ordered
and regularly sampled observations. Our key insight is to go back to the very definition of the
Fourier transform as an integral and express it empirically in summation form Brillinger (1981);
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Parzen (2012). Moreover, if the process (X) is observed at times (t1, . . . , tN ), one can estimate the
Fourier projection by

P̂f (x) =
N∑
n=1

xtne
−iftn . (3)

Therefore we propose the following simple framework for frequency domain based linear causal
inference: first, project (x) and (y) on to a reduced Fourier basis, then, estimate the cross-spectrum
of (X) and (Y ) in the frequency domain, finally, apply the inverse Fourier transform to the cross-
spectrum to recover the cross-correlogram and infer the linear causal structure.

The intuition behind this estimation method is a change of basis that allows us to compute
cross-covariance estimates without needing to address the irregularity of timestamps. Indeed the

power spectrum f(·) is the element-wise Fourier transform of Γ (·) =

[
γXX (·) γY X (·)
γXY (·) γY Y (·)

]
.

Therefore, in order to estimate this function one may infer what corresponds to its frequency domain
representation and then compute the inverse Fourier transform of the result.

Projecting onto Reduced Fourier Basis: We first project (X) and (Y ) onto the elements of the
Fourier basis of frequencies (l∆f)l=0...P , namely the pair (Pl∆f (X))l=0...P and (Pl∆f (Y ))l=0...P .
By projecting onto a single relatively small set of orthonormal functions, we are able to compress
the observations (x) and (y). In practice we are able to accurately recover the cross-correlogram
using only a few thousand projection functions.

Estimating the Cross-spectra: Projecting onto a Fourier basis enables exploratory data analy-
sis through the study of the cross-spectrum of (X) and (Y ), (IXY (l∆f))l=0...P =

(
Pl∆f (X)× Pl∆f (Y )

)
l=0...P

.

An inconsistent estimator for the cross-spectrum is(
̂IXY (l∆f)

)
l=0...P

=

(
̂Pl∆f (x)× ̂Pl∆f (y)

)
l=0...P

.

Local averaging of this estimator with respect to frequencies is widely used Brillinger (1981);
Brockwell and Davis (1986); Parzen (2012) in cross-spectral analysis to identify the characteristic
frequencies at which stochastic processes interact. Unfortunately, to compute characteristics delays
or LLR (crucial steps in linear causal inference) we still need to estimate the cross-correlogram.

Estimating the Cross-correlogram: To estimate the cross-correlogram we can take the inverse
Fourier transform of the cross-spectrum (IXY (l∆f))l=0...P which translates frequency analysis
back into the time domain:

γPXY (h) =
1

P

P∑
l=0

IXY (l∆f) eil∆fh.

Using the following consistent estimator: γ̂PXY (h) = 1
P

∑P
l=0 Îxy (l∆f) eil∆fh of the cross-

covariance we can directly compute a consistent estimator of the cross-correlation. The cross-
correlation between (X) and (Y ) can now be estimated in the time domain with a discrete grid Gh
of lag values ranging from−L∆h to L∆h with a resolution ∆h. As expected, aliasing will occur if
the user specifies a resolution in the cross-correlation estimate that is much higher than the average
sampling frequency of the time series Parzen (2012).

In contrast to more cumbersome time domain synchronization relying on interpolation based
methods (LOCF) or interval matching based estimations (HY), our method elegantly addresses time
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Figure 2: Spurious cross-correlation created by interpola-
tion: Cross-correlograms of LOCF interpolated data (left) versus
estimation via compression in frequency domain (right). The lat-
ter estimate does not present any spurious asymmetry due to the
uneven sampling frequencies.

N1
N2

LOCF interp. Fourier transf.
LLR LLR

Avg +- std Avg +- std
1 0.998 +−0.135 1.021 +−0.166

4.5 6.863 +−1.678 1.053 +−0.320

10 7.277 +−1.854, 1.107 +−0.391

Figure 3: Comparison of LLR ratios with LOCF
and Fourier transforms (1000 projections) for simul-
taneously correlated Brownian motions with different
sampling frequencies. The LLR ratios should all be 1,
one can observe the bias in the LOCF method.

synchronization in the frequency domain. While earlier work Parzen (2012); Brillinger (1981) has
considered the application of frequency domain analytics to irregularly sampled data, our method
is the first to translate back to the time domain to recover a consistent estimator of the linear causal
structure. Alternatively, Lomb-Scargle periodogram Scargle (1982); Lomb (1976) also enables the
frequency domain analysis of irregularly observed data but suffers from the supplementary cost of
a least square regression. To the best of our knowledge we are the first to use frequency domain
projections in order to compute the cross-correlogram in order to infer linear causal structure.

Cross-correlogram Estimator Consistency: Central to the communication and memory per-
formance of our technique is the ability to use a small number of Fourier projections relative to
the number of observations and still accurately recover the cross-correlogram. We can characterize
the statistical properties of the cross-spectral estimator Brillinger (1981); Parzen (2012); Brockwell
and Davis (1986). In particular, it is well known that for two distinct non-zero frequencies f1 and
f2 the estimators ̂IXY (f1) and ̂IXY (f2) are asymptotically independent. Consequently, to obtain
an estimator with asymptotic variance O(V ) the user will need to project on 1

V frequencies. The
element-wise product of Fourier transforms is converted into the time domain by the inverse Fourier
transform to yield a cross-correlogram. With very large datasets in which N >> 1

V we are in the
asymptotic regime and obtain the suitable compression property of our algorithm.

2.4. Example of time domain exploratory data analysis through the frequency domain

The time domain exploratory analysis we enable makes lead-lag relationships self-explanatory. We
show in the following that it is not biased by one process being sampled more seldom than the other.

Numerical assessment of frequency domain based correlation measurements: We demon-
strate, through simulation, that the spurious causation issue that plagues the LOCF interpolation Huth
and Abergel (2014) does not appear in our proposed method. We consider two synthetic correlated
Brownian motions that do not feature any lead-lag and compare the estimation of LLR provided by
two time domain interpolation methods and our approach. After having sampled these at random
timestamps, in Table 3 and Figure 2 we compare the cross-correlation and LLR estimates obtained
by LOCF interpolation and our proposed frequency domain analysis technique confirming that our
method does not introduce spurious causal estimation bias.
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Figure 4: LRD Erasure: Monte Carlo simulation (100 samples)
of two fractional Brownian motions with Hurst exponent 0.8 and
simultaneously correlated increments. Spurious slowly vanishing
cross-correlation hinders the HY estimation but does not affect our
estimation with LRD erasure (see Section 3) as evident by nearly
zero cross-correlation for non-zero lag.

Figure 5: The empirical cross-correlation dis-
tribution on the left is affected by spurious esti-
mates. On the right, frequency domain fractional
pole erasure eliminated the issue, considerably
narrowing the interval between the 5th and 95th

percentiles.

3. Addressing the issues created by Long Range Dependence

A stochastic process is said to be Long Range Dependent (LRD) if it features cross-correlation
magnitudes whose sum is infinite Doukhan et al. (2003). Many issues arise in that case with cor-
relation estimates becoming spurious. This phenomenon was first discover when Granger studied
the concept of cointegration between Brownian motions (integrated time series) Granger (1988).
On sorted Brownian motion data, this effect can be addressed by differentiating the time series,
namely computing (∆Xt)t∈Z = (Xt −Xt−1)t∈Z. For fractional Brownian motion and LRD time
series, the fractional differentiation operator needs to be computed. It is defined as (∆αXt)t∈Z =(∑∞

h=0

∏h−1
j=0 (α−j)(−Xt−h)h/h!

)
t∈Z . Therefore, to study the cross-correlation structure of two inte-

grated or fractionally integrated time series, one would have to compute (∆Xt)t∈Z or (∆αXt)t∈Z.
The latter requires chronologically sorted data and synchronous timestamps and has a quadratic
time complexity with respect to the number of samples.

3.1. Erasing memory in the frequency domain

Erasing memory is of prime importance, in the case of the study of Brownian motions and fractional
Brownian motions alike. As pointed out in Doukhan et al. (2003), LRD arises in many systems and
from a computational and statistical point of view, it is challenging to erase.

Equivalence between differentiation in time domain and element-wise multiplication in
frequency domain: Let (Xt)t∈[0,T ] be a continuous process whose fractional differentiate of degree
α, dαX is Lebesgue-integrable with probability 1. If Xt vanishes at the boundaries of the interval,
classically, almost surely, Pf (dαX) =

´ T
t=0 e

−iftdαXt = − (−if)α
´ T
t=0 e

−iftXtdt by a stochastic

integration by part. Therefore, an estimate for Pf (dαx) is ̂Pf (dαX) = − (−if)α P̂f (X).
Erasing memory through fractional pole elimination: The power spectrum of a fractional

Brownian motion Flandrin (1989) with Hurst exponent H is asymptotically 1
f2H+1 for f << 1.

This is the characteristic spectral signature of a long range dependent time series. H can therefore
be estimated by the classical periodogram method for an individual time series by conducting a
linear regression on the magnitude of the power spectrum about 0 in a log/log scale Doukhan et al.
(2003). Wavelets are another family of orthogonal basis enabling a similar estimation. One can
therefore see the fractional differentiation operator of order H + 1/2 as a means to compensate for a
pole of order 2H + 1 in square magnitude in 0. Multiplying the Fourier transform of the signal by
(if)H+1/2 eliminates the issue. It does not require any preprocessing of the data, no interpolation or
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re-ordering and we will show below that it has tremendous computational advantages in the context
of distributed computing in terms of communication avoidance.

3.2. Testing frequency domain LRD erasure

The example below considers two fractional Brownian motions (X) and (Y ) Brownian motions
with Hurst exponent H = 0.4 Doukhan et al. (2003). We compare the empirical distributions of
cross-correlation estimates obtained over 100 trials with and without LRD erasure in frequency
domain. In Figure 5 we showcase an experiment with 9998 uniformly random observations for
(X) and 6000 uniformly random observations for (Y ). Naive cross-correlation estimations lead to
many spurious cross-correlation estimates with significantly high magnitudes of estimated correla-
tion values for processes that are in fact independent, (90% of the empirical distribution between
−0.9 and 0.9). The confidence interval we obtain with our novel frequency domain erasure method
by fractional pole elimination is narrower (90% of the empirical distribution between −0.05 and
0.05) and enables reliable analysis. The next section will expose the computational advantages of
such a frequency domain based estimation as a communication avoidance mechanism.

4. Addressing the issues created by the scale of large data sets

Scalable computation is essential to practical causal inference in real-world big data sets. Our pro-
posed frequency domain approach provides a parallel communication avoiding mechanism to effi-
ciently compress large time-series data sets while still enabling the estimation of cross-correlograms.
To leverage scale-out cluster computing it is essential to minimize communication across the net-
work as network latency and bandwidth can be orders of magnitude slower than RAM Peleg (2000).

4.1. Computational advantages

The novel frequency domain based methods we propose can entirely be expressed as trivial map-
reduce aggregation operations and do not require sorting or interpolating the data. Projecting on
a few elements of the Fourier basis substantially reduces communication and memory complexity
associated with the estimation of cross-correlograms.

4.2. Fourier compression as a communication avoidance algorithm

The computation of Fourier projections is communication efficient in the distributed setting. The
Fourier projection can be calculated by locally computing the sum of the mapping of multiplications
by complex exponentials. Then, local partial sums are transmitted across the network to compute
the projections of the entire data set. In this section, we study d distinct processes with N data
points each. Let V denote the desired variance for the cross-correlation estimator via the frequency
domain.

Communication cost of aggregation with indirect frequency domain covariance estimates:
Now consider the set of Fourier projections

(
P̂f (x) =

∑N
n=1 xtne

−iftn
)
f=0,∆f,...,P∆f

which we

aggregate on each single machine separately prior to sending them over the network. The number of
projections needed to have an estimator for cross-correlation with variance V is O( 1

V ). Therefore,
the size of the message sent out by each machine over the communication medium is now O(d 1

V )
and representative of O(dN) data points. If the user chooses 1

V � N , our method effectively
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compresses the data prior to transmitting it over the network. It is noteworthy that the gain offered
by this algorithm is system independent as long as communication between computing cores is the
main bottleneck.

Distributed LRD erasure: The computational complexity of fractional differentiation isO(N2d)
in the time domain. Moreover, in distributed system, computing the fractional differentiation of a
signal would require transmitting the entire data set across the network. As a consequence the band-
width needed is O(Nd). The compute time therefore allows an interactive experience for the user
and becomes even shorter with a distributed implementation on several machines. For example, on
a single processor with a 2013 MacbookPro Retina we were able to compute 3000 projections on
105 samples in roughly a minute.

5. Causality estimation on actual data

In order to highlight significant cross-correlation between pairs of stocks, one needs to consider
high frequency dynamics. As we will show in the following, cross-correlation vanishes after a few
milliseconds on most stocks. In these settings it is then necessary to use full resolution data whose
timestamps are irregular and not common to different pairs of stocks as records only occur when an
trading event occurs Abergel et al. (2012). Intraday stock prices can be considered LRD processes
Doukhan et al. (2003) and therefore we need to use fractional pole erasure in this example. This
context is therefore in the very scope of data intensive tasks we consider.

5.1. Checking the consistency of the estimator

Consider ask and bid quotes during one month worth of data. We create a surrogate noisy lagged
version of AAPL with a 13ms delay and 91% correlation which is named AAPL-LAG. We study
fours pairs of time series: APPL/APPL-LAG, AAPL/IBM, AAPL/MSFT, MSFT/IBM. We obtained
quote data for these stocks at millisecond time resolution representing several months of trading.
The cross-correlograms obtained below are computed between 10 AM and 2PM for 61 days in
January, February and March 2012. For each process, 3000 frequencies were used in the Fourier
basis which is several orders-of-magnitude less than the number of observations that we get per
day which ranges from 5 × 104 to 1 × 105. The estimate cross-correlograms in Figure 6 and their
empirical significance intervals show that our estimator is consistent and does not suffer from non-
vanishing variance as a result of LRD. We observe an 89% average peak cross-correlation with
an 8ms delay for the surrogate pair of AAPL stocks which confirms our estimator is reliable with
empirical data. In Figure 6 we highlight a taxonomy of causal relationships.

5.2. Studying causality at scale

To evaluate scalability in a real-world setting in which 1
V << N , we assess the relation between

AAPL and MSFT over the course of 3 months. In contrast to our earlier experiments (shown in
Figure 6), we no longer average daily cross-correlograms in and therefore only leverage concentra-
tion in the inverse Fourier transform step of the procedure. With only 3000 projections for 5× 106

observations per time series, the results we obtain on Figure 7 reveals the causal relation between
AAPL, AAPL-LAG, IBM and MSFT consistently with Figure 6.

Scalability: We run the experiment with Apache Spark on Amazon Web Services EC2 machines
of type r3.2xlarge where communication is a bottleneck. In Figure 8 we show that even with a
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Figure 6: Compression ratio is < 5%. The daily averaged
cross-correlogram of AAPL and IBM is strongly asymmet-
ric, therefore highlights that IBM follows AAPL. The sym-
metry between AAPL and MSFT shows there is no such re-
lationship between them. Symmetric and offset in correla-
tion peak show that IBM follows MSFT with a millisecond
latency.
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Figure 7: Compression ratio is < 1%. On the entire data
set we retrieve results similar to 6 therefore validating the use
of our estimation of cross-correlograms in a scalable manner
thanks to Fourier domain compression.

Figure 8: On the left we plot the empirical standard deviation of daily cross-correlograms with respect to the number of
projections showing that the variability decreases rapidly. On the right we plot the run time performance of our algorithm
versus the number of Apache Spark EC2 machines demonstrating approximately linear speedup.

large number of projections (10000) the communication burden is still low enough to achieve a
linear speed-up. In Figure 8 we show that even with a large number of projections (10000) the
communication burden is still low enough to achieve linear speed-up.

6. Conclusion

Time series analysis via the frequency domain presents several provides consistent causal estimates
and scaling on distributed systems. We proposed a method to analyze causality which does not
require sorting data, works naturally with irregular timestamps, provides reliable causality esti-
mates and makes the erasure of Long-Range dependencies embarrassingly parallel. Applying an
inverse Fourier transform to estimated Fourier spectra enables exploration of dependencies in the
time domain. With the resulting consistent cross-correlogram, one can compute Lead-Lag ratios
and characteristic delays between processes and thereby infer linear causal structure. We show that
projecting onto 3000 Fourier basis elements is sufficient to study tens of millions of irregularly
observed recordings, thereby providing insightful analytics in a generic and scalable manner.
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