
Routing strategies for the reliable and efficient utilization of road networks

by

Samitha Samaranayake

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering – Civil and Environmental Engineering

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Professor Alexandre M. Bayen, Chair

Professor Roberto Horowitz
Professor Satish Rao

Professor Raja Sengupta

Fall 2014

Routing strategies for the reliable and efficient utilization of road networks

Copyright 2014
by

Samitha Samaranayake

1

Abstract

Routing strategies for the reliable and efficient utilization of road networks

by

Samitha Samaranayake
Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

The research presented in this dissertation aims to develop computationally tractable models
and algorithms for the reliable and efficient utilization of capacity restricted transportation
networks via route selection and demand redistribution, motivated by the fact that traffic
congestion in road networks is a major problem in urban communities. Three related topics
are considered, 1) route planning with reliability guarantees, 2) system optimal dynamic
traffic assignment, and 3) controlling user equilibrium departure times.

Route planning can in many practical settings require finding a route that is both fast
and reliable. However, in most operational settings, only deterministic shortest paths are
considered, and even when the link travel-times are known to be stochastic the common
approach is to simply minimize the expected travel-time. This approach does not account
for the variance of the travel-time and gives no reliability guarantees. In many cases, travelers
have hard deadlines or are willing to sacrifice some extra travel-time for increased travel-
time reliability, such as in commercial routing applications where delivery guarantees need
to be met and perishables need to be delivered on time. The research presented in this
dissertation develops fast computation techniques for the reliable routing problem known
as the stochastic on-time arrival (SOTA) problem, which provides a routing strategy that
maximizes the probability of arriving at the destination within a fixed time budget.

Selfish user optimal routing strategies can, however, lead to very inefficient traffic equi-
libria in congested traffic networks. This "Price of Anarchy" can be mitigated using system
optimal coordinated routing algorithms. The dissertation considers the system optimal dy-
namic traffic assignment problem when only a subset of the network agents can be centrally
coordinated. A road traffic dynamics model is developed based on the Lighthill-Williams-
Richards partial differential equation and a corresponding multi-commodity junction solver.
Full Lagrangian paths are assumed to be known for the controllable agents, while only the
aggregate split ratios are required for the non-controllable (selfish) agents. The resulting
non-linear optimal control problem is solved efficiently using the discrete adjoint method.

Spill-back from under-capacitated off-ramps is one of the major causes of congestion
during the morning commute. This spill-back induces a capacity drop on the freeway, which
then creates a bottleneck for the mainline traffic that is passing by the off-ramp. There-

2

fore, influencing the flow distribution of the vehicles that exit the freeway at the off-ramp
can improve the throughput of freeway vehicles that pass this junction. The dissertation
studies the generalized morning commute problem where vehicles exiting the freeway at the
under-capacitated off-ramp have a fixed desired arrival time and a corresponding equilib-
rium departure time schedule, and presents strategies to manipulated this equilibrium to
maximize throughput on the freeway via incentives or tolls.

i

To my parents, Sriya and Kithsiri Samaranayake

ii

Contents

List of Figures v

List of Tables vii

Acknowledgments viii

1 Introduction 1
1.1 Motivation . 1
1.2 Traffic information systems and reliable routing 2
1.3 Dynamic traffic assignment . 3
1.4 The morning commute problem . 5
1.5 Integrated corridor management . 6
1.6 Summary of contributions . 8

1.6.1 Contributions in the dissertation . 8
1.6.2 Additional contributions . 9

1.7 Organization of the dissertation . 10

I Reliable routing 12

2 Stochastic on-time arrival (SOTA) problem 13
2.1 Introduction . 13
2.2 Problem formulation . 14
2.3 Continuous time formulation of the SOTA problem 17

2.3.1 Solution algorithm for single iteration convergence 17
2.3.2 Extended algorithm for time-varying link travel-times 19
2.3.3 Generalized algorithm for correlated link travel-times 22

2.4 Discrete formulation of the SOTA algorithm with a Fast Fourier Transform
solution . 23
2.4.1 Complexity analysis . 24
2.4.2 Acceleration of Algorithm 2.3 with localization 26
2.4.3 Search space pruning by elimination of infeasible paths 31

Contents iii

2.5 Implementation of the algorithm in the Mobile Millennium system 32
2.5.1 Runtime performance . 34
2.5.2 Comparison with classical routing algorithms 35
2.5.3 Test case: evening rush commute within the city of San Francisco . . 39

2.6 Efficient convolutions . 41
2.6.1 Experimental setup . 44
2.6.2 Synthetic network . 44
2.6.3 San Francisco Arterial Network . 47

3 Precomputation techniques for the stochastic on-time arrival problem 49
3.1 Introduction . 49
3.2 Preprocessing techniques for SOTA . 51

3.2.1 Reach. 52
3.2.2 Arc-flags. 54
3.2.3 Computing the reach and arc-flags. 55

3.3 Experimental results . 56

II System optimal dynamic traffic assignment 61

4 Discrete-time system optimal dynamic traffic assignment (SO-DTA) with
partial control for horizontal queuing networks 62
4.1 Introduction . 62
4.2 Traffic model . 64

4.2.1 Notation . 64
4.2.2 Basic definitions . 65
4.2.3 Discretization requirements . 67
4.2.4 Controllable and non-controllable flow 68

4.3 Forward system . 70
4.3.1 Junction model . 70
4.3.2 Boundary conditions . 76
4.3.3 System dynamics . 78
4.3.4 Explicit solutions for the junction flows 81

4.4 Adjoint based optimization . 84
4.4.1 Problem formulation . 84
4.4.2 Overview of the adjoint method . 86
4.4.3 Applying the adjoint method . 87
4.4.4 Adjoint equations . 88
4.4.5 Partial derivatives . 89

4.5 Numerical Results . 96
4.5.1 Synthetic network . 96
4.5.2 Interstate 210 network . 98

Contents iv

III Control of user equilibrium 103

5 A mathematical framework for delay analysis in single source networks 104
5.1 Introduction . 104
5.2 Point queue model for network flow . 105

5.2.1 Network definitions . 106
5.2.2 Modeling the flow of agents . 106
5.2.3 Queuing and diverge model . 108
5.2.4 Existence and uniqueness of the solution to the model 111

5.3 A solution based on time mapping . 112
5.3.1 Local study of point queues . 112
5.3.2 Time mapping . 114
5.3.3 Global evolution of delay . 121
5.3.4 Equivalence of departure curves and delays 124
5.3.5 Existence and uniqueness of the time mapped delay evolution 126
5.3.6 Total path delay . 130

5.4 Applications . 132
5.4.1 Single route with multiple bottlenecks 133
5.4.2 Off-Ramp bottleneck . 134

6 Solving the user equilibrium departure time problem at an off-ramp with
incentive compatible cost functions 138
6.1 Introduction . 138
6.2 Network and demand model . 139

6.2.1 Network . 139
6.2.2 Demand model . 142

6.3 Existence and uniqueness of the exiting vehicle equilibrium 143
6.3.1 Equilibrium compatible cost functions 144
6.3.2 Fixed cost equilibrium . 146
6.3.3 Existence and uniqueness of exiting vehicle equilibrium 150

6.4 Analysis of incentive/tolling functions . 152
6.4.1 Zero-congestion incentives/tolls . 153
6.4.2 Step incentives/tolls . 157

7 Conclusions and future work 161

Bibliography 165

v

List of Figures

1.1 Traffic flow rerouting in the Connected Corridors traffic management system . . 7

2.1 A simple network with an optimal routing policy that may contain a loop. . . . 16
2.2 The influence of the order of computation. 28
2.3 Velocity estimates on the Bay Area highway network. 34
2.4 Travel-time estimates on the San Francisco arterial network. 35
2.5 Illustration of the tractability of the problem. 36
2.6 Probability of arriving on time at Palo Alto when departing from Berkeley . . . 37
2.7 Probability of arriving on time . 38
2.8 A family of travel-times distributions modeled using 30 shifted gamma distributions 39
2.9 Different realizations of the path. 40
2.10 Illustration of the zero-delay convolution algorithm. 42
2.11 Illustration of the δ-multiple zero-delay convolution algorithm. 43
2.12 Manhattan Grid . 45
2.13 Runtime as a function of budget for different graph structures 46
2.14 Runtime as a function of budget for different graph size 46
2.15 Runtime for computing the optimal policy in the San Francisco Arterial network. 48

3.1 A network where the forward and reverse problems are not equivalent 50
3.2 A network where the optimal policy cannot be decomposed 51
3.3 Pruning of the San Francisco network for some source-destination pair. 59

4.1 Triangular fundamental diagram. 66
4.2 An illustration of the solutions to merging junctions. 74
4.3 Dependency diagram of the variables in the system. 85
4.4 The synthetic network adapted from [140]. 96
4.5 The change in total travel time vs percentage of vehicles that can be rerouted. . 98
4.6 The Interstate 210 sub-network . 99
4.7 The density evolution along the 14 freeway road links 100
4.8 The density evolution with different capacities on the parallel arterial route . . . 101
4.9 Adjoint method vs finite differences . 102

5.1 Diverge model. 111

List of Figures vi

5.2 Time mapping nodes . 116
5.3 MultipleBottlenecks on a road. 134
5.4 Off-Ramp model - (a) state 00 (b) state 01 (a) state 10 (a) state 11 135
5.5 State transitions in the off-ramp model . 136
5.6 Simulation of states and delays . 137

6.1 Network model . 140
6.2 Illustration of equilibrium compatible cost functions 145
6.3 Set of windows and plateaus . 147
6.4 Arrival rate as a continuous correspondence of the fixed cost 151
6.5 The highway optimal incentive for a simple schedule cost function 154
6.6 The highway optimal toll for a simple schedule cost function 155
6.7 A combined incentive and tolling strategy for highway optimal flow allocation . 155
6.8 A combined incentive and tolling strategy that shifts the equilibrium 156
6.9 A shifted combined incentive and tolling strategy for highway optimal flows . . . 157
6.10 A step incentive strategy for shifting vehicle flow to the left of the scheduled

arrival time . 158
6.11 A more efficient left shift step incentive strategy 159
6.12 A step incentive/tolling strategy for shifting vehicle flow 159
6.13 A step incentive/toll strategy for discrete piecewise constant inflow rates 160

vii

List of Tables

2.1 Lower bound for better performance with FFT approach 27
2.2 τi values when computing ui constrained on previous iteration. 28
2.3 τi values when computing ui in the order (a, b, c, d). 28
2.4 τi values when computing ui in the order (d, c, b, a). 28
2.5 The influence of the update order. 28
2.6 Different realizations of the path. 40
2.7 Runtime (in minutes) for different budgets. 47

3.1 Relative speedups over no preprocessing for San Francisco 57
3.2 Relative speedups over no preprocessing for Luxembourg 58
3.3 Relative speedups over no preprocessing for synthetic network 58
3.4 Precomputation time in seconds for reach, arc-flags and heuristic arc-flags. . 59

4.1 Demands at origin . 97
4.2 Optimal allocation of demand across routes 97
4.3 Capacity reduction due to incident . 97

viii

Acknowledgments

The research presented in this dissertation would not have been possible without the
help, support and contributions of many people during the last five years. I would like to
take this opportunity to express my deepest gratitude to everyone involved.

I would like to start by thanking my advisor Professor Alexandre Bayen for giving me
the opportunity to work in his research group and all the support he has given throughout
my time at Berkeley. He guided and oriented my PhD research with his vision, inspired me
with his boundless energy and work ethic, enabled collaborations by helping build research
partnerships, and made the whole experience an immensely enjoyable one by accommodating
a good work-life balance. I am greatly indebted to him for all his advice, support and
camaraderie, both on a professional and personal level.

A major benefit of being at Berkeley has been the ability to interact with and learn
from many domain experts. I was fortunate to have the opportunity to work with Professor
Roberto Horowitz and his research group on traffic control problems. Discussing research
problems with Professor Horowitz has always been a great experience, both due to the deep
knowledge he has on the intricacies of the subject and the enthusiasm with which he engages
in research problems.

I would like to thank Professor Raja Sengupta for chairing my qualifying exam commit-
tee and the time spent discussing a variety of topics and problems. His insights based on his
vast knowledge of a wide range of disciplines has helped me look at research problems from
many different angles. I would also like to express my gratitude to Professor Steven Glaser
for pioneering the Systems Program at Berkeley and giving me the opportunity to be part
of it, and for his valuable guidance during the ClearSky project.

Professor Satish Rao has been a great resource for discussing research problems related
to network flows. I would like to thank him for sharing his insights on these research problems
and the discussions related to pedagogy, all of which I have enjoyed thoroughly. It is not a
surprise that Professor Rao’s course on Parallel Algorithms was also one of the most engaging
courses I have taken.

Professor Alex Skarbadonis is a walking encyclopedia of transportation research and
practice. I would like to thank him for the openness with which he always shared his
insights and for helping make sure that my research efforts had the right balance between
theory and practical relevance.

I had the privilege to visit Professor Paola Goatin’s research group at INRIA Sophia-

Acknowledgments ix

Antipolis in the Fall of 2012. This visit led to a very fruitful research collaboration with
Professor Goatin and her graduate student Maria-Laura Delle Monache. The interactions
with Professor Goatin have helped deepen my knowledge in the mathematical aspects of
traffic modeling. I would also like to thank Professor Peter Sanders for the opportunity to
visit his research group in Karlsruhe and both Moritz Kobitzsch and Dennis Schieferdecker
for the subsequent collaborations on stochastic route planning.

During the PhD, I have had the opportunity to work with a number of industry col-
laborators and partners on the variety of topics. I would like to thank Mihai Stroe, Lucien
Pech, and Mathilde Hurand for all their support during my internship with the Google Tran-
sit team in Zurich and their help with subsequent research collaborations. Thank you to
Mark Dilman and his group for the opportunity to apply some of my PhD research work to
database load balancing problems at Oracle, and also Cris Martin for the discussions that led
to this. I would also like to thank Ken Tracton from Nokia and Felix Konig from TomTom
for their support with the ClearSky and stochastic routing projects.

I would like to take this opportunity to also acknowledge the influence of Dr. Rohit
Kapur at Synopsys, who was my first research mentor as a raw undergraduate and masters
student. I am deeply appreciative of his mentorship and guidance during those formative
years as a researcher, and for all his subsequent support.

During my first semester at Berkeley, I was extremely fortunate to meet and be able
to join forces with Sebastien Blandin, who was the perfect student mentor as I started my
PhD. I have learned a great deal from his methodical and detailed approach to research,
tireless work ethic and humility, which are qualities I have tried to emulate. Working with
Sebestien, throughout the years (and hopefully for years to come), has been both a very
productive and extremely enjoyable experience.

I have also had a pleasure and privilege to work with a number of other PhD student
collaborators during the PhD. A big thanks to Jack Reilly for the countless hours spent
discussing traffic models, optimization problems, systems design and of course all the sports,
music and other fun activities. I would like to thank Walid Krichene for all the interesting
discussions related to the experts algorithm and other optimization problems. Thanks also to
Tim Hunter, Dan Work, Andrew Tinka, Ryan Herring, Eloi Pereira, Aude Hofleitner, Chris
Claudel, Paul Borokhov, Jerome Thai and Leah Anderson for all your help and insights.

I would like to gratefully acknowledge all the interns and undergraduate researchers that
I had the pleasure of mentoring and collaborating with during my PhD. Working with Axel
Parmentier, Guillaume Sabran, Jean-Baptiste Lespuai, Mehrdad Niknami, Manuel Jakob
and Maleen Abeydeera has been a great experience that I have learned a great deal from
and which has been a major influence in my desire to continue in academia. I would like
to especially thank Axel Parmentier for the long-standing collaboration that led to the final
chapters of this dissertation.

The implementation of the systems described in this dissertation would not have been
possible without the contributions from the staff at the California Center for Innovative
Transportation (CCIT) and California Partners for the Advanced Transportation Technology
(PATH). I would like to thank Tom West for all his support as director at CCIT and PATH,

Acknowledgments x

Joe Butler for keeping the ship afloat and moving in the right direction even when the
waters got rough, Gabriel Gomes for all the discussions on traffic modeling/control and
help with implementation, and Ethan Xuan for instrumenting the research on the morning
commute problem. I would also like to individually thank Thomas Schrieter, Anthony Patire,
Dimitrios Triantafyllos, Saneesh Apte, Bill Sappington, Luis Torres and Javier Hernandez
for their contributions and Shelley Okimoto, Rosita Alvarez and Helen Bassham for all their
help with navigating the system.

Thanks to Charith, Nishad and Yusuf for all the good times in Berkeley, Monterey
and Fremont, Tim, Quentin, Charline and Gary, for being the lead social instigators, Justin,
Jennifer and Joyce, for keeping the team intact across state lines, and Buddhika, DC, Hasitha,
Jon and Nodari, for being the go to guys. A very special thanks to Nina for all the great
adventures and patiently keeping me on track in these last few months.

Finally, I would like to thank my parents and my brother Nayana, without whom none
of this would have been possible. Thank you for all your love, support, countless sacrifices
through the years.

1

Chapter 1

Introduction

1.1 Motivation
Traffic congestion in road networks is a major problem in cities worldwide. The amount

of time wasted due to congestion in the United States alone is estimated to be over 5.5 billion
hours per year, which amounts to an economic loss of over 121 billion dollars or roughly 1
percent of the entire U.S. Gross Domestic Product (GDP) [124]. Furthermore, this cost
does not account for the other negative externalities of congestion, such as the estimated
56 billion pounds of additional carbon dioxide and other greenhouse gases released into the
atmosphere during urban congested conditions [124].

It is estimated that the 600 largest cities will account for 60 percent of the global GDP
and 25 percent of the world population by 2025 [44]. With the continuing migration of rural
populations towards cities and the rapid urbanization of developing countries, there are huge
economic, environmental and societal gains that can be attained by more efficiently utilizing
the urban transportation network. Furthermore, roughly 37 percent of the congestion in the
United States was estimated to be due to non-recurrent events [124], which illustrates that
a large portion of congestion is not caused exclusively by systemic capacity limitations of
the network, and emphasizes the need for real-time traffic information systems and adaptive
traffic control strategies.

One approach to managing traffic congestion is to provide commuters with reliable real-
time traffic estimates and dynamic routing strategies, so that commuters can alter their
journeys en-route or plan their routes to avoid non-recurrent congestion as it occurs. The
rapid proliferation of GPS-enabled smart phones and navigation systems has made it easier
to both obtain real-time traffic conditions and pass this information back to commuters.

However, even with perfect information, the selfish nature in which drivers select routes
can lead to very inefficient equilibrium traffic distributions [21]. Therefore, while providing
accurate real-time information can lead to reductions in congestion during non-recurrent
events, active traffic control mechanisms are also necessary. Thus, another traffic manage-
ment strategy is to intelligently manage the traffic network via control strategies such as

Section 1.2. Traffic information systems and reliable routing 2

traffic signal control, freeway ramp-metering, variable speed limit control, tolling and incen-
tives. Such strategies, also known as Intelligent Transportation Systems (ITS), can lead to
more efficient utilization of existing network infrastructure.

The research presented in this dissertation is motivated by the need for computationally
tractable traffic management and control strategies for efficient utilization existing capacity
in transportation networks, with a focus on practical applicability and a pathways for their
real-world deployment. To this effect, the models, optimization techniques and algorithms
developed have been implemented in the Connected Corridors traffic management system [28]
at UC Berkeley and its predecessor the Mobile Millennium traffic information system [95].
The following sections provide some background information on the demand management
techniques that are utilized.

1.2 Traffic information systems and reliable routing
One approach to mitigating traffic congestion is to provide commuters with reliable and

timely traffic information. This includes both predictive information based on historical
demand patters, event information, road closures, weather, etc., and real-time information
as the state of the network changes due to unforeseen events such as accidents. Making
such information available allows commuters to make informed decisions and increase the
efficiency of the road network [27].

The increasing availability of cheap GPS-based traffic information due to the prolifera-
tion of smart-phones and GPS-enabled navigation devices has revolutionized the ability to
provide such information. Commuters can now easily obtain traffic information via applica-
tions provided by Google, Apple, TomTom, Garmin, Waze etc. and via organizations such
as 511.org. One of the main features of these applications is the ability to do path planning
and route vehicles to their destination according to some shortest path metric. Current state
of the art systems provide real-time traffic information and have the ability to dynamically
reroute vehicles as the state of the network changes. However, route selection in many prac-
tical settings can require both a fast and reliable route, and current navigation systems do
not have the ability to provide reliability information on the recommended route.

When the link travel-times are known to be stochastic the simple approach is to find the
route with the least expected travel-time (LET) [85]. The LET problem has been well re-
searched and many efficient algorithms exist for different variants of the problem [52, 93, 133].
When the link travel-times are independent and time-invariant distributions, the LET prob-
lem can be reduced to the standard deterministic shortest path problem by setting each link
weight to its expected value. This problem has been studied extensively since Dijkstra’s sem-
inal algorithm from 1959 [43]. Current state of the art solutions to the deterministic shortest
path problem can now run in logarithmic query time with polynomial pre-processing [2, 55],
and in practice provide sub millisecond query times for continental U.S. sized networks.
However, Dijkstra’s algorithm and its variants do not provide an optimal solution when
the link weights are time-varying [63]. If the network satisfies the first-in first-out (FIFO)

Section 1.3. Dynamic traffic assignment 3

condition [6], the problem can be solved using dynamic programming using time-dependent
weights with the original graph [36]. However, solutions to the time-varying shortest path
problem are considerably slower than their time-invariant counterparts. A comprehensive
summary of deterministic route planning algorithms is provided in [39].

While, as mentioned above, efficient algorithms exist for solving the deterministic short-
est path problem, the stochastic shortest path problem turn out to be considerably harder
to solve, when accounting for the reliability (variance) of the solution. There are many pos-
sible definitions for a stochastic shortest path based on the trade-off between the expected
travel-time and the variance [48, 105]. For example, one might want to minimize variance
subject to a constraint on the expected travel-time, minimize expected travel-time subject
to some constraint on the variance or minimize a weighted sum of the expected travel-time
and variance. Another natural definition, is to maximize the probability of reaching the des-
tination subject to a travel-time budget [50], which eliminates the need to consider multiple
objectives. This formulation is known as the stochastic on-time arrival (SOTA) problem.

The SOTA problem can be solved as a stochastic optimal control [15] problem, which
results in an adaptive optimal policy as opposed to an optimal path. An optimal policy
generates a node-based decision rule that defines the optimal path from a given node to the
destination conditioned on the realized travel-time, and it is clear that such an adaptive
policy is necessarily better than a static a-priori solution. With most commuters obtaining
navigation instructions in real-time as they drive, as opposed to for example printing direction
prior to the trip, an adaptive solution is also a practical approach. For situations where a
fixed path is required, a static route can be obtained by solving the related path-based SOTA
problem.

This SOTA formulation can be extended to solve for more general objectives by simply
modifying the cost function at the destination [49]. As a result, the solution methods for
the SOTA problem discussed in this dissertation can be applied to these generalized util-
ity functions without requiring any modification, further motivating the search for efficient
solutions.

The first part of this dissertation (Chapters 2 and 3) is devoted to speedup techniques
for efficiently computing the optimal policy for the SOTA problem, so that the solution
methods are fast enough for practical implementation in commercial navigation systems.

1.3 Dynamic traffic assignment
Dynamic traffic assignment (DTA) is the process of allocating time-varying origin-

destination based traffic demand to a set of paths on a road network. This problem has
been studied extensively over the last 35 years, since the seminal works of Merchant and
Nemhauser [90, 91]. There are two types of traffic assignment that are generally consid-
ered in the literature: the user equilibrium or Wardrop equilibrium allocation (UE-DTA),
in which users minimize individual travel-time in a selfish manner, and the system opti-
mal allocation (SO-DTA) where a central authority picks the route for each user and seeks

Section 1.3. Dynamic traffic assignment 4

to minimize the aggregate total travel-time over all users. These principles were first pre-
sented by Wardrop [134] (in the context of static traffic assignment) and expanded on by
Beckman [12]. See [108] for a broad overview of dynamic traffic assignment.

User equilibrium traffic assignment can lead to inefficient network utilization, highlighted
by the Braess Paradox [21], where adding capacity to the network can actually result in
longer travel times for all users. It has been shown that this paradox can occur in real road
networks [72] and that it is hard to design networks that are immune to it [115]. In fact, it
can be shown that the price of anarchy (PoA) [74], the worst-case ratio of the system delay
caused by the selfish behavior over the system optimal solution, may be arbitrarily large even
in simple networks [116, 130]. System optimal traffic assignment on the other hand leads
to optimal utilization of the network resources, but is hard to achieve in practice since the
overriding objective for individual drivers in a road network is to minimize their own travel-
time. It is well known that setting a toll on each road segment corresponding to the marginal
delay of the demand moves the user equilibrium towards a system optimal allocation [114,
131]. However, imposing time-varying tolls on each road segment is not practical and tolling
in general is difficult to implement in many settings due to both infrastructure and political
considerations.

An alternative approach is to attempt to control a fraction of the drivers (via direct
control or some incentive scheme) and assign routes via a central authority that tries to
minimize system-wide total travel time. This has been studied in the context of Stackelberg
routing games [73, 113, 130], where the goal of the central controller is to assign routes
to a fraction of the demand using a strategy that minimizes the system wide cost, while
anticipating selfish behavior from the demand that is not being controlled. Most of this
work has been in the area of communication networks and assumes a non-decreasing latency
function and vertical queues. However, these assumptions are generally not satisfied in
road traffic networks, with horizontal queuing, because of congestion propagation and more
complex latency functions, due to the physics of flows and driver behavior [82, 111, 31, 34].
Therefore, the literature on partial control in traffic assignment is sparse and usually makes
simplifying assumptions, such as vertical queues and non-decreasing latency functions [7], or
simple networks such as parallel networks [75].

The second part of this dissertation (Chapter 4) considers the SO-DTA problem with
partial control for networks with horizontal queuing and latency functions that satisfy the
complex traffic dynamics. It should, however, be noted that this work currently does not
model the response of the selfish users. It is clear that a change in the network state will result
in a response from the selfish users as in a Stackelberg game. Finding the optimal control for
a Stackelberg game is NP-Hard in the size of the network for the class of increasing latency
functions even in the static case [113] and it is common to use approximate strategies [113,
130]. Efficiently computing the SO-DTA solution with partial control while modeling the
response of the selfish users is currently an open problem.

Section 1.4. The morning commute problem 5

1.4 The morning commute problem
The morning commute problem is the task of finding the user equilibrium (UE) depar-

ture times for a set of commuters that travel through a network with bottlenecks and need to
reach their destination at a fixed time. The commuters incur a penalty due to both queuing
delays in the network and not arriving at the destination on time (being early or late). The
case of a single bottleneck with homogeneous flow was studied by Vickrey [131] in his seminal
paper from 1969. The Vickrey model is elegant and simple, and has been widely adopted
in many settings from equilibrium analysis to time-dependent toll pricing. The key assump-
tions of the model are that: (1) travelers have identical and piecewise linear cost functions;
(2) there is only a single bottleneck and a single route; (3) the adoption of user equilibrium
assumes perfect information, rationality, and perfect decision; (4) the queue is vertical and
spatial extent of the queue is not considered. Hendrikson and Kocur [64] showed the exis-
tence and uniqueness of the equilibrium with linear cost functions and subsequent studies
have gradually relaxed the assumptions of the Vickrey model. For example, Smith [127] and
Daganzo [32] proved the existence and uniqueness of equilibrium with convex cost functions,
Newell [99] and Lindsey [83] relaxed the identical cost functions assumption and introduced
groups of commuters, and a numerical solution method was given by Zijpp and Koolstra [40].
Furthermore, the assumption of a single bottleneck and a single route was relaxed by Kuwa-
hara [76] who studied the case of two tandem bottlenecks, and Arnott et al. [4] who studied
the case of parallel routes with bottlenecks. Mahmassani and Chang [25, 88] studied the
day to day variations of the equilibrium to relax assumption (3). Finally, Mahmassani and
Herman [87] (with some corrections by Newell [100]) relaxed assumption (4) by studying the
horizontal queuing both upstream and downstream of the bottleneck.

Spill-back from under-capacitated off-ramps is one of the major causes of congestion
during the morning commute. Such a bottleneck is a common occurrence at commuter
heavy exits close to large corporations, schools, industrial parks etc. An off-ramp bottleneck
causes congestion to spill back onto the highway, and thereby reduces the available capacity
for vehicles that are continuing on the highway, which then creates an additional bottleneck
for the mainline traffic that is passing by the off-ramp [23]. Therefore, influencing the flow
distribution of the vehicles that exit the freeway at the off-ramp can improve the throughput
for all freeway vehicles that pass this junction. However, there have been limited efforts to
study the equilibrium behavior in the case of junctions with bottlenecks such as the case of
the congested off-ramp. Lago and Daganzo [77] considers the Vickrey equilibrium at a merge
between two highways, and Yperman et al. [139] consider a highway diverge (although the
source of congestion is not at the highway diverge).

The off-ramp bottleneck problem can be mitigated either by building additional capacity
at the off-ramp to accommodate the peak flow or by altering the demand of vehicles that are
exiting at the off-ramp during the peak period. Adding new capacity at a highway off-ramp
is extremely disruptive in the short term and incurs a large monetary cost. Furthermore,
the appropriate capacity requirement needs to be known in advance and can not be modified
easily. Therefore, the use of incentives and tolls to manipulate the equilibrium departure

Section 1.5. Integrated corridor management 6

times of the exiting vehicles can be a more effective mechanism of demand management in
this context.

The research presented in third and final part of this dissertation (Chapters 5 and 6)
generalizes the morning commute problem to a freeway network with an off-ramp exit and
proves existence and uniqueness properties of the equilibrium for a more general set of arrival
time cost functions that enable the analysis of incentives and tolls.

1.5 Integrated corridor management
The research presented in this dissertation was conducted in the context of the Con-

nected Corridors [28] Integrated Corridor Management (ICM) initiative. Congested freeway
corridors are a primary source of traffic delays during peak congestion periods. Decentral-
ized and uncoordinated traffic management strategies across the different stakeholders such
as multiple cities and counties that manage the arterial roadways and the Department of
Transportation that manages freeways can lead to inefficient control strategies and responses
to incidents. Integrated Corridor Management attempts to combine the application of tech-
nology with a commitment from the network stakeholders to transform the management of
freeway corridors [30, 92], enabled by the recent advancements in intelligent transportation
systems (ITS), such as real-time traffic and traveler information, cheap sensing technologies,
and cooperation between traffic management agencies.

The Connected Corridors project, which is managed by the California Partners for Ad-
vanced Transportation Technology (PATH) at the University of California Berkeley, is an
ICM project aimed at fundamentally changing the way in which California operates its free-
way corridors to improve the safety, efficiency, robustness and reliability of urban transporta-
tion systems [28]. The Connected Corridors system consists of the following subsystems.

• Estimation: Traffic estimation is the basis for many simulation, control and traffic
information applications within the system. The lack of accurate estimates of the
traffic state will lead to inefficient control strategies and incorrect information being
passed on to users. Therefore, it is a critical component of the system. A number of
specialized estimation algorithms are used to estimate both velocity and density for
freeways and arterials [68, 137].

• Prediction: Accurate traffic predictions [65, 138] are important for many applications,
such as providing advanced traffic information for commuters and the routing subsys-
tem. They are also a key component in solving control problems, such as optimal ramp
metering, which are solved as finite horizon optimal control problems and depend on
accurate boundary flow predictions during the control horizon [110].

• Simulation: A macroscopic traffic simulator driven by specialized traffic models [69,
97, 137] and model calibration [41] allows for the simulation and analysis of different
traffic scenarios.

Section 1.5. Integrated corridor management 7

• Control: The models described above are then used to compute control strategies that
maximizing the efficiency of the corridor, such as coordinated ramp metering [110],
incident based traffic rerouting [122] and traffic signal control.

• Traffic information: Finally, the system will provide real-time traffic conditions and
traffic routing information directly to commuters via changeable message signs (CMS),
a web interface and smart-phone application.

The estimation and traffic information subsystems build upon the Mobile Millennium
traffic information system [95]. The goal of the Connected Corridors system is to eventu-
ally integrate these submodules such that the control problems are solved in a coordinated
manner instead of solving each problem as an independent optimization problem. Figure 1.1
illustrates as example where traffic flow rerouting from the freeway due to an accident is
integrated with the arterial traffic signal control, ramp metering and express lane control
systems to best utilize the network capacity.

Express Lanes
HOT/HOV control

Local Arterial
Traffic Signals

Ramp Metering

Smartphone enabled
dynamic routing

CMS

Figure 1.1: An illustration of traffic flow rerouting in the Connected Corridors traffic
management system. The reroute control strategy is integrated with the arterial traffic
signal control, ramp metering and express lane control systems to best utilize the network
capacity.

Section 1.6. Summary of contributions 8

1.6 Summary of contributions

1.6.1 Contributions in the dissertation

This dissertation includes contributions in the areas of mathematical modeling, algo-
rithm design, optimal control and optimization in the context of efficient and reliable flow
routing in traffic networks.

The stochastic on-time arrival problem (Chapters 2 and 3)

• Label-setting algorithm for the continuous time stochastic on-time arrival (SOTA)
problem, even in cyclic networks, when there is an uniform strictly positive minimum
link travel-time [118].

• Fast discrete time solution to the SOTA problem using an optimal ordering algorithm
that determines the best order in which to solve the underlying dynamic program [118].

• Method that combines the ideas of the existence of a minimum strictly positive link
travel-time and optimal ordering, and the idea of zero-delay convolution [37, 54] to
further improve our previous solution to the SOTA problem [119].

• Extensions for time-varying and correlated link travel-time distributions [119].

• Implementation of the above described speedup techniques within the Mobile Millen-
nium traffic information system [118].

• Pre-processing techniques for the SOTA problem that reduce computation time by an
order of magnitude [117].

System optimal dynamic traffic assignment with partial control (Chapter 4)

• Formulation of the system optimal dynamic traffic assignment with partial control (SO-
DTA-PC) problem as a multi-commodity non-linear optimal control problem using a
framework that minimizes the OD data requirements, so that it can be applied in an
operational setting [122].

• Adaptation of a multi-commodity traffic dynamics model [53] for the SO-DTA-PC
problem with the appropriate junction solver [122].

• Indentification of how the system dynamics of the traffic dynamics model and the
discrete adjoint method [46, 56, 57, 109] can be exploited to compute the gradient of
the system efficiently.

Section 1.6. Summary of contributions 9

Controlling user equilibrium departure times (Chapters 5 and 6)

• Mathematical framework for modeling delays in a single-source multi-destination net-
work with analytical expressions of delay.

• Analysis of existence and uniqueness properties of the solution to the delay model [107].

• Extending the solution to the Vickrey morning commute problem of finding a departure
time equilibrium [131] to more general cost functions and a diverge junction [123].

• Proof of existence of the equilibrium and requirements for uniqueness of the equilibrium
with discontinuous and non-convex arrival time cost functions [123].

• Analysis of optimal incentive and tolling mechanisms for maximizing the equilibrium
throughput [123].

1.6.2 Additional contributions

In addition to the main contributions that are presented in this dissertation, several
related research collaborations led to significant results that are presented in associated
publications.

The stochastic on time arrival problem

• Fast heuristic solution to the path-based SOTA problem using the optimal policy as a
heuristic [104].

• Routing system for providing adaptive routing directions on location-aware mobile
devices and a corresponding iPhone application [19].

• GPU parallalization of the stochastic on-time arrival problem [1].

• Experimental study of heuristic pruning techniques for the stochastic on-time arrival
problem [86].

Optimal control of networked dynamical systems

• Continuous time traffic dynamics model for finite-horizon optimal control problems
that require strong boundary conditions [38].

• Adjoint-based optimization on a network of discrete scalar conservation law PDEs with
applications to coordinated ramp metering [110].

• Solving the Dynamic User Equilibrium Problem (DUE) via sequential convex opti-
mization for parallel horizontal queuing networks [80].

Section 1.7. Organization of the dissertation 10

Traffic forecasting

• Learning the dependency structure of highway networks for traffic forecast [120]

Emissions estimation and dispersion modeling

• Real-time emissions estimation and dispersion modeling along the transportation net-
work [121]

1.7 Organization of the dissertation
The organization of the rest of the dissertation is as follows. The first part (Chapters 2

and 3) is devoted to the stochastic on-time arrival (SOTA) problem, the second part (Chapter
4) considers system optimal dynamic traffic assignment problem with partial control, and the
third part (Chapters 5 and 6) focus on controlling user equilibrium departure times during
the morning commute. A summary of the individual chapters is given below.

Chapter 2 studies the stochastic on time arrival (SOTA) problem of finding a routing
policy that maximizes the probability reaching the destination within a fixed time budget
for stochastic networks. A number of strategies are explored for computing the solution
efficiently and their complexity is analyzed. Implementation details and numerical results
are also presented from the Mobile Millennium traffic information system.

Chapter 3 explores the use of pre-computation strategies to speed up the query time
for the SOTA problem inspired by the techniques used for the deterministic shortest path
problem. The difficulties in applying these ideas to the stochastic setting are discussed and
two speedup techniques that can be adapted are explained. Numerical results are presented
to illustrated the effectiveness of these techniques.

Chapter 4 discusses the system optimal dynamic traffic assignment problem (SO-DTA)
for general traffic networks with horizontal queuing. A traffic dynamics model based on
a Godunov discretization of the the Lighthill-Willams-Richards (LWR) partial differential
equation and corresponding multi-commodity junction solver are presented. The problem is
posed as a finite horizon optimal control problem and solved via the discrete adjoint method.
Numerical results are presented for a synthetic network and an example scenario on interstate
I-210 in Southern California.

Chapter 5 presents a mathematical framework for modeling flows in a single source
multiple destination network with vertical queuing. The model provides an analytical ex-
pression for the delays at each node as a function of the flows at the source of the network
and the queuing state at each node. The existence and uniqueness of the solution proved
and example applications of the model are presented.

Chapter 6 analyzes the equilibrium departure time problem where a set of vehicles has
to travel through a network with capacity restrictions and reach the destination at a fixed
time, and the vehicles incur a penalty for both any queuing delays due to the capacity
restrictions and arriving at the destination early or late. The problem is studied in the

Section 1.7. Organization of the dissertation 11

context of a off-ramp bottleneck. Existence and uniqueness properties of the departure time
equilibrium are presented for a general class of delay and arrival time cost functions, which
allow for discontinuities in the arrival cost functions. This enables the implementation of step
incentives or tolls that are more practical to implement than their continuous counterparts.

The dissertation concludes with some final remarks and a discussion of possible exten-
sions in Chapter 7.

12

Part I

Reliable routing

13

Chapter 2

Stochastic on-time arrival (SOTA)
problem

2.1 Introduction
The research presented in this chapter aims to improve the computational tractability of

solutions to the stochastic on-time arrival (SOTA) problem, where the goal is to determine a
routing policy that maximizes the probability of on-time arrival, given an origin destination
pair and a desired travel-time budget. Fan et al. [47] formulated the SOTA problem as a
stochastic dynamic programming problem and solved it using a standard successive approx-
imation (SA) algorithm. In an acyclic network, the SA algorithm converges in a number
of steps no greater than the maximum number of links in the optimal path. However, in a
network that contains cycles, as is the case with all road networks, the maximum number of
iterations required for the algorithm to converge can be unbounded [47]. This is due to the
fact that the optimal solution can contain loops, as will be illustrated later. As an alterna-
tive, Nie et al. [103] propose a discrete approximation algorithm for the SOTA problem that
converges in a finite number of steps and runs in pseudo-polynomial time.

This chapter presents a number of theoretical and numerical results for improving the
tractability of the SOTA problem over existing methods. We first solve the unbounded
convergence problem, by developing a new label-setting algorithm that gives an exact solution
to the SOTA problem and has a provable convergence bound for networks in which the
minimum realizable travel-time is greater than zero. As with [47], this algorithm requires
computing a continuous-time convolution product, which is one of the challenges of the
method. In general, this convolution cannot be solved analytically when routing in arbitrary
networks, and therefore a discrete approximation scheme is required. By exploiting the
structure of our algorithm, we are able to solve the convolution more efficiently than the
standard (brute force) discrete time approximation algorithm used in [103] and obtain a faster
computation time. We show that the order in which the nodes of the graph are considered
greatly impacts the running time of our proposed solution and present an optimal ordering

Section 2.2. Problem formulation 14

algorithm that minimizes the number of convolutions that need to be computed. We then
present an algorithm that combines the existence of a minimum realizable travel-time and
the optimal ordering with zero-delay convolution [37, 54] to create an even more efficient
solution to the SOTA problem. In addition, we present an analysis of the conditions under
which our framework can be extended to work with time-varying travel-time distributions
and show that these conditions are satisfied in the commonly used travel-time models for
road networks. We also consider the problem of correlated travel-time distributions. Finally,
we present a simple network pruning scheme that reduces the search space of the algorithm
and thus also improves its computational efficiency.

Complexity results are given for all the optimization techniques presented. We also
analyze the computation time of the algorithms as a function of the network topology. The
algorithms perform best on networks with long road segments and a limited number of loops.
Road networks in general consist of arterial networks with short segments and many loops
that are connected via a highway network that contains long segments and fewer loops.
The implications of this structure for efficient computation of stochastic shortest paths is
discussed. Our goal is to provide the theoretical basis for a tractable implementation of
adaptive routing with reliability guarantees in an operational setting. Therefore, experimen-
tal results are provided for San Francisco Bay Area highway and arterial networks using the
Mobile Millennium [95] traffic information system.

The rest of the chapter is organized as follows. In Section 2.2, we define the stochastic on
time arrival (SOTA) problem and discuss its classical solution method. Section 2.3 presents
the new label-setting algorithm for the SOTA problem, proves its convergence properties and
discusses how the algorithm can be used with both time-varying and correlated travel-time
distributions. Next, in Section 2.4, we present an efficient numerical method to compute the
discrete-time solution to the SOTA problem using an optimal update ordering for solving the
underlying dynamic program. Experimental results are given in Section 2.5. In Section 2.6,
we describe a method for improving the computational complexity of the problem using
a technique known as Zero-Delay-Convolution, and provide more experimental results to
illustrate the performance gains.

2.2 Problem formulation
We consider a directed network G(N,A) with |N | = n nodes and |A| = m links. The

weight of each link (i, j) ∈ A is a random variable with probability density function pij(·)
that represents the travel-time on link (i, j). Given a time budget T , an optimal routing
strategy is defined to be a policy that maximizes the probability of arriving at a destination
node s within time T . A routing policy is an adaptive solution that determines the optimal
path at each node (intersection in the road network) based on the travel-time realized to
that point. This is in contrast to a-priori solutions that determine the entire path prior to
departure. Given a node i ∈ N and a time budget t, ui(t) denotes the probability of reaching
node s from node i in less than time t when following the optimal policy. At each node i,

Section 2.2. Problem formulation 15

the traveler should pick the link (i, j) that maximizes the probability of arriving on time at
the destination. If j is the next node being visited after node i and ω is the time spent on
link (i, j), the traveler starting at node i with a time budget t has a time budget of t− ω to
travel from j to the destination, as described in equation (2.1)1.

Definition 2.1. The optimal routing policy for the SOTA problem can be formulated as
follows:

ui(t) = max
j

∫ t

0

pij(ω)uj(t− ω) dω

∀i ∈ N, i 6= s, (i, j) ∈ A, 0 ≤ t ≤ T

(2.1)

us(t) = 1 0 ≤ t ≤ T

where pij(·) is the travel-time distribution on link (i, j).

The functions pij(·) are assumed to be known and can for example be obtained using historical
data or real-time traffic information.

Fan and Nie [47] presented the successive approximations (SA) algorithm described
in Algorithm 2.1, which solves the system of equations (2.1) and gives an optimal routing
policy.

Algorithm 2.1 Successive approximations algorithm [47]

Step 0. Initialization
k = 0
uki (t) = 0, ∀i ∈ N, i 6= s, 0 ≤ t ≤ T % uki (t) is the approximation of ui(t)
uks(t) = 1, 0 ≤ t ≤ T in the kth iteration of the algorithm

Step 1. Update
k = k + 1
uks(t) = 1, 0 ≤ t ≤ T
uki (t) = maxj

∫ t
0
pij(ω)uk−1

j (t− ω) dω, ∀i ∈ N, i 6= s, (i, j) ∈ A, 0 ≤ t ≤ T

Step 2. Convergence test
If ∀(i, t) ∈ N × [0, T] , maxi,t |uki (t)− uk−1

i (t)| = 0 stop;
Otherwise go to Step 1.

1In this formulation of the problem, the traveler is not allowed to wait at any of the intermediate nodes. In
Section 2.3.2 we state the conditions under which travel-time distributions from traffic information systems
satisfy the first-in-first-out (FIFO) condition, and thus waiting at a node cannot improve the on time arrival
probability of the modeled traveler.

Section 2.2. Problem formulation 16

At each iteration k, uki (t) gives the probability of reaching the destination from node i
within a time budget t, using a path with no more than k links, under the optimal policy.
The approximation error monotonically decreases with k and the solution eventually reaches
an optimal value when k is equal to the number of links in the optimal path. A formal proof
of the convergence is given in Section 3 of [47] using the bounded monotone convergence
theorem. However, since an optimal routing policy in a stochastic network can have loops
(see Example 2.1), the number of iterations required to attain convergence is not known
a-priori.

Path Travel-time Probability
{(a, b), (b, c)} 4 0.9
{(a, c)} 1 0.1
{(a, b), (b, a), (a, c)} 4 0.01

Figure 2.1: A simple network with an optimal routing policy that may contain a loop.
Links (b, c) and (b, a) have deterministic travel-times of respectively 3 and 1 time units.
Link (a, b) has a travel-time of 1 with probability 0.9 and a travel-time of 2 with
probability 0.1. Link (a, c) has a travel-time of 5 with probability 0.9 and a travel-time of 1
with probability 0.1. The table presents on time arrival probabilities for all possible
realizations of optimal paths.

Example 2.1. Figure 2.1 shows a simple network in which an optimal path can contain
a loop. Consider finding the optimal route from node a to node c with a budget of 4 time
units. There are two choices at the origin, of which it is clear that link (a, b) gives the
highest probability of reaching the destination on time, since there is a 0.9 probability of the
travel-time on (a, b) being 1 time unit, which leads to a total travel-time of 4. However,
assume that the realized travel-time on link (a, b) is actually 2 time units, which can happen
with probability 0.1. In this case, taking the path {(a, b), (b, c)} results in zero probability of
reaching the destination on time. The optimal path is therefore {(a, b), (b, a), (a, c)}, which
is the only path that has a non zero probability of reaching the destination on time. This
optimal path contains a loop. An a-priori algorithm such as the least expected time (LET)
algorithm will always route on path {(a, b), (b, c)} regardless of the realized travel-times and
thus have a lower probability of reaching the destination on time.

As stated in [47], as the network gets arbitrarily complex, it is possible to have an
infinite-horizon routing process. This is unlikely to happen in realistic networks [16], but
a naive successive approximations strategy can be extremely inefficient and intractable for
even moderately large networks.

To solve the problem raised by the unbounded convergence of Algorithm 2.1, Nie and
Fan [103] presented a discrete time approximation of the SOTA problem. This algorithm

Section 2.3. Continuous time formulation of the SOTA problem 17

has a computational complexity of O(m(Td)2), where m is the number of links in the graph,
d is the number of discretization intervals per unit time and T is the time budget. The
drawback of this method is the numerical discretization error in the representation of the
probability density function. A smaller discretization interval leads to a more accurate
approximation, but increases the computation time quadratically. In this chapter, we present
both a continuous time exact solution that does not require successive approximations and
a discrete time solution with a computation time to approximation error trade off that is
lower than in [103].

2.3 Continuous time formulation of the SOTA problem
In this section, we present an algorithm that finds the optimal solution to the continuous

time SOTA problem in a single iteration through time space domain of the problem. The
complexity of the algorithm does not depend on the number of links in the optimal path.

2.3.1 Solution algorithm for single iteration convergence

The key observation used in this algorithm is that there exists a minimum physically
realizable travel-time on each link of the network. Let β be the minimum realizable link
travel-time across the entire network. β is strictly positive since speeds of vehicles have a
finite uniform bound, and the network contains a finite number of links with strictly positive
length. Therefore, given ε ∈ (0, β), δ = β − ε is a strictly positive travel-time such that
pij(t) = 0 ∀ t ≤ δ, (i, j) ∈ A.

Given a time budget T discretized in intervals of size δ, let L = dT/δe. We propose
the solution given in Algorithm 2.2. In this formulation of the SOTA problem, the functions
uki (·) are computed on [0, T] by increments of size δ. The proposed algorithm relies on the
fact that for t ∈ (τ k− δ, τ k], uki (t) can be computed exactly using only uk−1

j (·), (i, j) ∈ A, on
(τ k − 2 δ, τ k − δ], where τ k is the budget up to which uki (·) is computed at the kth iteration
of Step 1.

Proposition 2.1. Algorithm 2.2 finds the optimal policy for the SOTA problem in a single
iteration.

Proof. Proof by induction over the sub-steps τ = δ to Lδ.

Base case: When k = 1 the convolution product is computed on the interval (0, δ]. From
the definition of δ, we know that there does not exist a realizable travel-time that is less
than or equal to δ. Therefore, pij(ω) = 0 on the interval (0, δ] of the convolution product,
and u1

i (t) = u0
i (t) ∀i ∈ N . This is indeed the correct solution ∀ t such that 0 ≤ t ≤ δ, since

no feasible path to the destination exists in this time interval.

Section 2.3. Continuous time formulation of the SOTA problem 18

Algorithm 2.2 Single iteration SOTA algorithm

Step 0. Initialization.
k = 0
uki (t) = 0, ∀i ∈ N, i 6= s, t ∈ [0, T)
uks(t) = 1, ∀ t ∈ [0, T)

Step 1. Update
For k = 1, 2, . . . , L
τ k = kδ
uks(t) = 1, ∀ t ∈ [0, T)
uki (t) = uk−1

i (t)
∀i ∈ N, i 6= s, t ∈ [0, τ k − δ]

uki (t) = maxj
∫ t

0
pij(ω)uk−1

j (t− ω) dω % computation of the convolution product
∀i ∈ N, i 6= s, (i, j) ∈ A, t ∈ (τ k − δ, τ k]

Induction step: Assume that the algorithm generates an optimal policy for k < L. We
show that the algorithm also provides an optimal policy at step k + 1. When t = (k + 1)δ,
the convolution product is computed on the interval (kδ, (k + 1)δ]. Since pij(ω) = 0, ∀ω
such that ω ≤ δ, to find the optimal policy for uk+1

i (t), ∀ t such that kδ < t ≤ (k + 1)δ, we
only need to know the optimal policy for ukj (t), ∀ t such that 0 ≤ t ≤ kδ, (i, j) ∈ A. By the
induction hypothesis we know that uki (t) gives the optimal policy ∀ t such that 0 ≤ t ≤ kδ
for all nodes and it is known. This implies that the optimal policy is computed for the range
0 ≤ t ≤ (k + 1)δ at the end of the (k + 1)th step.

The most compute-intensive step of this algorithm is the computation of the convolution
product, which is represented algebraically in the above algorithm. If the link travel-time dis-
tributions pij(·), (i, j) ∈ A, and the cumulative optimal travel-time distributions ui(·), i ∈ N ,
belong to a parametric distribution family which is closed under convolution (e.g. Gaussian,
Erlang, see [17, 5]), the convolution product can be computed analytically. However, since
ui(·) is the point wise maximum of the convolution products of the link travel-time distribu-
tions pij(·) and the cumulative distributions uj(·), (i, j) ∈ A, it does not have an analytical
expression in general.

Numerical approximations of the distributions involved in the convolution product have
been proposed in the literature. Fan et.al. [48] argue that since ui(·) is a continuous mono-
tone increasing function, it can be approximated by a low degree polynomial. When the
approximating polynomial is of degree 2n, the convolution integral can be solved exactly
with n evaluation points using the Gaussian quadrature method (see [13]). However, the ap-
plicability of these methods is highly dependent on the shape of the travel-time distributions,
which can be very complex, depending on the traffic conditions and the topology of the net-

Section 2.3. Continuous time formulation of the SOTA problem 19

work. Therefore, we propose solving the convolution product via a time discretization of the
distributions involved, which results in a computational complexity that is independent of
the shape of the optimal cumulative travel-time distributions ui(·). An incremental update
scheme that exploits the structure of the proposed SOTA algorithm is used to efficiently
compute the discrete convolution product. This solution is shown to be computationally less
expensive than than the existing convolution methods for the SOTA problem (e.g [103]). A
detailed explanation is given in Sections 2.4 and 2.6.

2.3.2 Extended algorithm for time-varying link travel-times

The solution algorithm proposed in the previous section makes the assumption that
link travel-time distributions are static. However, in real transportation networks, it is clear
that link travel-time distributions are time-varying. In this section, we present an extension
to Algorithm 2.2 that accounts for time-varying distributions. A common approach when
solving shortest path problems on graphs with time-dependent distributions is to consider
the corresponding time expanded graph with static weights. See [36] for a discussion on
the various flavors of this problem. If the first-in-first-out (FIFO) condition holds, the
problem can be solved without time-expanding the graph using a trivially modified version
of Dijkstra’s algorithm and indexing the link weights by time [45]. We propose a similar
algorithm based on the fact that waiting at a node is never optimal when the FIFO conditions
holds. First we show that most commonly used travel-time estimates satisfy the the FIFO
condition and then show that waiting at a node is never optimal in such a model.

Definition 2.2. In a deterministic setting, let αtP denote the travel-time on path2 P when
departing at time t. The graph satisfies the FIFO condition if and only if:

αt1P ≤ αt2P + (t2 − t1) ∀P ∈ P and ∀ t1, t2 such that 0 ≤ t1 ≤ t2 (2.2)

This definition states that on a given path P , the travel-time αt1P when leaving at t1 is lower
than the travel-time αt2P + (t2− t1) obtained by waiting at the departure node for t2− t1 and
departing at t2.

In the time-varying setting, the link travel-time estimates given by a travel-time model
can change as a vehicle moves through a link. We assume an elastic vehicle travel-time model,
where the vehicle link travel-time is calculated based on all the link travel-time estimates the
vehicle might encounter as it moves through a link. This is in contrast to a frozen vehicle
travel-time model, where the travel-time is calculated simply based on the link travel-time
estimate when the vehicle enters the link3.

2The FIFO condition is typically defined on a link. Here, we use a path-based definition to make the
subsequent explanations and proofs more intuitive. This leads to equivalent results under the assumption
that the network topology is static.

3Please see [106] for further discussion on the elastic and frozen travel-time models.

Section 2.3. Continuous time formulation of the SOTA problem 20

Proposition 2.2. Under an elastic vehicle travel-time model, a deterministic discrete-time
traffic estimate such that the link travel-time is single-valued on each time-discretization
yields a deterministic FIFO path.

Proof. Consider two vehicles traveling along the same path P from node i to node k departing
at times t1 and t2 respectively for 0 ≤ t1 ≤ t2. Their respective travel-times are denoted αt1P
and αt2P . For the vehicle departing node i at time t2 to arrive at node k before the vehicle
departing at time t1, it must overtake the vehicle that departed first. Overtaking can only
occur when both vehicles are in the same space-time cell. However, since we assume that
the model gives a single-valued speed in each space-time cell, both vehicles will travel at the
same speed when in the same cell and no overtaking can occur. Therefore, a single-valued
speed in each space-time cell implies that the vehicle that departed first will always arrive
first.

This guarantees that the shortest path problem on transportation networks, with time-
varying link travel-times generated by a traffic information system, can be solved with the
same complexity as in the static case by time-indexing the link weights [36]. In the case
of transportation networks with stochastic link travel-times and the SOTA problem (equa-
tion (2.1)), a similar stochastic FIFO condition is needed to guarantee correctness of the
algorithm with time-indexed link travel-times.

Definition 2.3. Let utP (·) denote the cumulative travel-time distribution on path P when
departing at time t. The graph satisfies the stochastic FIFO condition if and only if:

ut1P (T) ≥ ut2P (T − (t2 − t1)) ∀P ∈ P , 0 ≤ t1 ≤ t2, t2 − t1 ≤ T (2.3)

This definition states that at any given time and on any given path on the network, departing
as soon as possible yields a greater probability of arriving on time than delaying the depar-
ture. The stochastic FIFO property is obtained if the conditions defined by Proposition 2.3
are satisfied.

Proposition 2.3. A stochastic discrete-time traffic estimate such that link travel-time dis-
tributions are fixed for each time discretization yields a stochastic FIFO path.

Proof. Proof by induction over the length of the path (vn, . . . , v1).

Base case (n = 2): From definition 2.3, a stochastic FIFO network satisfies the following
condition:

ut1v2v1
(T) ≥ ut2v2v1

(T − (t2 − t1)) ∀ 0 ≤ t1 ≤ t2

where utij(T) is the probability of arriving at node j in time T when departing from node i at
time t. We want to show that a delayed departure cannot improve the probability of on time
arrival when traveling from node v2 to node v1 on link (v2, v1). Without loss of generality,

Section 2.3. Continuous time formulation of the SOTA problem 21

let vehicle w1 depart from node v2 at time t1 and vehicle w2 depart from node v2 at time
t2, where w1 is in cell c1 = (v2, v1) × [tc1 , tc2] and w2 is in cell c2 = (v2, v1) × [tc2 , tc3]. Also,
let Xw(ta, tb) be the distribution of the distance traveled by vehicle w in the interval (ta, tb).
We have the following:

Xw2(t1, t2) = 0

Xw1(t1, t2) ≥ 0

Let x be the length of link (v2, v1). We want to show that:

ut1v2v1
(T) ≥ ut2v2v1

(T − (t2 − t1))

⇐⇒ P (Xw1(t1, t1 + T) ≥ x) ≥ P (Xw2(t2, t1 + T) ≥ x)

⇐⇒ P (Xw1(t1, tc2) +Xw1(tc2 , t2) +Xw1(t2, t1 + T) ≥ x) ≥ P (Xw2(t2, t1 + T)) ≥ x)

This clearly holds because:

Xw1(t2, t1 + T) = Xw2(t2, t1 + T)

since both vehicles are in the same space-time cells from time t2.

Induction step (n = k): We assume that a single-valued travel-time distribution for each
space-time cell implies a stochastic FIFO path (vk, . . . , v1) of k nodes and show that it holds
for k+1 nodes. The explanation in the base case shows that departing from node vk+1 earlier
gives a higher probability of reaching node vk within a given time budget. The induction
hypothesis implies that arriving at node vk earlier increases the probability of reaching the
destination v1 within a given time budget. Therefore, leaving the node vk+1 earlier increases
the probability of reaching the destination within a given time budget.

Under the stochastic FIFO condition, we now show that an optimal policy for the SOTA
problem does not prescribe waiting at a node. Therefore, the SOTA problem on transporta-
tion networks with time-varying link travel-time distributions can be solved by time-indexing
the link travel-time distributions.

Proposition 2.4. In a stochastic FIFO network, waiting at a non-terminal node is never
optimal when following the optimal SOTA policy.

Proof. Proposition 2.3 shows that waiting at a node cannot improve the probability of arriv-
ing within a certain budget using the same path. We now show that waiting at a node cannot
improve the probability of arriving within a given budget T when using the optimal path for
each departure time. Assume that path P1 is the optimal path when departing at time t1 and
that path P2 is the optimal path when departing at time t2. From proposition 2.3 we know
that ut1P2

(T) ≥ ut2P2
(T − (t2 − t1)). Furthermore, since P1 is the optimal path when leaving at

time t1 with a budget of T , we have ut1P1
(T) ≥ ut1P2

(T). Therefore, ut1P1
(T) ≥ ut2P2

(T − (t2 − t1))
and waiting cannot improve the probability of on time arrival.

Section 2.3. Continuous time formulation of the SOTA problem 22

When the assumptions from Proposition 2.3 are satisfied, according to Proposition 2.4,
waiting at a node is not part of the optimal policy. Therefore, the optimal policy in the
time-varying case can be defined as follows:

uτi (t) = max
j

∫ t

0

pτij(ω)uτ+ω
j (t− ω) dω (2.4)

∀i ∈ N, i 6= s, (i, j) ∈ A, 0 ≤ t ≤ T, 0 ≤ τ

uτs(t) = 1 ∀ 0 ≤ t ≤ T, 0 ≤ τ.

where uτi (t) is the maximum probability of arriving at destination s within time budget t
when leaving node i at time τ . Waiting is not allowed in the optimal policy as enforced by
the fact that the departure time from node i (superscript of uτi (·)) is the same as the time
at which the link (i, j) is traversed (superscript of pτij(·)). This policy is optimal according
to Proposition 2.4.

The proposed algorithm uses the same network as the static SOTA problem and sim-
ply replaces the travel-time distribution query with a time-indexed version, as defined in
Equation 2.4. i.e. it modifies the convolution step to query the appropriate link travel-time
distribution based on the current time offset τ . This algorithm has the same computational
complexity as the static algorithm because the structure of the graph remains the same and
no additional queries are performed. The required memory is larger in the time-varying case
than in the static case because there are multiple travel-time distributions for each link.

2.3.3 Generalized algorithm for correlated link travel-times

In this section, we relax another assumption that was made in Section 2.2, that the
link travel-times on the network are independent. However, in reality the travel-times of
neighboring links can be quite strongly correlated. Assuming that link travel-times across
links satisfy the Markov condition, they only depend on their upstream and downstream
neighbors. Therefore, the travel-time on each link is a joint distribution over the link and
its neighbors. If we do not have any information regarding the travel-times on some of these
links, the correct approach is to marginalize them out and use the marginal distribution
of the link we are considering. However, in the SOTA formulation each decision could be
preceded by conditioning on the travel-time of an upstream link, since the travel-time on
the upstream link is known. Assuming independence in this case results in an inaccurate
expected travel-time and an overestimation of the variance. Therefore, to minimize such
errors one must incorporate this observation and use the conditional probability distribution
of the link travel-time. We present a simple extension to our formulation that considers the
correlation between a link and the upstream neighbors via which the link is reached. The
proposed problem formulation is as follows:

Section 2.4. Discrete formulation of the SOTA algorithm with a Fast
Fourier Transform solution 23

ui(t, k, y) = max
j

∫ t

0

pij(ttij = ω|ttki = y)uj(t− ω, i, ω) dω (2.5)

∀i ∈ N, i 6= s, (i, j) ∈ A, (k, i) ∈ A,
0 ≤ y ≤ (T − t), 0 ≤ t ≤ T

us(t, k, y) = 1 ∀ 0 ≤ t ≤ T, (k, s) ∈ A, 0 ≤ y ≤ T − t

where ui(t, k, y) is the cumulative distribution function (CDF) when t is the remaining time
budget, k is the node from which the vehicle is arriving and y is the realized travel-time on this
upstream link, and pij(ttij = ω|ttki = y) is the probability that the travel-time on link (i, j) is
ω conditioned on the travel-time on link (k, i) being y. The joint probability density function
of a link and its upstream neighbors is assumed to be known. In this case, each CDF ui(·, ·, ·)
and travel-time distribution pij(·) is now conditioned on the upstream travel-time, but the
structure of the problem remains unchanged. We are simply propagating more information
at each step. Therefore, the correctness analysis of our algorithm remains unchanged and
the same proof holds. However, the time complexity of the algorithm increases since a
new dimension is being added to the problem. Equation (2.5) needs to be solved for each
incoming node k and the travel-time on link (k, i), which is in the range 0 ≤ y ≤ (T − t).
This increases the runtime of the original formulation (Equation (2.1)) by a factor of ΦT ,
where Φ is the maximum in-degree of the network.

In most practical cases this is likely to make the algorithm intractable for real-time
applications, as the complexity is now cubic in T . Therefore, we propose using a discrete
approximation of the conditional distribution function. In the simplest case, the conditioning
can be done based on whether the upstream link was in congestion or free flow, which will
only increase the complexity by a factor of 2Φ. If upstream travel-time is discretized in to d
ranges, the increase in complexity will be a factor of dΦ. The most appropriate value to use
for d depends on the quality of the conditional travel-time distributions available and the
computing resources that can be utilized.

2.4 Discrete formulation of the SOTA algorithm with a
Fast Fourier Transform solution

For practical networks, a numerical approximation of the convolution integral is necessary,
with a proper discretization. In the discrete setting, Algorithm 2.2 can be reformulated as
shown in Algorithm 2.3 below. The length of a discretization interval is given by ∆t and
T is the time budget. The functions ui(·) and pij(·) are vectors of length L = d T

∆t
e. For

notational simplicity, we assume that T is a multiple of ∆t. In general, the link travel-time
distributions are available as either discrete or continuous time distributions. If the link
travel-time distribution is discrete and the length of the discretization interval d is not equal
to ∆t, the probability mass needs to be redistributed to intervals of ∆t. If the distribution

Section 2.4. Discrete formulation of the SOTA algorithm with a Fast
Fourier Transform solution 24

is continuous, the probability mass function pij(·) is computed as follows:

pij(h+ ∆t) =

∫ h+∆t

h

pij(ω) dω, ∀h = 0,∆t, . . . , (L− 1)∆t (2.6)

Algorithm 2.3 Discrete SOTA algorithm

Step 0. Initialization.
k = 0
uki (x) = 0, ∀i ∈ N, i 6= s, x ∈ N, 0 ≤ x ≤ T

∆t

uks(x) = 1, x ∈ N, 0 ≤ x ≤ T
∆t

Step 1. Update
For k = 1, 2, . . . , L
τ k = kδ
uks(x) = 1, x ∈ N, 0 ≤ x ≤ T

∆t

uki (x) = uk−1
i (x)

∀i ∈ N, i 6= s, (i, j) ∈ A, x ∈ N, 0 ≤ x ≤ (τk−δ)
∆t

uki (x) = maxj
∑x

h=0 pij(h)uk−1
j (x− h)

∀i ∈ N, i 6= s, (i, j) ∈ A, x ∈ N, (τk−δ)
∆t

+ 1 < x ≤ τk

∆t

% ∆t is selected such that δ > ∆t

2.4.1 Complexity analysis

Obtaining the appropriately discretized probability mass functions can be done in time
O(mT

∆t
), since there are m links and each link travel-time distribution function is of length

T
∆t
. This can also be computed in advance and reused during each call to the algorithm4.

In step 0, initializing k vectors (one for each node i) of length T
∆t

takes O(kT
∆t

) time. In step
1, notice that for each link (i, j) the algorithm progressively computes a sum of increasing
length from x = 1 to x = Lδ

d
= T

∆t
. Therefore, the time complexity of the summation

for each link is O((T
∆t

)2). The assignment uki (x) = uk−1
i (x) can be done in constant time

by manipulating pointers instead of a memory copy or by simply having one array for all
ui(·) that keeps getting updated at each iteration of the loop. Since there are m links, the
total time complexity of step 1 is O(m(T

∆t
)2). This dominates the complexity of step 0 and

therefore is the total time complexity of the entire algorithm. Recall that this is identical to
the time complexity of the discrete approximation algorithm proposed in [103].

4In the case of time-varying link travel-times, this needs to be recomputed for each time step at which
the travel-times differ.

Section 2.4. Discrete formulation of the SOTA algorithm with a Fast
Fourier Transform solution 25

Algorithm 2.3 can perform more efficiently by computing the convolution products via
the Fast Fourier Transform (FFT). The FFT computes the convolution of two vectors of
length n in O(n log(n)) time [29]. Notice however that the proposed algorithm does not
compute the entire convolution at once. The computation is required to be done in blocks
of length δ to preserve optimality. Therefore, L convolution products of increasing length
δ, 2δ, . . . , Lδ have to be computed. One inefficiency of this approach is that successive con-
volutions recompute the results that have already been obtained. For each link, the time
complexity of the sequence of FFTs is O(

∑L
k=1

δk
∆t

log(δk
∆t

)), where L = dT
δ
e. Since there are

m links, the total time complexity is:

O


m

dT
δ
e∑

k=1

δk

∆t
log

(
δk

∆t

)
 (2.7)

As T →∞, the complexity of the FFT based approach O((T
∆t

2
log(T

∆t
)) is asymptotically

larger than the run-time of the brute force approach
∑ T

∆t
k=1 k = O((T

∆t
)2). However, the

running time of the FFT approach is significantly smaller than the brute force approach
when the time budget increases and the discretization time step decreases, as shown in
Proposition 2.5.

Proposition 2.5. The travel budget t = ∆t · 2 1
4(3+ δ

∆t) − δ is a lower bound for the largest
budget at which the FFT based approach has a faster run-time than the brute force approach.

Proof. We compare the runtime of the FFT approach and the brute force approach. In
order to compute the optimal solution up to a given time τ , the brute force method needs
to be executed for τ

∆t
steps and the FFT method needs to be executed for τ

δ
steps. The

runtime of the brute force method is
∑ τ

∆t
k=1 k and the running time of the FFT approach is∑ τ

δ
k=1

δk
∆t

log(δk
∆t

). The FFT approach is faster than the brute force convolution for t = K δ
such that:

K∑

k=1

δk

∆t
log

δk

∆t
≤

Kδ
∆t∑

k=1

k =
1

2

Kδ

∆t

(
Kδ

∆t
+ 1

)
.

If we use the fact that the function x 7→ x log x is increasing on [1; +∞), we can bound the
left hand side of the above inequality as follows:

K∑

k=1

δk

∆t
log

δk

∆t
<

∫ K

z=0

δ(z + 1)

∆t
log

δ(z + 1)

∆t
dz

=
1

2

δ

∆t
(K + 1)2

(
log

δ (K + 1)

∆t
− 1

2

)
− 1

2

δ

∆t

(
log

δ

∆t
− 1

2

)

Section 2.4. Discrete formulation of the SOTA algorithm with a Fast
Fourier Transform solution 26

where the inequality is a right Riemann integral bound. A lower bound t on the time up to
which the FFT approach is faster than the brute force convolution thus satisfies:

1

2

δ

∆t
(K + 1)2

(
log

δ (K + 1)

∆t
− 1

2

)
− 1

2

δ

∆t

(
log

δ

∆t
− 1

2

)
≤ 1

2

Kδ

∆t

(
Kδ

∆t
+ 1

)
.

If we assume δ ≥ ∆t exp 1
2
, we have −1

2
δ

∆t

(
log δ

∆t
− 1

2

)
≤ 0 and thus a sufficient condition

to have the inequality above satisfied is to have:

1

2

δ

∆t
(K + 1)2

(
log

δ (K + 1)

∆t
− 1

2

)
≤ 1

2

Kδ

∆t

(
Kδ

∆t
+ 1

)

We can equivalently rewrite the above inequality as:

(K + 1)2 log
δ (K + 1)

∆t
≤ 1

2
(K + 1)2 +

δ

∆t
K2 +K.

We wish to find α ∈ R such that α(K + 1)2 ≤ 1
2
(K + 1)2 + δ

∆t
K2 + K for K ≥ 1. This is

satisfied for α ≤ 1
4

(
3 + δ

∆t

)
, which allows us to write that the FFT is faster than the brute

force approach when:

(K + 1)2 log
δ (K + 1)

∆t
≤ 1

4

(
3 +

δ

∆t

)
(K + 1)2

which is equivalent to:

K ≤ ∆t

δ
2

1
4(3+ δ

∆t) − 1

and thus a lower bound t reads:

t ≤ ∆t 2
1
4(3+ δ

∆t) − δ

This lower bound t is typically a large value in road networks where individual links have
large travel-times. Table 2.1 shows the value of the lower bound for some sample values of
δ and ∆t. The exact value of t can be obtained by computing summation (2.7) numerically.

2.4.2 Acceleration of Algorithm 2.3 with localization

As shown in Section 2.4.1, the runtime of the FFT based solution is a function of δ and
decreases as the value of δ increases. The value of δ that is used in the algorithm is bounded
by the minimum realizable travel-time across the entire network. However, in general, road
networks are heterogeneous and contain a large range of minimum realizable travel-times.
This section presents an optimization that can significantly improve the runtime of the
proposed algorithm by exploiting the disparity of these local δ values.

Section 2.4. Discrete formulation of the SOTA algorithm with a Fast
Fourier Transform solution 27

∆t = 0.1 ∆t = 0.2 ∆t = 0.5 ∆t = 1
δ = 90 1.51 · 1065 4.11 · 1031 4.93 · 1011 1.6 · 105

δ = 60 4.00 · 1042 2.11 · 1020 1.50 · 107 9.17 · 102

δ = 30 1.06 · 1020 1.08 · 109 4.59 · 102 4.57
δ = 15 5.44 · 108 2.47 · 103 2.41 1.27 · 10−1

Table 2.1: Lower bound t = ∆t · 2 1
4(3+ δ

∆t) − δ (minutes) for which the FFT approach is
faster than the brute force approach for the computation of the convolution product in the
main algorithm. Values of δ and ∆t are given in seconds.

Proposition 2.6. Let βij be the minimum realizable travel-time on link (i, j) with δij = βij−ε
(0 < ε < βij) and τi be the budget up to which the cumulative distribution function ui(·) has
been computed for node i. For correctness, the invariant

τi ≤ min
j

(τj + δij) ∀(i, j) ∈ A (2.8)

must be satisfied throughout the execution of the algorithm.

Proof. Assume that this invariant can be violated. Then, it is possible to compute the
cumulative distribution function ui(·) at some node i such that τi > minj(τj + δij), which in
turn means that τi − τj > δij for at least one node j. This implies that ∃ t′ such that ui(t′)
was computed using the product of a downstream cumulative distribution function uj(t′−ω)
and pij(ω), where uj(t′−ω) is unknown because τj < t′− δij and pij(ω) > 0 because ω > δij.
This value of the cumulative distribution function ui(t′) is undefined and the SOTA algorithm
fails. Therefore, for correctness the invariant should not be violated.

When computing the cumulative density function ui(·) using local δij values, the growth
of τi is different across the nodes i, unlike in our original algorithm (Algorithm 2.3) where the
τi grow at the constant uniform rate δ. Furthermore, when ui(·) is updated asynchronously
using the invariant τi ≤ minj(τj + δij), (i, j) ∈ A, the order in which the nodes are updated
impacts the runtime of the algorithm, as illustrated in Example 2.2.

Example 2.2. To illustrate how the order in which the nodes are updated impacts the runtime
of Algorithm 2.3, consider the network in Figure 2.2. The value of τi and the computation
time depends on the order in which the nodes are considered. In the worst case, as a lower
bound, we assume that ui(·) is updated based on the values of its constraint nodes in the
previous iteration. Table 2.2 shows the sequence of updates for four iterations when using
the constraints τi from the previous iteration. Notice that the update pattern is cyclic every
four iterations. The highest speedup is achieved when the nodes in the loop are considered
in topological order. Table 2.3 shows the sequence of updates when the nodes are considered
in the topological order (a, b, c, d). As seen in Table 2.3, the τi value for each node i can be
incremented by the length of the shortest loop node i belongs to when the nodes are updated in

Section 2.4. Discrete formulation of the SOTA algorithm with a Fast
Fourier Transform solution 28

this order. The topological order can be determined easily in this simple example, but such an
ordering is unlikely to exist in realistic transportation networks. Table 2.4 shows the sequence
of updates when the nodes are considered in the order (d, c, b, a). It can be clearly seen that
this ordering is much more inefficient than the ordering (a, b, c, d). Furthermore, without the
local δ optimization, the algorithm can only update ui by one step at each iteration, since the
minimum δi value is 1 in this example. This simple example shows how local δ optimization
can provide large improvements in the runtime.

Figure 2.2: The influence of the order of computation with an example of a simple
subnetwork with a loop. The δ value for each link is given along the link.

Iter. a b c d
1 1 2 5 10
2 11 3 7 15
3 16 13 8 17
4 18 18 18 18

Table 2.2: τi values when
computing ui constrained
on previous iteration.

Iter. a b c d
1 1 3 8 18
2 19 21 26 36
3 37 39 44 54
4 55 57 62 72

Table 2.3: τi values when
computing ui in the order
(a, b, c, d).

Iter. d c b a
1 10 5 2 11
2 15 7 13 16
3 17 18 18 18
4 28 23 20 29

Table 2.4: τi values when
computing ui in the order
(d, c, b, a).

Table 2.5: The influence of the update order.

Given that the runtime of the SOTA algorithm depends on the update order, we would
like to find an optimal ordering that minimizes the runtime of the algorithm. The first step
in finding such an optimal ordering is to formalize the runtime of the FFT SOTA algorithm.

Section 2.4. Discrete formulation of the SOTA algorithm with a Fast
Fourier Transform solution 29

Definition 2.4. The computation time of the cumulative density function ui(·) can be min-
imized by finding the ordering that solves the following optimization problem.

minimize
(τ
ki
i ,Ki)

∑

(i,j)∈A

Ki∑

ki=1

τ kii
∆t

log
τ kii
∆t

(2.9)

ject to τ kii ≤ τ
kj
j + δij ∀τ kii , τ

kj
j s.t. (i, j) ∈ A,

C(i, ki) < C(j, kj + 1)

τKrr ≥ T

τ 1
s ≥ T

τ 1
i ≥ ∆t ∀i ∈ N, i 6= s

τ k+1
i > τ ki ∀i ∈ N

where τ kii is the budget up to which ui(·) has been computed in the kthi iteration of
computing ui(·), C(·, ·) is an index on the order in which nodes are updated such that C(i, ki)
denotes when node i is updated for the kthi time and Ki is the total number of iterations
required for node i.

The optimal order in which ui(·) is computed might result in updating some set of nodes
multiple times before updating another set of nodes.

Proposition 2.7. The ordering that gives the optimal solution to the optimization prob-
lem (2.9) can be obtained using Algorithm 2.4 in O(mT

∆t
log(n)) time, where n and m are

respectively the number of nodes and links in the network, ∆t is the time discretization in-
terval and T is the time budget. See

The optimal order of updates (node and value) that computes the cumulative distribu-
tion function ur(T) of the origin r most efficiently is stored in the stack χ at the termination
of the algorithm. Algorithm 2.4 works by taking the source node r and the time budget to
which it needs to be updated T , and then recursively updating the set of constraints that
need to be satisfied before ur(T) can be computed. At the first iteration, the source and
its terminal value in the algorithm (the budget) are added to the stack, and the constraints
that are required for updating the source to that value are stored in the heap ψ. At any
given iteration, the largest value in the heap is extracted and added to the stack, since it is
the most constrained node in the current working set. A detailed proof is given below.

Proof. Algorithm 2.4 begins at the termination condition of the SOTA problem, the source
node being updated to the budget, and recursively builds (in reverse order) the optimal
sequence of updates that allow the source node to be updated to the budget. Thus, the
algorithm is initialized with the terminal condition of τr = T . This is the initial constraint
of the optimal ordering algorithm. Reaching this condition must be preceded by all the

Section 2.4. Discrete formulation of the SOTA algorithm with a Fast
Fourier Transform solution 30

Algorithm 2.4 Optimal order for updating u(·)
Step 0. Initialization.
τ(i) = 0, ∀i ∈ N, i 6= r, i 6= s % where r is the origin and s is the destination
τ(s) =∞, τ(r) = T
ψ := {(r, τ(r))} % ψ is a priority queue data structure
χ := {(r, τ(r))} % χ is a stack data structure

Step 1. Update
(v, θ) =ExtractMax(ψ)
τ(v) := θ
Push(χ, (v, τ(v)))
π := Children(v)
For k := 1 to size(π)
If ((π[k] 6= s) and (τ(v)− δvπ[k]) > 0)
τ := max(Extract(ψ, π[k]), τ(v)− δvπ[k])
Insert(ψ, (π[k], τ))

Step 2. Termination
If ψ := ∅ stop;
Otherwise go to Step 1.

downstream nodes j ∈ πr of the source node r being updated to at least τr − δrj, since the
correctness of the algorithm requires the invariant in equation (2.8),

τi ≤ min
j

(τj + δij) ∀(i, j) ∈ A

to hold. Therefore, the initial constraint τr = T is relaxed by adding these new constraints
to the constraint list ψ. At the same time, we also add τr = T to the optimal order stack χ.
This will be the final update in the optimal ordering, since we are building the list from the
last update to the first.

Once we have a set of new constraints, we need to decide which node to relax and how
far to update τi. The contribution from a given node i to the objective function of the
optimization problem (2.9) is minimized when the τi value for that node is minimized as
much as possible. Furthermore, lowering the τi value for a node reduces the new constraints
introduced when relaxing that node. Therefore, an optimal update should reduce the τi
value of a node as much as possible such that invariant (2.8) is not violated.

The next step is to determine which constraint from the constraint list ψ to relax first.
We need to show that that the order of relaxation guarantees that the algorithm will not
introduce any new constraints that violate any updates done in previous relaxations. Picking
the node i with the largest constraint τi in ψ guarantees this, since δij is strictly positive

Section 2.4. Discrete formulation of the SOTA algorithm with a Fast
Fourier Transform solution 31

and the new constraints τj (∀j ∈ πi) that are added satisfy the condition τj ≤ τi − δij, which
implies that node i cannot have a new constraint that is greater than its current constraint
τi at any future point of the algorithm. Therefore, correctness is preserved by relaxing the
node i with the largest constraint τi in ψ and setting its value to τi − δij. Node i is then
added to the optimal order stack χ. The new constraints introduced by setting node i to
this value are then added to ψ, if τi− δij > 0 and j 6= s. It is unnecessary to add constraints
if these conditions are not satisfied, since ui(t) = 0 (∀ i ∈ N, t ≤ 0) and us(t) = 1 (∀ t ≥ 0).
This process is performed recursively until the list ψ is empty. The process is guaranteed to
terminate because the values of new constraints that are added when relaxing an existing
constraint are monotonically decreasing.

The complexity of Algorithm 2.4 is O(mT
∆t

log(n)). The Extract and Insert operations
of the Algorithm 2.4 can be replaced with a single IncreaseKey operation, which runs in
O(log(n)) time (see [125, 29] for details). The IncreaseKey operation will increase the key of
a given node if the new key is greater than its existing value. This is exactly what the Extract
and Insert operations are used for. The pseudo-code for Algorithm 2.4 uses the Extract and
Insert operations to improve readability. The ExtractMax operation can be performed in
constant time. Therefore, each iteration of the algorithm takes O(log(n)) time. In the worst
case, each link might need to be updated T

∆t
times. Repeating this over the m links of the

network, we obtain a complexity of O(mT
∆t

log(n)).

2.4.3 Search space pruning by elimination of infeasible paths

The proposed algorithm requires computing the cumulative distribution function ui(t)
for every node in the graph. This can be prohibitively expensive even in reasonably sized road
networks. Therefore, we need to constrain the search space of our algorithm. In this section,
the proposed algorithm is extended by adding a pruning algorithm that eliminates infeasible
paths by removing unnecessary nodes during a preprocessing step. Consider an instantiation
of the SOTA problem with an origin node r, destination node s and a travel-time budget
of T . Since every link (i, j) in the network has a minimum realizable travel-time βij (as
defined in Section 2.3.1), it follows that every path in the network must have a minimum
realizable travel-time as well. For any path Pik, let the minimum realizable path travel-
time be αik. The value of αik can be found by running a standard deterministic shortest
path algorithm such as Dijkstra’s algorithm on the network with the link weights being the
minimum realizable link travel-time corresponding to each link.
Proposition 2.8. Consider some arbitrary node i in the network. Let αri and αis be respec-
tively the minimum realizable travel-times from the origin to node i and from node i to the
destination.

1. If αri + αis > T , we can safely remove this node from the network and ignore it when
solving the SOTA problem.

2. The cumulative distribution function ui(·) only needs to be computed for the time in-
terval αis ≤ t ≤ T − αri.

Section 2.5. Implementation of the algorithm in the Mobile Millennium
system 32

Proof.

1. If αri +αis > T , the minimum realizable travel-time from the origin to the destination
through node i is greater than the travel-time budget. Therefore, no feasible path
exists through node i.

2. The minimum realizable travel-time from the origin to node i is αri. Therefore, no path
in the dynamic programming recursion will query ui(t) for t > T −αri. The minimum
realizable travel-time from node i to the destination is αis. Therefore, ui(t) is zero for
t < αis.

By performing an all destinations shortest path computation from the source and an all
sources shortest path computation from the destination, we can significantly prune both the
size of the network required when solving the SOTA problem and the time interval for which
the cumulative distribution function ui(·) needs to be computed for each node. For a graph
with n nodes and m links, the time complexity of Dijkstra’s algorithm is O(m+n log n) [29],
which is dominated by the complexity of the SOTA algorithm. Thus, the cost of pruning
is negligible compared to the complexity of the SOTA algorithm. Furthermore, state of the
art shortest path algorithms that run in near constant time [2, 55] can be utilized when the
minimum realizable travel-time does not vary with time. It should be noted that this is a
very conservative pruning algorithm and that further runtime reductions can be achieved
using more aggressive pruning methods, which are described in the following chapter.

2.5 Implementation of the algorithm in the Mobile Mil-
lennium system

Experimental results are provided by implementing the proposed algorithms in the Mobile
Millennium traffic information system. Mobile Millennium is a traffic information system
that integrates traffic measurements from a variety of sensors (loop detectors, radars, probe
vehicles, tolltag readers) to produce real-time traffic estimates for the San Francisco Bay
Area. The system collects on the order of 2 million reports of vehicle counts and time
occupancy from loop detectors, count and point speeds from over 100 radars, and between
2− 10 million probe vehicle speeds from traffic commuters daily for the San Francisco Bay
Area. These data feeds are filtered and fused using multiple techniques (viability tools ([8]),
statistical methods, etc.), and integrated as real-time observations by highway and arterial
traffic estimation modules. The Mobile Millennium system provides real-time estimation of
traffic conditions (travel-time, speed, density) on most of the non residential streets and roads
in the Bay Area, on as ongoing basis. Traffic estimates are broadcast via a web interface
and a cellphone application, enabling commuters to select the optimal commute route in
order to avoid congestion, caused by both recurrent conditions and unexpected events such

Section 2.5. Implementation in the Mobile Millennium system 33

as accidents. In this section, we propose to test the performance of the routing algorithm
introduced in this chapter on two specific traffic estimates from the system:

• Sample-based representation of the velocity map on the Bay Area highway network
(Figure 2.3): this output is produced by the v-CTM EnKF algorithm from [136] which
fuses loop detectors counts, radars speed and spatially sampled probe speeds into a
partial differential equation flow model coupled with an ensemble Kalman filter estima-
tion algorithm. This estimate is updated every 30 seconds and has a space resolution
of approximately 400 meters. Link travel-time distributions representing model uncer-
tainty on the travel-time at the mean speed can be directly computed from this output
and used by our routing algorithm.

• First two moments representation of link travel-times on the San Francisco arterial
network (Figure 2.4): this output is produced by the machine learning algorithm from
[66] using a mixture of real-time and historical probe generated travel-times. The
link travel-time distributions represent individual commuters travel-time and can be
directly used by our routing algorithm.

The practical applicability of the algorithms presented are illustrated by implementing
them in the Mobile Millennium system and comparing them to existing solutions. The
algorithms are tested on the arterial and highway road networks described above. The
highway network from Figure 2.3 is a relatively sparse network with short loops at ramps
and intersections, and large loops covering the entire network. This network contains 3639
nodes and 4164 links. The San Francisco arterial network of Figure 2.4 is a dense network
with a large number of loops with varying lengths, with 1069 nodes and 2644 links.

The algorithms are implemented in Java and executed on a Windows 7 PC with a
2.67Ghz Dual Core Intel Itanium processor and 4GB of RAM. We use the open source Java
libraries JTransforms ([135]) and SSJ ([79]) for FFT computations and manipulating prob-
ability distributions. Time-varying link travel-time distributions are obtained a-posteriori
from the traffic estimation models described above. Both travel-time models assume that
the link travel-times are independent with respect to each other.

We consider the following performance metrics:

• Runtime: computation time for the different variants of our algorithm compared to
similar existing routing algorithms and specific runtime improvement provided by the
speed up techniques introduced in this work.

• On-time arrival guarantee: sampling the Mobile Millennium traffic estimates enable
the generation of realistic user travel-time realizations. The probability of arriving on
time for both the SOTA policy and least expected travel-time path are compared. The
performance of the SOTA algorithm under different traffic conditions and route types
is also analyzed.

Section 2.5. Implementation in the Mobile Millennium system 34

Figure 2.3: Best viewed in color. Velocity estimates on the Bay Area highway
network. Right: Cumulated probe speed measurements collected on July 29th by the
Mobile Millennium system. Left: Velocity estimates on July 29th at 9 pm; most of the
network is in free flow, active bottlenecks correspond to red spots.

• En route re-routing : performance of the algorithm on a real test case on which the
ability of the routing module to provide adaptive route choices depending on traffic
conditions is presented.

2.5.1 Runtime performance

As shown in the complexity analysis from Section 2.4.1, the algorithm introduced in
this chapter is linear in the size of the network and pseudo-polynomial in the ratio T/∆t,
where T is the time budget of the user, and ∆t is the discretization interval of time. It was
argued that the proposed algorithm performs better than the existing solution to the SOTA
problem, in theory, for most practical routing problems. In this section we present empirical
results to validate this claim. Figure 2.5 shows the actual run-times (in CPU time) for two
sample origin-destination (OD) pairs, when computing the optimal policy over a range of
travel-time budgets.

Section 2.5. Implementation in the Mobile Millennium system 35

Figure 2.4: Best viewed in color. Travel-time estimates on the San Francisco
arterial network. Right: Cumulated probe location measurements collected on July 29th

by the Mobile Millennium system. Left: Travel-time estimates on July 29th at 8 pm; green
links correspond to free flow travel-times and red spots correspond to congestion.

As illustrated in Figure 2.5, the FFT based algorithm with optimal ordering performs
significantly better than the brute force approach5 in both networks (17 minute gain for a 1
hour policy on the highway network and 10 minute gain for a 30 minute policy on the arterial
network) and makes the SOTA problem more tractable for real-time applications. The
proposed algorithm performs much better on the highway network, where most of the loops
have large minimum travel-times and allow the cumulative distribution function ui(·) to be
updated in larger increments (as explained in Section 2.4.2), making the convolution product
more efficient. The FFT algorithm with a random update order performs quite poorly,
especially in the case of the arterial network, where it takes approximately 70 minutes to
compute a 30 minute policy.6 This observation agrees with the lower bound in Proposition 2.5
and the example values in Table 2.1, since the relative efficiency of the FFT algorithm
increases exponentially with the travel-time of the minimum length loop for each node.

2.5.2 Comparison with classical routing algorithms

Most common routing algorithms rely solely on the knowledge of the travel-time as a
deterministic quantity when generating optimal route choices. This deterministic travel-
time can be inferred for instance from the speed limitations on the network, from historical

5[103] show that their discrete convolution algorithm dominates the method given in [47] in terms of
runtime. We refer the reader to Table 3 in [103] for the comparison. Therefore, we compare our algorithm
to the algorithm given in [103].

6The computation time for the FFT algorithm with a random update order is not displayed in Figure 2.5,
since it takes much longer than the other algorithms, to improve the readability of the plot.

Section 2.5. Implementation in the Mobile Millennium system 36

Figure 2.5: Illustration of the tractability of the problem. Comparison of
run-times (CPU time) for the brute force convolution (solid line), randomly
ordered FFT (dashed line), optimally ordered FFT (dot-dash line) and
optimally ordered FFT with pruning (dotted line): Left: Highway network
Runtime for computing the optimal policy from Berkeley to Palo Alto. The time
discretization (∆t) is 0.5 seconds. Right: Arterial network Runtime for computing the
optimal policy for a route from the Financial District (Columbus and Kearny) to the
Golden Gate Park (Lincoln and 9th). The time discretization (∆t) is 0.2 seconds.

realized travel-times (e.g. average, worst case), or from a real-time deterministic output of
a traffic information system (e.g. mean travel-time, median travel-time).

We compare the performance of the SOTA algorithm to these classical methods on both
the highway and arterial networks defined above. First we instantiate the case of a commuter
traveling on the highway network from Berkeley (latitude: 37.87201, longitude: −122.3056)
to Palo Alto (latitude: 37.4436, longitude: −122.1176), on July 29th, on two departure times,
6:45 am and 8:00 am. This is a typical Bay Area commute experienced by a large population
of the San Francisco Bay Area every day. Different optimal routes are possible; for instance
the route with minimum expected travel-time (LET route), the route which minimizes the
travel-time at the speed limit (speed limit based route), the route with the shortest distance
(distance based route), the route which maximizes the probability of arriving on time (SOTA
route). We generate optimal routes for all of the above strategies using traffic estimates
from the Mobile Millennium system. The LET and SOTA routes are computed using the
time-dependent implementations of these algorithms. Once the routes are determined, we
compute the travel-time distributions for each of these routes a posteriori (this is computed
by performing a convolution of the individual link travel-time distributions for the links of
each route) and determine the probability of arriving within the budget range of 0 to 60
minutes. Figure 2.6 presents the probability of arriving on time for each of the routing
strategies during the budget range.

As traffic conditions vary, the time-dependent SOTA and LET routes change accord-

Section 2.5. Implementation in the Mobile Millennium system 37

Figure 2.6: July 29th: Probability of arriving on time at Palo Alto when
departing from Berkeley: Left: Departure at 6:45 am. The SOTA policy (solid line)
provides a higher probability of arriving on time than the choice of the LET route (dashed
line). The distance-based route and the speed limit based route are the same as the LET
route at this time (Highway I-880). Right: Departure at 8:00 am. The SOTA policy
and the LET route provide the same probability of arriving on time (solid line). The speed
limit based route and the distance based route (dashed line) are inferior for this criterion.

ingly, while the speed limit based route and the distance based route are static. When
departing at 6:45 am, the maximal point wise difference between the SOTA route and the
LET route is around 0.4, corresponding to a budget of about 47 minutes. For this budget,
the commuter has a 0.65 probability of arriving on time on the SOTA route and a 0.25
probability of arriving on time on the LET route. Naturally, for both the SOTA and LET
solutions, the risk of not making the destination on time increases as the budget decreases.
However, as illustrated in Figure 2.6, the SOTA route always provides a higher probabil-
ity of arriving on time. Furthermore, the SOTA algorithm can provide the user with the
probability of on time arrival (i.e. the risk level) for any range of time budgets the user is
interested in when the policy is computed, which allows the user to determine whether the
risk is acceptable or not and act accordingly.

One may note that the morning congestion build up is visible in Figure 2.6 since the
sharp increase in the cumulative distributions between the left subfigure (6:45 am) and right
subfigure (8:00 am) evolves from around 47 minutes to around 52 minutes in this time
period. The increase in the area between the SOTA cumulative probability (solid line from
Figure 2.6) and a second choice route (dashed line from Figure 2.6) during this time period
illustrates that the SOTA policy can dominate classical optimal routes by a higher margin
in congestion and non-stationary phases when there is a high uncertainty on the realized
travel-time.

We also compare the performance of the SOTA algorithm on the San Francisco arterial
network for two routes starting in the Financial District (Columbus and Kearny) and ending
at 1) Lincoln and 9th, and 2) Fulton and 2nd. As seen in Figure 2.7, the maximal point wise
difference between the SOTA route and the LET route for the first example is around 0.4,
corresponding to a budget of about 15 minutes, where the commuter has a 0.75 probability

Section 2.5. Implementation in the Mobile Millennium system 38

Figure 2.7: February 1st: Probability of arriving on time at Left: Fulton and
2nd, and Right: Lincoln and 9th when departing from the Financial District
(Columbus and Kearny) at 8:50 pm. As the graphs imply, the commute to Lincoln
and 9th is a longer route than Fulton and 2nd. The relative benefit of using a SOTA policy
increases with the route length, since the longer route contains more route choices in the
arterial network.

of arriving on time on the SOTA route and a 0.35 probability of arriving on time on the LET
route. For the second example, the maximal point wise difference is around 0.5, correspond-
ing to a budget of about 22 minutes, where the commuter has a 0.89 probability of arriving
on time on the SOTA route and a 0.39 probability of arriving on time on the LET route.
The relative benefit of using a SOTA policy increases with the length of a route, since the
longer route contains more route choices (with varying cumulative distribution functions) in
the arterial network. In the highway network examples from Figure 2.6, the SOTA policy
dominates the LET path for only a 3-5 minute window of the travel-time budget. However, in
the arterial network examples, the SOTA policy dominates the LET path for approximately
a 10-15 minute window, even though the route lengths were shorter. The reason for this
disparity is not limited to these specific examples and is due to the inherent differences of the
two networks. The highway network has a limited number of reasonable travel choices from
Berkeley to Palo Alto and relatively low variance of the travel-time distributions. Whereas,
the arterial network has a large number of route options and highly variable traffic conditions
due to the uncertainty introduced by pedestrians, stop signs, traffic lights etc. This results
in routes with many distinct cumulative distribution functions and leads to an improved
SOTA policy, since the SOTA policy is the upper envelope of all these distinct cumulative
distributions functions as illustrated below.

To further illustrate the benefits of the SOTA algorithm when the travel-time distribu-
tions are very heterogeneous, we consider the very simple example of two nodes connected
by 30 different links each gamma distributed with a mean of 25 minutes, but having different
shape and scale parameters. As illustrated in Figure 2.8, the travel-time distributions for
the links are vastly different even though they have the same expected travel-time. A LET
routing algorithm could pick any of these links as the optimal solution and in the worst case
pick the path that is the worst option for the travel-time budget. On the other hand, the

Section 2.5. Implementation in the Mobile Millennium system 39

Figure 2.8: A family of travel-times distributions modeled using 30 shifted
gamma distributions, each with the same mean travel time of 25 minutes and a
minimum travel time of 5 minutes. The shape parameter of the distributions ranges
from 4 to 0.13 and the scale parameter of the distributions ranges from 5 to 150. The
SOTA policy will be the upper envelope of all the curves. The LET path could be any of
the curves and in the worst case even be the path that minimizes the probability of
arriving on time for a given budget.

SOTA algorithm picks the best path for a given time-budget, which graphically corresponds
to the upper envelope of all the curves. As illustrated by this simple example, the SOTA al-
gorithm has the potential for being relatively more superior to a LET path when the number
of travel choices increases and their travel-time distributions are not similar.

2.5.3 Test case: evening rush commute within the city of San Fran-
cisco

In this section, we illustrate the adaptive nature of the SOTA algorithm presented in
this chapter. The output of the algorithm is a policy which accounts for the stochastic
nature of link travel-times. Given a budget T , the optimal policy computation encompasses
the design of a decision process at each possible intersection of the network; the choice of
the optimal route to take from this node depends on the remaining budget.

Here we consider two drivers commuting from point A to point B (see Figure 2.9) on
February 1st. They depart from point A at 8:50 pm and desire to reach point B before 9:10
pm; i.e. their travel budget is 20 minutes. We assume that both drivers are equipped with a
mobile device on which the output of the SOTA algorithm is available. At each intersection,
they follow the turn directions given by the optimal policy. For this test case we sample the
drivers travel-time from the output of the real-time arterial traffic estimation module [66]
from the Mobile Millennium system.

Because of different driving behaviors, external factors, link travel-time stochasticity,
both drivers will experience different travel-times during their commute. The strength of

Section 2.5. Implementation in the Mobile Millennium system 40

Figure 2.9: Commute from point A to point B: two drivers depart from point A at
8:50 pm on February 1st with a budget of 20 minutes to reach point B. They are routed by
the SOTA module. Because their realized travel times differ, their recommended routes
differ. The first driver is suggested to turn left at point C, whereas the second driver is
suggested to drive straight.

the SOTA algorithm is that the optimal route choice given by the algorithm is given at every
intersection in function of the remaining budget. As illustrated in Table 2.6, the optimal
route to take from point C includes a left turn for low values of the remaining budget.
Because the second driver experienced a larger travel-time on the path from point A to
point B, he is advised to take a left turn and to follow a path with more variability, and
thus higher risk, which may be more appropriate to his situation. The first driver continues
straight at point C.

Remaining budget b at point C Turn direction from East
b ≤ 12 minutes Take a left turn
b ≥ 12 minutes Continue straight

Table 2.6: The optimal policy at point C routes on different paths depending on the value
of the remaining travel budget with respect to 12 minutes. The probability of arriving on
time at B when remaining budget at C is 12 minutes is 0.56.

Section 2.6. Efficient convolutions 41

2.6 Efficient convolutions
As explained in section 2.4.1, the major computational overhead of the SOTA algorithm

is the numerical computation of the convolution products in the dynamic program. While
the use of localization with the optimal ordering algorithm, as explained above minimizes the
total computation time spent on convolutions, the complexity of the FFT based convolution
for each link remains O

(
T 2

δi∆t
log
(
T
∆t

))
, with the only change being the minimum link travel-

time δij being replaced with the minimum loop travel-time of the upstream node δi. The
asymptotic complexity as a function of T remains the same since each cumulative distribution
function ui(·) is still recomputed at each update step, as described in section 2.3. We assume
that ∆t = 1 and denote δ = δi in the rest of this section for notational simplicity.

Gardner [54] proposed an algorithm called zero-delay convolution (ZDC) to compute
convolutions more efficiently when the input signal is only available in an online fashion, as
is the case in our problem. The complexity of convolving two vectors of length n is reduced
from O(n2 log n) to O(n log2 n) when using this technique. ZDC works by constructing the
convolution via a series of smaller block convolutions and thereby eliminating the need to
recompute sections of the convolution product that have already been computed. Figure 2.10
illustrates the algorithm. Dean [37] showed that ZDC can be applied to the standard SOTA
problem to reduce the computational time complexity of the convolutions in each link from
O(T 2 log T) to O(T log2 T).

In our setting, ZDC can be combined with the idea of localization to achieve a com-
putational time complexity of O

(
T
(
log2 T − log2 δ

))
, which can significantly reduce the

computation time for networks with large δ values. We call this algorithm δ-multiple ZDC.
The process is as follows. First the optimal ordering algorithm is executed to obtain the
update steps for all links. Let τ ki be the budget up to which ui(·) has to be calculated to at
the kth update for node i. For ease of explanation, without loss of generality we assume that
the update interval δk is constant over all updates and that both the budget T and update
interval δ are powers of two. Without ZDC, u(·) is updated at each step k by convolving
two vectors of length kδ at a cost of O(kδ log(kδ)). This sums to a total time complexity
of O

(
T 2

δ
log T

)
as shown in section 2.3. With δ-multiple ZDC, as with the standard ZDC,

the convolution is done in blocks that are reassembled to create the entire convolution. Fig-
ure 2.11 shows a simple example with δ=4. Each block is now twice as large as it was with
standard ZDC and the computational time complexity is shown to be O

(
T
(
log2 T − log2 4

))
.

More generally, the complexity for each link is:

d(log T/δ)e∑

i=0

O
(
T log

(
2i · δ

))
= O

(
T
(
log2 T − log2 δ

))
. (2.10)

Since the optimal ordering algorithms pre-computes the maximum update values for
each link, the δ-multiple ZDC algorithm can be run with the most efficient δ value for each
link, while preserving correctness invariant given in Equation 2.8.

Section 2.6. Efficient convolutions 42

Figure 2.10: Illustration of the zero-delay convolution algorithm from [37]. The ZDC
algorithm computes the convolution one column at a time from left to right. The
convolutions are computed in blocks and reassembled to avoid recomputation. The
functions ui[·] and uj[·] are the discrete cumulative distribution functions for the
probability of reaching the destination within some time budget from nodes i and j
respectively, where (i, j) ∈ A, and p[·] is shorthand for the probability density function
pij[·]. We assume that (i, j) is the only outgoing link from node i. Notice that all the
components needed to construct ui[k + 1] are available by the time column k is computed.
Some components are computed in advance to exploit the efficiency of block convolutions.
The size of the blocks increases exponentially as we proceed through the vectors with the
final block having size T . The total computation time is 2T +

∑log T
i=1 T log 2i = O(T log2 T).

.

Section 2.6. Efficient convolutions 43

Figure 2.11: Illustration of the δ-multiple zero-delay convolution algorithm for the SOTA
problem. We consider a node i with one downstream link (i, j), where δ = 4 and δij = 2.
The functions ui[·] and uj[·] are the discrete cumulative distribution functions for the
probability of reaching the destination within some time budget from nodes i and j
respectively, and p[·] is shorthand for the probability density function pij[·]. The first two
rows can be computed in constant time, since δij = 2 implies that p[1], p[2] = 0. The rest of
the convolution is now computed using block sizes that are multiples of δ making the
process more efficient than the standard ZDC. Incorporating localization reduces the
computational time complexity from O

(
T log2 T

)
to O

(
T
(
log2 T − log2 δ

))
.

Section 2.6. Efficient convolutions 44

2.6.1 Experimental setup

In this section we present numerical results on the performance of the speed-up tech-
niques for the SOTA algorithm (including ZDC) for two types of networks. First we create a
set of synthetic networks to illustrate the relative performance of the base algorithm and its
optimizations as a function of the structure of the network. Then we provide some numerical
results from implementing the algorithms in a traffic information system for the San Fran-
cisco Bay Area. The performance of the algorithm is measured as a function of the total
budget T . The algorithms are programmed in Java and executed on an Apple Macbook
computer with a 2.4Ghz Intel Core 2 Duo processor and 4GB of RAM. We use the open
source Java libraries JTransforms [135] and SSJ [79] for FFT computations and manipulating
probability distributions. We consider the following combinations of speed-up techniques7:

• SOTA-Brute force: convolution as a point-wise shifted product.

• SOTA-FFT: convolution using the Fast Fourier Transform algorithm.

• SOTA-FFT-Opt: convolution using the FFT algorithm, policy updates according to
the optimal ordering algorithm.

• SOTA-FFT-ZeroDelay: convolution using the Fast Fourier Transform algorithm in
a zero delay framework.

• SOTA-FFT-ZeroDelay-Opt: convolution using the Fast Fourier Transform algo-
rithm in a zero delay framework, policy updates according to the optimal ordering
algorithm.

2.6.2 Synthetic network

In this section we analyze the performances of the speed-up techniques proposed on a
Manhattan grid (see Figure 2.12), parameterized by n, the number of arcs on each of the
four sides of the grid, δ, the minimal link travel-time, and ∆t, the discretization time. We
consider the following instantiations of a Manhattan grid:

• Graph A: n=60, δ = 5, ∆t = 1

• Graph B: n=30, δ = 10, ∆t = 1

• Graph C: n=30, δ = 20, ∆t = 1

• Graph D: n=30, δ = 5, ∆t = 1

7The successive approximations algorithm from [47] is not considered, since SOTA-Brute force has been
shown to outperform it in [103].

Section 2.6. Efficient convolutions 45

Figure 2.12: Manhattan Grid with n arcs along the edge of the grid, and minimal link
travel-time δ.

The link travel-times are chosen as shifted Gamma distributions, with the left support
boundary at δ, mean travel-time µ = 2 δ, and variance σ = 0.5 δ. The origin is defined as
the node with coordinates (0, 0) in the grid and the destination is defined as the node with
coordinates (n, n) in the grid. Consequently, on algorithm instantiations for which search
pruning is used (implicitly via the optimal ordering algorithm in this case), an inflexion
point in the runtime can be observed at the budget corresponding to the minimal origin-
destination travel-time, corresponding to the fact that the whole graph has been explored
by the SOTA policy computation method proposed at this point.

As detailed in the previous section, the runtime of the algorithm depends on the graph
size, and on the discretized minimal loop size. In an operational setting, typical nation-wide
road networks are composed of two fundamentally different network types, which differ by
the inherent structure of their associated graphs, characterized by their minimal graph loop
size. Highway networks exhibit large loop sizes, whereas arterial networks are characterized
by small loop sizes. Figure 2.13 illustrates the impact of the network structure over the
performances of the proposed speed-up techniques for the SOTA algorithm. For a given
budget, and fixed discretized loop size, the runtime on a highway network, with large loop
travel-times (Figure 2.13, right), is significantly reduced compared to the runtime on a
arterial network, with small loop travel-times (Figure 2.13, left). Over hybrid nation-wide
networks composed of highway and arterial components, the performance of the algorithm
is constrained by the policy computation on arterial networks.

Figure 2.14 illustrates the impact of the network size over the performances of the speed-
up techniques. For two graphs with identical network structure, and the larger network

Section 2.6. Efficient convolutions 46

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600
Computation time for graph A

Budget

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Brute force

FFT

FFT−OPT

FFT−ZeroDelay

FFT−OPT−ZeroDelay

0 200 400 600 800 1000 1200
0

20

40

60

80

100
Computation time for graph B

Budget

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

Brute force

FFT

FFT−OPT

FFT−ZeroDelay

FFT−OPT−ZeroDelay

Figure 2.13: Runtime as a function of budget for different graph structures:
Runtime for computing the optimal policy for graph A, left, with n = 60, δ = 5, ∆t = 1,
and graph B, right, with n = 30, δ = 10, ∆t = 1. The brute force method is represented in
dotted line, SOTA-FFT using star markers, SOTA-FFT-OPT using circle markers,
SOTA-FFT-ZeroDelay in dashed line, and SOTA-FFT-OPT-ZeroDelay in solid line.

(figure 2.14, left) having travel-times on average four times as long than those of the smaller
network (figure 2.14, right), the benefits of the speed-up techniques are more pronounced in
the larger network. The SOTA-FFT-ZeroDelay and SOTA-FFT-OPT-ZeroDelay algorithms
scale well with the network size, since the computational time complexity is sub-quadratic
in the time budget.

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

400

450
Computation time for graph C

Budget

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

Brute force

FFT

FFT−OPT

FFT−ZeroDelay

FFT−OPT−ZeroDelay

0 100 200 300 400 500 600
0

5

10

15

20

25

30
Computation time for graph D

Budget

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

Brute force

FFT

FFT−OPT

FFT−ZeroDelay

FFT−OPT−ZeroDelay

Figure 2.14: Runtime as a function of budget for different graph size: Runtime for
computing the optimal policy for graph C, left, with n = 30, δ = 20, ∆t = 1, and for graph
D, right, with n = 30, δ = 5, ∆t = 1. The brute force method is represented in dotted line,
SOTA-FFT using star markers, SOTA-FFT-OPT using circle markers,
SOTA-FFT-ZeroDelay in dashed line, and SOTA-FFT-OPT-ZeroDelay in solid line.

Section 2.6. Efficient convolutions 47

2.6.3 San Francisco Arterial Network

This section presents experimental results comparing the various versions of the SOTA algo-
rithm on a real network from the San Francisco Bay Area. The algorithms are implemented
within the Mobile Millennium [95] traffic information system and we test them on the San
Francisco arterial sub-network. The network contains 1069 nodes and 2644 links. The travel-
time distributions are estimated using the statistical learning algorithm described in [66]
using a mixture of real-time and historical probe-generated travel-times. Time-varying link
travel-time distributions are obtained a-posteriori from the traffic estimation model. The
link travel-time distributions are assumed to be independent. We present the actual run-
times (in CPU time) for a sample origin-destination (OD) pair (see Figure 2.15, right), when
computing the optimal policy over a range of travel-time budgets.

As illustrated in table 2.7, the speed-up techniques introduced in this chapter provide a
significant gain in runtime for the SOTA algorithm. The consideration of batch computation
via FFT-based convolution (SOTA-FFT), presented in section 2.4, increases the runtime
compared to the brute force method (SOTA-Brute force) due to the inefficiency of computing
multiple convolutions products for the same link, however it allows the use of a localization
technique (SOTA-FFT-OPT), introduced in section 2.4.2, providing an order of magnitude
speed-up compared to SOTA-FFT overall, and a factor 2 speed-up, for a budget of 30
minutes compared to SOTA-Brute force. Additionally, the zero-delay convolution method,
introduced in section 2.6, provides an order of magnitude speed-up (SOTA-FFT-ZeroDelay-
OPT) compared to the localized algorithm (SOTA-FFT-OPT). Overall, the combination of
the localization technique and the zero-delay convolution bring the runtime on a standard
laptop from values comparable to the travel budget, to values below the minute for city-level
trips, which fall into the practical range for real-time transportation applications.

Table 2.7: Runtime (in minutes) for different budgets.

Algorithm Budget 10 minutes Budget 20 minutes Budget 30 minutes
SOTA-Brute force 3.3 13.0 29.2
SOTA-FFT 19.1 73.2 154.9
SOTA-FFT-OPT 2.7 9.8 15.0
SOTA-FFT-ZeroDelay 0.8 2.7 5.2
SOTA-FFT-ZeroDelay-OPT 0.3 0.8 1.1

The three best combinations of the speed-up techniques are also illustrated in Fig-
ure 2.15, left. The impact of the localization technique, which induces a pruning of the
graph and leads to policy updates only for vertices that are feasible given the travel budget,
is visible in the typical shape of the curves corresponding to SOTA-FFT-OPT and SOTA-
FFT-ZeroDelay-OPT, which illustrate that for large budget, the marginal increase in compu-
tation time is limited when using the localization technique because fewer additional vertices

Section 2.6. Efficient convolutions 48

are feasible. On the other hand the computation time curve for SOTA-FFT-ZeroDelay has
a convex shape. The complexity reduction provided by the zero-delay method combined
with localization is also clearly visible by comparing the computation times for SOTA-FFT-
OPT and SOTA-FFT-ZeroDelay-OPT, which decrease from around 15 minutes to around 1
minute for a budget of 30 minutes.

0 5 10 15 20 25 30
0

5

10

15

Arterial network (San Francisco)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

m
in

u
te

s
)

Budget at the origin (minutes)

Figure 2.15: Left: Runtime for computing the optimal policy for a route from
the Financial District (Columbus and Kearny) to the Golden Gate Park
(Lincoln and 19th) Comparison of run-times (CPU time) for SOTA-FFT-OPT (dotted
line), SOTA-FFT-ZeroDelay (dashed line), SOTA-FFT-ZeroDelay-OPT (solid line). The
time discretization (∆t) is 0.4 seconds. Right: Illustration of the San Francisco
Arterial network Cumulated probe data measurements from the San Francisco arterial
network for a single day.

49

Chapter 3

Precomputation techniques for the
stochastic on-time arrival problem

3.1 Introduction
While the previous chapter presented a number of techiques for speeding up the com-

putation of the solution to the stochastic on-time arrival (SOTA) problem, these methods
still fall short of the performance requirements for implementation in commercial navigation
systems. Therefore, in this chapter, we attempt to further improve the computation time by
adapting preprocessing techniques that have been used very successfully in the deterministic
shortest path setting. These techniques, which include goal-directed search methods such
as A?, arc-flags [67, 10] and ALT [61], and algorithms that exploit the hierarchy of road
networks such as reach [60], contraction hierarchies [55], and transit-node routing [9], can
provide speedups of over three orders of magnitude over Dijkstra’s algorithm. For example,
using transit-node routing, the deterministic shortest path problem can be solved in less
than a millisecond for road networks with 20 million nodes and 50 million edges [9].

In this chapter, we explore the use of these preprocessing techniques for improving the
query-time of the SOTA problem. We start by identifying some properties of the SOTA
problem that limit the types of preprocessing techniques that can be used in this context,
and then define the stochastic variants of two deterministic shortest path preprocessing tech-
niques that can be adapted to the SOTA problem, namely reach and arc-flags. We present
the preprocessing and query algorithms for each technique, and also present an extension to
the standard reach based preprocessing method that provides additional pruning. Finally,
we explain the limitations of this approach due to the inefficiency of the preprocessing phase
and present a fast heuristic preprocessing scheme. Numerical results for San Francisco, Lux-
embourg and a synthetic road network show up to an order of magnitude improvement in
the query-time for short queries1, with even larger gains expected for longer queries.

1The maximum time budget of our queries is limited by the memory limitations of the hardware and Java
implementation.

Section 3.1. Introduction 50

This work is, to the best of our knowledge, the first attempt at using graph preprocessing
techniques to speed up the query-time of the SOTA problem.

Preprocessing constraints of the SOTA problem.

Ideally, we would be able to directly apply the ideas from the deterministic SP problem
to the SOTA setting with minimal modifications. However, there are some fundamental
differences of the two problems that limit the types of preprocessing techniques that can be
used in the SOTA framework. The SOTA solution does not satisfy two important proper-
ties that are present in the deterministic SP problem; it cannot be computed in the reverse
direction and sub-policy optimality does not hold.

Bidirectional search is not possible. Bidirectional search is a common technique
used both in the preprocessing and query stages of fast deterministic routing solutions.
For example, Contraction Hierarchies [55] and variants of the arc-flags [67] and reach [59]
algorithms rely on the ability to perform bidirectional search. However, speedup techniques
that rely on bidirectional search can not be applied to the SOTA problem. As can be seen in
equation (2.1), the final and intermediate solutions of the SOTA problem are a function of
the remaining time budget, which implies that finding the optimal routing strategy requires
this knowledge. When performing a bidirectional search, the reverse search will not have
this information.

Lemma 3.1 (Solution on reverse graph). Let s, d ∈ V and T be a time budget. The SOTA
problem of reaching d from s within T in G is not equivalent to reaching s from d in the
reverse graph with the same time budget.

s da

P(2):0.5
P(5):0.5

P(1): .5
P(2): .5

P(4): 1

Figure 3.1: A network where the forward and reverse problems are not equivalent

Proof by contradiction. Figure 3.1 depicts a network in which we wish to find the SOTA
solution for traveling from the source s to the destination d within 5 time units. The prob-
ability of reaching d from s within 5 units of time is 0.75 and the probability of reaching s
from d within the same time budget in the reverse graph is 0.5. The reason for this differ-
ence is the following. In the forward problem, the path decision from a to d is made using
the information about the travel time from s to a and knowing the remaining time budget.
However, in the reverse problem, the decision on which path to take from d to a must be

Section 3.2. Preprocessing techniques for SOTA 51

made without any information on the realized travel time between a and s.

Sub-policy optimality does not hold. Sub-path optimality is another commonly
utilized property when solving SP problems. If a destination node d has two incoming links
a and c (as in figure 3.2), then the optimal path from a source node s to d is either the
optimal path from s → a plus (a, d) or the optimal path from s → c plus (c, d). However,
this basic assumption does not hold in the SOTA setting. To be precise, the optimal SOTA
policy from s to d can not be constructed using the optimal policies from s to a and s to c.
This prevents us from being able to construct stochastic variants of some the most effective
preprocessing techniques such as transit nodes [9] and SHARC [10].

Definition 3.1 (Optimal node set). Let Vsd(T) be the set of nodes that span all realizable
optimal paths for reaching a destination d from a source s within a time budget T.

Lemma 3.2 (Sub-policy sub-optimality). Let s, d ∈ V , T be a time budget and Φ be a
vertex separator of Vsd(T). The optimal policy from s to d for a time budget of T can not be
constructed using only the optimal policies from s to v and v to d for all v ∈ Φ.

s d

a

b

c

P(1):0.1
P(3):0.9

P(3):0.1
P(5):0.9

P(3):0.5
P(6):0.5

2
1

3
3

Figure 3.2: A network where the optimal policy cannot be decomposed

Proof by contradiction. In figure 3.2, the best path for going from s to a or s to c for any
time budget is via the direct edges (s, a) and (s, c). Also, it is clear that it is necessary to
travel through either a or c to reach d. However, in this example, the optimal policy for
going from s to d with a time budget of 7 is to first go to b and then chose the next edge
between a and c based on the remaining time budget.

3.2 Preprocessing techniques for SOTA
In this section we will focus on two preprocessing techniques that can be adapted to

work with the SOTA problem, namely reach and arc-flags. We first define the stochastic
variants of these techniques and explain how they can be used for fast query processing in
the SOTA problem.

Section 3.2. Preprocessing techniques for SOTA 52

3.2.1 Reach.

The reach [60] of a node is a metric that quantifies the radius of a node’s relevance. A
node with a small reach value will only belong to shortest paths whose source or destination
are close to the node, while a node with a large reach may belong to shortest paths involving
sources and destinations that are far from it. We adapt the notion of reach to the stochastic
setting of the SOTA problem and present a variant of the reach definition that allows for
better pruning.

Definition 3.2 (Stochastic reach). Let m be a metric and m(i, j) the minimal distance
between i and j for this metric. For a node i and some time budget t, we define Ψi(t) to be
the set of source-destination pairs that contain i in their optimal policy for some time budget
smaller than or equal to t.

Ψi(t) = {(s, d) ∈ V 2 : ∃t′ ≤ t, i ∈ Vsd(t′)}

We define the stochastic reach of a node i for a time budget t as:

r(i, t) := max
(s,d)∈Ψi(t)

min(m(s, i),m(i, d))

The reach of a node can be used to speed up SOTA queries by pruning the graph as described
below prior to processing a SOTA query.

Lemma 3.3 (Graph pruning with reach). Let (s, d) be a source-destination pair and T be
the time budget for reaching the destination. Let i be a node and t ≥ T a budget for which
the reach r(i, t) has been precomputed. Node i can be pruned from the graph without changing
the optimal solution if r(i, t) < min(m(s, i),m(i, d)).

Proof. If node i belongs to the optimal node set for source-destination pair (s, d) with a time
budget T , i.e. i ∈ Vsd(T), then (s, d) ∈ Ψi(t), t > T and r(i, t) ≥ min(m(s, i),m(i, d)) by
definition 3.2. Therefore, if r(i, t) < min(m(s, i),m(i, d)), node i is not on any optimal path
for the source-destination pair (s, d) with a time budget T and can be pruned.

Partition-based reach. One drawback of reach pruning is that the pruned graph could
contain a large number of false positives. This is to be expected because the reach metric is
computed over the set of all source-destination (s, d) pairs in the network. However, we can
improve the precision of the reach metric by computing multiple reach values for each node
that are conditioned on some information about the (s, d) pair with respect to which the reach
is being computed. One such method is to divide the graph into partitions and compute
an individual reach value for each partition. We partition all possible source-destination
(s, d) pairs into several clusters with respect to the node for which we are computing the
reach, and compute the reach value corresponding to each of these clusters. In the pruning
phase, we first find the cluster that the source-destination pair belongs to and look up the
corresponding reach value. This leads to more precise reach values and improves the pruning

Section 3.2. Preprocessing techniques for SOTA 53

ability at the expense of an additional memory requirement. There is a trade off between
the precision of the reach and the memory used; the two extrema been the regular reach and
computing the reach for every possible source-destination pair. We first provide an abstract
definition of partition-based reach and then present a specific partitioning scheme.

Definition 3.3 (Partition-based reach). Let i be a node. Let S be an arbitrary function such
that S(i) is a partition2 of V 2. For notational simplicity let Si = S(i). For (s, d) in V 2, let
S(s,d)
i be the unique set of the partition Si such that (s, d) ∈S(s,d)

i . Then Ψi(t)∩S(s,d)
i is the set

of source-destination pairs that contain i in some optimal policy with a time budget smaller
than or equal to t, and which are in the same cluster of Si as (s, d).

The partition-based reach rS(i, t) on S is defined as:

r
(s,d)
S (i, t) = max

(s′,d′)∈Ψi(t)∩S
(s,d)
i

min(m(s′, i),m(i, d′))

It is easy to see that r(i, t) = max
(s,d)∈V 2

r
(s,d)
S (i, t)

Lemma 3.4 (Partition-based reach pruning). Let (s, d) be a source-destination pair and T
be the time budget to reach the destination. Let i be a node and t ≥ T a budget for which
the reach for the graph has been precomputed. If r(s,d)

S (i, t) < min(m(s, i),m(i, d)), i can be
pruned from the graph without changing the optimal solution.

Proof. If node i belongs to the optimal node set for source-destination pair (s, d) for a time
budget T , i.e. i ∈ Vsd(T), then (s, d) ∈ Ψi(t), t ≥ T . As (s, d) ∈ S

(s,d)
i , r(s,d)

S (i, t) ≥
min(m(s, i),m(i, d)) by definition 3.3. Therefore, if r(s,d)

S (i, t) < min(m(s, i),m(i, d)), node
i is not on any optimal path for the source-destination pair (s, d) with a time budget t and
can be pruned.

Example: Directed reach. The original reach definition [60] does not take into account
the position of the source and the destination relative to the candidate node to be pruned.
If both source and destination are in the same direction from a node i, it is unlikely that
this node i will be used in any optimal path as it requires moving away from the destination.
This is the motivation for directed reach.

Definition 3.4 (Directed reach). Let n be an integer that specifies the number of node sets
in the partition and π denote the mathematical constant pi.

Ik :=

{
[k−1
n
π, k

n
π[if k ∈ [[1, n− 1]]

[n−1
n
π, π] if k = n

2Defined as: ∀P ∈ Si, P 6= ∅; ∀Q 6= P ∈ Si, P ∩Q = ∅;⋃
P∈Si

P = V 2.

Section 3.2. Preprocessing techniques for SOTA 54

We define Si as the function:

i→ {(s, d) : ŝid ∈ Ik}k∈[[1,n]]

where ŝid is the non-oriented angle between s, i and d.

In directed reach, the source-destination pairs that are likely to contain i in their optimal
node set (those with ŝid close to π) are assigned to the same clusters. The benefits of
partition-based reach are validated experimentally in the results section.

Metric. The metric m used when computing the reach of a node does not impact the
correctness of the solution, but can influence the quality of the resulting pruning. In our
experiments, we compared the average travel time and the minimal travel time metrics on
random queries. Experimentation showed that the average travel time generally provides
better results, but there could be other metrics that we have not tested that perform better.

3.2.2 Arc-flags.

This method [67] is another well-known query speedup technique used in the determin-
istic SP problem. The idea is as follows: the graph G is divided into a set of regions R which
is a partition of the nodes V . Each edge has an associated vector of booleans (with one value
for each region) where each boolean is true if the edge is used by at least one SP ending in
the corresponding region. During the query phase, prior to computing the shortest path, any
edge that do not have the boolean corresponding to the region that the destination belongs
is pruned from the graph. Arc-flags also has the nice property of being able to dynamically
update the precomputed data [35]. We adapt arc-flags to the SOTA problem in the same
way as we did for reach, by replacing the notion of belongs to a shortest path by might be
used by an optimal policy.

Definition 3.5 (Optimal edge set). Let Esd(T) be the set of edges that span all realizable
optimal paths for reaching a destination d from a source s within a time budget T.

Definition 3.6 (Stochastic arc-flags). For a node d and some time t, we define Γd(t) to be
the set of edges that belong to some path of the optimal policy for traveling from any source
s to the destination d with a time budget less than or equal to t.

Γd(t) = {e ∈ E : e ∈ Esd(t′), t′ ≤ t, s ∈ V }

We define the arc-flag of an edge e for a time budget t and a region r ∈ R as:

AF (e, t, r) :=

{
TRUE if e ∈ ⋃d∈r Γd(t)

FALSE otherwise

Section 3.2. Preprocessing techniques for SOTA 55

Arc-flags can be used to speed up SOTA queries by pruning the graph as described below
prior to processing a SOTA query.

Lemma 3.5 (Query with the arc-flags). Let (s, d) be a source-destination pair, r the region
d belongs to and T the time budget for reaching d. Let e be an edge and t ≥ T a budget for
which the arc-flags has been precomputed. If AF (e, t, r) is false, e can be pruned from the
graph without changing the optimal solution.

Proof. If e belongs to some path of the optimal policy for the source-destination pair (s, d),
i.e. e ∈ Esd(T), then we have e ∈ Γd(t) by definition 3.6. Furthermore, since r is the region
that the destination d belongs to, it also follows that AF (e, t, r) is true.

3.2.3 Computing the reach and arc-flags.

One of the major limitations of this approach is the large computation time required to
calculate the stochastic reach and arc-flags of the network. In the deterministic SP context,
this limitation can be overcome by exploiting the property of sub-path optimality to come
up with efficient algorithms for computing these metrics. For instance in arc-flags, it is
easy to see that one only has to consider the boundary of a region as possible destinations
nodes, since the optimal path to any node within the region from a node outside the region
will include some optimal path to the boundary of the region. However, as we have seen
in section 3.1, this does not work in the SOTA setting. Similarly, the reach metric can
also be computed efficiently using a hierarchical method that takes advantage of sub-path
optimality, as shown in [60]. Unfortunately, to this point, we have not been able to identify
an efficient algorithm for computing the stochastic reach and arc-flags. We are exploring
the possibility of upper bounds for the reach metric similar to what is done in the original
article by Gutman [60].

Our current approach is to compute the reach and arc-flags in a brute force manner by
running a SOTA search for all possible destinations in the graph. Table 3.4 in the results
section shows that this approach is still tractable for some urban scale networks. It is im-
portant to note that the computation for each destination is an independent problem and
can be done in parallel.

Computing reach. A high level overview of the process is given in Algorithm 3.1. For each
destination d, we compute the optimal policy from all sources s to d for the time budget
T . The SOTA policy for all sources can be computed simultaneously [118]. Then, for all
sources s, we determine the nodes i ∈ ⋃t≤T Vsd(t) that belong to some optimal path from s
to d and update their reach. Determining the set

⋃
t≤T Vsd(t) is not trivial since it requires

considering all possible realizations of the SOTA policy. We use a efficient priority queue
based search with no re-computation of paths, but finding the set

⋃
t≤T Vsd(t) and updating

the reach from all the sources can take up to twenty times longer than finding the optimal
policy. Furthermore, the value m(s, i) might need to be computed multiple times when con-
sidering different destinations, but keeping these values in memory for all (s, i) requires too

Section 3.3. Experimental results 56

Algorithm 3.1 Reach computation

Input: a graph G and a time budget T
Output: the reach r(·,T)
Initialization: ∀i ∈ V, r(i,T) = 0
for d ∈ V do . can be computed in parallel

compute the optimal policy with budget T; ∀s 6= d ∈ V
for i ∈ V do

compute m(i, d)
end for
for s ∈ V do

compute
⋃
t≤T Vsd(t)

for i ∈ ⋃t≤T Vsd(t) do
compute m(s, i)
set r(i,T) = max(r(i,T), min(m(s, i),m(i, d)))

end for
end for

end for
return r

large of a memory footprint. Therefore, we recompute these values for each destination as
needed. Fortunately, m(s, i) can be computed efficiently in the sub-graph induced by the
nodes v ∈ ⋃t≤T Vsd(t), which is much smaller than G. This approximation will lead to an
upper bound for the reach, but this does not impact the optimality of the solution since it
is an upper bound. This bound is usually quite tight since the shortest path is usually close
to some path in the SOTA policy.

Computing arc-flags. Computing the arc-flags of the network is much a more straightfor-
ward process, since the arc-flags do not depend on the source. A high level overview of the
process is given in Algorithm 3.2. Once again first the optimal policy for each destination is
computed for the maximum time budget of interest. Then for each destination the optimal
edge set Esd(t) is computed and all the edges in this set are marked as true for the region
that the destination belongs to. To optimize the preprocessing, the arc-flags and reach can
be computed simultaneously, since they both use the SOTA solution for each destination d
and this computation can be shared.

3.3 Experimental results
Test instances. We use three different networks to test our algorithms: a San Francisco
arterial network3 (SF) with 2450 nodes and 6151 edges, a Luxembourg network with 30674

3We artificially modify the original network by adding two fast roads (highways) in the South/North and
East/West directions, since the original network does not contain highways and thus has poor hierarchy.

Section 3.3. Experimental results 57

Algorithm 3.2 Arc-flags computation

Input: a graph G, a partition of the edges R and a time budget T
Output: the arc-flags AF (·,T, ·)
Initialization: AF (e,T, r) = FALSE , ∀(e, r) ∈ E ×R
for d ∈ V do . can be computed in parallel

compute the optimal policy with budget T; ∀s 6= d ∈ V
compute

⋃
t≤T,s∈V Esd(t)

for e ∈ ⋃t≤T,s∈V Esd(t) do
set AF (e,T, r(d)) = TRUE

end for
end for
return AF

nodes and 72492 edges and a synthetic network with 7921 nodes and 31328 edges. The
synthetic network is a 89 × 89 Manhattan grid with 4 levels of roads, where the speed limits
are 40, 60, 80 and 120 kmph, and the size of the network is 40 × 40 km. The travel time
distributions for the SF network is derived from real world observations [68]. The travel
time distributions for the Luxembourg network are created artificially using the speed limits
as a baseline, as actual travel time information is not available. The distributions for the
synthetic network are also generated using the same strategy. All distributions are a mixture
of Gaussians corresponding to different traffic modes like slow or fast where all the weight
over the speed limit has been moved to the minimal travel time.

Environment. The precomputation was done on 18 × 1.9GHz AMD Opteron(tm) 6168
processors with 30Gb of shared memory, and the queries where were performed on an Intel
Core i7 Q740 with 8 × 1.73GHz cores and 4Gb of memory. All the code used for the
experiments was written in Java 1.6. For each experiment, we randomly picked 200 source-
destination pairs with a positive probability of arriving of time. The time discretization of
the probability distributions for all experiments is one second.

Technique Time budget (s)
300 500 800 1000

reach (RH) 1.2 1.5 1.4 1.3
directed-RH (DRH) 2.4 3.2 2.9 2.4
arc-flags (AF) 10x10 3.0 5.6 4.6 3.5
DRH & AF 10x10 4.8 8.8 7.2 5.4

baseline runtime (ms) 12 115 579 1554

Table 3.1: Relative speedups over no preprocessing
(San Francisco)

Section 3.3. Experimental results 58

Technique Time budget (s)
500 1000 1500 2000

reach (RH) 1.5 1.7 1.9 2.2
directed-RH (DRH) 2.0 2.2 2.4 2.8
arc-flags (AF) 20x20 1.5 2.3 3.3 4.8
DRH & AF 20x20 2.5 3.8 5.2 7.2

baseline runtime (ms) 12 283 883 1369

Table 3.2: Relative speedups over no preprocessing
(Luxembourg)

Technique Time budget (s)
500 1000 1500 2000

reach (RH) 1.2 1.3 1.4 1.4
directed-RH (DRH) 1.7 2.0 2.1 2.4
arc-flags (AF) 10x10 2.0 3.0 3.2 3.6
arc-flags (AF) 20x20 3.3 5.1 5.8 5.5
DRH & AF 10x10 2.7 4.6 4.9 5.4
DRH & AF 20x20 3.9 6.8 7.5 8.1

baseline runtime (ms) 23 315 1293 4843

Table 3.3: Relative speedups over no preprocessing
(synthetic network)

Speedup. Tables 3.1, 3.2 and 3.3 present the average speedups achieved using the prepro-
cessing methods described above compared to computing the results with no preprocessing.
The number associated with the arc-flags is the number of regions used. The general speedups
achieved are fairly consistent across all the networks. As expected, the directed-reach (DRH)
performs better than the regular reach (RH). Also, the performance of the arc-flag (AF) al-
gorithms improves as we increase the number of regions used. Finally, we see that combining
reach and arc-flags provides the best results. Figure 3.3 shows a visualization of how the
four different preprocessing algorithms reduce the query-time search space of the problem.
One important observation is that the speedups achieved using the preprocessing techniques
increases with the time budget of the query. The decrease in the San Francisco network for
large budgets is due to the boundary effects of the smaller graph. This is important be-
cause the total computation time increases with the budget and the efficiency of the SOTA
algorithm must scale well with the time budget.

The stochastic reach and arc-flags algorithms are generally less efficient than their de-
terministic counterparts in term of proportional speedup. The first explanation we can

Section 3.3. Experimental results 59

Figure 3.3: Pruning of the San Francisco network for some source-destination pair.
From left to right the pruning achieved using reach, directed-reach, arc-flags and the
combination of reach with arc-flags. The colored nodes are the nodes that belong in the
optimal policy and the color denotes the probability of the node being used, where blue
indicates a high probability and red indicates a low probability. The source is in the
bottom of the graph.

Network

Speedup technique
reach arc-flags heuristic arc-flags

1000 1000 2000 10x10 20x20
1000 2000 1000 2000

SF 8 497 456 1 556 230 711 317 1 133
Synthetic 18 305 1 303 12 099 584 4 420 860 7 799

Luxembourg 45 643 7 907 75 898 316 5 325 579 8 317

Table 3.4: Precomputation time in seconds for reach, arc-flags and heuristic arc-flags.
Results are presented for maximum time budgets of 1000 and 2000 seconds.

give is that the set Vsd(T) contains more nodes than a specific shortest path, 50% more
on average in our experiments. This means that the individual reach values of nodes are
likely to be higher in the stochastic setting and that more edges are likely to be labeled
as true in stochastic arc-flags. The stochastic reach and arc-flags are also functions of the
time budget being considered, which makes it hard to give meaningful comparisons with the
deterministic versions. The second explanation is that we have not performed queries for
large time budgets due to computational resource limitations. We have limited the range
of our preprocessing to trips of 2000 seconds. The best speedups achieved in deterministic
road networks are obtained for longer queries. For instance the deterministic reach speedups
reported in [60] show that the speedup increases with the length of the path from 4.5 to
19.2 on average for road lengths of 26 and 56 km. Similarly, the significant speedups for
the basic arc-flags algorithm were obtained in the German countrywide network where the
average trip is much longer [67]. We expect the speedups of the stochastic variants to also
increase as we consider longer queries. One of the immediate next steps is to re-implement
our algorithms in a programming language with better memory management features and
to gain access to better hardware resources to run the experiments on larger networks for

Section 3.3. Experimental results 60

larger time budgets.

Heuristic precomputation. As discussed in section 3.2.3, preprocessing the graph using
stochastic reach and arc-flags is very inefficient due to the additional constraints of the SOTA
problem. However, it is possible to efficiently compute heuristics of the reach and arc-flags
that are close to optimal values in practice. One such approach is the compute the arc-flags
by only considering destinations that are on the boundary of each region, as is done in the
deterministic case. This cuts the total number of nodes that need to be considered by a
considerable factor (specially when the regions are large and the number of nodes per region
is large).

When computing the heuristic arc-flags for the synthetic network we noticed a 0.4%
reduction in the total number of arc-flags, i.e. a 0.4% false negative rate. When computing
the SOTA solution for 1000 random queries we found 8 non-optimal solutions, and the
largest deviation in the probability of arriving on time was 10−5. The results for the SF and
Luxembourg networks were similar. Such approaches are especially promising for commercial
applications where such minor deviations from the optimal solution are negligible and the
measurement error in the probability distributions dominates the error.

The heuristic arc-flags can also be used to compute heuristic reach values as follows.
First run Algorithm 3.1 and 3.2 using only destination nodes that are on the boundary of
the regions. Then run Algorithm 3.1 from all the other destinations using the heuristic
stochastic arc-flags to speed up the optimal policy computation.

61

Part II

System optimal dynamic traffic
assignment

62

Chapter 4

Discrete-time system optimal dynamic
traffic assignment (SO-DTA) with partial
control for horizontal queuing networks

4.1 Introduction
In this chapter, we consider the system optimal dynamic traffic assignment problem

with partial control (SO-DTA-PC) for general networks with horizontal queuing. The goal
of which is to optimally control any subset of the network demand to minimize the total
congestion across all the demand in the network. A brief introduction the dynamic traffic
assignment is given in Section 1.3.

The single destination SO-DTA problem (with full control) can be formulated as a
Linear Program (LP) under a LP relaxation that approximates the non-linear dynamics of
the system [140]. However, the SO-DTA problem with partial control can not be formulated
as a convex problem, even in the case of a single destination, without violating the first-
in-first-out (FIFO) condition [22], due to the multiple commodities (selfish and cooperative
demand) in this problem. Furthermore, solving the SO-DTA problem with an LP relaxation
of the dynamics can lead to the holding of vehicles on links when the model allows for a
larger flow. It has been argued that this holding can be achieved in practice via variable
speed limit (VSL) signs [140] and makes sense when the goal of the problem is to also solve
for the optimal VSL values [62], but is impractical to implement in most cases. Thus, there
is a need for a more general solution that does not require VSL.

When solving an optimization problem subject to non-convex (potentially non-smooth)
system dynamics, one can either relax the model to make the optimization problem linear (or
convex) [20], or keep a more realistic model and use non-convex optimization methods [14],
with the trade-off being computational complexity versus model accuracy. In this work, the
goal is to use a model that is as close to the real world dynamics as possible, since we hope to
use it in an operational setting for highway corridors in California. A further complication

Section 4.1. Introduction 63

of DTA in practical settings is the unavailability of origin-destination (OD) data for the
entire demand. Most DTA solutions assume that this data is available, although it can be
challenging to obtain in practice. Therefore, we formulate the partial control problem in a
manner that requires full OD information only for the demand that can be controlled by
the central authority, and junction split ration for the remaining demand (which are much
easier to obtain via inductive loop detectors for example).

In this work, we formulate the system optimal dynamic traffic assignment problem with
partial control (SO-DTA-PC), using a traffic dynamics model similar to the Cell Transmis-
sion Model (CTM) [31, 34], which is a Godunov discretization of the Lighthill-Williams-
Richards (LWR) partial differential equation (PDE) [82, 111] with a triangular fundamental
diagram1. The CTM is a horizontal queuing model and uses a latency function that gives a
constant delay when the traffic density is below a certain threshold and progressively increases
as the density increases beyond this threshold, and is well accepted in the transportation
community as a good first order approximation of road traffic dynamics.

We propose solving the SO-DTA-PC problem with the non-convex traffic dynamics
from [38] and limited OD data with complete split ratios as a non-linear optimal control
problem. This formulation generalizes to multiple sources and multiple destinations. The
next challenge is in finding efficient descent methods for this non-convex optimal control
problem. There is a vast literature on optimization techniques for non-convex control prob-
lems (see [14] and the references therein) that can be utilized to solve this problem. While
gradient based methods do not provide any guarantees of converging to the optimal solution
in non-convex optimization problems, they can still be used to find local minima. One of
the main computational challenges in this approach is the efficient computation of the gra-
dient, since this computation must be repeated a large number of times. We show that the
structure of our dynamical system allows for very efficient computation of the gradient via
the discrete adjoint method [11, 56, 57, 71, 109]. If the state vector is n dimensional and the
control vector is m dimensional, direct computation of the gradient takes O(n2m) time. The
adjoint method generally reduces the complexity to O(n2 + nm), but the structure of our
system allows for further reduction of the complexity to O(n + m) by exploiting the sparse
nature of the forward system.

It should be noted that this work currently only considers computing the optimal allo-
cation of the cooperative agents and does not consider the corresponding response from the
selfish agents. It is clear that a change in the network state will result in response by the
selfish agents as in Stackelberg games. Finding the optimal control for a Stackelberg game is
NP-Hard in the size of the network for the class of increasing latency functions even in the
case of the static problem [113] and it is common to use approximate strategies [113, 130].
We wish to extend this work in the future to consider the Stackelberg response to the SO-
DTA-PC problem.

The rest of the chapter is organized as follows. In Section 4.2, we present the traffic
dynamics model with the corresponding junction solver and the notion of controllable and

1The flux as a function of the density takes a triangular shape.

Section 4.2. Traffic model 64

non-controllable flows. In Section 4.3, we describe the forward system and provide explicit
solutions to the junction problem. Section 4.4 formulates the optimization problem and de-
rives the adjoint system, which is used to efficiently compute the gradient of the optimization
problem. Section 4.5 concludes the chapter with some experimental results.

4.2 Traffic model
This section describes the multi-commodity traffic flow model that is used in this chap-

ter. We begin by introducing some frequently used notation and then provide a detailed
description of the flow model.

4.2.1 Notation

Constants

∆t, T Time discretization and number of time steps2
vi Free flow speed on cell i
wi Congestion wave speed on cell i
Li Length of cell i
ρjami Jam density on cell i
Fi Max flow capacity of cell i
Pij Merge priority factor from cell i to cell j

Sets

J in
z Incoming links to junction z
J out
z Outgoing links to junction z
A The cells (including buffers and sinks)
B The buffer cells
S The sink cells
OD The set of origin-destination (OD) pairs
Γ−1(i) The predecessors of cell i
Γ(i) The successors of cell i
C The commodities
CC The controllable commodities

Inputs

ρi,c (0) Initial density of commodity c on cell i
βij,c (k) Split ratio for commodity c on cell i to cell j, time step k
D(o,s) (k) Demand rate of controllable agents going from o ∈ B to s ∈ S, time step k

2Time from t = 0 and the final time step T = T − 1.

Section 4.2. Traffic model 65

Di,c (k) Demand rate of non-controllable agents of commodity c ∈ NC on cell i, time step k

Variables

f ini (k) Total flow into cell i, time step k
f outi (k) Total flow out of cell i, time step k
f ini,c (k) Flow of commodity c into cell i, time step k
f outi,c (k) Flow of commodity c out of cell i, time step k
ρi (k) Density on cell i, time step k
ρi,c (k) Density contribution of commodity c on cell i, time step k
σi (k) Supply on cell i, time step k
δi (k) Demand on cell i, time step k
di (k) Boundary demand on cell i, time step k
γc(k) Demand allocation for commodity c, time step k

4.2.2 Basic definitions

The aggregate traffic dynamics are modeled using a macroscopic traffic flow model based
on the Lighthill-Williams-Richards (LWR) PDE [82, 111]. We use a multicommodity variant
with buffers of an earlier PDE model developed in [53]. This model imposes strong boundary
conditions at the entrances to the network, so that no vehicles are dropped due to congestion
propagating outside the bounds of the network, an important consideration in the optimal
control setting. We then use a Godunov discretization [58] of the network PDE model as
explained in [110] to obtain an equivalent discrete model.

Network. The road network is divided into cells, indexed by i ∈ A. We add a buffer cell at
the entrances of the network, to be able to impose the boundary demands in a strong sense.
Each junction, indexed by z ∈ J , connects a set of incoming links J in

z to a set of outgoing
link J out

z . The total flow in the network is decomposed into a set of |C| commodities that
correspond to different types of flow.

Definition 4.1 (Supply and demand). The supply of a cell i at time step k, denoted σi (k),
is maximal flow that can enter the cell, while the demand δi (k) is the maximal flow that can
leave the cell. By assumption, buffers have no supply and the sinks have no demand.

Definition 4.2 (Density). The density on a link i at time step k, denoted by ρi (k), is the
total number of vehicles on the link during that time step divided by the length of the link Li.
The vehicles in the link could be from any of the |C| commodities in the network.

Definition 4.3 (Single commodity density). The density induced by a single commodity c
on a link i at time step k, denoted by ρi,c (k), is the total number of vehicles of commodity c
on the link during that time step divided by the length of the link Li, and satisfies

ρi (k) =
∑

c∈C

ρi,c (k) (4.1)

Section 4.2. Traffic model 66

Definition 4.4 (Initial conditions). The initial conditions of the network are the densities
of each commodity at each link at time step k = 0 and are denoted ρi,c (0).

Definition 4.5 (Inflow and outflow). The inflow (resp. outflow) from a cell i at time step
k, denoted f ini (k) (resp. f outi (k)), is the total flow leaving (resp. entering) the cell at time
step k. By assumption, buffers have no inflow and sinks have no outflow.

Definition 4.6 (Single commodity inflow and outflow). The inflow (resp. outflow) from a
cell i at time step k corresponding to commodity c, denoted f ini,c (k) (resp. f outi,c (k)), is the
total flow of commodity c leaving (resp. entering) the cell at time step k.

f ini (k) =
∑

c∈C

f ini,c (k) (4.2)

f outi (k) =
∑

c∈C

f outi,c (k) (4.3)

Definition 4.7 (State evolution). The state of the network at time step k is given by the
density ρi,c (k) of each commodity c at each cell i. The density evolution is governed by the
following dynamics, which simply correspond to mass conservation.

ρi,c (k) = ρi,c (k − 1) +
∆t

Li

(
f ini,c (k − 1)− f outi,c (k − 1)

)
∀i ∈ A \ (B ∪ S), ∀k ∈ [[1, Tf]], ∀c ∈ C

(4.4)

ρi,c (k) = ρi,c (k − 1) +
∆t

Li
· f ini,c (k − 1) ∀i ∈ S, ∀k ∈ [[1, Tf]], ∀c ∈ C

(4.5)

with initial condition

ρi,c (0) = ρ0
i,c ∀i ∈ A \ S, ∀c ∈ C (4.6)

ρi,c (0) = 0 ∀i ∈ S, ∀c ∈ C (4.7)

Assumption 4.1. The flux function defining the relationship between density and flow is
given by the triangular fundamental diagram shown in figure 4.1. This is a first order ap-
proximation of the empirical relationship between flow and density [42].

f

ρ

v −w

ρjam

F

Figure 4.1: Triangular fundamental diagram.

Section 4.2. Traffic model 67

Assumption 4.2 (First-in first-out (FIFO) property). We assume that no vehicles entering
a link at time step t will overtake vehicles that have already entered the link at some time
step t′ < t.

4.2.3 Discretization requirements

The network model is composed of links (each link representing a physical road) and
nodes (each node representing a junction between some incoming and outgoing links). As
with any numerical scheme, the accuracy of a macroscopic traffic model increases with the
granularity of the network discretization. In addition, to ensure the convergence of the solu-
tion of the discretized model to the solution of the continuous LWR equation as the time step
∆t and space discretization L goes to zero, the network must satisfy the Courant-Friedrichs-
Lewy (CFL) conditions, which are standard requirements in numerical analysis [58, 81].

Requirement 4.1 (CFL condition 1). ∀i ∈ A \ S, vi ≤ Li
∆t

For numerical stability, the vehicles in a given cell should only be able to travel forward at
most one cell in a single time step. Requirement 4.1 ensures that this condition is satisfied
by imposing an upper bound on the velocity.

Requirement 4.2 (CFL condition 2). ∀i ∈ A \ B, wi ≤ Li
∆t

Each cell can not have a density greater than ρjam. Requirement 4.2 ensures that this
condition is satisfied.

Proof. While the requirement that vi ≤ Li
∆t

comes from the positive density, this one comes
from the fact that the density has to be smaller than ρjami . Indeed, in the case of a cell with
no outflow (because of an extreme congestion of the next cell), the inflow can be limited by
the supply. If there is enough demand we have at the next time the density which has to be
smaller than ρjami :

ρi (k) +
∆t

Li
wi(ρ

jam
i − ρi (k)) < ρjami (4.8)

ρi (k)

(
1− wi

∆t

Li

)
< ρjami

(
1− wi

∆t

Li

)
(4.9)

And because 0 ≤ ρi (k) ≤ ρjami we also have 1−wi∆t
Li
≥ 0 which is the requirement.

Requirement 4.3 (Finite time density discharge). ∀i ∈ A, vi ≥ Li
∆t

This condition guarantees that the density of a given cell should discharge in a finite amount
of time when there is no incoming flow.

Proof. If vi < Li
∆t
, we can have exponential decrease of the density in some cells while they

should be emptied in only 1 steps. Indeed, taking the case of a cell without inflow, we have
ρi (k + 1) = ρi (k) − ∆t

Li
ρi (k) vi which gives ρi (k + t) = ρi (k) (1 − ∆tvi

Li
)t. This is not an

acceptable physical solution and thus should be excluded.

Section 4.2. Traffic model 68

Remark 4.1. Satisfying requirements 4.1, 4.2 and 4.3 implies imposing vi = Li
∆t
. Given

that the velocity v is an exogenous parameter, this imposes a strict requirement on the space
discretization of the road segments. However, any given road segment might not be divisible
into cells of exact length vi ·∆t, and in most cases a cell of length L ∈ (0, vi∆t) will remain.
There are multiple solutions to this issue:

• Approximate the length of each road segment to be a multiple of vi · ∆t. The relative
rounding error decreases as the road gets longer and the descretization ∆t gets smaller.

• Change the dynamics of the last cell in each road segment to have a special case that
allows for vehicles to be fully discharged when the supply of the downstream link allows
it. This makes the dynamics equations and optimization problem more complicated.

• Accept this model limitation and have a small amount of density stuck in the network.
This is not so bad in practice, since the number of vehicles stuck in a link decreases
exponentially with time.

4.2.4 Controllable and non-controllable flow

There are two types of flows that are transported in the network. Controllable flows
that have origin destination requirements, but can be routed along any path in the network,
and non-controllable flows that have fixed paths. These flows are modeled by distributing
the total flow of the network into multiple commodities, as explained below.

Assumption 4.3 (Path decomposition of controllable flow). We assume that the controllable
flows from each origin destination pair are restricted to a small pre-determined subset of paths
in the network.

Definition 4.8 (Non-controllable commodity). There is a single non-controllable commodity
cn that represents all non-controllable flow in the network.

The paths of the flow corresponding to the non-controllable commodity are defined via the
junction split ratios.

Definition 4.9 (Split ratio). The split ratio of a commodity c at cell i and time step k
among the outgoing cells j ∈ Γ(i), denoted βij,c (k), is the fraction of the commodity c flow
out of cell i that is entering cell j at time step k.

∑

j∈Γ(i)

βij,c (k) = 1 (4.10)

Definition 4.10 (Controllable commodities). The controllable commodities cc ∈ CC corre-
spond to the controllable flow. There is a unique controllable commodity that corresponds
to each path that the controllable flow can be routed along in the network. A controllable
commodity is then equivalent to a tuple (origin, destination, path).

Section 4.2. Traffic model 69

Definition 4.11 (Conservation of flow). The path of a controllable commodity is defined via
the junction split ratios for this commodity.

βij,c (k) =

{
1 if the path of commodity c includes cell i and cell j
0 otherwise

(4.11)

Definition 4.12 (Origin-destination demand). The number of controllable vehicles that seek
to travel from origin o ∈ B to destination s ∈ S at time step k is given by D(o,s) (k) ·∆t. It
is an exogenous input.

Assumption 4.4 (Data requirements). We assume that the origin destination information
for all the controllable flow and the aggregate path information for all the non-controllable
flow is known.

While at first glance this might seem like a lot of information to gather, it is in fact reasonable
to assume in road traffic networks. We assume that the controllable flows are vehicles that are
cooperating with the traffic coordination system that is trying to route vehicles efficiently
and therefore will share their origin destination information. The aggregate paths of the
non-controllable flows can be obtained from historical traffic patterns. The caveat is that
empirical split ratios also include the contribution of the controllable flows and therefore
must be pre-processed to remove this contribution.

Remark 4.2. The junction split ratios for the non-controllable commodities may be time-
dependent, while the junction split ratios for the controllable commodities are not, since a
controllable commodity corresponds to a single path.

Definition 4.13 (Equivalence between controllable commodity and path). Any controllable
commodity c ∈ CC is a tuple (o, s, p) where o ∈ B, s ∈ S and p is a path (i.e. a sequence of
cells). We define the function Ω as follows:

Ω: CC → S × B (4.12)
c 7→ (o, s).

Ω−1(o, s) is then the set of commodities corresponding to the flows from source o to destina-
tion s.

Definition 4.14 (Controllable flow control). A control u is an allocation of the controllable
demand over the set Ω−1(o, s) for each time step. Formally u is defined as:

u : CC × [[0, T − 1]] → [0, 1] (4.13)
(c, k) 7→ γc(k)

γc(k) is called the demand allocation for commodity c at time step k. The number of vehicles
with origin o and destination s that are allocated to commodity c at time step k is D(o,s) (k) ·
γc(k) ·∆t.

Section 4.3. Forward system 70

Definition 4.15 (Physically feasible control). A physically feasible control u verifies the
mass conservation of the controllable demand allocation:

∑

c∈Ω−1(o,s)

γc(k) = 1 ∀k ∈ [[0, T]], ∀(o, s) ∈ B × S (4.14)

We will denote with U be the set of all physically feasible controls.

4.3 Forward system

4.3.1 Junction model

The junction model defines the dynamics of the flow between neighboring cells. We
require that is satisfies the following properties.

Requirement 4.4 (Multicommodity first-in first-out (FIFO) condition). For any outgoing
link i, the distribution of its flow across the different commodities must be proportional to
the ratio of vehicles of each commodity on the link. If ρi (k) 6= 0 we must have:

f outi,c (k) = f outi (k)
ρi,c (k)

ρi (k)
(4.15)

Requirement 4.5 (Consistency with split ratios). Let fij,c(k) be the flow of commodity c
from cell i to j at time step k. The outflow must be consistent with the split ratios.

fij,c(k) = f outi,c (k) · βij,c (k) (4.16)

Requirement 4.6 (Maximum flow constraint). The outflow cannot exceed the demand and
the inflow cannot exceed the supply:

0 ≤ f ini (k) ≤ σi (k) ∀k ∈ [[0, T]] (4.17)
0 ≤ f outi (k) ≤ δi (k) ∀k ∈ [[0, T]] (4.18)

We wish to define a multi-commodity junction flow solver that assigns flows across the
network in a manner that is consistent with the above requirements.

Definition 4.16 (Priority vector). In the case of a junction where there is more than one
incoming cell and the aggregate demand of these cells is greater than the aggregate supply of
the outgoing cells, the available supply needs to be distributed among the competing demands
according to some priority vector as follows. The priority vector Pj for cell j defines the
allocation of its supply over the incoming cells i ∈ Γ−1(j). The priority for a given incoming
cell i is given by Pij.

∑

i∈Γ−1(j)

Pij = 1 (4.19)

Section 4.3. Forward system 71

There are many junction models that can satisfy our requirements, but vary in other
ways. The multi-commodity junction solver we consider is similar to the source destination
model (SDM) in [53]. We first give solutions for diverge only (1×m) and merge only (n×1)
junctions, and then present the general (n×m) solution.

Definition 4.17 (Aggregate split ratio). The aggregate split ratio βij (k) over all commodi-
ties for a given path through a junction is defined as follows:

βij (k) =
∑

c∈C

ρi,c (k)

ρi (k)
βij,c (k)

=
1

ρi (k)

∑

c∈C

ρi,c (k) βij,c (k) (4.20)

Remark 4.3. The aggregate split ratio is only defined for positive aggregate densities, i.e.
ρi (k) > 0.

Diverge solver (1×m)
We consider a diverging junction z with one incoming link i andm outgoing links. There

are |C| commodities that flow through the junction each with their own time-varying split
ratio βij,c (k).

Remark 4.4. If ρi (k) = 0, then δi (k) = 0 and f outi (k) is zero. We consider the case of
ρi (k) 6= 0.

Given the split ratios and densities of the cells at a junction, we wish to maximize the flow
across the junction subject to the maximum flow constraints.

max f outi (k) (4.21)
subject to

0 ≤ f inj (k) ≤ σj (k) ∀j ∈ J out
z

0 ≤ f outi (k) ≤ δi (k)

We replace f ini (k) using the following relation:

f inj (k) =
∑

c∈C

βij,c (k) · f outj,c (k) [mass conservation]

= f outi (k)
∑

c∈C

ρi,c (k)

ρi (k)
· βij,c (k) [by the FIFO constraint]

= f outi (k) · βij (k) [by definition of the aggregate split ratios] (4.22)

Section 4.3. Forward system 72

Which gives us a trivial maximization problem that implies the following equality.

f outi (k) = min

({
σj (k)

βij (k)
, ∀j ∈ J out

z | βij (k) > 0

}
, δi (k)

)
(4.23)

The total outflow f outi (k) for each incoming link i is then divided among the commodities
according to the FIFO law:

f outi,c (k) =
ρi,c (k)

ρi (k)
f outi (k) (4.24)

The commodity flows are split among the outgoing links according to the split ratios con-
straints:

f inj,c (k) = βij,c (k) f outi,c (k) (4.25)

Existence and uniqueness of the solution. A non-zero solution exists if none of the
constraints of the optimization/feasibility problem imposes a zero flow. In other words,
as long as the demand is non-zero and none of the outgoing links with positive demand
(βij (k) > 0) have non-zero supply, a non-zero solution exists. Since the solution to the
maximum junction flow is given by equation (4.23) and the outflows are uniquely determined
by the split ratios, the solution is unique.

Merge solver (n× 1)

We consider a merging junction z with n incoming links and one outgoing link j. A
priority vector Pj (s.t.

∑
Pij = 1) prescribes the priorities at which the outgoing link accepts

flows from the n incoming links when the junction is supply constrained.

If the problem is demand constrained (i.e.
∑

i∈J in
z
δi (k) < σj (k)), then the solution is given

by:

f outi (k) = δi (k) ∀i ∈ J in
z (4.26)

Otherwise the problem is supply constrained and the solution to the junction problem is
given by solving the following quadratic optimization problem that finds the flow-maximizing
solution with the smallest violation of the priority vector, where the violation is measured
using the L2 distance:

mint,{fout
i (k)}

i∈J in
z

∑

i∈J in
z

(
f outi (k)− t · pij

)2 (4.27)

subject to
∑

i∈J in
z

f outi (k) = σj (k)

0 ≤ f outi (k) ≤ δi (k) ∀i ∈ J in
z

Section 4.3. Forward system 73

The total outflow f outi (k) for each incoming link i is then divided among the commodities
according to the FIFO law:

f outi,c (k) =
ρi,c (k)

ρi (k)
f outi (k) (4.28)

See figure 4.2a for a graphical illustration of the solution to a 2× 1 junction.

Remark 4.5. The priorities are satisfied exactly when the intersection of the maximum flow
isoline and the priority constraint is feasible. When this point is outside the feasible set, the
flow-maximizing feasible point that is closest to the priority constraint (in euclidean distance)
is chosen.

Remark 4.6. The solution violates the priority rule only in the case where the demand for
one or more of the incoming links is less than what its flow-maximizing allocation is, based
on the priority vector. In other words, the priority rule is only violated when an incoming
link doesn’t have enough flow to satisfy its priority-based allocation. It is reasonable in the
physical sense to maximize flow and only violate the priority when it is a lack of demand
that causes the violation. The model is not denying any vehicles with priority the ability to
pass through the junction. This is an important property to note, because it avoids having to
solve a multi-objective optimization problem to come up with a physically meaningful set of
flows through the junction.

Existence and uniqueness of solution

• Demand-constrained case: In the demand constrained case, existence and uniqueness
are trivial.

• General case: In the general case, the solution is the feasible point that lies on the
boundary of the feasible supply set (a segment) and minimizes the euclidean distance
to the priority vector (a line), where the feasible set is given by the supply constraint
(an n-dimensional hyperplane:

∑
i∈J in

z
f outi (k) ≤ σj (k)) and demand constraints (an

n-dimensional hyperrectangle: f outi (k) ≤ δi (k), ∀i ∈ J in
z).

– A solution exists when the feasible set is non-empty, which is the case if the
supply/demand constraints are greater than zero. This proves the existence of a
solution in all non-degenerate (zero supply or demand) cases.

– The boundary of the supply constraint hyperplane intersects each coordinate axis
at xi(k) = σj (k) and can not be parallel to the priority constraint P , which is
a line that goes through the origin. Therefore, since the solution must lie on a
segment that is not parallel to the priority constraint line P , the solution that
minimizes the distance to the P must be unique. This concludes the proof. See
figure 4.2a for an illustration of the (2× 1) case.

Section 4.3. Forward system 74

f out2 (k)

f out1 (k)

δ2 (k)

δ1 (k)

C : f out1 (k) + f out2 (k) = σ1 (k)
f out1 (k) =

(
P1

P2

)
f out2 (k)

(a) 2× 1 junction

f out2 (k)

f out1 (k)

δ2 (k)

δ1 (k)

C1

C2

f out1 (k) =
(
P1

P2

)
f out2 (k)

(b) 2× 2 junction

Figure 4.2: An illustration of the solutions to merging junctions. The dashed lines denote
the demand constraints imposed by the density on the incoming links. The solid lines (C)
denote the supply constraints imposed by the density in the outgoing links. The solid lines
going through the origin denote the merge priority vector. If the priority vector intersects
any supply constraint inside the feasible demand set, the solution will be the feasible
intersection point. If the intersection is outside the feasible demand set, then the solution
will be the nearest feasible point where the supply and the demand constraints intersect
(marked with a dot).

Merge-diverge solver (2×m)
We consider a junction with 2 incoming links and m outgoing links3.

Assumption 4.5. The priority vectors Pj for each outgoing link j are identical. This implies
that the inflow priorities are allocated with respect to the total flow that enters the junction
and that the priority does not depend on which outgoing link the vehicles will enter.

The priority vector Pj prescribes the ratios at which the m outgoing links allocate their
available supply to the 2 incoming links. It satisfies Pi = Pi1 = Pi2 and

∑
i∈J in

z
Pi = 1.

Let J in
z and J out

z be the sets of incoming and outgoing links at the junction.

If the problem is demand-constrained (i.e.
∑

i∈J in
z
βij (k) δi (k) ≤ σj (k), ∀j ∈ J out

z), then

3We limit our analysis to merge-diverge junctions of no more than two incoming links because our model
does not prescribe a unique solution when the number of incoming links is greater then two. Thus, our
model can only be used with 1×m,n× 1 and 2×m junctions.

Section 4.3. Forward system 75

the solution is given by:

f outi (k) = δi (k) ∀i ∈ J in
z (4.29)

Otherwise, the flows through the junction are given by the following optimization problem.

mint,{fout
i (k)}

i∈J in
z

∑

i∈J in
z

(
f outi (k)− t · Pi

)2 (4.30)

subject to
∑

i∈J in
z

βij (k) f outi (k) ≤ σj (k) ∀j ∈ J out
z

maxj


∑

i∈J in
z

βij (k) f outi (k)− σj (k)


 = 0 ∀j ∈ J out

z

f outi (k) ≤ δi (k) ∀i ∈ J in
z

The total outflow f outi (k) for each incoming link i is then divided among the commodities
according to the FIFO law:

f outi,c (k) =
ρi,c (k)

ρi (k)
f outi (k) (4.31)

The commodity flows are split among the outgoing links according to the split ratio con-
straints:

f inj,c (k) =
∑

i:(i,j)∈A

βij,c (k) f outi,c (k) (4.32)

See figure 4.2b for a graphical illustration of the solution to a 2× 2 junction.

Existence and uniqueness of solution

• Demand constrained case: In the demand constrained case, existence and uniqueness
are trivial.

• General case: In the general case, the solution is the feasible point (with respect to
the supply and demand constraints) that lies on the boundary of the feasible supply
set (a union of segments) and minimizes the euclidean distance to the priority vector
(a line).

– A solution exists when the feasible set is non-empty, which is the case if the
supply/demand constraints are greater than zero. This proves the existence of a
solution in all non-degenerate (zero supply or demand) cases.

Section 4.3. Forward system 76

– The feasible supply set is the intersection of m two dimensional hyperplanes,
which is a convex set. Therefore, the boundary of the feasible supply set (a union
of segments) is also convex. Furthermore, the boundary of the feasible supply
set intersects each coordinate axis at xi(k) = minj

σj(k)

βij(k)
and therefore can not be

parallel to the priority constraint P , which is a line that goes through the origin.
Therefore, since the solution must lie on a convex union of segments and none
of these segments is parallel to the priority constraint line P , the solution that
minimizes the distance to P must be unique. This concludes the proof.

4.3.2 Boundary conditions

The boundary conditions at each source link of the network dictate the flows that enter
the network. Each boundary condition is given as a flow rate at the boundary.

Definition 4.18 (Boundary demand). The number of vehicles of commodity c leaving cell
i ∈ B at time step k is the boundary demand of commodity di,c (k). Let cn be the commodity
corresponding to non-controllable flow. The non-zero terms are defined as:

di,c (k) = ∆t ·Di,c (k) ∀i ∈ B, c = cn (Non-controllable demand)
di,c (k) = ∆t ·DΩ(c) (k) · γc(k) ∀i ∈ B, ∀c ∈ CC (Controllable demand)

Since the inflow to the network is limited by the maximum flow capacity and density
of the immediate downstream link, all of the demand at a given time step might not make
it into the network. A source buffer is used to accumulate the flow that cannot enter the
network to guarantee the conservation of boundary flows. In the single commodity case,
this model is sufficient. However, in the multi commodity case, we also need to make sure
that the flow through the boundary respects the multicommodity FIFO condition given in
requirement 4.4.

As stated in Definition 4.18, di,c (k) is the boundary demand per commodity on cell i
at time step k. The FIFO condition dictates that the vehicles entering the boundary buffer
at time k should enter link i at the ratio di,c(k)∑

c∈C di,c(k)
for each commodity c.

Single buffer model

The simplest solution is to have a single buffer l at the boundary, as in the single
commodity case, and keep track of how many vehicles of each commodity are at the buffer.
The flow into the boundary cell will be as follows:

f ini,c (k) =
li,c (k)

li (k)
f ini (k) (4.33)

This equality satisfies the FIFO condition assuming that the vehicles in the buffer are
uniformly distributed. However, in reality the buffer can accumulate vehicles arriving at the

Section 4.3. Forward system 77

boundary at different time steps with different commodity ratios di,c(k)

di(k)
. Thus, this model

can violate the FIFO property across multiple time steps if some vehicles cannot leave the
buffer in one time step.

As the length of a buffer can be seen as the density of a cell of length 1, we use the same
notation ρi,c (k) for a buffer i. The speed of this cell is then vi = 1

∆t
because of requirements

4.1 and 4.3.

Remark 4.7 (The multicommodity FIFO condition is only satisfied approximately on the
interior of the network.). It is important to note that the FIFO condition is violated in its
strict sense even within the network. The flow propagation model assumes that all the flow
within a cell is uniformly distributed according to the individual commodity ratios regardless
of when the vehicles arrived at the cell.

Example 4.1. Consider the following simple example. There are two commodities a, b in
cell i with 10 vehicles of each commodity at time k. At time k + 1, 10 vehicles exit the cell
(5 of a and 5 of b by the FIFO rule) and 10 new vehicles (3 of a and 7 of b) enter the cell.
The new ratio of vehicles at i is 8 a to 12 b. At time k + 2, once again 10 vehicles exit the
network. According to the cell level FIFO rule, the 10 vehicles will consist of 4 a’s and 6
b’s. However, the first 10 cars of those currently in cell i came at the ratio of 1:1 and truly
satisfying the FIFO rule would require the 10 exiting vehicles to consist of 5 a’s and 5 b’s.

Remark 4.8 (Cell-level multicommodity FIFO condition). The strict multicommodity FIFO
condition is not satisfied in most traffic flow models, but this is considered to be acceptable by
the traffic modeling community. The multicommodity FIFO condition is therefore in practice
at best limited to the cell level.

While this argument is satisfactory at the interior of the network, due to the bounded number
of vehicles in a given cell (due to the jam density), the FIFO violation can be significant at
the boundaries of the network. The number of vehicles in a source buffer at the boundary
of the network can be arbitrarily large, and thus, there is no bound on how badly the multi-
commodity FIFO constraint can be violated.

Multi-buffer model

A simple extension that limits the mixing of vehicles entering at different time steps is to
have a series of source buffers at the boundary, where the multicommodity FIFO constraint
is enforced when vehicles move between the buffers. In this model, the commodity ratios are
maintained separately for each buffer. Any vehicles that enter the network at a given time
step are added to the last active (non-empty buffer) buffer. This restricts the violation of
the FIFO condition across multiple steps to the capacity of a single buffer.

The capacity of each buffer is chosen such that the buffer can satisfy the maximum
supply of the first cell of the network boundary that the buffer serves. This prevents artificial
delays at the source. The buffer capacity is set to ∆t · Fb where b is the boundary cell.

Section 4.3. Forward system 78

The limitation of this model is that we need to maintain lmax

∆t· Fb
buffers per source, where

lmax is the maximum queue length at the boundary and ∆t · Fb is the capacity of each buffer.
Let lbi,c (k) be the number of vehicles of commodity c in the bth buffer for source node i at
time step k and lbi (k) its sum over all the commodities.

The buffers are updated as follows:

• First, given f ini (k), move flow out of the initial buffer

f ini,c (k) =
l1i,c (k)

l1i (k)
f ini (k) ∀c ∈ C (4.34)

l1i,c (k + 1) = l1i,c (k)− f ini,c (k) ∀c ∈ C (4.35)

• Let B be the number of buffers in use. Iterate through the buffers and push flow
upstream using the following algorithm.

Algorithm 4.1 Update buffers
for b = 1 to B − 1 do

∆lb = min
(
L− lbi (k + 1) , lb+1

i (k + 1)
)

. Maximum flow that can enter buffer b

lbi,c (k + 1) = lbi,c (k + 1)+
lb+1
i,c (k+1)

lb+1
i (k+1)

∆lb ∀c ∈ C . Per-commodity flow entering buffer
b

lb+1
i,c (k + 1) = lb+1

i,c (k + 1) − lb+1
i,c (k+1)

lb+1
i (k+1)

∆lb ∀c ∈ C . Per-commodity flow leaving
buffer b+ 1
end for
∆d = di (k) . Total demand at time step k + 1
b = B
. Allocate the demand to last buffer and create new buffers if needed
while ∆d > 0 do

∆lb = min
(
L− lbi (k + 1) , ∆d

)
. Maximum flow that can enter buffer b

lbi,c (k + 1) = lbi,c (k + 1) +
di,c(k+1)

di(k+1)
∆lb ∀c ∈ C . Per-commodity flow entering buffer

b
b = b+ 1

end while

The only demand that is exposed to the system dynamics and the optimization problem
is the demand that is captured in the first buffer.

4.3.3 System dynamics

For a given control u, we can determine the evolution of the network using the following
equations that prescribe the system dynamics. Let x(u) give the state of the network under

Section 4.3. Forward system 79

these dynamics subject to the control u.
The system of equations governing the evolution of the network (implicit definition

of x) are written formally in the form H(x, u) = 0, thus x is an implicit function of u.
The discretized system dynamics can be described using six types of constraints, given by
Hh = 0, h ∈ {1, . . . , 6}, listed below.

H1: Mass conservation and boundary conditions
H2: Demand constraints
H3: Supply constraints
H4: Aggregate split ratios
H5: Flow out of junctions
H6: Flow in to junctions

These six constraints have different individual instantiations depending on the specific set-
ting such as link type or junction type. The explicit formulation is given below.

Mass conservation

H1
k,i,c : ρi,c (k) = ρi,c (k − 1) +

∆t

Li

(
f ini,c (k − 1)− fouti,c (k − 1)

)
∀i ∈ A \ (B ∪ S), ∀k ∈ [[1, Tf]], ∀c ∈ C

(H1a)

H1
k,i,c : ρi,c (k) = ρi,c (k − 1) +

∆t

Li
· f ini,c (k − 1) ∀i ∈ S, ∀k ∈ [[1, Tf]], ∀c ∈ C

(H1b)

with initial conditions

H1
0,i,c : ρi,c (0) = ρ0

i,c ∀i ∈ A \ S, ∀c ∈ C (I1a)

H1
0,i,c : ρi,c (0) = 0 ∀i ∈ S, ∀c ∈ C (I1b)

Boundary conditions4

H1
k,i,c : ρi,c (k) = ρi,c (k − 1) +

∆t

Li

(
DΩ(c) (k) · γc(k)− fouti,c (k − 1)

)
∀i ∈ B, ∀k ∈ [[1, Tf]], ∀c ∈ CC

(H1c)

H1
k,i,c : ρi,c (k) = ρi,c (k − 1) +

∆t

Li

(
Di,c (k)− fouti,c (k − 1)

)
∀i ∈ B, ∀k ∈ [[1, Tf]], c = cn

(H1d)

with initial conditions

H1
0,i,c : ρi,c (0) = ρ0

i,c +
∆t

Li
·DΩ(c) (0) · γc(k) ∀i ∈ B, ∀c ∈ CC (I2a)

H1
0,i,c : ρi,c (0) = ρ0

i,c +
∆t

Li
·Di,c (0) ∀i ∈ B, c = cn (I2b)

4For notational simplicity, the equations given here are for the single buffer model.

Section 4.3. Forward system 80

Flow propagation

Recall that ρi (k) =
∑C

c=1 ρi,c (k) is the total density of cell i at time step k.

H2
k,i : δi (k) = min (Fi, viρi (k)) ∀i ∈ A \ (B ∪ S), ∀k ∈ [[0, Tf]] (H2a)

H2
k,i : δi (k) = min

(
Fi,

ρi (k)Li
∆t

)
∀i ∈ B, ∀k ∈ [[0, Tf]] (H2b)

H3
k,i : σi (k) = min

(
Fi, wi

(
ρjami − ρi (k)

))
∀i ∈ A \ (B ∪ S), ∀k ∈ [[0, Tf]] (H3a)

H3
k,i : σi (k) = Fi ∀i ∈ S, ∀k ∈ [[0, Tf]] (H3b)

Remark 4.9. The sinks having no outgoing cells and the buffers having no incoming cells,
their demand and supply respectively are not of any use. We can arbitrarily choose to set
them to zero.

Junction solution

The derivation of the explicit solutions to the 1 × 2, 2 × 1 and 2 × 2 junctions listed below
are given in the next section. The general solutions for the junction model are given in
section 4.3.1. We restrict our attention to these junctions since most road networks can be
modeled using only these junction types.

To simplify the notation, we use the following shorthand:

• We drop the time index k

• We abbreviate i1 = 1 and i2 = 2

• We use the following notation i1 = i2 and i2 = i1

When ρi = 0, there are no vehicles in the incoming link i and the outflow of this link is zero
for all commodities. The following equations only apply for ρi 6= 0.

Aggregate split ratios:

H4
k,i,j,z : βij =

1

ρi

∑

c∈C
ρi,cβij,c ∀z ∈ J , ∀i ∈ J in

z , ∀j ∈ J out
z , ∀k ∈ [[0, Tf]] (H4)

Flow out of incoming links by commodity:

Section 4.3. Forward system 81

H5
k,i,c : fouti,c =

ρi,c
ρi

min

({
σj
βij

, ∀j ∈ J out
z | βij > 0

}
, δi

)
∀z ∈ J1×n, ∀i ∈ J in

z (H5a)

H5
k,i,c : fouti,c =

ρi,c
ρi





δi if Pi (min (δ1 + δ2, σ1)− δi) > δiPi

min (δ1 + δ2, σ1)− δi if Pi
(
min (δ1 + δ2, σ1)− δi

)
> δiPi

Pi min (δ1 + δ2, σ1) otherwise
∀z ∈ J2×1, ∀i ∈ J in

z

(H5b)

H5
k,i,c : fout1 =





δ1 if P1
P2
> δ1

min
(
δ2,

σ1−β11δ1
β21

,
σ2−β12δ1

β22

)
min

(
δ1,

σ1−β21δ2
β11

, σ2−β22δ2
β12

)
if P1

P2
<

min
(
δ1,

σ1−β21δ2
β11

,
σ2−β22δ2

β12

)
δ2

min
(

P1σ1
P1β11+P2β21

, P1σ2
P1β12+P2β22

)
otherwise

∀i ∈ J in2×2

(4.39a)

fout2 is obtained by symmtery. (4.39b)

fouti,c =
ρi,k
ρi
fouti ∀i ∈ {1, 2}, ∀c ∈ C (H5c)

Flow into outgoing links by commodity:

H6
k,i,c : f ini,c =

∑

x∈J in
z

βxi,cf
out
x,c ∀z ∈ J , ∀i ∈ J out

z , ∀c ∈ C (H6)

4.3.4 Explicit solutions for the junction flows

We now present the explicit solutions used for the dynamics of the optimization problem
and in the software implementation.

(1× 2) diverge junction

The explicit solution was already derived in section 4.3.1 for the general (1× n) case.

(2× 1) merge

Let i1 be one incoming link, i2 be the other incoming link and j be the outgoing link.
As shown in Figure 4.2a, we distinguish 3 cases based on where the priority vector inter-
sects the demand constraints. The cases are P1

P2
>
(
P1

P2

)
max

,
(
P1

P2

)
min
≤ P1

P2
≤
(
P1

P2

)
max

and
P1

P2
<
(
P1

P2

)
min

, where
(
P1

P2

)
max

=
δi1

f in
j −δi1

and
(
P1

P2

)
min

=
f in
j −δi2
δi2

.

In call cases, the flow into the outgoing link is the minimum of the total supply and demand
values.

f inj (k) = min
(
δi1 (k) + δi2 (k) , σj (k)

)
(4.40)

Section 4.3. Forward system 82

The flow out of incoming links depends on the priority vector and is given by the solution
to the optimization problem in equation (4.27).

f outi1
(k) =





δi1 (k) if Pi1
(
f inj (k)− δi1 (k)

)
> δi1 (k)Pi2

f inj (k)− δi2 (k) if Pi2
(
f inj (k)− δi2 (k)

)
> δi2 (k)Pi1

Pi1f
in
j (k) otherwise

f outi2
(k) = f inj (k)− f outi1

(k) (4.41)

The flow out by commodity can then be computed as follows.

f outi,c (k) =
ρi,c (k)

ρi (k)
f outi (k) ∀i ∈ {i1, i2} (4.42)

(2× 2) merge and diverge

Let i1, i2 be the incoming links and j1, j2 be the outgoing links. To simplify the notation, we
use the following shorthand:

• drop the time index k

• δ1 = δi1 , δ2 = δi2

• σ1 = σj1 , σ1 = σj2

• P1 = Pi1 , P2 = Pi2

The aggregate split ratios are computed as follows.

βij (k) =
1

ρi (k)

C∑

c=1

ρi,c (k) βij,c (k) ∀(i, j) ∈ {1, 2} × {1, 2} (4.43)

As shown in Figure 4.2b, we once again distinguish 3 cases based on where the priority
vector intersects the demand constraints. The cases are P1

P2
>
(
P1

P2

)
max

,
(
P1

P2

)
min
≤ P1

P2
≤

(
P1

P2

)
max

and P1

P2
<
(
P1

P2

)
min

.

The values of
(
P1

P2

)
max

(and
(
P1

P2

)
min

) can be obtained by plugging substituting δ1 (and
resp. δ2) for f out1 (and resp. f out1) in the equations Cj for the supply constraints.

Cj : β1jf
out
1 + β2jf

out
2 = σj (4.44)

Section 4.3. Forward system 83

Thus, we obtain:
(
P1

P2

)

max

=
δ1

min
(
δ2,

σ1−β11δ1
β21

, σ2−β12δ1
β22

) (4.45)

(
P1

P2

)

min

=
min

(
δ1,

σ1−β21δ2
β11

, σ2−β22δ2
β12

)

δ2

(4.46)

We can then compute the flow out of incoming links using the optimization problem in
equation (4.30). Since the problem is symmetric in i1 and i2, we just solve it for i1 = 1.

• If P1

P2
>
(
P1

P2

)
max

, the solution is the intersection of f out1 = δ1 and the most constraining
supply constraint (C1 in figure 4.2b), and results in the trivial solution of f out1 = δ1.

• If P1

P2
<
(
P1

P2

)
min

, the solution is the intersection of f out2 = δ2 and the most constraining
supply constraint (C2 in figure 4.2b), and therefore we obtain:
f out1 = min

(
δ1,

σ1−β21δ2
β11

, σ2−β22δ2
β12

)

• If
(
P1

P2

)
min
≤ P1

P2
≤
(
P1

P2

)
max

, the solution lies at the point where the priority vector
intersects the most constraining supply constraint ((C2 in figure 4.2b)), and therefore
we obtain:
f out1 = min

(
P1σ1

P1β11+P2β21
, P1σ2

P1β12+P2β22

)

This gives us the explicit following explicit solution for f out1 at a 2× 2 junction.

f out1 =





δ1 if P1

P2
> δ1

min
(
δ2,

σ1−β11δ1
β21

,
σ2−β12δ1

β22

)
min

(
δ1,

σ1−β21δ2
β11

, σ2−β22δ2
β12

)
if P1

P2
<

min
(
δ1,

σ1−β21δ2
β11

,
σ2−β22δ2

β12

)
δ2

min
(

P1σ1

P1β11+P2β21
, P1σ2

P1β12+P2β22

)
otherwise

(4.47)

f out2 is obtained by symmetry.

Finally, we can now compute the flow out of incoming links by commodity.

f outi,c =
ρi,k
ρi
f outi ∀i ∈ {1, 2}, ∀c ∈ C (4.48)

As shown in figure 4.3, the dynamics equations have a topological ordering that allows
for the efficient forward simulation given in algorithm 4.2:

Remark 4.10. For any given time step k, each of the three internal loops in algorithm 4.2
are trivially parallelizable problems.

Section 4.4. Adjoint based optimization 84

Algorithm 4.2 Computes the state vector x(u)

for i ∈ A do
ρi,c (0) = ρ0

i,c

end for
for k = 0→ T − 1 do

for all i ∈ A do
Compute δi (k) . by equations H2

Compute σi (k) . by equations H3

Compute βij (k) . by equations H4

end for
for all z ∈ J do

Compute {f outi,c (k)}c∈C, i∈J in
z

. by equations H5

Compute {f ini,c (k)}c∈C, i∈J out
z

. by equations H6

end for
for all i ∈ A do

Compute {ρi,c (k + 1)}c∈C . by equations H1

end for
end for

4.4 Adjoint based optimization
This section describes the adjoint based optimization framework for efficiently comput-

ing the gradient of the forward system. We formulate the optimization problem first and
then present a detailed description of how the discret adjoint method can be applied to this
problem.

4.4.1 Problem formulation

For a given control u, we can determine the evolution of the network using the equations
for the system dynamics. Let x(u) be the state of the network under these dynamics subject
to the control u.

The total travel-time J(x(u)) is defined as:

J =
T−1∑

k=0

∑

i∈A\S

ρi (k) · Li (4.49)

The system optimal dynamic traffic assignment with partial compliance (SO-DTA-PC)
is a physically acceptable (see Definition 4.14) division of the compliant agents among the
different commodities that minimizes the total travel-time (including the travel-time of the
non-compliant commodities). The solution is obtained by solving the following optimization
problem.

Section 4.4. Adjoint based optimization 85

Time 0

Time Tf = T � 1

Time k · · ·

(⇢1,c (0))

· · ·

(⇢N,c (0))

�1 (0)

· · ·

�N (0)

�1 (0)

· · ·

�N (0)

(�1j (0))

· · ·

(�Nj (0))

�
fout
1,c (0)

�

· · ·

�
fout
N,c (0)

�

�
f in
1,c (0)

�

· · ·

�
f in
N,c (0)

�

(⇢1,c (Tf))

· · ·

(⇢N,c (Tf))

�1 (Tf)

· · ·

�N (Tf)

�1 (Tf)

· · ·

�N (Tf)

(�1j (Tf))

· · ·

(�Nj (Tf))

�
fout
1,c (Tf)

�

· · ·

�
fout
N,c (Tf)

�

�
f in
1,c (Tf)

�

· · ·

�
f in
N,c (Tf)

�

Figure 3: Dependency diagram of the variables in the system.

The system optimal dynamic tra�c assignment with partial compliance (SO-DTA-PC) is a physically
acceptable (see Definition 14) division of the compliant agents among the di↵erent commodities that min-
imizes the total travel-time (including the travel-time of the non-compliant commodities). The solution is
obtained by solving the following optimization problem.

min
u2U

J(x(u))

subject to

system dynamics

control constraints

16

Figure 4.3: Dependency diagram of the variables in the system.

minu∈U J(x(u))

subject to
system dynamics
control constraints

where the system dynamics are given in Section 4.3.3 and the control constraints are the
following.

γc(k) ≥ 0 ∀c ∈ CC, k ∈ [[0, Tf]]∑

c∈Ω−1{(o,s)}

γc(k) = 1 ∀k ∈ [[0, Tf]]

Note that this is a non-convex optimization problem that might contain multiple local min-
ima. Therefore, gradient methods will not guarantee global optimality. However, descent
algorithms can still be used to obtain locally optimal solutions and can be improved by using
multiple starting points [18, 89]. Furthermore, non-convex optimization techniques such as

Section 4.4. Adjoint based optimization 86

subgradient and interior point methods [132] require the gradient of the system. We use the
discrete adjoint method, which will be explained in the next section, to efficiently solve for
the gradient of the system. The control constraints can be satisfied either using a projected
gradient descent or a barrier function. In our implementation, we use the projected gradient
descent approach.

4.4.2 Overview of the adjoint method

We consider the following general optimization problem:

minu∈U J(x, u)

subject to H(x, u) = 0
(4.50)

where x ∈ X denotes the state variables and u ∈ U denotes the control variables.

The adjoint method [46] is a technique to compute the gradient ∇uJ(x, u) = dJ
du

of the ob-
jective function without fully computing ∇ux = dx

du
. The gradient is then used to perform a

gradient descent. We suppose that for any control u, ∂H
∂x

(x, u) is not singular.

Under equality constraints H(x, u) = 0, the Lagrangian

L(x, u, λ) = J(x, u) + λTH(x, u) (4.51)

coincides with the objective function for any feasible point (x(u), u). The problem is then
equivalent to computing the gradient of the Lagrangian:

∇uL(x, u, λ) =
∂J

∂u
+
∂J

∂x

dx

du
+ λT

(
∂H

∂u
+
∂H

∂x

dx

du

)

=
∂J

∂u
+ λT

∂H

∂u
+

(
∂J

∂x
+ λT

∂H

∂x

)
dx

du
(4.52)

In particular, if λ satisfies the adjoint equation:

∂J

∂x
+ λT

∂H

∂x
= 0 (4.53)

then the gradient is,

∇uL(x, u) =
∂J

∂u
+ λT

∂H

∂u
(4.54)

Remark 4.11. The solution for λ exists and is unique if ∂H
∂x

is not singular, which is the
case in our forward system, as explained in the following section.

Section 4.4. Adjoint based optimization 87

4.4.3 Applying the adjoint method

To be able to use the adjoint method to compute the gradient, the partial derivatives
of the forward system with respect to the state variables ∂H

∂x
must not be singular. We can

rewrite our system of equations in the form H(x, u) = 0 and verify this condition trivially.
All the diagonal terms of ∂H

∂x
are non zero (since equal to 1 or −1 depending on the

way we rewrite Hv). As seen in the dependency chain shown in Figure 4.3, the non zero
derivative terms of Hv depend only on variables that have a smaller index in x. This means
that ∂H

∂x
is lower triangular with no zero terms on the diagonal and is thus non singular.

Therefore, we can apply the adjoint method to compute the gradient of this system.

Reduced state space. The forward system dynamics that were described in section 4.3.3
had a large number of state variables. However, the only required state variables of the
system are the partial densities ρi,c (k). All the others variables were introduced to make the
forward system easier to understand. We will now drop most of these auxiliary variables to
simplify the computation of the adjoint system. We only use ρi,c (k), f outi,c (k) and f ini,c (k) to
describe the system and replace the other variables by their expressions as a function of the
three state variables that we retain.

We define:

x =




(
(ρi,c (k))c∈C

)
i∈A((

f outi,c (k)
)
c∈C

)
i∈A((

f ini,c (k)
)
c∈C

)
i∈A




k∈[[0,T]]

H =




((
H1
k,i,c

)
c∈C

)
i∈A((

H5
k,i,c

)
c∈C

)
i∈A((

H6
k,i,c

)
c∈C

)
i∈A



k∈[[0,T]]

Computational complexity. Let n be the dimension of the state vector x ∈ Rn, m be
the dimension of the control vector is u ∈ Rm and Nc = |C| be the total number of com-
modities. From the above definition of the state vector, we can see that n = |A| ·T ·Nc. The
dimension of H is also n as defined above.

Direct computation of the gradient ∇uJ(x, u) takes O(n2m) time.

∇uJ(x, u) =
∂J

∂x
· ∇ux+

∂J

∂u
(4.55)

Computing ∇uJ requires solving the system H(x, u) = 0 ⇒ ∂H
∂x

dx
du

+ ∂H
∂u

= 0, which is
equivalent to solving m different n × n linear systems and takes O(n2m) time. The final
step of multiplying ∂J

∂x
dx
du

and adding ∂J
∂u

takes O(nm) time, but is dominated by the time to
compute dx

du
.

The discrete adjoint method reduces this complexity to O(n2 + nm) by solving for λ
in the adjoint system. Computing the adjoint variables λT ∈ Rn using equation (4.53) only
takes O(n2) time since it only requires solving one n × n linear system. Multiplying λT ∂H

∂u

Section 4.4. Adjoint based optimization 88

and adding ∂J
∂u

to complete the computation in equation (4.54) takes O(nm) time, so the
total computation time is O(n2 + nm).

The structure of our system allows for further reduction of the complexity toO(n+m|C|).
As shown in section 4.4.3, ∂H

∂x
is a lower triangular matrix and therefore we can compute the

solution to equation (4.53) using backwards substitution. We will exploit the fact that the
matrix ∂H

∂x
is extremely sparse. The maximum row cardinality is four because the forward

system does not contain any constraints with more than four variables. Therefore, equation
(4.53) can be solved in O(n) time. If the maximum in-degree of the network is din, the
maximum column cardinality is 2 + |C|(1 + din), as will be clear in the next section from
equation (4.59). Assuming that din is a small constant, the multiplication step in equation
(4.54) takes O(m|C|) time. This leads to a total computation time of O(n+m|C|).

4.4.4 Adjoint equations

The adjoint equations are given by the system:

∂J

∂x
+ λT

∂H

∂x
= 0 (4.56)

⇒ ∂J

∂x
+
∑

x′∈x

λ′x
∂Hx′

∂x
= 0 (4.57)

where x is the state vector and H ′x is the forward system equation corresponding to the vari-
able x′ ∈ x. To write the adjoint system equation corresponding to x′ , we have to look at
all the forward system equations where x′ appears and consider all the non-null ∂Hx′

∂x
terms.

In particular we write the equations such that ∂Hx′
∂x′

= −1. Note that this can be done be-
cause the Godunov scheme provides an explicit expression for the forward system constraints.

Computing ∂J
∂x

∂J

∂ρi,c (k)
=

{
Li ∀c ∈ C, ∀i ∈ A \ S, ∀k ∈ [[0, T]]

0 otherwise
(4.58)

Section 4.4. Adjoint based optimization 89

Computing λT ∂H
∂x

∂H

∂ρi,c (k)
:

∑

x′∈x

λx′
∂Hx′

∂ρi,c (k)
= λρi,c(k)

∂Hρi,c(k)

∂ρi,c (k)
+ λρi,c(k+1)

∂Hρi,c(k+1)

∂ρi,c (k)
+

∑

c′∈CC


λfout

i,c′ (k)

∂Hfout
i,c′ (k)

∂ρi,c (k)
+ λfout

x,c′ (k)

∑

x:(x,i)∈A

∂Hfout
x,c′ (k)

∂ρi,c (k)




(4.59)

∂H

∂f outi,c (k)
:

∑

x′∈x

λx′
∂Hx′

∂f outi,c (k)
= λρi,c(k+1)

∂Hρi,c(k+1)

∂f outi,c (k)
+ λfout

i,c (k)

∂Hfout
i,c (k)

∂f outi,c (k)
+
∑

j:j∈(i,j)

λf in
j,c(k)

∂Hf in
j,c(k)

∂f outi,c (k)

(4.60)

∂H

∂f ini,c (k)
:

∑

x′∈x

λx′
∂Hx′

∂f ini,c (k)
= λρi,c(k+1)

∂Hρi,c(k+1)

∂f ini,c (k)
+ λf in

i,c(k)

∂Hf in
i,c(k)

∂f ini,c (k)
(4.61)

The next section shows how to compute all the individual partial derivatives that are
required in the above equations. Once they are computed, we can simply plug them into the
above equations and solve the system via backwards substitution since ∂H

∂x
is lower triangular.

4.4.5 Partial derivatives

Computing the gradient of the system via the adjoint method requires computing the
partial derivatives ∂J

∂u
, ∂J
∂x
, ∂H
∂u

and ∂H
∂x

. The first three of these can be computed trivially.

• Partial derivatives of the cost function with respect to the control (∂J
∂u

) from equation
(4.49)

∂J

∂γc(k)
= 0 (4.62)

• Partial derivatives of the cost function with respect to the state variables (∂J
∂x

) from
equation (4.49)

∂J

∂ρi,c (k)
=

{
Li if c ∈ C, i ∈ A \ S, k ∈ [[0, T]]

0 otherwise
(4.63)

• Partial derivatives of the constraints with respect to the state variables (∂H
∂u

) from
equation (H1c)

∂ρi,c (k)

∂γc(k)
=

{
∆t
Li
·DΩ(c) (k) if c ∈ CC, i ∈ B, k ∈ [[0, T]]

0 otherwise
(4.64)

Section 4.4. Adjoint based optimization 90

Computing the partial derivatives of the constraints with respect to the state
variables (∂H

∂x
)

We first iterate through the three classes of variables. All unlisted derivatives evaluate to
zero.

Commodity density ρi,c (k) from equations (H1a, H1b, H1c, H1d))

∂ρi,c (k)

∂ρi,c (k − 1)
= 1, ∀c ∈ C, ∀i ∈ A \ B, ∀k ∈ [[1, T]] (4.65)

∂ρi,c (k)

∂f ini,c (k − 1)
=

∆t

Li
, ∀c ∈ C, ∀i ∈ A \ B, ∀k ∈ [[1, T]] (4.66)

∂ρi,c (k)

∂f outi,c (k − 1)
= −∆t

Li
, ∀c ∈ C, ∀i ∈ A \ S, ∀k ∈ [[1, T]] (4.67)

Flow in f ini,c from equation (H6)

∂f inj,c
∂f outi,c

= βij,c ∀i ∈ J in
z , ∀j ∈ J out

z , ∀z ∈ J ∀k ∈ [[1, T − 1]] (4.68)

Flow out f outi,c

Computing the partial derivatives of the flow out f outi,c is requires a much more involved pro-
cess. We begin by computing the following intermediate partial derivatives:

• Computing ∂
∂ρi,c(k)

(
ρi,c(k)δi(k)

ρi(k)

)
:

From equations (H2a, H2b),

δi (k) =

{
min (Fi, viρi (k)) ∀i ∈ A \ (B ∪ S), ∀k ∈ [[0, Tf]]

min
(
Fi,

ρi(k)Li
∆t

)
∀i ∈ B, ∀k ∈ [[0, Tf]]

(4.69)

which gives the following equations:

ρi,c (k)

ρi (k)
δi (k) =





min
(
ρi,c(k)

ρi(k)
Fi, ρi,c (k) vi

)
∀i ∈ A \ (B ∪ S), ∀k ∈ [[0, Tf]]

min
(
ρi,c(k)

ρi(k)
Fi,

ρi,c(k)Li
∆t

)
∀i ∈ B, ∀k ∈ [[0, Tf]]

(4.70)

Section 4.4. Adjoint based optimization 91

Using equation (4.1),

∀i ∈ A \ (B ∪ S), ∀k ∈ [[0, Tf]]

∂

∂ρi,c (k)

(
ρi,c (k)

ρi (k)
δi (k)

)
=

{
(ρi(k)−ρi,c(k))

ρi(k)2 Fi if Fi < viρi (k)

vi otherwise
(4.71)

∀i ∈ B, ∀k ∈ [[0, Tf]]

∂

∂ρi,c (k)

(
ρi,c (k)

ρi (k)
δi (k)

)
=

{
(ρi(k)−ρi,c(k))

ρi(k)2 Fi if Fi < Li
∆t
ρi (k)

Li
∆t

otherwise
(4.72)

Remark 4.12. If ρi (k) = 0, then Fi > Li
∆t
ρi (k) or Fi > viρi (k), so the derivatives are

well defined.

• Computing ∂
∂ρi,c′ (k)

(
ρi,c(k)δi(k)

ρi(k)

)
: (Note the two different commodities c and c′.)

∀i ∈ A \ (B ∪ S), ∀k ∈ [[0, Tf]]

∂

∂ρi,c′ (k)

(
ρi,c (k)

ρi (k)
δi (k)

)
=

{−ρi,c(k)

ρi(k)2 Fi if Fi < viρi (k)

0 otherwise
(4.73)

∀i ∈ B, ∀k ∈ [[0, Tf]]

∂

∂ρi,c′ (k)

(
ρi,c (k)

ρi (k)
δi (k)

)
=

{−ρi,c(k)

ρi(k)2 Fi if Fi < Li
∆t
ρi (k)

0 otherwise
(4.74)

Remark 4.13. If ρi (k) = 0, then Fi > Li
∆t
ρi (k) or Fi > viρi (k), so the derivatives are

well defined.

• Computing ∂
∂ρi,c(k)

(
ρi,c(k)σj(k)

ρi(k)

)
and ∂

∂ρi,c′ (k)

(
ρi,c(k)σj(k)

ρi(k)

)
when i 6= j:

Note that σj (k) does not contain ρi (k) terms.

∂

∂ρi,c (k)

(
ρi,c (k)

ρi (k)
σj (k)

)
=

(ρi (k)− ρi,c (k))

ρi (k)2 σj (k) (4.75)

∂

∂ρi,c′ (k)

(
ρi,c (k)

ρi (k)
σj (k)

)
=
−ρi,c (k)

ρi (k)2 σj (k) (4.76)

Section 4.4. Adjoint based optimization 92

Remark 4.14. This partial derivative is only needed in cases where the junction is
strictly supply constrained and ρi (k) > 0, so we can ignore the fact that the derivative
is undefined at ρi (k) = 0.

• Computing ∂
∂ρj,c′ (k)

(
ρi,c(k)σj(k)

ρi(k)

)
:

From equations (H3a, H3b),

σj (k) =

{
min

(
Fi, wj

(
ρjamj − ρj (k)

))
∀j ∈ A \ (B ∪ S), ∀k ∈ [[0, Tf]]

Fj ∀j ∈ S, ∀k ∈ [[0, Tf]]
(4.77)

ρi,c (k)

ρi (k)
σj (k) =

{
min

(
ρi,c(k)

ρi(k)
Fj,

ρi,c(k)

ρi(k)
wj

(
ρjamj − ρj (k)

))
∀i ∈ A \ (B ∪ S), ∀k ∈ [[0, Tf]]

ρi,c(k)

ρi(k)
Fj ∀i ∈ S, ∀k ∈ [[0, Tf]]

(4.78)

∀i ∈ A \ (B ∪ S), ∀k ∈ [[0, Tf]]

∂

∂ρj,c′ (k)

(
ρi,c (k)

ρi (k)
σj (k)

)
=

{
0 if Fj < wj

(
ρjamj − ρj (k)

)

−ρi,c(k)

ρi(k)
wj otherwise

(4.79)

∀i ∈ S, ∀k ∈ [[0, Tf]]

∂

∂ρj,c′ (k)

(
ρi,c (k)

ρi (k)
σj (k)

)
= 0 (4.80)

Remark 4.15. This partial derivative is only needed in cases where the junction is
strictly supply constrained and ρi (k) > 0, so we can ignore the fact that the derivative
is undefined at ρi (k) = 0.

• Computing ∂
∂ρi,c(k)

(
ρi,c(k)σj(k)

ρi(k)βij(k)

)
:

From equation (H4),

βij (k) =
1

ρi (k)

∑

c′∈C

ρi,c′ (k) βij,c′ (k) ∀k ∈ [[0, Tf]] (4.81)

Let κij(k) =
∑

c′∈C ρi,c′ (k) βij,c′ (k)

ρi,c (k)

ρi (k)

σj (k)

βij (k)
=
ρi,c (k)σj (k)

κij(k)
(4.82)

Section 4.4. Adjoint based optimization 93

∂

∂ρi,c (k)

(
ρi,c (k)

ρi (k)

σj (k)

βij (k)

)
=
κij(k)σj (k)− ρi,c (k)σj (k) βij,c (k)

κij(k)2
(4.83)

Remark 4.16. This partial derivative is only needed in cases where the junction is
strictly supply constrained and ρi (k) > 0, so we can ignore the fact that the derivative
is undefined at ρi (k) = 0.

• Computing ∂
∂ρi,c′ (k)

(
ρi,c(k)σj(k)

ρi(k)βij(k)

)
:

∂

∂ρi,c′ (k)

(
ρi,c (k)

ρi (k)

σj (k)

βij (k)

)
=
−ρi,c (k)σj (k) βij,c′ (k)

κij(k)2
(4.84)

Remark 4.17. The ρi (k) = 0 condition is just as in the previous case.

• Computing ∂
∂ρj,c′ (k)

(
ρi,c(k)σj(k)

ρi(k)βij(k)

)
:

∂

∂ρj,c′ (k)

(
ρi,c (k)

ρi (k)

σj (k)

βij (k)

)
=

1

βij (k)

∂

∂ρi,c′ (k)

(
ρi,c (k)σj (k)

ρi (k)

)
(4.85)

which can then be simplified using equations (4.79, 4.80).

Now we can proceed to computing the partial derivatives of f outi,c .

Definition 4.19 (Demand-constrained junction). A junction is demand-constrained if the
flow through the junction is limited by the incoming flow of cell i. We denote this condition
by DC(i).

Definition 4.20 (Supply-constrained junction). A junction is supply-constrained if the flow
through the junction is limited by the outgoing flow into some outgoing cell j. We denote
this condition by SC(j).

Solution for 1× 2 junctions

The solutions to all the partial derivatives that appear in the expressions below have already
been solved explicitly.

From equation (H5a),

f outi,c =
ρi,c
ρi

min

({
σj (k)

βij (k)
, ∀j ∈ J out

z | βij (k) > 0

}
, δi (k)

)
∀z ∈ J1×n, ∀i ∈ J in

z (4.86)

Section 4.4. Adjoint based optimization 94

∂f outi,c

∂ρi,c (k)
=





∂
∂ρi,c(k)

(
ρi,c(k)δi(k)

ρi(k)

)
if DC(i)

∂
∂ρi,c(k)

(
ρi,c(k)

ρi(k)
σi(k)
βij(k)

)
if SC(j)

(4.87)

∂f outi,c′

∂ρi,c (k)
=





∂
∂ρi,c(k)

(
ρi,c′ (k)δi(k)

ρi(k)

)
if DC(i)

∂
∂ρi,c(k)

(
ρi,c′ (k)

ρi(k)
σi(k)
βij(k)

)
if SC(j)

(4.88)

∂f outi,c

∂ρj,c′ (k)
=

{
0 if DC(i)

∂
∂ρj,c′ (k)

(
ρi,c(k)

ρi(k)
σi(k)
βij(k)

)
if SC(j)

(4.89)

Remark 4.18. It is important to note that these derivatives are undefined if the junction
is both supply and demand-constrained. However, this can only occur if the density of the
cell is exactly equal to the value at which the demand and supply constraints meet. This is
extremely unlikely in practice with floating point numerical operations. In the rare event that
it does occur, we assume that the junction is supply-constrained.

Solution for 2× 1 junctions

The solutions to all the partial derivatives that appear in the expressions below have already
been solved explicitly.

From equation (H5b)

f outi,c =
ρi,c
ρi





δi if Pi (min (δi + δi, σj)− δi) > δiPi

min (δi + δi, σj)− δi if Pi (min (δi + δi, σj)− δi) > δiPi

Pi min (δi + δi, σj) otherwise
∀z ∈ J2×1, ∀i ∈ J in

z

(4.90)

case 1: Pi (min (δi + δi, σj)− δi) > δiPi

∂f outi,c

∂ρi,c (k)
=

∂

∂ρi,c (k)

(
ρi,c (k) δi (k)

ρi (k)

)
(4.91)

∂f outi,c′

∂ρi,c (k)
=

∂

∂ρi,c (k)

(
ρi,c′ (k) δi (k)

ρi (k)

)
(4.92)

∂f outi,c′

∂ρj,c (k)
= 0 (4.93)

Section 4.4. Adjoint based optimization 95

case 2: Pi (min (δi + δi, σj)− δi) > δiPi

∂f outi,c

∂ρi,c (k)
=





∂
∂ρi,c(k)

(
ρi,c(k)δi(k)

ρi(k)

)
if δi + δi < σj

∂
∂ρi,c(k)

(
ρi,c(k)σj(k)

ρi(k)

)
− ∂

∂ρi,c(k)

(
ρi,c(k)δi(k)

ρi(k)

)
otherwise

(4.94)

∂f outi,c

∂ρi,c′ (k)
=





∂
∂ρi,c′ (k)

(
ρi,c(k)δi(k)

ρi(k)

)
if δi + δi < σj

∂
∂ρi,c′ (k)

(
ρi,c(k)σj(k)

ρi(k)

)
− ∂

∂ρi,c(k)

(
ρi,c(k)δi(k)

ρi(k)

)
otherwise

(4.95)

∂f outi,c

∂ρj,c′ (k)
=

{
0 if δi + δi < σj

∂
∂ρj,c′ (k)

(
ρi,c(k)σj(k)

ρi(k)

)
otherwise

(4.96)

case 3: otherwise

∂f outi,c

∂ρi,c (k)
=




Pi

(
∂

∂ρi,c(k)

(
ρi,c(k)δi(k)

ρi(k)

)
+ ∂

∂ρi,c(k)

(
ρi,c(k)δi(k)

ρi(k)

))
if δi + δi < σj

Pi

(
∂

∂ρi,c(k)

(
ρi,c(k)σj(k)

ρi(k)

))
otherwise

(4.97)

∂f outi,c

∂ρi,c′ (k)
=




Pi

(
∂

∂ρi,c′ (k)

(
ρi,c(k)δi(k)

ρi(k)

)
+ ∂

∂ρi,c(k)

(
ρi,c(k)δi(k)

ρi(k)

))
if δi + δi < σj

Pi

(
∂

∂ρi,c′ (k)

(
ρi,c(k)σj(k)

ρi(k)

))
otherwise

(4.98)

∂f outi,c

∂ρj,c′ (k)
=

{
0 if δi + δi < σj

Pi

(
∂

∂ρj,c′ (k)

(
ρi,c(k)σj(k)

ρi(k)

))
otherwise

(4.99)

Solution for 2×2 junctions The solution for the 2×2 junctions can be obtained using a
similar set of computations, but is omitted here for readability and due to length constraints.

This concludes the computation of all the partial derivatives required for computing the
gradient of the system using the discrete adjoint method.

Remark 4.19. If we do not have closed form solutions for the junctions, it may not be pos-
sible to compute the explicit partial derivatives of the outgoing flow with respect to the partial
densities of the incoming and outgoing links of the junction. However, for any junction that
cannot be solved explicitly, it is still possible to compute ∂fout

i,c (k)

∂ρi′,c′ (k)
for all i, i′ ∈ J in

z ∪J out
z and

c, c′ ∈ C with a finite differences method using |J in
z | · |J out

z | · |C| local simulations of just the
junction dynamics (not the entire system). We can then continue to use the adjoint method
while numerically differentiating these junctions that do not admit an explicit solution. This
local finite differences method can still allow a very efficient computation of the gradient for
heterogeneous networks with some junctions or sub-networks that contain complex dynamics.

Section 4.5. Numerical Results 96

4.5 Numerical Results
To illustrate the effectiveness of our framework for computing the system optimal dy-

namic flow allocation with partial control, we have implemented the algorithm and tested
it on both synthetic and practical traffic rerouting scenarios using experimental field data.
Our implementation uses the discrete adjoint method to compute the gradient and uses a log
barrier function with a projection step to keep the solution in the physically feasible control
set as explained in section 4.4.1. We use the Rprop [112] algorithm as our gradient descent
technique. All the experiments were run on a 1.8 GHz Intel Core i5 dual-core processor with
8GB of RAM. The performance cost C of each scenario is measured using the total travel
time of all the vehicles passing through the network.

C =
T−1∑

k=0

∑

i∈A\S

ρi (k) · Li ·∆t

We present numerical results for two network scenarios.
1. A network adapted from the synthetic network used in [140]. The network is illus-

trated in figure 4.4.
2. A subsection of Interstate 210 with a parallel arterial route, as depicted in figure 4.6.

Route 1

Route 3

Route 2
C=2, N=20

C=9, N=20

C=8, N=20

C=7, N=20

C=3, N=10 C=4, N=10

C=5, N=10

C=6, N=10
C=1, N=1

C=10, N=1

6

6

6

6

6

6

6

6

6

Figure 4.4: The synthetic network adapted from [140]. There are 10 cells marked
C = 1, · · · , 10 and the jam density ρjam of each cell is denoted by the maximum number of
vehicles (N), since the length of each cell is normalized to 1. The edge weights represent
the max flow F between the neighboring cells.

4.5.1 Synthetic network

The synthetic network is a simple 10 cell network adapted from the example used
in [140]5. It contains three paths over which vehicles can be routed. The demand at the

5We have modified the network to increase the capacity of links 8 and 9 such that they can accommodate
flow-from both route 2 and route 3, and changed some of the other parameters to satisfy the CFL conditions
in section 4.2.3.

Section 4.5. Numerical Results 97

origin is given in table 4.1. The time discretization is set to one time unit and the length of
each cell is also normalized to one unit. Therefore, the total capacity of each cell in terms
of the number of vehicles N is equal to the jam density ρjam. Each cell in figure 4.4 is
annotated with its cell capacity N , while the edge weights in the network prescribe the max
flow F between the cells. The free flow speed v of each cell is also normalized to one and
the congestion speed w is equal to the free flow speed. The network is simulated for 10 time
steps, which gives enough time for all the entering flow to exit the network.

Time step 1 2 3 4 5 6 7 8 9 10
Demand (vehicles) 8 16 8 0 0 0 0 0 0 0

Table 4.1: Demands at origin

First we use the discrete adjoint optimization framework to compute the system opti-
mal flow allocation for the network assuming that all of the flow is compliant. Table 4.2(a)
shows the optimal route allocation for the origin demands at each time step with non-zero
demand. The total travel time cost (C) with the optimal flow allocation is 178 time units.
The solution converges to within 0.5% of the optimal solution in three iterations.

Time step 1 2 3
Route 1 0.75 0.5 0.5
Route 2 0 0 0
Route 3 0.25 0.5 0.5

(a) normal operation

Time step 1 2 3
Route 1 0.25 0.417 .417
Route 2 0 0 0
Route 3 0.75 0.583 0.583

(b) incident local minimum

Time step 1 2 3
Route 1 0 0.25 0.25
Route 2 0.25 0 0
Route 3 0.75 0.75 0.75

(c) incident global minimum
Table 4.2: Optimal allocation of demand across routes

Capacity reduction due to incident. We now consider the case where the capacity
between cell 3 and cell 4 is temporarily reduced due to some incident. The corresponding
capacities for link (3, 4) are given in table 4.3.

Time step 1 2 3 4 5 6 7 8 9 10
F(3,4) 6 6 0 0 3 3 6 6 6 6

Table 4.3: Capacity reduction due to incident

If the vehicles continue to be routed using the previous path allocation, the total travel
cost (C) will now be 244 time units. The total cost increases by 37% because a large per-
centage of vehicles are routed along the path that is temporarily closed and then subjected
to a reduced capacity. If we recompute the system optimal flow allocation, the total cost de-
creases to 211 time units and the corresponding flow allocation is given in table 4.2(b). This
solution is actually a local minimum in the system due to the FIFO condition for vehicles
departing cell 3. Whenever there is some non-zero flow for route 1 when the capacity is zero,

Section 4.5. Numerical Results 98

the flow of vehicles that take route 2 is also restricted to zero. This causes a non-convexity
that results in a discontinuity of the gradient at the point where the flow of vehicles on
route 1 is zero. Gradient-based methods are not well suited to deal with such conditions
because the information obtained from the gradient only provides local information. The
global optimal solution occurs with the flow allocation given in table 4.2(c) and results in a
total travel time cost of 207. As mentioned in Section 4.4.1, the effect of local minima can
in general be mitigated using multi-start strategies [18, 89] and the efficient gradient com-
putation obtained via the adjoint method can be combined with non-convex optimization
techniques such as interior point methods [132].

Partial control. In many situations, it might not be possible to reroute all the vehicles in
the system. Therefore, we also analyze the behavior of the system when only some fraction
of the vehicles are rerouted. Figure 4.5 shows how the total travel time changes with the
percentage of vehicles that can be rerouted. In this example, we see that the system optimal
(local minimum) can be achieved by controlling only 60% of the vehicles.

T
ot
al

tr
av
el

ti
m
e

Percentage of rerouted vehicles

System optimal

Figure 4.5: The change in total travel time vs percentage of vehicles that can be rerouted.
All performance measures are with respect to the local minimum found by the optimizer.

4.5.2 Interstate 210 network

The experimental analysis was conducted on a 8 mile corridor of Interstate 210 in Ar-
cadia, California with a parallel arterial route, as illustrated in figure 4.6. The network has
24 cells corresponding to satisfying the CFL condition for a time step of 30 seconds. The
physical properties of the network such as the capacity were obtained using the Scenario Ed-
itor software developed as part of the Connected Corridors project, a collaboration between

Section 4.5. Numerical Results 99

the University of California Berkeley and California Partners for Advanced Transportation
Technology (PATH). Calibrated fundamental diagram parameters, split ratios, and bound-
ary data were also obtained from other parallel research efforts at Connected Corridors.
The data used for calibrating these parameters was obtained from the Freeway Performance
Measurement System (PeMS) [26]. We consider a prototypical one hour time horizon during
the morning commute. The density profile of the freeway under the calibrated parameters
and estimated boundary flows is shown in figure 4.7(a).

Figure 4.6: The Interstate 210 sub-network

Capacity drop during morning commute. We analyze the behavior of the freeway cor-
ridor in the event of a capacity drop caused by some incident. We assume that the capacity
drop occurs at the fifth freeway road segment 10 minutes into the simulation and that it
lasts for 20 minutes, as illustrated in figure 4.7 (b). The freeway capacity at segment five
will be assumed to be reduced by half during this period, corresponding to a closure of two
lanes (out of four) at the location of the incident. Figure 4.7 shows the density profile cor-
responding to; (a) normal operation with capacity drop, (b) a capacity drop due to a two
lane closure during the incident with no traffic diversion, (c) the same capacity drop with
traffic being diverted to the parallel arterial, and (d) the change in the density profile due
to the traffic diversion. As the figure shows, rerouting the excess flow to the parallel arterial
eliminates the bottleneck during the incident and improves the throughput of the freeway
corridor. In this example, the parallel arterial is assumed to prioritize vehicles being routed
from the freeway and the full arterial capacity is used for this purpose. However, in certain
situations, municipalities may want to allocate some capacity of the parallel arterial for local
traffic. In this case, the optimizer can be limited to only use a certain fraction of the capacity
of the parallel arterial. Figure 4.8 shows the density evolution when the arterial capacity
allocated for rerouting freeway traffic is limited to 40% and 50% in comparison to full arterial
utilization. The arterial capacity allocation can be controlled via the traffic signal controls
along the arterial.

Section 4.5. Numerical Results 100

20 40 60 80 100 120

2

4

6

8

10

12

14

30 second time steps

fr
ee
w
ay

se
gm

en
t

20 40 60 80 100 120

2

4

6

8

10

12

14
lane closure lanes reopen

queue dissipation

30 second time steps

fr
ee
w
ay

se
gm

en
t

(a) normal operation (b) capacity drop

20 40 60 80 100 120

2

4

6

8

10

12

14

excess flow diverted
to arterial

30 second time steps

fr
ee
w
ay

se
gm

en
t

20 40 60 80 100 120

2

4

6

8

10

12

14

30 second time steps

fr
ee
w
ay

se
gm

en
t

(c) capacity drop and reroute (d) change in density with reroute

Figure 4.7: The density evolution along the 14 freeway road links with; (a) no incident, (b)
a two lane capacity drop from minutes 10-30 at link 5, and (c) flow being rerouted to the
parallel arterial due to the capacity drop, and (d) the density difference between the
incident profiles with and without rerouting.

Adjoint method vs finite differences. To demonstrate the increased efficiency of com-
puting the solution via the discrete adjoint method, we also implemented the gradient com-
putation using a simple finite differences method 6 by perturbing each variable and measuring
the response of the system. This approach, which approximates the gradient at a given point,
has a runtime complexity of O(nm) where n is the dimension of the state vector and m is the
dimension of the control vector. Recall that the size of the state vector is n = |A| ·T · |C| and
that the size of the control vector is m = T · |C|, where |C| is the total number of commodities
(feasible paths) in the problem. Therefore, O(nm) = O(|A|·T 2 ·|C|2) and the finite difference
method has a computation time that is quadratic in the number of time steps. In comparison,
the adjoint method has a time complexity of O(n+m|C|) = O(|A| · T · |C|+ T · |C|2), which
is linear in the number of time steps. The complexity of both methods is quadratic in the
total number of feasible paths, but this is assumed to be a small number in practical routing

6See [96] for a detailed analysis of finite difference methods.

Section 4.5. Numerical Results 101

30 second time steps

fr
ee
w
ay

se
gm

en
t

20 40 60 80 100 120

2

4

6

8

10

12

14

20 40 60 80 100 120

2

4

6

8

10

12

14

fr
ee
w
ay

se
gm

en
t

30 second time steps 30 second time steps

fr
ee
w
ay

se
gm

en
t

20 40 60 80 100 120

2

4

6

8

10

12

14

20 40 60 80 100 120
1

2

3

4

5

6

7

8

9

30 second time steps

ar
te
ri
al

se
g
m
en
t

20 40 60 80 100 120
1

2

3

4

5

6

7

8

9

30 second time steps

ar
te
ri
al

se
g
m
en
t

30 second time steps

ar
te
ri
al

se
g
m
en
t

20 40 60 80 100 120
1
2

3

4
5

6

7
8

9

(a) 40% of arterial capacity (b) 50% of arterial capacity (c) full arterial utilization

Figure 4.8: A comparison of the density evolution for different rerouting capacities on the
parallel arterial route; (a) only 40% of the arterial capacity can be utilized for rerouting
freeway vehicles, (b) only 50% of the arterial capacity can be utilized for rerouting freeway
vehicles, and (c) The entire arterial capacity is utilized for rerouting freeway vehicles (i.e.
the parallel arterial temporarily closed for other traffic).

problems, since vehicles that travel between a fix origin-destination pair will only typically
have a small number of reasonable paths. Figure 4.9 shows the time taken for one gradient
computation as a function of the network number of time steps in the problem for the I-210
network. The simulations are run by changing the time discretization of the problem to
control the total number of time steps. Reducing the time discretization also increases the
number of cells due to the maximum cell length imposed by the CFL condition. The results
show that the finite differences approach quickly becomes computationally intractable as the
number of time steps in the problem increases and highlights the value of the discrete adjoint
method for solving large problems in a tractable manner.

Section 4.5. Numerical Results 102

Time steps

finite di↵erences

adjoint method

lo
g
1
0
(c
om

p
u
ta
ti
on

ti
m
e)

in
m
s

Figure 4.9: The base 10 logarithm (log10) of the total computation time for solving the
I-210 network vs the number of time steps in the problem. The total time horizon is fixed,
so a larger number of time steps implies a smaller time discretization. This also results in a
larger number of cells (smaller in length) due to the CFL condition.

103

Part III

Control of user equilibrium

104

Chapter 5

A mathematical framework for delay
analysis in single source networks

5.1 Introduction
Modeling and analysing the dynamics of network flows is an important problem that has

applications in many different areas such as transportation planning [33, 78, 108], air traffic
control [94, 126], communication networks [3, 24, 51, 70], processor scheduling [128] and
supply chain optimization [98]. Flow models are crucial for understanding the response of
networked systems under different boundary conditions, estimating the state of the system,
measuring system performance under different tunable parameters and devising the appro-
priate control strategies for efficient operation of the system. For example, in transportation
networks, flow models are used for traffic estimation [136], dynamic traffic assignment or
demand response assessment [90], traffic signal control [84], ramp-metering control [110] and
incident rerouting [122].

This chapter focuses on modeling heterogeneous (multi-path) physical flows through a
network with a single source and multiple sinks with the specific objective of expressing the
delays at each node of the network as a function of the boundary flows at the source. This
can be a critical requirement when solving control and optimization problems over a network
where the flow entering the network is one of the direct or indirect control parameters of the
system. For example, when trying to eliminate congestion at a critical node of the network
by manipulating the boundary flows, as explained in Chapter 6. We present our model in the
context of physical flow networks and particularly freeway transportation networks, which
have the following physical requirements, but the results can be applied to any network that
satisfies the following properties: 1) link flows are capacity restricted, 2) the flow through
each junction satisfies the first-in-first-out (FIFO) condition, and 3) there is no holding of
flow, i.e. the flow through a junction is maximized subject to the FIFO condition.

While there is a vast literature on network flow propagation, particularly for various
packet networks, a large majority of these dynamics models violate the FIFO and no hold-

Section 5.2. Point queue model for network flow 105

ing requirements listed above, which are essential requirements in phyisical flow networks.
Many models proposed for transportation network flows do infact satisfy these physical re-
quirements [33, 78], but none of these models analytically describe the internal delays of the
network as a function of the boundary flows, thus requiring a new framework .

Our approach can be summarized as follows. We assume that the traffic flow is dif-
ferentiated by the destination of the flow (i.e. Lagrangian flow) and that the different flow
groups satisfy the FIFO condition at each junction. The queuing in the network is assumed
to be contained at each junction node and spill-back to the previous junction if occurs is
ignored1. We show that our model leads to a well-posed ordinary differential equation for
computing the dynamics of the network as a function of the boundary flows and prove that
the solution is unique through a mathematical derivation of the model properties. The main
benefit of this framework is the ability to analytically describe the delays at any junction in
the network and across any sub-path as a function of the the boundary flows, which can be
a important requirement when solving certain control and optimization problems. This is
achieved via the creation of a time mapping operator that maps the traffic flow at a given
node at a given time to the corresponding flow at the origin of the network when that flow
entered the network. We also show that this model can be solved numerically using a simple
and efficient forward simulation approach. Finally, we demonstrate the application of the
model by applying it to two example networks, a single path of multiple bottlenecks and a
diverge junction with complex junction dynamics.

The rest of this chapter is organized as follows. Section 5.2 introduces the network
properties and junction dynamics. Section 5.3 formalizes the time mapping operator, shows
the well-posedness of the problem and proves the uniqueness of the solution to this model.
Finally, Section 5.4 demonstrates the applicability of this framework using two examples.

5.2 Point queue model for network flow
The traffic network with a single source is modeled as an arborescence2. The congestion

at each bottleneck is modeled as a vertical queue that is located at the start of the bottleneck.
Thus, the physical propagation of the queue forming at the bottleneck is not modeled. This
modeling choice is only restrictive when the queue propagates upstream to the preceding
junction, as the change in dynamics at the junction due to the queue is not taken into
account, but the model is equivalent to a horizontal queuing model otherwise.

1Spill back to the previous junction can be observed and flagged when it occurs. The primary goal of this
model is for being used in optimization problems where (in most cases) a good solution will eliminate long
spill backs.

2An arborescence is a directed rooted tree where all edges point away from the root.

Section 5.2. Point queue model for network flow 106

5.2.1 Network definitions

A node v denotes a junction in the network and V is the set of all nodes. A link
l = (vinl , v

out
l) is a couple consisting of an origin node vinl and a destination node voutl , and L

is the set of all links.
The congestion-free travel time on link l is denoted by Tl, an agent that enters link l at

time t will exit link l at time t + Tl. The congestion-free travel time between nodes v1 and
v2 is denoted by T(v1,v2), an agent that enters node v1 at time t will reach node v2 at time
t+ T(v1,v2)

The set of incoming links to node v is denoted by Lin
v , the set of outgoing links from

node v is denoted by Lout
v and the set of all links l connected to node v is denoted by Lv.

Lin
v = {l ∈ L|voutl = v}, Lout

v = {l ∈ L|vinl = v} (5.1)

A node v is a source if it admits no incoming link (Lin
v = ∅). A node v is a sink if it

admits no exiting link (Lout
v = ∅). The set of sinks is denoted by S.

The set of nodes V and the set of links L compose a network. Due to the network being
an arborescence, it contains a unique source indexed by v0. For all nodes v ∈ V \{v0}, Lin

v

is a singleton. The element of this singleton is called the parent node and is denoted by πv:
Lin
v = {(πv, v)}.

We define a path p(vorig,vdest) as a finite sequence of distinct nodes from an origin node
vorig to a destination node vdest such that there is a link connecting each pair of subsequent
nodes.
p(vorig,vdest) = (vorig, · · · , vdest) s.t. (πvi , vi) ∈ L ∀i ∈ p\vorig

There is a unique path from any source to any destination since the network is tree
structured. For each sink s, let ps be the path starting at the origin vorig and ending at node
vs = s, and Vps be the sequence of nodes on path ps. The set of paths Pv is the set of all
paths p for which v ∈ p. The set of paths Pl is the set of all paths p for which l ∈ p.

Pv = {p|v ∈ Vp} ; Pl = {p|vinl ∈ Vp and voutl ∈ Vp} (5.2)

Remark 5.1. The path sets Pl where l is a link in Loutv form a partition of Pv

Pv = ∪l∈Lout
v
Pl (5.3)

5.2.2 Modeling the flow of agents

The traffic flow at a node is measured by counting the number of agents that pass
through the node between an arbitrary initial time tinitial and any given time t.

For a node v ∈ V \v0 (that is not the source) and path p ∈ Pv, the arrival curve Apv (t)
gives the total number of agents on path p that arrive at node v during the time interval

Section 5.2. Point queue model for network flow 107

(tinitial, t]. Similarly, for a node v ∈ V \S (that is not a sink) and p ∈ Pv, the departure curve
Dp
v (t) gives the total number of agents on path p that leave node v during the time interval

(tinitial, t].

Remark 5.2. The arrival curve Apv (t) (resp. departure curve Dp
v (t)) also gives the agent

number of the last agent on path p to arrive at (resp. leave) node v by t. Arrival and departure
curves are monotonically increasing: if t1 < t2, A(t2)− A(t1) (resp. Dp(t2)−Dp(t1)) is the
total number of agents who arrive at (resp. pass) node v in the interval (t1, t2], and is
therefore non-negative.

Definition 5.1. Acceptable cumulative arrival and departure curves A(tinitial, tfinal], D(tinitial, tfinal]
Given times tinitial and tfinal, a function on (tinitial, tfinal] is an acceptable cumulative curve on

(tinitial, tfinal] if it is continuous, piecewise C1, and strictly increasing functions on (tinitial, tfinal].

The assumption that the cumulative curves are strictly increasing is made for mathe-
matical convenience, but can be relaxed3. Cumulative curves are required to be C1 in order
to be able to define flows.

The outgoing flow λvp at a node v is the piecewise continuous derivative of the departure
curve Dv

p

λvp =
dDv

p

dt
(5.4)

Remark 5.3. Zero congestion-free travel time
Let πv, v be two consecutive nodes on path p. agents on path p leaving node v at time t arrive
at node v at t + T(πv ,v). For all links (πv, v) and paths p ∈ Pv, without loss of generality we
set the congestion-free travel time T(πv ,v) to be zero: T(πv ,v) = 0. This implies that:

Dπv
p = Avp ∀l = (πv, v) ∈ L, p ∈ Pv (5.5)

This modeling choice is made purely for mathematical convenience, since the goal of
this framework is to analyze delays in the network. The total travel time for each agent can
be easily reconstructed a posteriori by adding the actual congestion-free travel time for each
link of the path traveled by the agent.

Thus, for all links (πv, v) ∈ L and paths p ∈ P we have:

dAvp
dt

=
dDπv

p

dt
= λπvp (5.6)

dDv
p

dt
= λvp. (5.7)

3We could relax the assumption that the cumulative curves are strictly increasing and allow for mono-
tonically increasing curves. However, this results in the time mapping function T (,πv)v introduced in section
5.3.2 being a correspondence instead of a function and makes the analysis significantly more complicated.
Therefore, for mathematical convenience, we make the assumption that the cumulative curves are strictly
increasing.

Section 5.2. Point queue model for network flow 108

5.2.3 Queuing and diverge model

This section defines the model dynamics for queuing and the flow propagation through a
junction, which will then lead to a definition of the feasible departure curves that the model
admits.

The capacity µl (t) of a link l is the maximum flow that can enter the link from its input
node vinl at time t. Road capacity may vary with time due to weather conditions, accidents,
or other factors. Thus, capacity is a time varying quantity.

Requirement 5.1. Capacity constrained flows
The inflow entering a link is always no greater than the links capacity.

∑

p∈Pl

λ
vinl
p (t) ≤ µl (t) ∀t, l ∈ L (5.8)

If the flows arriving at a node v are larger than available outflow capacity, a queue will
form at node v.

Definition 5.2. Queue length nv,p (t)
We define the path queue length nv,p (t) at node v as the number of agents on path p that
arrive at node v by time t and are yet to depart node v

nv,p (t) = Dv
p (t)− Avp (t) (5.9)

The total queue length nv (t) at node v is the sum of the path queue lengths.

nv (t) =
∑

p∈Pv

nv,p (t) (5.10)

Remark 5.4. Let [Dv]−1 be the inverse of the departure curve Dv. Since Dv is strictly
increasing, tk = [Dv]−1(k) gives the time at which agent number k leaves node v.

Definition 5.3. Delay in queue v
We define δv,p (t) as the delay encountered in queue v by the agent which entered the queue
at time t.

δv,p (t) = [Dv
p]
−1
(
Avp (t)

)
− t

= [Dv
p]
−1
(
Dπv
p (t)

)
− t (5.11)

As Dv
p is continuous, piecewise C1, and strictly increasing, its inverse is continuous, piecewise

C1 and strictly increasing. Thus, as Dπv
p is also continuous, piecewise C1 and strictly increas-

ing, the function [Dv
p]
−1 ◦ Dπv

p is continuous and piecewise C1, and delay δv,g is continuous
and piecewise C1.

Section 5.2. Point queue model for network flow 109

Remark 5.5.
If nv,p (t) = 0, then Dv

p (t) = Avp (t) =⇒ δv,p (t) = 0.
If nv,p (t) > 0, then Dv

p (t) < Avp (t) =⇒ [Dv
p]
−1
(
Avp (t)

)
> t and δv,p (t) > 0.

Therefore,
∀t, δv,p (t) > 0⇔ nv,p (t) > 0 (5.12)

Requirement 5.2. First-in-first-out (FIFO) property
The model satisfies the FIFO property. The delay encountered in queue v at time t is identical
for all paths p in Pv.

δv (t) = δv,p (t) = [Dv
p]
−1
(
Dπv
p (t)

)
− t ∀t,∀p ∈ Pv (5.13)

FIFO property implies that agents exit the queue in the same order that they enter the
queue regardless of which path they belong to.

t1 < t2 ⇔ [Dv
p1

]−1
(
Dπv
p1

(t1)
)
< [Dv

p2
]−1
(
Dπv
p2

(t2)
)

(5.14)

Interpreting Avp (resp Dv
p) as the identifier of the agent which arrives in (resp. leaves)

queue v at time t, we can see that the queues respect the FIFO rule for each path p. Let x1

and x2 be two agents: agent x1 enters queue v at time tin1 such that Avp (tin1) = x1 and leaves
queue v at time tout1 such that Dv

p (tout1) = x1, agent x2 entered in queue v at time tin2 such
that Avp (tin2) = x2 and leaves queue v at time tout2 such that Dv

p (tout2) = x2. As Avp and Dv
p

are both strictly increasing functions, tin1 ≤ tin2 ⇒ x1 ≤ x2 ⇒ tout1 ≤ tout2 , which means that
if x1 is enters queue v before x2, it will leave v before x2.

Proposition 5.1. FIFO implies conservation of the ratio of flows
If p1 and p2 are two paths in Pv such that λπvp1

, λπvp2
> 0, then the ratio of their flows is

conserved when exiting node v

λvp1
(t+ δv (t))

λvp2
(t+ δv (t))

=
λπvp1

(t)

λπvp2
(t)
, ∀t ∈ (tinit, tfinal] (5.15)

Proof: Let t be an arbitrary time. The FIFO assumption gives δv,p (t) = δv (t). By definition
of delay δv,p (t),

Dπv
p (t) = Dv

p (t+ δv,p (t)) ∀p ∈ Pv
Taking the derivative with respect to t and using δv,p (t) = δv (t),

dDπv
p (t)

dt
=

(
1 +

dδv (t)

dt

)
· dD

v
p

dt

∣∣∣∣
t+δv(t)

Using equation (5.7) we obtain,

λπvp (t) =

(
1 +

dδv (t)

dt

)
· λvp (t+ δv (t)) ∀p ∈ Pv

Section 5.2. Point queue model for network flow 110

Therefore, it follows that

λvp1
(t+ δv (t))

λvp2
(t+ δv (t))

=
λπvp1

(t)

λπvp2
(t)

Definition 5.4. Queue state ηv - state transitions
We define queue state as the boolean valued function ηv (t):

ηv (t) =

{
1 if δv (t) > 0
0 otherwise (5.16)

If ηv = 1, queue v is said to be active, or in active state
If ηv = 0, queue v is said to be inactive, or in inactive state

A queue state transition happens at time t if

∃ε > 0 s.t. ∀θ ∈ [−ε, ε], ηv (t− θ) = 1− ηv (t+ θ) (5.17)

When queue v is inactive, Dv = Dπv .

Definition 5.5. Link constraint cv,l (t)
Let v ∈ V \{v0 ∪ S} be a node which is not a source or a sink. For all links l ∈ Lout

v , we
define the link constraint cv,l (t) as the ratio of arriving flows at time t on capacity at queue
v when this flow leaves queue v4.

cv,l (t) =

∑
p∈Pl λ

πv
p (t)

µl (t+ δv (t))
(5.18)

Definition 5.6. Active link γv (t) and set of active paths Γv (t) of a node
We define the active link γv (t) of a node v at time t as the most constrained link 5 in Lout

v :

γv (t) ∈ arg max
l∈Lout

v

cv,l (t) (5.19)

We define the set of active paths Γv (t) in queue v as the set of paths in the most constrained
link γv (t)

Γv (t) = Pγv(t) (5.20)

Remark 5.1 gives Γv ⊂ Pv.

4The dissipation rate of the point queue at the node is only governed by the capacities of the outgoing
links. This model can be extended to also impose a discharge rate constraint based on the capacity of the
incoming link, but increases the complexity of the notation and the proofs.

5When there is a tie, one of them is chosen arbitrarily.

Section 5.2. Point queue model for network flow 111

Queue	

Node	

Flow	

v

⇡v

v1 v2

µ(⇡v,v)

µ(v,v1) µ(v,v2)

�⇡v
p1

�⇡v
p2

�⇡v
p2

�⇡v
p1

Figure 5.1: Diverge model.

Requirement 5.3. Full capacity discharge property
The model satisfies the full capacity discharge property. For each node v and time t, if queue
v is active at t, then the active link γv (t) discharges at full capacity.

δv (t) > 0⇒
∑

p∈Γv(t)

λvp (t+ δv (t)) = µγv(t) (t+ δv (t)) (5.21)

With this last property, we complete the definition of the dynamics model.

Definition 5.7. Feasible flows
A feasible flow λvp at a node v is a flow that satisfies the FIFO, capacity constraint and full
capacity discharge properties from requirements 5.1, 5.2 and 5.3.

The definition of the initial conditions on the network completes the definition of the
model.

Definition 5.8. Initial times for each non-source node
Given a set of initial delays at each node δv (tinitial) ≥ 0,∀v ∈ V \(S ∪ {v0}) and an initial
time tinitial, we define the set of initial times over which the departure curves are defined for
each non-source node recursively as follows:

{
t0,initial = tinitial for node v0

tv,initial = tπv ,initial + δv (tπv ,initial)
(5.22)

5.2.4 Existence and uniqueness of the solution to the model

Now that we have fully defined the model dynamics, we consider the well-posedness of
the model. In other words, given a network, link capacities and the departure functions at
the source, we want to know whether the dynamics of the model admits a unique solution.

Problem 1: General network problem
Input. An arborescence (V, L) with source v0 and sink set S, capacities µl (t) ,∀l ∈ L, t ∈

Section 5.3. A solution based on time mapping 112

[tinitial, tfinal], acceptable departure functions from the source Dv0
p ∈ D(tinitial, tfinal) ∀p ∈ Pv0

and initial delays δv (tinitial) ≥ 0, ∀v ∈ V \(S ∪ {v0})
Question. Does a corresponding set of feasible flows exist for all internal nodes v ∈ V \v0

and are they unique?

Theorem 5.1 stats that the solution to problem 1 both exists and that the solution is
unique, under certain conditions on the departure curves at the origin and the link capacities
of the network.

Theorem 5.1. Existence and uniqueness of the solution to problem 1
Problem 1 admits a unique solution under the following conditions.
1) the path flows at the origin λ0

p (t) are piecewise polynomial,
2) link capacities µl are piecewise constant over time.

Note that neither of the assumptions of the theorem are restrictive in a practical sense6.
The next section is devoted to a constructive proof of Theorem 5.1. The general flow

of the proof is as follows. Sections 5.3.1-5.3.3 first develop a set of differential equations for
delays in the network. In section 5.3.4, we then prove that a unique solution to differential
equation on delays also implies a unique solution to problem 1. Section 5.3.5 proves that
the differential equations on the delay at each node always admit an unique solution, which
finally leads to the proof of Theorem 5.1.

5.3 A solution based on time mapping
This section builds a constructive proof of Theorem 5.1. Throughout sections 5.3.1-

5.3.3, we require that the flows at the origin are acceptable departure curves as defined in
definition 5.1 and that the outflows at each node satisfy the model requirements (i.e. result
in feasible flows as defined in definition 5.7).

5.3.1 Local study of point queues

We begin by proving proposition 5.2, which gives an analytical expression for the deriva-
tive of the delay at node as a function of its downstream capacities and outgoing flow at its
parent nodes.

Proposition 5.2. Evolution law of a single queue
If queue v is active at time t,

dδv
dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µγv(t) (t+ δv (t))
− 1 (5.23)

6Neither of these assumptions are restrictive in a practical sense, because any piecewise continuous func-
tion on a closed interval can be approximated to an arbitrary accuracy by a polynomial of appropriate degree
(Stone-Weierstrass theorem [129]) and link capacities do not evolve in a continuous manner. Link capacities
are typically subject to discrete changes due to incidents such as accidents and changes in weather.

Section 5.3. A solution based on time mapping 113

The proof of this proposition requires the following lemma.
Lemma 5.1. Derivative of queue’s length nv with respect to time
If node v is active at time t (i.e. t: γv (t) = 1),

∑

p∈Γv(t)

dnv,p
dt

∣∣∣∣
t+δv(t)

=


 ∑

p∈Γv(t)

λπvp (t+ δv (t))


− µγv(t) (t+ δv (t)) (5.24)

Proof: By definition 5.2, nv,p (t) = Dπv
p (t)−Dv

p (t). Thus,
∑

p∈Γv

dnv,p
dt

∣∣∣∣
t

=
∑

p∈Γv

(
dDπv

p

dt
− dDv

p

dt

)∣∣∣∣
t

=
∑

p∈Γv

(
λπvp − λvp

)∣∣
t

(5.25)

As queue v is active at time t, requirement 5.3 gives
∑

p∈Γv
λvp (t+ δv,t) = µγv(t) (t+ δv (t)),

thus we have
∑

p∈Γv(t)

dnv,p
dt

∣∣∣∣
t+δv(t)

=


 ∑

p∈Γv(t)

λπv
p (t+ δv,t)


− µγv(t) (t+ δv (t)) (5.26)

Lemma 5.2. Discharge relationship between queue length and delay

nv,p (t+ δv (t)) = Dπv
p (t+ δv (t))−Dπv

p (t) , ∀v ∈ V, p ∈ Pv (5.27)

Proof: By definition 5.2 on queue length, we have nv,p (t) = Dπv
p (t)−Dv

p (t), which evaluated
at time t+δv,p (t) gives nv,p (t+ δv,p (t)) = Dπv

p (t+ δv,p (t))−Dv
p (t+ δv,p (t)). From definition

5.3 on queue delay, we have Dv
p (t+ δv,p (t)) = Dπv

p (t). Combining these two results we
obtain,

nv,p(t+ δv(t)) = Dπv
p (t+ δ(t))−Dπv

p (t) (5.28)

We can now prove Proposition 5.2.
Proof of Proposition 5.2: Let t be a time such that ηv (t) = 1. Equation (5.24) multiplied

by
(

1 +
dδv
dt

∣∣∣∣
t

)
gives

(
1 +

dδv
dt

∣∣∣∣
t

)
·
∑

p∈Γv(t)

dnv,p
dt

∣∣∣∣
t+δv(t)

= (5.29)



(

1 +
dδv
dt

∣∣∣∣
t

) ∑

p∈Γv(t)

λπv
p (t+ δv (t))


−

(
1 +

dδv
dt

∣∣∣∣
t

)
µγv(t) (t+ δv (t)) (5.30)

Section 5.3. A solution based on time mapping 114

Taking the derivative of equation (5.27) with respect to time and summing over p ∈ Γv, gives
the following equality

(
1 +

dδv
dt

∣∣∣∣
t

)
·
∑

p∈Γv(t)

dnv,p
dt

∣∣∣∣
t+δv(t)

=



(

1 +
dδv
dt

∣∣∣∣
t

)
·
∑

p∈Γv(t)

λπvp (t+ δv (t))


−

∑

p∈Γv(t)

λπvp (t) (5.31)

Given equations (5.29) and (5.31) have the same left hand side, equalizing their respective

right hand sides and simplifying
[(

1 +
dδv
dt

∣∣∣∣
t

)
·∑p∈Γv(t) λ

πv
p (t+ δv,p (t))

]
gives the following

equation: (
1 +

dδv
dt

∣∣∣∣
t

)
· µγv(t) (t+ δv (t)) =

∑

p∈Γv(t)

λπvp (t) (5.32)

Which gives the result,
dδv
dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µγv(t) (t+ δv (t))
− 1 (5.33)

5.3.2 Time mapping

The evolution law stated above for any given node v depends on the outgoing flows λπvp
at the parent node. However, this it not an input of Problem 1. In this section, we introduce
the notion of time mapping to obtain a modified law for the delay evolution that replaces
the outgoing flows at the parent node with the outgoing flow at the origin.

Definition of time mapping functions

The evolution law from Proposition 5.2 gives a non-linear ordinary differential equation
(ODE) that governs the evolution of δv (t). The evolution of delay encountered by an agent
x entering queue v at time t depends on the flows entering the queue at t and the capacity
of the active link(s) γv at time t + δv (t) when agent x leaves the queue. The non-linearity
of the ODE makes directly computing the dynamics along a path algebraically complex.
Therefore, we introduce a time mapping function.

Let v be an internal node of the network and its parent node be πv. an agent leaving
node πv at time t will leave node v at time t + δv (t). We now introduce the following time
mapping function:

Definition 5.9. Node time mapping function T v,πv
We define the time mapping function T v,πv by

T v,πv : t 7→ t+ δv (t) (5.34)

Section 5.3. A solution based on time mapping 115

an agent leaving node πv at time t will leave node v at time T v,πv(t)

The notation T v,πv (variable ordering) is chosen for mathematical convenience with respect
to the derivatives of the function, as will be apparent in the rest of the discussion. In equation
(5.34), T v,πv takes a time with a physical meaning at the exit of node πv on its right hand
side, and gives back a time with a physical meaning at the exit of node v on its left hand
side.

Proposition 5.3. T v,πv is strictly increasing and bijective
The function T v,πv is strictly increasing and thus bijective from its domain to its image. Its
derivative is

dT v,πv

dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µl (t+ δv (t))
> 0 (5.35)

Physically, this means that the FIFO assumption is respected: i.e. an agent x2 entering
queue v after another agent x1 will also leave the queue after x1

Proof: Taking the derivative of equation (5.34) and applying equation (5.23) in Proposition
5.2 gives,

dT v,πv

dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

µl (t+ δv (t))
. (5.36)

The departure curves at the origin are strictly increasing since they must be acceptable
departure curves. The full capacity discharge property from requirement 5.3 requires that
one outgoing link at each node discharges at full capacity. Finally, these properties combined
with Proposition 5.1, which states that the out flows at a node are proportional to the inflows,

give us the result that
dT v,πv

dt

∣∣∣∣
t

> 0.

Thus T v,πv is invertible and its inverse is an increasing function7.

Definition 5.10. Node time mapping function T πv ,v Given an internal node v, we define
the function T πv ,v as the inverse of T v,πv

T πv ,v ◦ T v,πv = 1 and T v,πv ◦ T πv ,v = 1 (5.37)

We now consider the unique path (v0, v1, · · · , vn−1, vn) which leads from the source v0 to
some node vn. As each node has a unique parent, we can recursively trace the path from
node v back to the source node v0. Let tvn be a fixed time. If an agent x leaves node vn at
the time tvn , we can recursively define the following:
1) tvn−1=T vn−1,vn(tvn) is the time that agent x left vn−1, tvn=tvn−1 + δv(t

vn−1)
2) tvn−2=T vn−2,vn−1 (tvn−1) is the time that agent x left vn−2, tvn=tvn−2+δvn−1(tvn−2)+δv(t

vn−2+
δvn−1(tvn−2)) 3) tvn−3=T vn−3,vn−2 (tvn−2) is the time that agent x left vn−3, · · ·
As T v,πv and T πv ,v are bijective for all internal nodes v, we can give the following definition

7If the acceptable set of departure curves D is relaxed to allow monotonically increasing instead of
strictly increasing functions, T v,πv becomes a correspondence, and the mathematical treatment would be
more involved.

Section 5.3. A solution based on time mapping 116

⋯

⋯

⋯

⋯

vn

v0 v1

v2

v3

vn-1

vn-2

vx

vx

path to node vn

Figure 5.2: Time mapping nodes

Definition 5.11. Time mapping function from and to the origin T v,v0 and T v0,v

Let vn be a node, and (v0, v1, v2, · · · , vπn , vn) be a path from the origin v0 to node v. We
define the time mapping function to the origin as the composition of the node time mapping
function on the path between the source and vn

T v0,vn = T v0,v1 ◦ T v1,v2 ◦ · · · ◦ T vπn ,vn (5.38)

an agent that leaves node vn at time t left the origin v0 at time T v0,vn (t).

T vn,v0 = T vn,vπn ◦ · · · ◦ T v2,v1 ◦ T v1,v0 (5.39)
an agent that leaves the origin at time t will leave node vn at time T vn,v0 (t)

A sample path from the origin v0 to a node vn is illustrated in figure 5.2. We can now define
the time mapping function between any arbitrary pair of nodes.
Definition 5.12. Time mapping function between two arbitrary nodes
We define the time mapping function T i,j between node i and node j as follows.
1) There exists a path between nodes i and j (for example nodes v2 and vn in figure 5.2),

T i,j =

{
T i,i+1 ◦ T i+1,i+2 ◦ · · · ◦ T j−2,j−1 ◦ T j−1,j if i ≺ j
T i,i−1 ◦ T i−1,i−2 ◦ · · · ◦ T j+2,j+1 ◦ T j+1,j if i � j (5.40)

Let x be an agent that leaves node j at time t. T i,j (t) is the time that agent x leaves node j.

2) There does not exist a path between nodes i and j (for example nodes v2 and vx in
figure 5.2),

T i,j = T i,v0 ◦ T v0,j (5.41)
Let xj be an agent that leaves node j at t. From definition 5.11 we know that xj leaves

the origin at time T 0,j (t). Let xi be an agent that also leaves the origin at time T 0,j (t).
Then T i,j (t) is the time that agent xi leaves node i.

Definition 5.13. Time mapping operator Ti,j

We define the time mapping operator Ti,j on the set F of time dependent functions as follows:

Ti,j : F → F
f 7→ f ◦ T j,i (5.42)

We now consider the physical interpretation of T i,j.

Section 5.3. A solution based on time mapping 117

Time mapping of model quantities

This section first studies the relationship between departure curves at different nodes
and the time mapping function. We then define the time mapped versions of the other
quantities in the model. The time mapping operators allow for mapping any quantity from
one node to the other. This definition of a time mapped quantities thus allows any quantity
to be defined with respect to the source node of the network.

Proposition 5.4. Physical interpretation of the time mapping function
Let p be a path, and (v0, v1, v2, · · · , vn) be a sequence of consecutive nodes on the path.

Dvi
p = Dv0

p ◦ T v0,vi ∀vi ∈ p (5.43)

Let x = Dv0
p (tv0) be an agent on path p that leaves the origin at time tv0 and tvi =

T vi,0 (tv0)∀vi ∈ p.

Dv0
p (tv0) = Dv1

p (tv1) = · · · = Dvi
p (tvi) = · · · = Dvn

p (tvn) (5.44)

Proof: Proof by induction on the length of the sequence k. If k = 0, the result is trivial. Let
k ∈ [1, i] be an integer. By the induction hypothesis, we assume that the result is true for to
k = i− 1, i.e. Dvi−1

p = Dv0
p ◦ T 0,vi−1 . By the definition of path delay δv,p, Dvi

p (t+ δvi,p (t)) =
D
vi−1
p (t) ,∀t, which means Dvi−1

p = Dvi
p ◦ T vi,vi−1 . Composing both sides of the equality with

T vi−1,vi we get Dvi
p = D

vi−1
p ◦ T vi−1,vi . Substituting the induction hypothesis and simplifying

the results completes the proof.

Dvi
p = Dvi−1

p ◦ T vi−1,vi

= Dv0
p ◦ T 0,vi−1 ◦ T vi−1,vi

= Dv0
p ◦ T v0,vi

Equation (5.44) follows directly from equation (5.43).

Remark 5.6. As function T i,j is the inverse of T j,i, the operator Tj,i is the inverse of Ti,j.

We can now reformulate the first equation of Proposition 5.4 as follows:

Proposition 5.5. Time mapping of departure curve Dv
p

Let i and j be two nodes on path p.

Di
p = Ti,j(Dj

p) (5.45)

Proof: Using definition 5.13 we have,

Ti,j
(
Dj
p

)
= Dj

p ◦ T j,i = Dj
p ◦ T j,0 ◦ T 0,i

= D0
p ◦ T 0,i = Di

p

Section 5.3. A solution based on time mapping 118

Proposition 5.6. Time mapping and flows
Let v be a node on path p.

λip = Ti,j
(
λjp
)
· dT

j,i

dt
(5.46)

Proof: From the definition of flow, λvp =
dDv

p

dt
. The result is obtained by simply taking the

derivative of the equation Di
p = Dj

p ◦ T j,i (from Proposition 5.5) with respect to time.

Remark 5.7. The time mapping and derivative operators do not commute.

Definition 5.14. Time mapping of delay δij
Let v be an internal node8. We define the time mapped delay in queue v at node πv, δπvv as
the delay encountered in queue v by an agent leaving node πv:

δπvv
.
= δv (5.47)

Let i be an arbitrary node and j be an internal node. We define the time mapped delay in
queue j at node i, δij as

δij
.
= Ti,πj

(
δ
πj
j

)
= δ

πj
j ◦ T πj ,i (5.48)

Physically, if nodes i and j are on the same branch with i ≺ j (resp. i � j), then δij (t) is
the time that an agent which leaves queue i at time t will be (resp. has been) delayed at in
queue j.

Definition 5.15. Time mapping for capacity
We define the time mapped capacity of a link l, µv

in
l
l as the capacity encountered by an agent

at queue vinl in link l
µ
vinl
l

.
= µl (5.49)

Let l be an arbitrary link and v an internal node. We define the time mapped capacity of link
l at node v as

µvl
.
= Tv,vinl

(
µ
vinl
l

)
= µ

vinl
l ◦ T v

in
l ,v (5.50)

Physically, if link l and node v are on the same branch with vinl ≺ v (resp. vinl � v), then
µlv (t) is the capacity an agent that leaves queue v at time t encountered (resp. encounters)
at link l.

Proposition 5.7. Physical interpretation of mapped delay and mapped capacity
Let vj be an arbitrary node, p be a path, and (v0, v1, v2, · · · , vn) be a sequence of consecutive
nodes on the path p. Also, let tvi = T vi,0 (tv0) ,∀vi ∈ p.

δv0
vj

(tv0) = δv1
vj

(tv1) = · · · = δvivj (tvi) = · · · = δvnvj (tvn) (5.51)

Let l be an arbitrary link.

µv0
l (tv0) = µv1

l (tv1) = · · · = µvil (tvi) = · · · = µvnl (tvn) (5.52)
8An internal node is a node v which is neither a sink nor the source k ∈ K\({0} ∪ S)

Section 5.3. A solution based on time mapping 119

Proof: Let i be an arbitrary node and j be an internal node. From definition (5.14) for
time mapped delay we have.

δij
(
ti
) .

= δj−1
j

(
T j−1,i

(
ti
))

= δj−1
j

(
tj−1

)

Therefore, δvivj (tvi) = δ
vj−1
vj (tvj−1) ,∀vi ∈ p, which proves equation (5.51). The proof for

equation (5.52) is identical.

Definition 5.16. Time mapping of active link and active paths
Let v be an internal node. We define mapped active link γπvv as the active link for flow exiting
node πv at queue v, and mapped active paths Γπvv as the active paths for flow exiting node πv
at queue v.

γπvv
.
= γv ; Γπvv

.
= Γv (5.53)

Let j be an arbitrary node, we define the mapped active link and mapped paths for flow exiting
queue v at node j as

γjv = Tj,πv (γπvv) ; Γvj = Tj,πv (Γπvv) (5.54)

Physically, if node j and node v are on the same branch with j ≺ v (resp. j � v), then γjv (t)
is the active link that an agent leaving node j at time t will encounter (resp. encountered)
at queue v, and Γvj (t) are the corresponding active paths.

Definition 5.17. Time mapped link constraint
Let v be a internal node and l ∈ Lout

v . We define the mapped link constraint cπvv,l as the link
constraint at link l for an agent leaving node πv.

cπvv,l (t)
.
=

∑
p∈Pl λ

πv
p (t)

µl (t+ δv (t))
(5.55)

=

∑
p∈Pl λ

πv
p (t)

µvl (t+ δv (t))

=

∑
p∈Pl λ

πv
p (t)

µπvl (t)
(5.56)

Let j be an arbitrary node, we define the mapped link constraint for link l at node j as

cjv,l
.
= Tj,πv

(
cπvv,l
)

= cπvv,l ◦ T πv ,j (5.57)

cjv,l (t) =

∑
p∈Pl λ

j
p (t)

µjl (t)
· dT

πv ,j

dt
(5.58)

Physically, if node j and node v are on the same branch with j ≺ v (resp. j � v), then cjv,l (t)
is the link constraint that an agent leaving node j at time t will encounter (resp. encountered)
at link l.

Section 5.3. A solution based on time mapping 120

Remark 5.8. The notation of the link constraint can be simplified for convenience as follows
when time mapped.

cjv,l = cjl (5.59)
We use the simplified notation in the rest of the discussion.

Proposition 5.8. The mapping of link constraints and active links is coherent
For all non-sink nodes j ∈ V \S, internal nodes v ∈ V \(S ∪ {0} and time t ∈ (tinitial, tfinal],
we have

γjv (t) ∈ arg max
l∈Lout

v

cjl (t) (5.60)

Proof: Let v be an internal node and let tj be a time. Let tπv = T πv ,j (tj). Proving the
proposition is equivalent to proving the following set equality

argmax
l∈Lout

v

cv,l (t
πv) = argmax

l∈Lout
v

cjl
(
tj
)

(5.61)

From the definition of the link constraint in equation (5.18) we have

cv,l (t
πv)

.
=

∑
p∈Pl λ

πv
p (tπv)

µl (tπv + δv (tπv))
(5.62)

By definition of µvl in equation (5.49), we have µl (tπv + δv (tπv)) = µvl (tπv + δv (tπv)) and
defining tv

.
= T v,πv (tπv) = tπv + δv (tπv), we obtain µl (t

πv + δv (tπv)) = µvl (T v,πv (tπv)) =
µvl (tv). Equation (5.52) finally gives

µl (t
πv + δv (tπv)) = µjl

(
tj
)

(5.63)

Moreover, using equation (5.46) gives λπvp (tπv) · dT
πv ,j

dt

∣∣∣∣
tj

= λjp (tj). Summing on all paths p

in Pl, we obtain ∑

p∈Pl

λπvp (tπv) =
1

dT πv ,j

dt

∣∣∣∣
tj

·
∑

p∈Pl

λjp
(
tj
)

(5.64)

Substituting equations (5.63) and (5.64) in the right hand side of equation (5.62) and using
the time mapped link constraint from equation (5.58), we obtain

cv,l (t
πv) =

1

dT πv ,j

dt

∣∣∣∣
tj

·
[∑

p∈Pl λ
j
p (tj)

µjl (tj)

]
(5.65)

=
1

dT πv ,j

dt

∣∣∣∣
tj

· cjl
(
tj
)

(5.66)

For all l ∈ Lout
v , cv,l (tπv) and cjl (tj) are proportional (and the proportionality ratio

is independent from l). Therefore, the argmax in equation (5.61) are the same. which
concludes the proof.

Section 5.3. A solution based on time mapping 121

Definition 5.18. Capacity of the active link
For notational simplicity we denote the capacity of the active link of an agent that enters
queue v at time t as follows:

Qv (t)
.
= µπvγv(t) (t) (5.67)

= µvγv(t) (t+ δv (t))

= µγv(t) (t+ δv (t)) (5.68)

Definition 5.19. Time mapped capacity of the active link
Let v be a internal node. We define the time mapped active link capacity Qπv

v as the capacity
of link γv as seen by an agent at node πv.

Qπv
v

.
= Qv (5.69)

Let j be an arbitrary node, we define the mapped active link capacity for link γv (t) as seen
by an agent at node j as

Qj
v
.
= Tj,πv (Qπv

v) = Qπv
v ◦ T πv ,j = Qv ◦ T πv ,j (5.70)

Physically, if node j and node v are on the same branch with j ≺ v (resp. j � v), then
Qj
v (t) is the active link capacity that an agent leaving node j at time t will encounter (resp.

encountered) at link γjv (t).

Definition 5.20. Time mapping of queue state
Let i be an arbitrary node and j be an internal node. We define the time mapped queue state
of queue j at node i, ηij as the queue state at queue j as seen by an agent at queue i

ηij
.
= Ti,πv

(
ηπvj
)

= ηπvj ◦ T πv ,i = ηj ◦ T πv ,i (5.71)

Physically, if queue i and node j are on the same branch with i ≺ j (resp. i � j), then ηij (t)
is the queue state an agent that leaves node i at time t encounters (resp. encountered) at
queue j.

5.3.3 Global evolution of delay

We now have the necessary tools to define the evolution of delays at any node of the
network with respect to the flows at any upstream node in the network.

Definition 5.21. First active upstream node
Let v be an internal node. We define the first active upstream node of v as

Υj
v (t) = max

�

{
u|u ≺ v, ηju (t) = 1

}
(5.72)

Section 5.3. A solution based on time mapping 122

For notational convenience we also define the following:

γ̂jv (t)
.
= γj

Υjv(t)
(t) (5.73)

Γ̂jv (t)
.
= Γj

Υjv(t)
(t) (5.74)

Q̂j
v (t)

.
= Qj

Υjv(t)
(t) (5.75)

η̂jv (t)
.
= ηj

Υjv(t)
(t) (5.76)

Theorem 5.2. Evolution law for delay at an arbitrary internal node v mapped to
any node j
Given an arbitrary internal node v ∈ V \(S ∪ {0}) such that queue v is active, if the flows
at the origin are acceptable departure curves and the model requirements are satisfied, the
evolution law for delay mapped to any upstream node j ∈ V \S is

dδjv
dt

∣∣∣∣
t

=





∑
p∈Γjv(t) λ

j
p (t)

Qj
v (t)

− dT 0,j

dt

∣∣∣∣
t

if v is the first active queue ∈ p∑
p∈Γjv(t) λ

j
p (t)

Qj
v (t)

−
∑

p∈Γ̂jp(t) λ
j
p (t)

Q̂j
v (t)

otherwise

(5.77)

Proof: Let t be a time and v be a node. Evolution law (5.23) in Proposition 5.2 gives

dδv
dt

∣∣∣∣
t

=

∑
p∈Γv(t) λ

πv
p (t)

Qv (t)
− 1 (5.78)

By the definition of the time mapping functions we have, δπvv (t)
.
= δv (t), Qπv

v (t)
.
= Qv (t),

Γπvv (t)
.
= Γv (t). Thus, equation (5.78) becomes:

dδπvv
dt

∣∣∣∣
t

=

∑
p∈Γπvv (t) λ

πv
p (t)

Qπv
v (t)

− 1 (5.79)

Case 1: If node v is not the first active node of path p and Υv (t) exists.

Let for an arbitrary node j, tj = T j,πv (t). Since all the nodes between Υv (t) and πv are
inactive by the definition of Υv (t), we have

tΥv(tπv) = tπv = t (5.80)

Furthermore, since η̂πvv (t) = 1, and the full capacity discharge of active links (assumption
5.3), we have

Section 5.3. A solution based on time mapping 123

∑

p∈Γ̂πvv (t)

λΥv(t)
p (t) = Q̂πv

v (t) (5.81)

∑

p∈Γ̂πvv (t)

λπvp (t) = Q̂πv
v (t) (5.82)

Thus:
∑

p∈Γ̂πvv (t) λ
πv
p (t)

Q̂πv
v (t)

= 1 (5.83)

By replacing the constant 1 in equation (5.79) with the above result we get,

dδπvv
dt

∣∣∣∣
t

=

∑
p∈Γπvv (t) λ

πv
p (t)

Qπv
v (t)

−
∑

p∈Γ̂πvv (t) λ
πv
p (t)

Q̂πv
v (t)

(5.84)

This gives us the result for j = πv. We will now map this result to any node j ∈ V \S. By
definition of time mapping, we have

δjv = δπvv ◦ T πv ,j (5.85)

Taking its derivative with respect to time, we obtain

dδjv
dt

=

[
dδπvv
dt
◦ T πv ,j

]
· dT

πv ,j

dt
(5.86)

dδjv
dt

∣∣∣∣∣
t

=

[∑
p∈Γπvv ◦Tπv,j(t) λ

πv
p ◦ T πv ,j(t)

Qπvv ◦ T πv ,j(t)
−

∑
p∈ΓπvΥvt

◦Tπv,j(t) λ
πv
p ◦ T πv ,j (t)

QπvΥv(t) ◦ T πv ,j (t)

]
· dT

πv ,j

dt

∣∣∣∣
t

(5.87)

Equation (5.46) on flow mapping gives

(
λπvp ◦ T πv ,j(t)

)
· dT

πv ,j

dt

∣∣∣∣
t

= λjp (t) (5.88)

Substituting this result and the simple time mapping transformations of λ and Q into equa-
tion (5.87) gives the final result

dδjv
dt

∣∣∣∣
t

=

∑
p∈Γjv(t) λ

j
p (t)

Qj
v (t)

−
∑

p∈Γj
Υv(t)

(t) λ
j
p (t)

Qj
Υv(t) (t)

(5.89)

=

∑
p∈Γjv(t) λ

j
p (t)

Qj
v (t)

−
∑

p∈Γ̂jv(t) λ
j
p (t)

Q̂j
v (t)

(5.90)

Section 5.3. A solution based on time mapping 124

Case 2: If node v is the first active node of path p, we leave the constant 1 in equation (5.79)
and follow the same remaining steps as in case 1 to obtain the result.

dδjv
dt

∣∣∣∣
t

=

∑
p∈Γjv(t) λ

j
p (t)

Qj
v (t)

− dT 0,j

dt

∣∣∣∣
t

(5.91)

Applying Theorem 5.2 with j = 0, we see that the delays with respect to the flows at
the origin δ0

v are solutions to the ordinary differential equations in definition 5.22.

Definition 5.22. Time mapped delay evolution differential equation

• If v is not an active node and the flow on its active link γv0 is within capacity, then
dδ0

v

dt
= 0.

• If v is an active node or its active link γv0 is over capacity, then

dδ0
v

dt

∣∣∣∣
t

=





∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

− 1

if v is the first active queue ∈ p∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−
∑

p∈Γ̂0
v(t) λ

0
p (t)

Q̂0
v (t)

otherwise

(5.92)

where the time mapping functions are redefined from delays as follows:

T j,0 =
∑

0≺i4j

δ0
i (5.93)

Proposition 5.9. Delay evolution does not depend on departure curves
All the time mapped quantities in equations (5.92) can be computed using only the initial
delays, departure curve at the origin and the link capacities. It does not require the departure
curves for any internal nodes v ∈ V \v0.

Proof: The time mapping function only depends on the delay functions from definition 5.9.
The time mapped flows can be obtained using the time mapping function using Proposi-
tion 5.6. The other time mapped quantities are by definition constructed using the time
mapping function as given in section 5.3.2.

5.3.4 Equivalence of departure curves and delays

We prove Theorem 5.1 on the existence and uniqueness of Problem 1 by first showing
the equivalence between Problem 1 and Problem 2 (defined below), and then proving the
existence and uniqueness of Problem 2 in the next section.

Problem 2: General delay problem
Input. An arborescence (V, L) with source v0 and sink set S, capacities µl (t) ,∀l ∈ L, t ∈

Section 5.3. A solution based on time mapping 125

[tinitial, tfinal], departure functions from the source Dv0
p ∈ D(tinitial, tfinal) ∀p ∈ Pv0 and initial

delays δv (tinitial) ≥ 0, ∀v ∈ V \(S ∪ {v0})
Question. Does a solution to the time mapped delay function from definition 5.22 for each
node v ∈ V \v0 exist and is it unique?

Theorem 5.3. Problem (1) and problem (2) are equivalent

Proof. The inputs to both problems are identical. Therefore, we only need to prove that the
existence of a solution to one problem implies a unique and feasible corresponding solution
to the other problem.

(⇒) Suppose first that Problem 1 admits a solution.
By the definition of delay,

δv (t) = [Dv
p]
−1
(
Dπv
p (t)

)
− t, (5.94)

By the definition of time mapped delay we obtain,

δ0
v (t) = δπvv (t) ◦ T πv ,0 (t) (5.95)

= δπvv
(
[Dv

p]
−1
(
Dπv
p (t)

)
− [D0

p]
−1
(
Dπv
p (t)

))
(5.96)

= δv
(
[Dv

p]
−1
(
Dπv
p (t)

)
− [D0

p]
−1
(
Dπv
p (t)

))
, (5.97)

which can be made a function of only Dv
p by equation (5.94).

Theorem 5.2 then ensures that the delay functions thus defined satisfy the time mapped
delay evolution from definition 5.22, i.e. a feasible solution to problem 2. Furthermore, the
solution is unique from equation (5.97), since Dv

p is a strictly increasing function.

(⇐) Suppose now that Problem 2 admits a solution δ0
v (t). We can build the corresponding

departure curves Dv
p (t) as follows.

D0
p (t) = δ0

0 (t) (5.98)

The inverse departure curve [D0
p]
−1 (x) can be constructed from D0

p (t), since the departure
curve is strictly increasing.

[Dv
p]
−1 (x) = [D0

p]
−1 (x) + T v,0

(
[D0

p]
−1 (x)

)
(5.99)

The departure curve Dv
p (t) can also be constructed from [Dv

p]
−1 (x) due to the strictly in-

creasing nature of the functions.

We now show that the departure curves thus defined are feasible departure curves, i.e. a
feasible solution to problem 1.

Section 5.3. A solution based on time mapping 126

1. D0
p is continuous and piecewise C1 because λ0

p is piecewise continuous. Furthermore,
since T j,0 is strictly increasing for all nodes j, Dv

p is continuous and piecewise C1.

2. The capacity constraint on links is imposed by equation (5.92) due to Proposition 5.8.

3. The FIFO condition is satisfied by construction since the delay δ0
v is not a function of

the path p.

4. The full capacity discharge of the active queues is also imposed by by equation (5.92)
due to Proposition 5.8.

5.3.5 Existence and uniqueness of the time mapped delay evolution

This section proves Theorem 5.4 on the existence and uniqueness of the solution to Problem 2.

Theorem 5.4. Existence and uniqueness of the solution to problem (2)
The solution to problem (2) exists and is unique on the time interval of the problem [tinitial, tfinal],
if the following conditions are satisfied.

1. the path flows at the origin λ0
p (t) are piecewise polynomial,

2. link capacities µl are piecewise constant over time.

The proof of this theorem is fairly technical and requires several definitions and lemmas.
Theorem 5.1 is a direct corollary of this result due to Theorem 5.3 on the equivalence of the
two problems.

The main goal of the proof of Theorem 5.4 is to show that there are a finite number
of possible transitions, and to integrate equation (5.92) across the transitions. The next
definitions and lemmas enables to establish these properties.

Definition 5.23. Depth of a node d (v)
We define the depth d (v) of a node v as the number of links on the unique path from the
origin v0 to node v

Definition 5.24. Link constraint comparators B(cl1 ,cl2) (t) and Bcl (t)
Given a node v and two distinct links (l1, l2), we define the boolean comparator B(cl1 ,cl2) (t)
as follows:

B(cl1 ,cl2) (t) =





1 if
∑
p∈Pl1

λ0
p(t)

µ0
l1

(t)
>

∑
p∈Pl2

λ0
p(t)

µ0
l2

(t)

0 otherwise
(5.100)

Given a node v and link l ∈ Lout
v , we define the boolean comparator Bcl (t) as follows:

Bcl (t) =

{
1 if

∑
p∈Pl

λ0
p(t)

µ0
l (t)

> 1

0 otherwise
(5.101)

Section 5.3. A solution based on time mapping 127

Definition 5.25. Time segment of constant link constraint J
A time segment J is a segment of constant link constraint if and only if

1. for each each l ∈ L, the boolean Bcl (t) is constant on J ,

2. for each each pair of nodes (l1, l2) ∈ L, the boolean B(cl1 ,cl2) (t) is constant on J .

3. for each each l ∈ L, the time mapped link capacity µ0
l (t) is constant on J .

Lemma 5.3. Under the assumptions on flows and capacities, there are a finite number of
segments of constant link constraint

Proof: Consider a pair of links (l1, l2). Since capacities are piecewise constant and flows
are piecewise polynomial, there are a finite number of segments on which the capacities are

constant and flows are polynomial. On any such a segment,
∑
p∈Pl1

λ0
p(t)

µ0
l1

(t)
and

∑
p∈Pl1

λ0
p(t)

µ0
l1

(t)
−∑

p∈Pl2
λ0
p(t)

µ0
l2

(t)
are polynomials. Therefore, the number of times each expression crosses zero is

bounded by the degree of the polynomial, which implies that there are a finite number of
segments of constant link constraint.

Lemma 5.4. Constant active link
If J is a segment of constant link constraint, the active link γ0

v of any node v is constant on
J .

Proof: The result comes directly from the definition of a segment of constant constraint.

Definition 5.26. Solution of depth n
A solution of problem (2) for depth n is a set of solutions δv for all nodes v such that
d(v) < n. It can be rigorously defined because the equations for δv only depend on variables
associated with nodes of depth less than n.

Definition 5.27. Elementary time segment T e (v)
Given a node v and a solution of depth d(v) − 1 (if v is not the origin), an elementary
segment for node v is a time segment T e (v) such that

• T e(v) is a segment of constant constraint,

• If v is not the origin, for each node j ∈ V such that d (j) < d (v), the node state ηj (t)
is constant on T e(v).

Lemma 5.5. Single transition of node state on an elementary segment
If there exists a solution to problem (2) up to depth d(v − 1), and if T e(v) = [t0, tf] is an
elementary segment for node v, then there is a solution δ0

v of the problem and node v admits
at most one transition in T e(v).

Section 5.3. A solution based on time mapping 128

Proof: As for each node j ∈ V such that d (j) < d (v), the node state ηj (t) is constant
on T e(v), the first active upstream node Υv is constant over time. Moreover, as T e(v) is a
segment of constant constraint, Lemma 5.4 gives that active link γv and first active upstream

link γ̂v are constant on T e(v), and the sign of

∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−
∑

p∈Γ̂0
v(t) λ

0
p (t)

Q̂0
v (t)

is constant on

T e(v).

Let us now consider the following four cases:

1. B(cγ̂v ,cγv) (t0) = 1, η0
v (t) = 1

=⇒ dδ0
v

dt

∣∣∣∣
t

> 0 and since the queue state is already active no transition will occur.

2. B(cγ̂v ,cγv) (t0) = 1, η0
v (t) = 0

=⇒ dδ0
v

dt

∣∣∣∣
t

> 0 and the queue state will immediately transition to being active η0
v (t) =

1. No further transitions will occur as shown above.

3. B(cγ̂v ,cγv) (t0) = 0, η0
v (t) = 1

=⇒ dδ0
v

dt

∣∣∣∣
t

≤ 0 and the queue at node v starts dissipating. There will be a transition in

the queue state to inactive η0
v (t) = 0 if the queue dissipates by time tf and the queue

state will remain active otherwise.

4. B(cγ̂v ,cγv) (t0) = 0, η0
v (t) = 0

=⇒ dδ0
v

dt

∣∣∣∣
t

≤ 0 and the only possibility is the strict equality case and the queue state

remains inactive.

Lemma 5.6. Unique solution on an elementary segment
Let T e(v) be an elementary segment for node v. Assuming a solution of depth d(v)− 1 (if v
is not the origin), then solution of equation (5.92) for node v exists is unique on T e(v).

Proof: By Lemma 5.5, there can be at most one state transition of node v in T e(v). This
splits T e(v) into at most two sub-segments where ηv = 0 or ηv = 1. From Lemma 5.4 we have
that active link γv and the first active upstream link Υv are constant on T e(v). Therefore,
the quantities Γv, Γ̂v, Qv and Q̂v are constant on T e(v). Equation (5.92) states that

• If v is not an active node (ηv = 0) and the flow on its active link γv is within capacity,

then
dδ0

v

dt
= 0.

• If v is an active node (ηv = 1) or it’s active link γv is over capacity,

Section 5.3. A solution based on time mapping 129

dδ0
v

dt

∣∣∣∣
t

=





∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

− 1

if v is the first active queue ∈ p∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−
∑

p∈Γ̂0
v(t) λ

0
p (t)

Q̂0
v (t)

otherwise

(5.102)

As all the variables in equation (5.102) other than the flow λ0
p (t) are constant during an el-

ementary segment T e(v) and the flow λ0
p (t) is continuous in t for all t ∈ T e(v), we can show

that equation (5.102) admits a unique solution on the interval T e(v) by the Picard-Lindelöf
theorem.

We have now all the ingredients to prove Theorem 5.4.

Theorem 5.4: The time interval of interest (tinitial, tfinal] can be partitioned into a finite set
of elementary segments, and the solution to problem (2) exists and is unique

Proof: The proof is done inductively over the depth of the network. If the network contains
a single node v0, [tinitial, tfinal] is an elementary segment for v0, (tinitial, tfinal] ∈ T e (v0) and
there is a unique solution by Lemma 5.6. By the induction hypothesis, let us now assume
that (tinitial, tfinal] can be partitioned into a finite number of elementary segments with respect
to all nodes of depth n and that the solution exists and is unique. Let t0, t1, · · · , tm be times
such that En = {(ti, ti+1],∀i ∈ [0,m − 1]} is the set of elementary segments for nodes of
depth n, and let δv for all v ∈ {V |d(v) ≤ n} be the unique solution of depth n.

Let Kn be the non-empty set of nodes of depth n, and let v ∈ Kn be a node in this
set. Lemma 5.5 gives that for each v ∈ Kn, there is at most one state transition on (ti, ti+1].
Let Fn(v) be the set of times at which these transitions occur for node v. Since there are
m elementary segments, there can at most be |Fn (v) | ≤ m transitions. If Fn is the set of
times at which the transitions for all nodes of depth n happen, |Fn| ≤ m ·Kn.

Let {t′0, t′1, · · · , t′m′} = {t0, t1, · · · , tm}∪Fn be the m′ segments created by splitting En at
each of the state transitions for nodes of depth n. The total number of segments m′ satisfies
m′ ≤ m · (Kn + 1), since |Fn| ≤ m ·Kn. By the definition of the t′i, for each i ∈ [0,m′] we
have

• for all v ∈ Kn, ηv is constant on (t′i, t
′
i+1],

• (t′i, t
′
i+1] is a segment of constant constraint J , since it is subset of an elementary

segment, which is already by definition a segment of constant constraint.

Thus, [t′i, t
′
i+1] is an elementary segment for all nodes of depth (n + 1). Furthermore, by

Lemma 5.6, this implies that there is an unique solution to all nodes of depth n + 1, which
concludes the proof.

Section 5.3. A solution based on time mapping 130

This also completes the proof of Theorem 5.1.

Theorem 5.1: Problem 1 admits a unique solution under the following conditions.
1) the path flows at the origin λ0

p (t) are piecewise polynomial,
2) link capacities µl are piecewise constant over time.

Proof: Problem 1 is equivalent to Problem 2 by Theorem 5.3 and Problem 2 admits a unique
solution by Theorem 5.4.

In some applications, it is also important to be able to computing the total delay expe-
rienced by an agents that takes a particular path. 5.3.6 provides analytical expressions for
the total delay along a path.

5.3.6 Total path delay

In some applications, it is also important to be able to computing the total delay ex-
perienced by an agents that takes a particular path. In this section, we provide analytical
expressions for the total delay along a path.

Definition 5.28. Total delay of a path p
We define the total delay ∆0

p encountered on a path p at time t as the total delay encountered
by agent on path p that enters on the network at t throughout its entire path to the sink node.

∆0
p (t) = [D

vpN
p]−1

(
D0
p (t)

)
− t (5.103)

where vpN is the last non-sink node on path p. We define the time mapped total delay ∆j
p as

the total delay in path p as seen by an agent that is at node j at time t.

∆j
p = Tj,0

(
∆0
p

)
(5.104)

Proposition 5.10. Total delay ∆j
p as a function of queue delay δ

The time mapped total delay ∆j
p encountered on a path is equal to the sum of delay encoun-

tered by the agent on its path.

∆j
p

(
tj
)

=
∑

v∈Vp\({0}∪S)

δjv
(
tj
)

(5.105)

where tj is the time that the agent is at node j.

Proof. Let ti = T i,j (tj). We obtain the result as follows using the definition of delay and a
series of time mappings.

Section 5.3. A solution based on time mapping 131

LHS = ∆j
p

(
tj
)

= Tj,0
(
∆0
p

(
tj
))

= ∆0
p

(
T 0,j

(
tj
))

= ∆0
p

(
t0
)

= [D
vpN
p]−1

(
D0
p

(
t0
))
− t0

RHS =
∑

v∈Vp\({0}∪S)

δjv
(
tj
)

=
∑

v∈Vp\({0}∪S)

δπvv (tπv)

=
∑

v∈Vp\({0}∪S)

[Dv
p]
−1
(
Dπv
p (tπv)

)
− tπv

=
∑

v∈Vp\({0}∪S)

[Dv
p]
−1
(
Dπv
p (tπv)

)
− [Dπv

p]−1
(
Dπv
p (tπv)

)

=
∑

v∈Vp\({0}∪S)

[Dv
p]
−1
(
D0
p

(
t0
))
− [Dπv

p]−1
(
D0
p

(
t0
))

= [D
vpN
p]−1

(
D0
p

(
t0
))
− [D0

p]
−1
(
D0
p

(
t0
))

= [D
vpN
p]−1

(
D0
p

(
t0
))
− t0

Definition 5.29. Active link of the last active queue of a path p at time t (ap (t))
Let p be a path and t be the time that an agent departs node j. We define the last active
queue of the path p time mapped to passing node j at time t as

ajp (t) = max
�

{
v ∈ Vp|ηjv (t) = 1

}
(5.106)

For notational convenience we also define the following:

γ̃jp (t) = γj
ajp(t)

(t) (5.107)

Γ̃jp (t) = Γj
ajp(t)

(t) (5.108)

Q̃j
p (t) = µj

γ̃jp(t)
(t) (5.109)

Theorem 5.5. Evolution law for total delay ∆0
p

Let p be a path, t be a time. The evolution law for total delay at time t is

d∆0
p

dt

∣∣∣∣
t

=





∑
p′∈Γ̃0

p(t) λ
0
p′ (t)

Q̃0
p (t)

− 1 if p has an active queue

0 otherwise
(5.110)

Section 5.4. Applications 132

Proof: Taking the derivative of equation (5.105) for j = 0, we obtain

d∆0
p

dt

∣∣∣∣
t

=
∑

v∈Vp\(S∪{0})

dδ0
v

dt

∣∣∣∣
t

(5.111)

=
∑

{v|v∈Vp\(S∪{0}),γ0
v(t)=1}

dδ0
v

dt

∣∣∣∣
t

(5.112)

Note that γ0
v (t) = 1 implies node v is active when the source flow at time t reaches node v.

From Theorem 5.2 with j = 0 we have,

dδ0
v

dt

∣∣∣∣
t

=





∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

− 1

if v is the first active queue ∈ p∑
p∈Γ0

v(t) λ
0
p (t)

Q0
v (t)

−
∑

p∈Γ̂0
v(t) λ

0
p (t)

Q̂0
v (t)

otherwise

(5.113)

Plugging this into equation (5.112) gives a telescopic series, since it only considers the active
nodes of the path and Q̃0

p (t) gives the capacity of the last active link of path p. Thus, we
obtain

d∆0
p

dt

∣∣∣∣
t

=

∑
p′∈Γ̃0

p(t) λ
0
p′ (t)

Q̃0
p (t)

− 1 (5.114)

If p does not contain an active queue there is no queuing in the path, which means there is
no change in the queue length and therefore no change in the delay.

Remark 5.9. Note that this theorem can be extended to any subpath pij ∈ p such that

d∆i
pi,j

dt

∣∣∣∣∣
t

=

∑
p′∈Γ̃ipij (t) λ

i
p′ (t)

Q̃i
pij

(t)
− 1 (5.115)

5.4 Applications
The solution to problem (1) models the flows in the network given the departure time

functions at the origin and the initial delays by providing the departure time functions for
all the other nodes in the network. The solution can be obtained by first solving problem
(2), which provides the agent delay function at each node. Practically, problem (2) easier
to directly solve than problem (1), because it corresponds to an explicit automaton that is
easy to implement for numerical simulations.

Given a discretization time step ∆t and the initial conditions δv (0), algorithm 5.1 gives
a numerical solution to the discretized problem (2). The algorithm numerically integrates the

Section 5.4. Applications 133

ordinary differential equation (ODE) given in equation (5.92) over time to obtain the solution.
The algorithm relies on the fact that each discretized time step is an elementary segment,
because the path flows and capacities are assumed to be constant (discrete approximation)
during each time step.

Algorithm 5.1 Calculate approximate solution of problem (2)

solveDelays(sourceFlow: λ0, initialDelays: δ0[0], capacities: µ)
for l ∈ Lout

0 do
for t = 1 to T do

update(voutl , t, 1, 0)
end for

end for

update(node: v, timeStep: t, lastActiveConstraint: ω̂)
if v 6∈ S then

∆0
0,v[t] = ∆0

0,πv [t] + δ0
v [t− 1]

for l ∈ Lv do
µ0
l [t] = µl(t+ ∆0

0,v[t])

c0
l [t] =

∑
p∈Pl λ

0
p[t]

µ0
l [t]

end for
γv[t] = argmaxl∈Lout

v
cv,l (t)

Γv[t] = Pγv(t)

ωv[t] =

∑
p∈Γv [t] λ

0
p[t]

µ0
l [t]

δ0
v [t] = max (0, (ωv − ω̂) ·∆t)
for l ∈ Loutv do

if δ0
v [t] > 0 then
update(voutl , t, ωv)

else
update(voutl , t, ω̂)

end if
end for

end if

5.4.1 Single route with multiple bottlenecks

The first case we will study is that of a simple single path network with multiple queues
due to several capacity bottlenecks, as illustrated in figure 5.3. This network can be modeled
as a tree with a single sink, i.e. a single path. Thus, we will remove the path index from the

Section 5.4. Applications 134

notation in this section. Each internal node v has a unique child, thus the internal nodes can
be indexed by the integers v0, · · · ,v n and the unique path of the tree is [v0,v 1, · · · , vn, vs].
Moreover, as they model a succession of queues on the same road, we can assume that the
capacity of each link (vi, vi+1) is constant and equal to capacity of the corresponding road
segment ∀v, µvi,vi+1

= µ. From Theorem 5.5, we know that the evolution of delay is given by

d∆0
p

dt

∣∣∣∣
t

=





∑
p′∈Γ̃0

p(t) λ
0
p′ (t)

Q̃0
p (t)

− 1 if p has an active queue

0 otherwise
(5.116)

Since, the link with the smallest capacity will always be the last active link µ̃ =
min(µvi,vi+1

):

d∆0

dt

∣∣∣∣
t

=





λ0(t)

µ̃
− 1 if there is an active queue

0 otherwise
(5.117)

Thus, the evolution of total delay is equivalent to the evolution law for one queue of
capacity µ̃, and the network can be simplified to a unique internal node v followed by a link
of capacity µ̃.

If the capacity of the links is time varying and µ̄(t) is the capacity of the most constrained
link that the agent entering the network at time t is subjected to,

d∆0

dt

∣∣∣∣
t

=





λ0(t)

µ̄(t)
− 1 if p has an active queue

0 otherwise
(5.118)

v0 v1 v2 vi vn vs

Figure 5.3: MultipleBottlenecks on a road.

5.4.2 Off-Ramp bottleneck

The next application is to compute the the dynamics of a congested freeway off-ramp,
using the off-ramp model presented by Newell [101]. This example shows the versatility of
our framework, since Newell’s the model includes non-FIFO dynamics at the off-ramp. This
is accommodated by introducing an additional node and state dependent capacities on two
links. The description of the model is as follows. As seen in figure 5.4(a), there are two flows

Section 5.4. Applications 135

λh and λe that enter the network, which has a capacity of µh. Therefore, λh (t)+λe (t) ≤ µh.
The exiting flow λe is restricted by a capacity constraint of µe at the exit. There are four
possible states of queuing dynamics that can occur based on the flow values. Figure 5.5
illustrates the transitions between the states.

(a)

0

sh

se

h

e

µh

µe

�0
h �0

e

�e
e

�h
h

µ=1

µh

(b)

0

sh

se

h

e

µh

µe

µr

�0
h �0

e

�e
e

�h
h

µ=1

(d)

0

sh

se

h

e

µh

µe

�0
h �0

e

�e
e

�h
h

µe

µh

(c)

0

sh

se

h

e

µh

µe

µr

�0
h �0

e

�e
e

�h
h

µ=1

Figure 5.4: Off-Ramp model - (a) state 00 (b) state 01 (a) state 10 (a) state 11

Case 1: λe ≤ µe. If λe (t) ≤ µe, no queues will form in the network and there will be no
delay.
Case 2 : λe > µe and λh ≤ µr. If λe (t) > µe, an exit queue will start forming at the entrance
to the exit as seen in figure 5.4(b), which will then restrict the capacity of the freeway from
µh to µr.
Case 3 : λe > µe, λh > µr and µr

λh
· λe ≥ µe. If the freeway flow λh > µr, then a second

freeway queue will start forming behind the exiting agent queue, as seen in figure 5.4(c),
since the freeway demand is greater than the new reduced freeway capacity µr. This second
freeway queue will contain both freeway and exiting agents and therefore the flow exiting
the queue will be subject to the first-in-first-out (FIFO) condition. As a result, since the
freeway flow λh is restricted to a rate of µr, the exiting agent flow at the freeway queue will
be restricted to λ′e = µr

λh
· λe.

Case 4 : λe > µe, λh > µr and µr
λh
· λe < µe. Now, if λ′e < µe, then the off-ramp queue

Section 5.4. Applications 136

�h > µh

µr

�h
· �e < µe

Qe;

Qh

queue e

queue h

queue e
Qe, Qh

queue appears

queue disappears

�e > µe > �e ·
µr

�h

�e ·
µr

�h
� µe

queue h

�e > µe and

Figure 5.5: State transitions in the off-ramp model. The four states ∅, Qe, (Qe, Qh) and Qh

correspond respectively to the cases (a), (b), (c) and (d) from figure 5.4.

will start decreasing since the flow is less than the capacity and the queue will disappear.
Thus, in this case, an off-ramp bottleneck created a second bottleneck that in turn removed
the off-ramp bottleneck, which is an unstable equilibrium. Therefore, as explained in [101],
there will be a single queue of both freeway and exiting agents that occurs at the off-ramp,
as seen in figure 5.4(d), and the freeway flow through the bottleneck will be λouth = µe

λe
· λh

according to the FIFO condition.
The uniqueness and existing properties hold even with the state dependent capacities,

since the flows are assumed to be piecewise polynomial and therefore lead to a finite number
of state transitions. This implies that the link capacities are piecewise constant. Therefore,
we can solve for the delays in this network using algorithm 5.1. Furthermore, this subnetwork
can be part of a larger network over which we wish to compute the system delays.

Figure 5.6 shows the flow and delay profiles for a numerical example of the off ramp
network with the following link capacities: µE = 5, µH = 30 and µ = 45. We can observe
the following state transitions during the simulated time window.

• At t=92 Appearance of exiting agent queue.

• At t=121 Appearance of freeway queue.

• At t=222 Disappearance of exiting agent queue.

• At t=372 Disappearance of freeway queue.

One interesting observation is that freeway congestion caused by the exiting agent bot-
tleneck persists well beyond the time at which the exiting agent queue disappears.

The next chapter utilizes the delay analysis framework presented in this chapter to
compute the user equilibrium departure time allocation at a freeway off-ramp.

Section 5.4. Applications 137

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

t

flo
w

s/
de

la
y/

st
at

e

fl
ow

/d
el
ay
/s
ta
te

time

�e
�h
�e

�e

�h

S

Figure 5.6: Simulation of states and delays (δE, δH) as functions of time t, given the
incoming flows at the off ramp, and road parameters: µE = 5, µH = 30 and µ = 45

138

Chapter 6

Solving the user equilibrium departure
time problem at an off-ramp with
incentive compatible cost functions

6.1 Introduction
In this chapter, we consider the problem of finding an equilibrium of departure times

for a group of vehicles that travel through a capacity restricted network, also known as the
morning commute problem. The vehicles share a common desired arrival time and incur a
cost for both queuing delays and not meeting their desired arrival time, with penalties being
imposed for both early and late arrivals. We wish to determine a set of departure times, such
that they form a user equilibrium with respect to the total cost incurred by each vehicle. A
brief introduction to the morning commute problem is given in Section 1.4. In particular,
we consider the morning commute problem at an under-capacitated off-ramp, which is a
common occurrence during the morning rush-hour, at freeway exits with heavy demands.
Spill-back from an under-capacitated off-ramp can block the freeway and reduce the freeway
capacity available for vehicles that are passing through, and thereby lead to additional delays
for these vehicles.

This problem can be addressed by either building additional capacity at the off-ramp
to accommodate the peak flow or by using demand management strategies such as tolling.
Adding new capacity requires construction work that is extremely disruptive to the network
in the short term and incurs a large monetary cost. In addition, the peak flow demands
can change rapidly due to many reasons, but the road capacities can not be altered rapidly
to adapt to these demand changes. Therefore, in this chapter, we study the ability to
manipulate the equilibrium departure-times of the off-ramp demand by augmenting the
arrival-time cost function, with tolls or incentives, and thereby mitigate the negative impact
on the freeway capacity.

Existing solutions to the morning commute problem assume that the arrival time cost

Section 6.2. Network and demand model 139

function of the exiting vehicles is convex and continuous. However, in practice, it is difficult to
implement an incentive or tolling strategy where the value of the incentive or toll is continuous
in time. These values are most likely to be piece-wise constant. Therefore, the arrival-cost
function of the exiting vehicles can no longer be assumed to be continuous. Our main result
is to show the existence and uniqueness properties of the departure-time equilibrium for a
general class of cost functions that allow for discontinuities and local minima. We present
these results in the context of a network with an off-ramp, but they also apply to the standard
Vickrey equilibrium [131], since it is a special case of our network. Using these results, we
analyze a number of incentive and tolling strategies that can be used by a transportation
planning authority to achieve different objectives.

The rest of this chapter is organized as follows. Section 6.2 describes the network and
demand models. The main contributions are presented in Section 6.3, which proves the
existence and uniqueness properties of the departure time equilibrium. Finally, Section 6.4
presents an analysis of some incentive/tolling strategies.

6.2 Network and demand model

6.2.1 Network

We consider a highway segment with an off-ramp, where the number of vehicles that
exit at the off-ramp exceeds its capacity during a peak congestion period. The dynamics of
the network are modeled using the point queue model described in Chapter 5. The network
contains two types of vehicles; a) vehicles that drive past the off-ramp and stay on the
highway that are called highway vehicles (denoted with the subscript h) and b) vehicles that
exit the highway at the off-ramp are called exiting vehicles (denoted with the subscript e).
The flow of each of these vehicles types is constrained by the capacity limitations of the
network, and a queuing delay occurs when the inflow is greater than the bottleneck capacity.

Definition 6.1. Flow
The flow of highway vehicles (and resp. exiting vehicles) entering the network at time is t is
λh (t) (and resp. λe (t)). The flow of highway vehicles (and resp. exiting vehicles) that exit
the network at time t is λouth (t) (and resp. λoute (t)).

Definition 6.2. Capacity
The capacity µb (t) of a bottleneck b is the maximum flow that can enter the link from its
input node at time t.

Definition 6.3. Delay
The queuing delay δq (t) at queue q at time t is the waiting time at queue q due to the capacity
constraints of the outgoing links from the queue. The total delay ∆g(t) for a vehicles of type
g entering the network at time t is the total delay that the vehicle experiences across all
queues prior to exiting the network1.

Section 6.2. Network and demand model 140

µe

�e�h

�h

µh

�e

(a) (b)

�e > µe

(c) (d)

µh + µe

µe

�e�h

�h

µh

�e

µe

�e�h

�h

µh

�e

µh + µe

µe

�e�h

µh

µh + µe

�h + �e > µh + µe

�h + �e  µh + µe

and

Figure 6.1: Network model. There are two types of queues that can form; i) (a) → (b): a
queue forms at the off-ramp entrance if the exiting flow is greater than the off-ramp
capacity, ii) (c) → (d) a queue forms at the entrance to the network if the total demand is
greater than the capacity freeway capacity at the entrance.

For analyzing the equilibrium departure flows, we need to quantify the delay character-
istics of the off-ramp model under different boundary flows. Chapter 5 formally derives the
delay characteristics of single source networks that satisfies the following properties, which
we will utilize in our analysis.

1. The flow on any link is constrained by the maximum link flow µ2.

2. The flows through each junction (node) of the network satisfy the first-in-first-out
(FIFO) property, i.e. vehicles going to different destinations can not overtake either
other.

3. The most constrained exit flow through each junction saturates the corresponding out-
going link, i.e. flow through each junction is maximized subject to the FIFO condition.

We can now analytically express the delays observed by the exiting vehicles as they travel
through the network using the framework developed in Chapter 5.

1For simplicity of presentation, without loss of generality, we remove the free flow travel-time from our
analysis. This can be done because the free flow travel time seen by every vehicle of a given type is the same.

2We assume that the capacities are time invariant. Our analysis can be extended to piecewise constant
time varying capacities, but we limit this discussion to the time invariant case clarity and conciseness in
presenting our contributions.

Section 6.2. Network and demand model 141

Proposition 6.1. Exiting vehicle delay
If highway flow is restricted to λh ≤ µh, i.e. there is no bottleneck purely due to the highway
vehicles, the delay seen by the exiting vehicles that enter the network at time t is given by
the following differential equation:

d∆e

dt

∣∣∣∣
t

=





λe (t)

µe
− 1 if there is an active queue

0 otherwise, i.e. no queing
(6.1)

where queue q being active implies that ∆q(t) > 0 when the exiting vehicle that enters the
network at time t reaches queue q.

Proof. Due to the FIFO condition, the flow through a congested junction is determined by
the most constrained outgoing flow. See Chapter 5 for a detailed treatment of the network
dynamics. Since there is no capacity drop on the highway at the off-ramp, the most con-
strained outgoing flow type for the off-ramp queue is always the exiting flow. Furthermore,
the queuing caused at the entrance to the network is due to the total flow entering the net-
work. Therefore, following the general derivation for the total delay experienced by vehicles
on a particular path from Theorem 5.5 we obtain:

d∆e

dt

∣∣∣∣
t

=





λh (t) + λe (t)

µe
− 1 +

λe(t)

µe
− λh (t) + λe (t)

µe
if the off-ramp queue is the last active queue

λh (t) + λe (t)

µe
− 1 if the highway queue is the last active queue

0 otherwise

=





λe(t)

µe
− 1 if the off-ramp queue is the last active queue

λh (t) + λe (t)

µe
− 1 if the highway queue is the last active queue

0 otherwise

(6.2)

where the time t is with respect to the time that a vehicle enters the network.
Now let us consider the case where the highway queue is activated. This means that

λe+λh > µe+µh and since λh ≤ µh implies that λe > µe. This flow exits the highway queue
at a rate λ̃e = λe

λe+λh
· (µe + µh) by the FIFO condition. For this flow to no cause an off-ramp

Section 6.2. Network and demand model 142

queue, we must have that

λ̃e ≤ µe

=⇒ λe
λe + λh

· (µe + µh) ≤ µe

=⇒ λe · (µe + µh) ≤ µe (λe + λh)

=⇒ λe · µh ≤ µe · λh
=⇒ λh ≥

λe
µe
· µh

However, since the existence of a highway queue implies that λe > µe and we know
that λh ≤ µh, this is not possible. Therefore, if a highway queue forms the flow exiting the
highway queue will form a off-ramp queue. This implies that the off-ramp queue is the last
active queue. Therefore we have,

d∆e

dt

∣∣∣∣
t

=





λe(t)

µe
− 1 if there is an active queue

0 otherwise
(6.3)

6.2.2 Demand model

Assumption 6.1. Exiting vehicle demand
We assume that the exiting vehicles are free to choose their departure times and do so in a
selfish manner to minimize a cost function C. Therefore, the demand for the exiting vehicles
λe(t) will form a Nash equilibrium (or user equilibrium) with respect to the cost function C.

Assumption 6.2. highway vehicle demand
We assume that the highway vehicle demand λh(t) such that λh(t) ≤ µh (t) is fixed (exoge-
nous) and not a function of the exiting vehicle demand distribution.

The cost function C consists of a cost related to the queuing delay on the network and a
cost related to the arrival time at the destination.

Definition 6.4. Delay cost function
The delay cost function Cδ assigns a cost Cδ(∆(t)) corresponding to a queuing delay of ∆(t).
The delay cost encountered by an exiting vehicle that enters the network at time t is given
by Cδ(∆e(t)).

Definition 6.5. Schedule time cost function
The exiting vehicles have an expected arrival time at the destination and the schedule time
cost function CS assigns a penalty CS(ta) corresponding to the actual arrival time ta. The
schedule time cost encountered by the an exiting vehicle that enter the network at time t is
given by CS(t+ ∆e(t)).

Section 6.3. Existence and uniqueness of the exiting vehicle equilibrium143

As our goal is to analyze the impact of incentive and tolling strategies on the departure time
equilibrium of the exiting vehicles and the resulting impact on overall congestion, we also
define an incentive/toll cost function with a toll being modeled as a negative incentive.

Definition 6.6. Incentive/toll cost
The incentive/toll cost function CI assigns a cost CI(ta) corresponding to the incentive/toll
for arriving at the destination at time ta.
If CI ≤ 0, |CI(ta)| represents the incentive or negative toll given to the vehicles that exit the
network at time ta.
If CI > 0, CI(ta) represents the toll or negative incentive charged to the vehicles that exit the
network at time ta.

Definition 6.7. Arrival cost
The arrival cost CA is the total cost experienced by a vehicle due to its arrival time.

CA(ta) = CS(ta) + CI(ta) (6.4)

The delay cost is a function of the queuing delay, while both the schedule time and in-
centive/toll costs are functions of the arrival time. The total cost can now be defined as
follows.

Definition 6.8. Total cost C
The total cost C(t) is the sum of the delay cost and the arrival cost for a vehicles that enters
the network at time t.

C(t) = Cδ(∆e(t)) + CA(t+ ∆e(t)) (6.5)

We will now model the behavior of the existing vehicles with respect to the network model
and the cost functions.

Definition 6.9. Exiting vehicle equilibrium
Given a network with an exit and a fixed number of exiting vehicles N , cost functions
(Cδ, CA, CI) and highway vehicle demand λh(t), λe is an exiting vehicle equilibrium if and
only if 




λe(t) ≥ 0 is piecewise continuous∫
R λe(τ) dτ = N
λe(t) > 0 ⇒ C(t) ≤ C(t′), ∀t′

(6.6)

where C(t) is the total cost and ∆e(t) is the total delay in the network given λe(·) and λh(·).
The equilibrium cost for each vehicle is denoted by CE.

6.3 Existence and uniqueness of the exiting vehicle equi-
librium

In this section, we will prove the existence and uniqueness of the exiting vehicle equi-
librium for a general class of cost functions within the dynamics of our network model. We
first introduce the general class of cost functions that we consider.

Section 6.3. Existence and uniqueness of the equilibrium 144

6.3.1 Equilibrium compatible cost functions

The classical single route single bottleneck equilibrium departure time problem was
first introduced by Vickrey [131] in 1969. Smith [127] proved the existence of an equilibrium
for convex arrival cost functions, and Daganzo [32] proved the uniqueness of this solution.
Convex cost functions imply that the marginal cost of earliness (or lateness) increases as
commuters arrive earlier (or later), which is a reasonable assumption. However, convex
cost functions by themselves are not adequate in our setting. To design time dependent
incentives and tolls, we require the ability to use schedule cost functions CA = CS + CI .
This introduces a more complex set of cost functions we must be able to accommodate. The
following generalizations are required:

• Local maximums: An incentive/toll is intended for pushing commuters out of the
peak congestion period. Thus, it is reasonable to envision incentives/tolls that are
proportional to the peak congestion pattern and therefore inversely proportional to
the schedule cost function CS. This could result in an arrival time function CA that
admits local maximums, which we must be able to support.

• Discontinuity: A fixed incentive/toll to encourage commuters to arrive before some
time tI could take the form

CI(t) =

{
I < 0 if t < tI

0 if t ≥ tI
(6.7)

Thus a discontinuity CA(t+I)−CA(t−I) = I will appear in the arrival cost function CA(t)
at t = tI , where I is the value of the incentive/toll.

Definition 6.10. Equilibrium compatible cost functions
The functions (CA, Cδ) are equilibrium compatible cost functions if they satisfy the following
requirements.

1. Cδ is convex on R+, C1 and admits a unique minimum at 0.

2. CA is C1 on the right and piecewise C1, with a finite number of positive discontinuities
such that CA(t+) ≥ CE and no negative discontinuities in the support of the solution.

3. C ′A has a finite number of sign changes ⇔ CA has a finite number of local maximums.

4. lim
t→±∞

CA(t) = +∞

5. ∃t0 : −dCA(t)
dt

< dCδ(0)
dδ

, ∀t > t0

Section 6.3. Existence and uniqueness of the equilibrium 145

(a)

C�

� (b)

CS

B t

(c)

CI

B t
tI

Step incentive

Continuous toll

(d)
B t

tI

CA

Figure 6.2: Illustration of equilibrium compatible cost functions - (a) Equilibrium
compatible delay cost functions Cδ are convex on R+, C1 and admit a unique minimum at
0. (b) A classical convex schedule cost function CS (c) A continuous toll that induces a
local minimum and a step incentive/toll that induces a discontinuity in the arrival cost
function d) The resulting arrival cost function CA.

The first condition ensures that Cδ penalizes queuing delay and that the marginal cost
of delay is monotonically increasing. The second condition allows for a finite number of
positive discontinuities in CA due to step incentives or tolls. The restriction on a finite
number discontinuities is not a practical limitation, since there will be finite number of
incentives/tolls implemented in practice. The third and the fourth conditions replace the
convexity assumption of the arrival cost function with something more general that allows
for a finite number of local maximums in CA, as long as very large early (or late) arrivals still
result in large penalties. The last assumption ensures that marginal cost of delay is greater
than the marginal cost of the arrival time. Figure 6.2 illustrates the different cost functions
that our extended framework can accommodate.

Proposition 6.2. Equilibrium compatible cost functions allow local maximums and
discontinuities in the arrival time function.

Proof. The proposition follows directly from definition 6.10 by construction.

Section 6.3. Existence and uniqueness of the equilibrium 146

6.3.2 Fixed cost equilibrium

Solving for an exiting vehicle equilibrium directly is difficult due to the flow conservation
constraint

∫
R λe(τ) dτ = N . Therefore, we will first consider the simpler problem of finding

the equilibrium for a fixed cost CE, where the total number of exiting vehicles
∫
R λe(τ) dτ > 0

is not fixed and is a function of the cost CE.

Definition 6.11. Fixed cost equilibrium
The fixed cost equilibrium E(CE) for a given cost CE is given by λe(t) that satisfies the
following equations.





λe(t) ≥ 0 is piecewise continuous
λe(t) > 0 ⇒ C(t) = CE
λe(t) = 0 ⇒ C(t) ≥ CE

(6.8)

Proposition 6.3. Exiting vehicle equilibrium for a fixed cost
If λe(t) is the solution to the fixed cost equilibrium E(CE), then λe(t) is also an exiting vehicle
equilibrium for N =

∫
λe(τ) dτ exiting vehicles.

Proof. The solution satisfies the requirements of definition 6.9. The first requirement follows
directly from definition 6.11. The second requirement is true by construction. The third
requirement enforces that C(t) ≤ C(t′) for all t′ if t is in the support of λe(t). From
definition 6.11 we know that C(t) = CE in the support of λe(t) and C(t) ≥ CE outside.
Therefore, the third requirement is also satisfied.

In this section, we will consider the existence and uniqueness of the solution to the
fixed cost equilibrium under equilibrium compatible cost functions. We first present some
definitions that will be used in the analysis.

Definition 6.12. Plateau
A plateau P is an interval [ta, tb) such that CA(t) = CE,∀t ∈ P and |P | > 0. The arrival
time cost for all vehicles that arrive at the destination during this interval is CE.

Definition 6.13. Valley
A valley V is an interval [ta, tb) such that CA(ta) = CE and CA(t) < CE, ∀t ∈ (ta, tb). The
arrival time cost for a vehicle that arrives at the destination at time ta is CE and the cost is
strictly less than CE for all t ∈ (ta, tb).

Figure 6.3 gives a graphical illustration of how an arrival time function is split into valleys
and plateaus.

Definition 6.14. Dominant plateaus and valleys
A plateau or valley [ta, tb) is dominant if ∆(ta) = 0. A vehicle that arrives at the beginning of
a dominant plateau or valley has zero queuing delay. A plateau or valley that is not dominant
is called dominated plateau or valley.

Section 6.3. Existence and uniqueness of the equilibrium 147

Valley: �e > 0

Plateau: �e = 0

Infeasible: �e > 0

t

P1V1 V2

Vk

Pk

CE

CA

Figure 6.3: Set of windows and plateaus

Proposition 6.4. All valleys and plateaus are dominant

Proof. The first valley or plateau is dominant because no flow can enter the network when
CA > CE. Furthermore, each valley V = [ta, tb) ends with either CA(tb) = CE or a positive
discontinuity such that CA(tb) > CE. In either case, the queue must be empty at t = tb
because CA(tb) ≥ CE and any queuing delay will result in a total cost greater than CE, which
violates the equilibrium. Also, since CA(t) = CE during any plateau, there can not be any
queuing delay during the plateau for the same reason. Therefore, since the first valley or
plateau is dominant and all valleys and plateaus end with no queue, all valleys and plateaus
are dominant.

Proposition 6.5. Window of feasible arrival times for a fixed cost equilibrium
The window of feasible arrival times F (i.e. times at which the exiting vehicles leave the
network) for a fixed cost equilibrium with cost CE is the union of a finite number of plateaus
and valleys.

F = {∪nPi=1Pi} ∪ {∪nVj=1Vj} (6.9)

Proof. The arrival time cost CA(t) must be less than or equal to CE for all feasible arrival
times with an equilibrium cost of CE. Furthermore, lim

t→±∞
CA(t) = +∞ from definition 6.10,

which implies that there is some tmin such that CA(tmin) > CE and tmax such that CA(tmax) >
CE, and the feasible arrival times are bounded by (tmin, tmax). Also from definition 6.10, we
know that CA is piecewise C1 with a finite number of discontinuities and that C ′A has a finite
number of sign changes. Therefore, there can only be a finite number of plateaus and valleys,
since plateaus and valleys begin and end with either CA(t) = CE or with a discontinuity in
CA(t).

Section 6.3. Existence and uniqueness of the equilibrium 148

Proposition 6.6. Vehicles only enter the network inside the window of feasible
arrival times
If λe(t) is the solution to the fixed cost equilibrium E(CE)), the support of λe(t) (i.e. times
at which the exiting vehicles enter the network) is limited to the window of feasible arrival
times, i.e. t 6∈ F ⇒ λe(t) = 0

Proof. Let t0 be the time at which the first exiting vehicle enters the network. The queuing
delay for this vehicle ∆e(t0) = 0, since there are no other exiting vehicles already in the
network. If t0 6∈ F , the first exiting vehicle will reach the destination at time t0 +∆e(t0) = t0
and be subject to an arrival time cost of CA(t0). However, since CA(t0) > CE, ∀t0 6∈ F this
violates the fixed cost equilibrium and therefore t0 must be in F . Furthermore, this means
the no exiting vehicle can enter the network at any time t 6∈ F if ∆e(t) = 0, which means
that the exiting vehicles must enter during a plateau or valley. Since F is the set of plateaus
and valleys this concludes the proof.

Lemma 6.1. Existence and uniqueness of the solution of fixed cost equilibrium
on a valley
Let J = [ta, tb) be a valley. Given the boundary condition ∆e(ta) on the left of the valley J ,
equations (6.8) have a unique continuous solution on a dominant valley. A solution exists
but is not unique for a dominated valley.

Proof. From definition 6.8 we have:

C(t) = Cδ(∆e(t)) + CA(t+ ∆e(t)) (6.10)

⇒ dC(t)

dt
=

dCδ
dt

∣∣∣∣
∆e(t)

· d(∆e(t))

dt
+
dCA
dt

∣∣∣∣
t+∆e(t)

·
[
1 +

d(∆e(t))

dt

]
(6.11)

From definition 6.11 for a fixed cost equilibrium, we know that C(t) is constant for all
t such that λe(t) > 0.

If dC(t)
dt

= 0 and C(t) = CE,

dCδ
dt

∣∣∣∣
∆e(t)

· d∆e(t))

dt
+
dCA
dt

∣∣∣∣
t+∆e(t)

·
[
1 +

d∆e(t))

dt

]
= 0 (6.12)

d∆e(t))

dt

[
dCδ
dt

∣∣∣∣
∆e(t)

+
dCA
dt

∣∣∣∣
t+∆e(t)

]
= − dCA(t)

dt

∣∣∣∣
t+∆e(t)

(6.13)

d∆e(t)

dt
=

− dCA
dt

∣∣∣∣
t+∆e(t)

dCδ
dt

∣∣∣∣
∆e(t)

+
dCA
dt

∣∣∣∣
t+∆e(t)

(6.14)

Section 6.3. Existence and uniqueness of the equilibrium 149

Let t0a be the time at which the vehicle that reaches the exit queue (E) at time ta had
left the origin at. i.e. t0a + ∆e(t

0
a) = ta. By the definition of a dominant valley, we know that

∆e(t
0
a) = 0, ta = t0a and CA(ta) = CE. We consider the initial value problem specified by

equation (6.14) and ∆e(t
0
a) = 0 for the interval J = [ta, tb).

Assume that λh(t) and λe(t) are continuous functions for all t such that t+ ∆e(t) ∈ J .
Under this assumption, the function d∆e(t)

dt
is continuous in t,∀t ∈ J , since ∆e(t) is continuous

in t from equation (6.2) and Cδ, CA are C1 in J by definition 6.10. The function d∆e(t)
dt

is
also Lipschitz continuous in ∆e(t),∀t ∈ J because every continuously differentiable function
is locally Lipschitz and Cδ and CA are C1 in J . Therefore, by the Picard-Lindelöf Theorem
∆e(t) admits a unique solution on J .

From Proposition 6.1, the delay evolution for exiting vehicles is given by,

d∆e

dt

∣∣∣∣
t

=





λe (t)

µe
− 1 if there is an active queue

0 otherwise, i.e. no queing
(6.15)

Let us now consider the solution λe(t) to equations (6.8). If there is an active queue at
the exit, the unique exiting vehicle flow is given directly by equation (6.15),

λe(t) =

(
d∆e

dt

∣∣∣∣
t

+ 1

)
· µe (6.16)

The exiting vehicle queue is active in J because CA(t) < CE ∈ (ta, tb) and the equi-
librium would be violated if there was no queuing delay (i.e. if ∆e(t) = 0). Also, note
that the solution is continuous since ∆e(t) is C1. Therefore, the solution to λe(t) given by
equation (6.16) is both continuous and unique ∀t ∈ J .

What remains to be shown is that the transitions between the queuing states is also
unique. Since the flows within any queuing state are unique and the state transitions are
only depend on the previous flows, the state transitions are also unique.

Finally, we show that the unique fixed cost equilibrium λ(t) is also physically acceptable,
i.e. λe(t) ≥ 0. From Proposition 6.1, we know that the off-ramp queue is always the last
active queue. Therefore, λe ≥ 0 requires λe =

(
1 + d∆e

dt

∣∣
t

)
· µe ≥ 0 =⇒ d∆e

dt

∣∣
t
≥ −1. This

follows directly from equation (6.14) because from definition 6.10 we know that −dCA(t)
dt

<
dCδ(0)
dt

.

Corollary 1. Solution to the fixed cost equilibrium on a valley
The solution to the fixed cost equilibrium CE for a valley V = [ta, tb) can be found by solving
the ordinary differential equation (6.14) with the initial condition ∆e(ta) = 0 and plugging it
into equation (6.15).

Proposition 6.7. Feasible flow in plateaus
On a plateau P = [ta, tb), any flow λe(t) ∈ [0, µe] is a feasible flow.

Section 6.3. Existence and uniqueness of the equilibrium 150

Proof. Since all plateaus are dominant, ∆e(ta) = 0 and CA(t) = CE, ∀t ∈ P . Since the
condition C(t) = CE must hold for an equilibrium solution and CA(t) = CE, ∆e(t) must be
zero for all t ∈ P . Therefore, 0 ≤ λe(t) ≤ µe,∀t ∈ P .

Proposition 6.8. Unique flow in a valley
Let N(V) be the unique number of vehicles that pass the exit during a valley V = [ta, tb).

N(V) = µe|V | (6.17)

Proof. Since CA(ta) = CE and CA(t′) ≤ CE, ∀t′ ∈ [ta, tb), all the vehicles exiting the valley
in the interval [ta, tb) must have all seen some queuing delay and the exit queue is active
during the entire interval. Therefore, the flow of exiting vehicles is equal to the bottleneck
flow of µe during the entire interval and the result follows directly.

Theorem 6.1. Existence and uniqueness of fixed cost equilibrium
If λh is piece-wise continuous, CA and Cδ are equilibrium compatible cost functions, the fixed
cost equilibrium E(CE) exists and the solution is unique if CA does not contain any plateaus.

Proof. If CA does not contain any plateaus or valleys and the window of feasible arrival times
F = ∅, then the solution to the fixed cost equilibrium E(CE) is λe(t) = 0,∀t, since vehicles
can only enter the network within the F from Proposition 6.6. If F 6= ∅, then F is the union
of a disjoint set of plateaus and valleys, and we know that the flow λe(t) = 0,∀t 6∈ F . From
Lemma 6.1 we know that a solution to the equilibrium E(CE) exists and is unique for each
valley. Also, we know from Proposition 6.7 that a solution to the equilibrium exists, but is
not unique for plateaus.

Therefore, a fixed cost equilibrium exists when λh is piece-wise continuous, CA and Cδ
are equilibrium compatible cost functions. The solution is unique if CA does not contain any
plateaus of CA(t) = CE.

6.3.3 Existence and uniqueness of exiting vehicle equilibrium

Lemma 6.2. Number of exiting vehicles as a function of equilibrium cost
If CA does not contain any plateaus for CE ∈ (Cmin, Cmax), then CE 7→ Φ(CE) is a continuous
function for CE ∈ (Cmin, Cmax). If CA does contain a plateau for CE ∈ (Cmin, Cmax), then
CE 7→ Φ(CE) is a set valued map for CE ∈ (Cmin, Cmax). This property is illustrated in
figure 6.4.

Proof. From Theorem 6.1 we know that an equilibrium solution exists for any fixed cost CE.
There is no non-zero equilibrium with cost C < min(CA), since Cδ ≥ 0. For C = min(CA),
there can only be a non-zero equilibrium solution if there exists a plateau at C = min(CA).

For C > min(CA) a plateau must exist by definition. As CA is piecewise C1, the
boundaries of each valley grow as a continuous function of CE. Also, from Proposition 6.8
we know that the number of vehicles that exit the network during some valley V, N(V)

Section 6.3. Existence and uniqueness of the equilibrium 151

min(CA)

Plateau(P)µe · |P |

�(CE)

CE

Figure 6.4: Number of employees which can arrive as a continuous correspondence of fixed
cost CE

is equal to µe|V |. Therefore, N(V) is a continuous function of CE. In the case where two
valleys V1, V2 merge, the sum |V1|+ |V2| grows continuously.

Let V (CE) be the set of valleys at CA = CE. If there are no plateaus in CA, Φ(CE) =∑
W∈V (CE) N(W) is also a continuous function of CE.
If CA includes a plateau at CA = CE, the number of vehicles that can exit during the

plateau can be any value in the range (0, µe). Therefore, the number of vehicles that exit
the network as a function of CE is then a set valued map.

Theorem 6.2. Existence and uniqueness of exiting vehicle equilibrium
For any total demand of exiting vehicles N , an exiting vehicle equilibrium λe(t) that satisfies
definition 6.10 exists. The equilibrium is unique if there are no plateaus at the equilibrium
cost CE.

Proof. From Lemma 6.2 we know that the number of exiting vehicles N is a continuous
function of the equilibrium cost CE. Therefore, for anyN there is a corresponding equilibrium
cost CE = Φ−1(N) and the resulting fixed cost equilibrium flow distribution is an exiting
vehicle equilibrium by Proposition 6.3.

Corollary 2. Solution to the exiting vehicle equilibrium
The solution to the exiting vehicle equilibrium with N vehicles can be found as follows.

1. Find the equilibrium cost CE, which is the minimum cost C such that the length of the
support of arrival cost function {CA : CA ≤ CE} is greater than or equal to N

µe
, i.e.

CE = min{C : |C(t) ≤ C| · µe ≥ N}. The condition holds with equality if there are no
plateaus at C = Φ−1(N).

2. For each valley in V ∈ V (CE), solve equation (6.14) with the initial condition ∆e(ta) =
0 and plug it into equation (6.15) to obtain the solution on V .

Section 6.4. Analysis of incentive/tolling functions 152

The equilibrium departure flows are solved in practice (approximately) by numerically in-
tegrating equation (6.14). Algorithm 6.1 shows how this numerical integration can be done
for each valley V .

Algorithm 6.1 Calculate λe
Require: {ta, tb} ∀V ∈ V (CE) and unit time discretization3
optFlow(ta, tb)
for V ∈ V (CE) do

∆e[ta(V)] = 0
for t = ta(V) to tb(V) do

d∆e[t] =

− dCA(t)

dt

∣∣∣∣
t+∆(t)

dCδ(t)

dt

∣∣∣∣
∆(t)

+
dCA(t)

dt

∣∣∣∣
t+∆(t)

·∆t

∆e[t+ 1] = ∆e[t] + d∆e[t]

λe[t] = µe ·
(

1 +
d∆e[t]

∆t

)

end for
end for
return λe

6.4 Analysis of incentive/tolling functions
We will now analyze different incentive/tolling functions that reduce the highway con-

gestion caused by the bottleneck at the off-ramp with respect to congestion reduction, cost
efficiency and robustness of the solution.

Definition 6.15. highway vehicle cost
The highway vehicle cost σh is the cost imposed on the highway vehicles due to the congestion
caused by the exiting vehicles.

σh =

∫
λ0
h(τ) · Cδ (∆h(τ)) dτ (6.18)

Definition 6.16. Exiting vehicle cost
The exiting vehicle cost σe is the total cost for the exiting vehicles due to the queuing at the

4The problem can be normalized to achieve a unit time discretization without any loss of generality.

Section 6.4. Analysis of incentive/tolling functions 153

bottleneck and the arrival time cost.

σe =

∫
λ0
e(τ) · [Cδ (∆h (τ)) + CA (t+ ∆e (τ))] dτ (6.19)

=

∫
λ0
e(τ) · CE dτ (6.20)

= N · CE (6.21)

where N is the total number of exiting vehicles and CE is the equilibrium cost. The exiting
vehicle cost only depends on the equilibrium cost.

Definition 6.17. Cost of incentives/tolls
The cost of incentives/tolls is the total amount of incentives and tolls distributed to the
exiting vehicles.

σI = −
∫
λ0
e(τ) · CI(t+ ∆e(τ)) dτ (6.22)

A incentive/tolling function that results in σI = 0 is called a revenue neutral incentive/tolling
function.

Definition 6.18. Social cost
The social cost σ is the total cost to the system due to both highway inefficiency and the cost
of incentives/tolls.

σ = σh + σI + σe (6.23)

6.4.1 Zero-congestion incentives/tolls

Definition 6.19. highway optimal incentive/toll
The highway optimal incentive/toll is the incentive/toll required to eliminate congestion on
the highway due to the exiting vehicles during the exiting vehicle equilibrium.

Proposition 6.9. Computing the highway optimal incentive
Let CE be the equilibrium cost without any incentives for N exiting vehicles and supp(λ) be
the support of the equilibrium flow of exiting vehicles. The highway optimal incentive is:

CI(t) =

{
min(CS)− CS if t ∈ supp(λ)

0 if t 6∈ supp(λ)
(6.24)

The new equilibrium cost will be min(CS).

Proof. The arrival cost function CA given the highway optimal incentive CI is

CA(t) = min(CS) if t ∈ supp(λ) (6.25)
CA(t) ≥ min(CS) if t 6∈ supp(λ) (6.26)

Section 6.4. Analysis of incentive/tolling functions 154

since CA = CS + CI . Therefore, {t : CA(t) = min(CA)} = supp(λ) and there is a plateau of
length supp(λ) at the minimum arrival time cost. A plateau of length equal to the support of
the original equilibrium flow distribution allows for new equilibrium departure distribution
that does not cause any congestion, since CA = CE for all t ∈ supp(λ). Figure 6.5 illustrates
the highway optimal incentive for a simple schedule cost function.

B t

CS

B t

CA

CE

C

CI

CE

Figure 6.5: The highway optimal incentive for a simple schedule cost function. Left: a
simple schedule cost function CS with linear earliness and lateness costs, an equilibrium
cost CE and corresponding highway optimal incentive CI . Right: the corresponding
arrival cost function CA with the new equilibrium CE that leads to no queuing.

For each feasible incentive CI , there is a corresponding toll CT
I such that both the

incentive and tolling function lead to the same equilibrium flow distribution.

Definition 6.20. Complementary toll
Given a bounded incentive CI , the complementary toll for this incentive CT

I is

CT
I (t) = −min (CI (t)) + CI(t) (6.27)

≥ 0 (6.28)

Proposition 6.10. Incentives and tolls
For a fixed schedule cost function CS and delay function Cδ, both the incentive function CI
and the tolling function CT

I lead to the same equilibrium.

Proof. The exiting vehicle equilibrium only depends on the shape of the arrival cost function
CA(t), i.e. the relative cost, so adding a constant−min(CI) will not alter the equilibrium.

Corollary 3. The highway optimal toll is:

CI(t) =

{
CE − CS if t ∈ supp(λ)

0 if t 6∈ supp(λ)
(6.29)

The new equilibrium cost will be CE. Figure 6.6 illustrates the highway optimal toll for a
simple schedule cost function.

Section 6.4. Analysis of incentive/tolling functions 155

B t

CS

B t

CA

CE

C

CI

CE

Figure 6.6: The highway optimal toll for a simple schedule cost function. Left: a simple
schedule cost function CS with linear earliness and lateness costs, an equilibrium cost CE
and corresponding highway optimal toll CI . Right: the corresponding arrival cost function
CA with the new equilibrium CE that leads to no queuing.

Note that the equilibrium cost for the exiting vehicles and who bares the cost of moving
the equilibrium is different in the two cases. In the case of an incentive, the controlling
agency will bear the entire cost of the demand shift, while in the case of a toll, the exiting
vehicles will bear the entire cost of the demand shift.

Corollary 4. Any equilibrium that is achieved via a incentive or toll can also be achieved
via a combination of incentives and tolls. Figure 6.7 illustrates a incentive/toll combination
that achieves an highway optimal flow allocation for a simple schedule cost function.

This allows the controlling agency to distribute the cost of the demand shift in an
equitable manner. For example, the distribution can be such that the tolls charged to the
exiting vehicles is equal to the incentive, which means that the controlling agency has no
net gains or losses (i.e. the control strategy is revenue neutral). Therefore, it is possible to
reduce both σh and σe while the net incentive/tolling cost σI is zero, which reduces the total
social cost σ.

B t

CS

B t

CA

CE

C

CI

CE

Figure 6.7: A combined incentive and tolling strategy that achieves a highway optimal flow
allocation for a simple schedule cost function. Left: a simple schedule cost function CS
with linear earliness and lateness costs, an equilibrium cost CE and corresponding highway
optimal incentive/toll CI . Right: the corresponding arrival cost function CA with the new
equilibrium CE that leads to no queuing. The vehicles that arrive within tI of the
scheduled arrival time B are tolled, while the vehicles that arrive outside this window are
given an incentive.

Section 6.4. Analysis of incentive/tolling functions 156

Proposition 6.11. Shifting the equilibrium
The support of the equilibrium can be shifted by ts with the combination of tolls and incentives
CI(t) = CS(t+ ts)− CS(t) to achieve a new equilibrium with the same equilibrium cost.

Proof. To shift the equilibrium by some value ts, we need to modify CA such that CA(t) =
CS(t+ ts). By definition CA(t) = CS(t) + CI(t). Therefore, we require

CS(t+ ts) = CS(t) + CI(t) (6.30)
⇒ CI(t) = CS(t+ ts)− CS(t) (6.31)

Figure 6.8 illustrates a left shift of the equilibrium by ts.

B t

CS

B t

CA

CE

C

CI
CE

B-ts
B-ts

Figure 6.8: A combined incentive and tolling strategy that shifts the equilibrium left by ts
for a simple schedule cost function. Left: a simple schedule cost function CS with linear
earliness and lateness costs, an equilibrium cost CE and incentive/toll CI corresponding to
a left shift of the equilibrium by ts. Right: the corresponding arrival cost function CA
with the new flow distribution and unchanged equilibrium cost CE.

Corollary 5. A shifted highway optimal equilibrium can be achieved by combining a shift
incentive/toll with a highway optimal incentive/toll. Figure 6.9 illustrates a highway optimal
incentive with a left shift of the equilibrium by ts.

An highway optimal incentive/toll eliminates highway congestion. Furthermore, the building
blocks described above provide great flexibility in both shifting the equilibrium flows across
time and distributing the cost of the demand shift between the vehicles and the controlling
agency. However, there are some a couple of drawbacks to this approach.

• A continuous time varying incentive/toll is extremely difficult to implement in practice.

• The precise arrival and delay cost function are not known.

Therefore, it is unlikely that such an incentive/toll will be used in practice. However, these
optimal strategies serve as a useful reference for implementing the simpler piecewise constant
incentives/tolls that are most commonly used in practice.

Section 6.4. Analysis of incentive/tolling functions 157

B t

CS

B t

CA

CE

C

CI

CEB-ts
B-ts

Figure 6.9: A combined incentive and tolling strategy that achieves a highway optimal flow
and shifts the equilibrium left by ts for a simple schedule cost function. Left: a simple
schedule cost function CS with linear earliness and lateness costs, an equilibrium cost CE
and two incentive/toll functions C1

I , C
2
I that correspond respectively to a left shift of the

equilibrium by ts and an highway optimal flow. Right: the corresponding arrival cost
function CA with the new flow distribution with equilibrium cost CE.

6.4.2 Step incentives/tolls

Definition 6.21. Step incentive/toll
A step incentive/toll is an incentive/tolling function with a constant value up to a given time
tI and zero after that.

CI(t) =

{
I < 0 if t < tI

0 if t ≥ tI
(6.32)

Thus, since the schedule cost function CS is continuous, a step incentive/toll will impose a
discontinuity CA(t+I) − CA(t−I) = I in the arrival cost function CA(t) at t = tI , where I is
the value of the incentive/toll.

From the definition of equilibrium compatible cost functions (definition 6.10), we know
that the arrival time cost function CA can admit positive discontinuities as long as CA(t+) ≥
CE, i.e. the right side of the discontinuity is not less than the equilibrium cost. Therefore,
arrival time functions with step incentives/tolls still admit equilibrium solutions, as long as
CI is picked such that CA(t+) ≥ CE at each discontinuity.

Proposition 6.12. Demand shift with step incentives
The exiting vehicle equilibrium can be shifted such that the support of the equilibrium flow is
either to the left of some time tmin or the right of some time tmax using the following step
incentives.

• Left shift:

CI =

{
I < 0 if tmin − tsupp(λ) ≤ t ≤ tmin

0 otherwise (6.33)

where tsupp(λ) is the length of the support of λ and I = −max(CA(t) : t ∈ (tmin −
tsupp(λ), tmin))−min(CA).

Section 6.4. Analysis of incentive/tolling functions 158

• Right shift:

CI =

{
I < 0 if tmax ≤ t ≤ tmax + tsupp(λ)

0 otherwise (6.34)

where tsupp(λ) is the length of the support of λ and I = −max(CA(t) : t ∈ (tmax, tmax +
tsupp(λ)))−min(CA).

Proof. Consider the case of the left shift. Let CA be the original arrival cost function and
C∗A be the new arrival cost function. Given the equilibrium λ, we know that the total
number of exiting vehicles is N ≤ tsupp(λ) · µe. If an incentive of I = max(CA(t) : t ∈
(tmin − tsupp(λ), tmin)) − min(CA(t)) is given during the interval tmin − tsupp(λ) ≤ t ≤ tmin,
the maximum arrival time cost C∗A during this interval is min(CA). Therefore, C∗A contains
an interval of tsupp(λ) such that C∗A < min(CA) during this interval, and the N ≤ tsupp(λ) · µe
vehicles can exit during this interval, which makes this an unique equilibrium solution. A
similar argument can be used to prove the case of the right shift as well.

Corollary 6. Demand shift with step tolls We can show that the demand shift can also be
achieved via a step toll using a similar argument.

B t

CS

B t

CA

CE

C

CI

CE

Figure 6.10: A step incentive strategy that shifts the the exiting vehicle flow to the left of
the scheduled arrival time B for a simple schedule cost function. Left: a simple schedule
cost function CS with linear earliness and lateness costs, an equilibrium cost CE and step
incentive function CI that corresponds the left shift of the equilibrium. Right: the
corresponding arrival cost function CA with the new flow distribution with equilibrium cost
CE.

Step incentives/tolls are inefficient for multiple reasons. As all the exiting vehicles
in the incentive window must be given the same incentive, the vehicles that arrive close
to the desired arrival are given a much larger incentive than needed. Consequently, the
equilibrium solution requires that these vehicles occur a large queuing delay to compensate
for the incentive. In fact, a step incentive can increase the total delay in the network,
causing undesirable side effects such as increasing emissions in addition to the additional
cost incurred. Furthermore, step incentives can not move a congested equilibrium to a
congestion-free equilibrium.

Section 6.4. Analysis of incentive/tolling functions 159

However, the efficiency of step incentives/tolls can be improved by combining step in-
centives/tolls. A sequence of step incentives can be used to approximate the highway optimal
incentive and obtain an equilibrium with a lower total incentive/toll cost σI . Figure 6.11
illustrates this. However, this still does not allow for a congestion free equilibrium.

B t

CS

B t

CA

CE

C

CI

CE

Figure 6.11: A more efficient step incentive strategy that shifts the the exiting vehicle flow
to the left of the scheduled arrival time B for a simple schedule cost function. Left: a
simple schedule cost function CS with linear earliness and lateness costs, an equilibrium
cost CE and piecewise constant step incentive/toll function CI that corresponds the left
shift of the equilibrium. Right: the corresponding arrival cost function CA with the new
flow distribution with equilibrium cost CE.

Furthermore, step incentives can also be mixed with step tolls to shift the equilibrium
cost between the vehicles and the controlling agency for any shift. Figure 6.12 illustrates this.

B t

CS

B t

CA

CE

C

CI

CE

Figure 6.12: A step incentive/toll strategy that shifts the the exiting vehicle flow to the left
of the scheduled arrival time B for a simple schedule cost function. Left: a simple schedule
cost function CS with linear earliness and lateness costs, an equilibrium cost CE and
piecewise constant step incentive/toll function CI that corresponds the left shift of the
equilibrium. Right: the corresponding arrival cost function CA with the new flow
distribution with equilibrium cost CE.

Section 6.4. Analysis of incentive/tolling functions 160

Step schedule cost functions

The inefficiency of step incentives/tolls is a direct result of the assumption that the
schedule time cost function CS is continuous. However, in reality the actual schedule time
cost incurred by commuters (imposed by employers) is likely to be discrete. In the event
of discrete schedule time cost functions, a sequence of step incentives/tolls can be used to
obtain a equilibrium that is congestion free for the highway traffic. Figure 6.13 illustrates
this.

B t

CS

B t

CA

CE

C

CI

CE

Figure 6.13: A step incentive/toll strategy that shifts the the exiting vehicle flow to the left
of the scheduled arrival time B for a simple schedule cost function. Left: a simple schedule
cost function CS with linear earliness and lateness costs, an equilibrium cost CE and
piecewise constant step incentive/toll function CI that corresponds the left shift of the
equilibrium. Right: the corresponding arrival cost function CA with the new flow
distribution with equilibrium cost CE.

In conclusion, we can make the following observations on controlling the departure time
equilibrium using incentives and tolls.

• Continuous incentives/tolls can be used to obtain a congestion free equilibrium, time
shift the exiting vehicle demand and to allocate the cost of the control between the
controlling agency and the drivers at any ratio.

• Step incentives/tolls can be used to time shift the exiting vehicle demand and control
the cost allocation, but can not be used to obtain a congestion free equilibrium for
general schedule cost functions.

• If the schedule cost function is piecewise constant, then step incentives/tolls can be
used to obtain a congestion free equilibrium.

161

Chapter 7

Conclusions and future work

The research pursued in this dissertation was motivated by the need for computationally
tractable algorithms for vehicle routing and demand management in road networks, with
the aim of improving the efficiency of existing network infrastructure, in the context of
the Connected Corridors and Mobile Millennium projects. The contributions are spread
across three research topics, 1) route planning with reliability guarantees, 2) system optimal
dynamic traffic assignment, and 3) controlling user equilibrium departure times. We conclude
this dissertation with some final remarks on each of these research topics and a discussion
of possible extensions.

Route planning with reliability guarantees. The first part of this dissertation (Chap-
ters 2 and 3) considers the computationally challenging reliable routing problem of maximiz-
ing the probability of on-time arrival, and presents algorithmic methods that improve the
tractability of the problem over existing methods. This reasearch provides a step towards
the eventual goal of implementing a real-time stochastic router in an operational setting.

The optimization techniques discussed in chapter 2 are based on the existence of an
uniform strictly positive minimum link travel-time that allows us to compute the SOTA so-
lution using a label-setting algorithm instead of a label-correcting successive approximations
scheme. It also allows for batch computation of the convolution integrals, which is a key
component of the optimization techniques. It is seen that the heterogeneity of the minimum
link travel-times on a network can make the SOTA algorithm very sensitive to the order
in which the nodes are treated. Thus, an optimal ordering algorithm is developed to find
the update order that minimizes the computation time. Finally, a technique for efficiently
computing convolutions of streaming signals, zero-delay convolution (ZDC), is combined
with the optimal ordering to reduce the time complexity of each convolution product to
O(T

(
log2 T − log2 δi

)
, where δi is the minimum strictly positive loop travel-time for node i.

Experimental results are provided to numerically justify the theoretical contributions.
Chapter 3 presents, what are to the best of our knowledge, the first results on using

preprocessing techniques for the stochastic on-time arrival (SOTA) problem. We discuss
the difficulties in applying the preprocessing techniques commonly used in the deterministic

162

setting to the SOTA problem, and identify two techniques (reach and arc-flags) that can
be adapted to the stochastic setting. We also present an extension of the reach technique
that enables more aggressive pruning of the search space at the cost of some additional
memory. Experimental results show that the preprocessing methods can provide up to a
order of magnitude improvement in runtime for the networks we have considered and time
budgets on the order of 2000 seconds. The main limitation of this work is the inability
to perform the preprocessing in a computationally efficient manner, making the technique
intractable for large networks with large time budgets. However, we discuss the potential
for faster precomputation using efficient heuristic schemes, and present one such example for
arc-flags. Furthermore, reimplementing the algorithms with more low level code optimization
and memory efficiency on more powerful hardware systems should allow us to understand
the behavior of these algorithms on larger networks for larger time budgets. In addition,
we are confident that refinements to the preprocessing schemes, such as more targeted reach
partitioning schemes and better strategies for selecting Arc-flag regions, will also provide
further gains. While these precomputation techniques reduce the computation time for the
SOTA problem, there are no theoretical guarantees of the speedup that can be achieved. In
the deterministic shortest path problem, it has been shown that precomputation techniques
are provably efficient in networks with a low Highway Dimension [2]. Ideally, we would like to
obtain a set of characteristics for both the network structure and the underlying probability
distributions such that the precomputation techniques can be shown to provably improve
the query time. Such a result would of course be more complex than the result in [2], due
to the influence of the stochastic edge weights in addition to the network structure.

While most of the results presented in this section focus on exact solutions to the SOTA
problem, practical routing applications rarely require the problem to be solved exactly. The
tractability of the problem has the potential to be improved significantly using approximation
algorithms. Furthermore, initial experiments on solving the SOTA problem in parallel on a
GPU [1] have been promising and combining this with the preprocessing methods described
in this section are the interesting area for future exploration. The current solutions to the
SOTA problem also assume that the network satisfies the first-in-first-out (FIFO) property.
However, transit networks for example do not satisfy this property, since the optimal strategy
might involve waiting at a station for an express bus or train to arrive. Therefore, the solution
methods need to be adapted to accommodate such networks. Finally, the solution to the
SOTA problem can also be used as a efficient lower bound for computing the much harder
path-based SOTA problem [104], where we wish to obtain a fixed path as opposed to a policy.
This provides another natural extension to the work presented in this dissertation.

System optimal traffic assignment with partial control. The second part of this
dissertation (Chapter 4) presents a model and optimization framework for solving the sys-
tem optimal dynamic traffic assignment (SO-DTA) problem with partial control for general
networks with horizontal queuing dynamics. The model only requires full origin-destination
(OD) information for the fraction of the demand that is controllable, with aggregate split

163

ratios being sufficient for the non-controllable (selfish) demand.
One assumption of the current setup is that behavior of the selfish demand is prescribed

by fixed aggregate split ratios that do not react to the control. This is a reasonable assump-
tion in non-recurrent situations such as rerouting vehicles due to an accident, but unrealistic
if the routing control is done on the repeated basis, for example during the daily rush hours.
In such a situation, the selfish demand would react to the new state of the network and
change their routes accordingly to minimize individual travel-times, with the potential of
once again creating an inefficient network utilization. These dynamics are typically modeled
as a leader-follower or Stackelberg game, where the leader tries to optimize the efficiency of
the network utilization with the knowledge that the follower will act selfishly. As mentioned
in the introduction, finding the optimal control for a Stackelberg game is NP-Hard in the
size of the network for the class of increasing latency functions even in the case of the static
problem [113] and it is common to use approximate strategies [113, 130]. Adapting these
strategies to efficiently compute the solution to the SO-DTA-PC problem is an important
next step to address.

The traffic dynamics in the proposed model are given by a Godunov discretization of
the Lighthill-Williams-Richards (LWR) partial differential equation with a triangular flux
function and a corresponding multi-commodity junction solver. The sparsity pattern of the
resulting forward system enables computing the gradient of the system with linear compu-
tational complexity and memory using the discrete adjoint method. The junction solver
presented in the dissertation considers (1 × m), (n × 1) and (2 × m) junctions because a
unique solution does not always exist for a general (n × m) junction. There are existing
junction solvers that can accommodate general (n×m) junctions, but require a parameter
tuning step to determine the weights corresponding to the dual objectives at the junction,
maximizing flow and minimizing the violation of the priority rule. One important extension
to the model presented in this dissertation is to develop a junction model that can accom-
modate general (n ×m) junctions, but uses a natural trade-off between flow maximization
and the priority rule, eliminating the need to prescribe weights.

The proposed framework for solving the SO-DTA-PC problem is used to find the opti-
mal vehicle rerouting strategy in response to a capacity loss such as an accident and show
the congestions reductions that can be achieved. Numerical results are presented for a test
network and Interstate 210 in Southern California. The system is implemented in the Con-
nected Corridors system at UC Berkeley, a partnership between the California Department
of Transportation (CalTrans) and California Partners for advanced transportation technol-
ogy (PATH) for Integrated Corridor Management (ICM).

The morning commute problem. The third and final part of the dissertation (Chapters
5, 6) tackle the problem of spill-back from a congested off-ramp during the morning commute
and incentive/tolling strategies to minimize the negative impact of this local phenomenon
on the rest of the network.

164

To solve the morning commute problem at an off-ramp, we first need to be able to
analytically prescribe the delays at the off-ramp as a function of the demand at the source.
Chapter 5 presents a mathematical framework for modeling traffic flow through a network
with a single source and multiple sinks. The model satisfies the standard laws of flow
dynamics such as the FIFO property and is shown to lead to a well-posed problem with a
unique solution. The main benefit of this framework is the ability to analytically describe
the delays at each junction as a function of the boundary flows at any other upstream
junction and the delay over any sub-path with respect to the boundary flow at the source
node of the sub-path. This is a critical requirement when solving control and optimization
problems over a network, since solving an optimization problem over simulation models is
generally intractable in terms of computational complexity. The versatility of computing
the delays as a function of the inflow at any point in the network is achieved though a
mathematical framework for time mapping the delays. While this framework is sufficient for
solving the morning commute problem at an off-ramp, it is fairly limited by the single source
assumption. The time mapping framework that is used can, however, be generalized to any
non-cyclic (tree) network. Thus, the next step would be to introduce merging dynamics into
the framework to obtain a more general network model.

Chapter 6 considers the spill-back from a congested off-ramp and the resulting through-
put loss on a highway when the departure times of the exiting vehicles form an equilibrium
with respect to the total cost incurred by the exiting vehicles. Existence and uniqueness
properties are proved for a general class of cost functions that allow for local minima and
discontinuities, which is a new result for the equilibrium departure time problem, even in
the case of a single bottleneck as opposed to an off-ramp junction.

However, the junction considered in this problem takes a very specific form, where there
is an exit lane prior to the off-ramp and the non-exiting freeway demand is assumed to
be less than the capacity of the freeway (not counting the exit lane). A natural extension
of this work is to extend the analysis to off-ramp junctions without an exit lane on the
freeway and to the Newell off-ramp model [102], where the through traffic does not satisfy
the FIFO property. We have already shown that the framework from chapter 5 can be used
to model the Newell off-ramp junction (see section 5.4.2). What remains to be shown is the
existence and uniqueness of the departure time equilibrium for these junctions, which is a
more involved due to the more complicated queuing dynamics that arise.

The analysis provided in this chapter, informs demand side congestion management
strategies via congestion pricing (tolling) or incentives at an off-ramp. We also show how
tolling and incentives can be used in tandem to achieve a wide variety of demand shifts for
the vehicles that exit the highway at the congested off-ramp and thereby decrease congestion
for the vehicles that continue on the freeway. The cost of the demand shift can be distributed
in any ratio between the traffic management authority and the commuters by picking the ap-
propriate incentive/tolling function. This allows for revenue neutral management strategies
that are viewed more favorably with respect to public policy considerations.

165

Bibliography

[1] Abeydeera, M., and Samaranayake, S. GPU parallalization of the stochastic on-
time arrival problem. In Proceedings of the 21st IEEE Conference on High Performance
Computing (HiPC), Goa, India (2014). 9, 162

[2] Abraham, I., Fiat, A., Goldberg, A. V., and Werneck, R. F. Highway
Dimension, Shortest Paths, and Provably Efficient Algorithms. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA10), Society for Industrial and
Applied Mathematics (2010). 2, 32, 162

[3] Adas, A. Traffic models in broadband networks. Communications Magazine, IEEE
35, 7 (1997), 82–89. 104

[4] Arnott, R., de Palma, A., Lindsey, R., and Palma, A. D. Departure time and
route choice for the morning commute. Transportation Research Part B: Methodological
24, 3 (1990), 209–228. 5

[5] Assaf, D., and Levikson, B. Closure of Phase Type Distributions Under Operations
Arising in Reliability Theory. The Annals of Probability 10, 1 (1982), 265–269. 18

[6] Astarita, V. A continuous time link model for dynamic network loading based on
travel time function. In 13th International Symposium on Transportation and Traffic
Theory (Lyon, France, 1996), pp. 79–102. 3

[7] Aswani, A., and Tomlin, C. Game-theoretic routing of GPS-assisted vehicles
for energy efficiency. In American Control Conference (ACC), 2011 (2011), IEEE,
pp. 3375–3380. 4

[8] Aubin, J. P. Viability Theory. Springer, 2001. 32
[9] Bast, H., Funke, S., and Matijevic, D. Transit-ultrafast shortest-path queries

with linear-time preprocessing. 9th DIMACS Implementation Challenge (2006). 49,
51

[10] Bauer, R., and Delling, D. Sharc: Fast and robust unidirectional routing. Journal
of Experimental Algorithmics (JEA) 14 (2009), 4. 49, 51

[11] Bayen, A. M., Raffard, R. L., and Tomlin, C. J. Adjoint-based control of a
new Eulerian network model of air traffic flow. Control Systems Technology, IEEE
Transactions on 14, 5 (2006), 804–818. 63

[12] Beckman, M., McGuire, C. B., and Winsten, C. B. Studies in the Economics
of Transportation. Yale University Press, New Haven, 1956. 4

[13] Bellman, R. E., and Kalaba, R. E. Numerical Inversion of the Laplace Transform.

BIBLIOGRAPHY 166

American Elsevier Publishing Company, 1966. 18
[14] Bertsekas, D. P. Nonlinear programming. Athena Scientific, 1999. 62, 63
[15] Bertsekas, D. P. Dynamic Programming and Optimal Control. Athena Scientific,

2005. 3
[16] Bertsekas, D. P., and Tsitsiklis, J. N. Neuro-dynamic Programming. Athena

Scientific, 1996. 16
[17] Block, H. W., and Savits, T. H. The IFRA Closure Problem. The Annals of

Probability 4, 6 (1976), 1030–1032. 18
[18] Boese, K. D., Kahng, A. B., and Muddu, S. A new adaptive multi-start technique

for combinatorial global optimizations. Operations Research Letters 16, 2 (1994), 101
– 113. 85, 98

[19] Borokhov, P., Blandin, S., Samaranayake, S., Goldschmidt, O., and
Bayen, A. An adaptive routing system for location-aware mobile devices on the road
network. In 2011 14th International IEEE Conference on Intelligent Transportation
Systems (ITSC) (Oct. 2011), IEEE, pp. 1839–1845. 9

[20] Boyd, S., and Vandenberghe, L. Convex optimization. Cambridge university
press, 2004. 62

[21] Braess, D. Über ein Paradoxon aus der Verkehrsplanung. Mathematical Methods of
Operations Research 12, 1 (1968), 258–268. 1, 4

[22] Carey, M. Nonconvexity of the dynamic traffic assignment problem. Transportation
Research Part B: Methodological 26, 2 (1992), 127–133. 62

[23] Cassidy, M. J., Anani, S. B., and Haigwood, J. M. Study of freeway traffic
near an off-ramp. Transportation Research Part A: Policy and Practice 36, 6 (2002),
563–572. 5

[24] Chang, C.-S. Performance guarantees in communication networks. Springer, 2000.
104

[25] Chang, G.-L., and Mahmassani, H. S. Travel time prediction and departure time
adjustment behavior dynamics in a congested traffic system. Transportation Research
Part B: Methodological 22B (1988), 217–232. 5

[26] Chen, C., Petty, K., Skabardonis, A., Varaiya, P., and Jia, Z. Freeway
performance measurement system: mining loop detector data. Transportation Research
Record: Journal of the Transportation Research Board 1748, 1 (2001), 96–102. 99

[27] Chorus, C. G., Molin, E. J. E., and Van Wee, B. Use and effects of Advanced
Traveller Information Services (ATIS): a review of the literature. Transport Reviews,
26.2 (2006), 127–149. 2

[28] Connected Corridors. http://connected-corridors.berkeley.edu/. Accessed:
2013-05-27. 2, 6

[29] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to
Algorithms. The MIT Press, 2001. 25, 31, 32

[30] Cronin, B., Mortensen, S., and Thompson, D. The shortest route through a
network with time-dependent internodal transit times. Public Roads 71.5 (2008). 6

[31] Daganzo, C. The cell transmission model: A dynamic representation of highway

http://connected-corridors.berkeley.edu/

BIBLIOGRAPHY 167

traffic consistent with the hydrodynamic theory. Transportation Research Part B:
Methodological 28, 4 (1994), 269–287. 4, 63

[32] Daganzo, C. F. The uniqueness of a time-dependent equilibrium distribution of
arrivals at a single bottleneck. Transportation science 19, 1 (1985), 29–37. 5, 144

[33] Daganzo, C. F. THE CELL TRANSMISSION MODEL , PART II : NETWORK
TRAFFIC. 79–93. 104, 105

[34] Daganzo, C. F. The cell transmission model, part II: Network traffic. Transportation
Research Part B 29, 2 (1995), 79–93. 4, 63

[35] D’Angelo, G., Frigioni, D., and Vitale, C. Dynamic arc-flags in road networks.
In Experimental Algorithms. Springer, 2011, pp. 88–99. 54

[36] Dean, B. C. Algorithms for minimum-cost paths in time-dependent networks with
waiting policies. Networks 44 (2004), 41–46. 3, 19, 20

[37] Dean, B. C. Speeding up Stochastic Dynamic Programming with Zero-Delay Convo-
lution. Algorithmic Operations Research 5, 2 (2010). 8, 14, 41, 42

[38] Delle Monache, M. L., Reilly, J., Samaranayake, S., Krichene, W.,
Goatin, P., and Bayen, A. A PDE-ODE Model for a Junction with Ramp Buffer.
SIAM Journal on Applied Mathematics (in review) (2013). 9, 63

[39] Delling, D., Sanders, P., Schultes, D., and Wagner, D. Engineering Route
Planning Algorithms. 117–139. 3

[40] der Zijpp, N. V., and Koolstra, K. Multiclass continuous-time equilibrium
model for departure time choice on single-bottleneck network. Transportation Research
Record: Journal of the Transportation Research Board 1783, -1 (2002), 134–141. 5

[41] Dervisoglu, G., Gomes, G., Kwon, J., Horowitz, R., and Varaiya, P. Au-
tomatic Calibration of the Fundamental Diagram and Empirical Observations on Ca-
pacity. 6

[42] Dervisoglu, G., Gomes, G., Kwon, J., Horowitz, R., and Varaiya, P. Auto-
matic calibration of the fundamental diagram and empirical observations on capacity.
In Transportation Research Board 88th Annual Meeting (2009), no. 09-3159. 66

[43] Dijkstra, E. W. A Note on Two Problems on Connection with Graphs. Numerishe
Mathematik 1 (1959), 269–271. 2

[44] Dobbs, R., Smit, S., Remes, J., Manyika, J., Roxburgh, C., and Restrepo,
A. Urban world : Mapping the economic power of cities. Technical Report (March
2011). 1

[45] Dreyfus, S. An appraisal of some shortest-path algorithms. Operations Research 17
(1969), 395–412. 19

[46] Duffy, A. An Introduction to Gradient Computation by the Discrete Adjoint Method.
Tech. rep., Florida State University, 2009. 8, 86

[47] Fan, Y., and Nie, Y. Optimal Routing for Maximizing the Travel Time Reliability.
Networks and Spatial Economics 6, 3-4 (Aug. 2006), 333–344. 13, 15, 16, 35, 44

[48] Fan, Y. Y., Kalaba, R. E., and Moore, J. E. Arriving on Time. Journal of
Optimization Theory and Applications 127, 3 (Dec. 2005), 497–513. 3, 18

[49] Flajolet, A., Blandin, S., and Jaillet, P. Robust Adaptive Routing Under

BIBLIOGRAPHY 168

Uncertainty. arXiv preprint arXiv:1408.3374 (2014). 3
[50] Frank, H. Shortest paths in probabilistic graphs. Operations Research 17, 4 (1969),

583–599. 3
[51] Frost, V. S., and Melamed, B. Traffic modeling for telecommunications networks.

Communications Magazine, IEEE 32, 3 (1994), 70–81. 104
[52] Fu, L., and Rilett, L. Expected shortest paths in dynamic and stochastic traffic

networks. Transportation Research Part B 32, 7 (1998), 499–516. 2
[53] Garavello, M., and Piccoli, B. Traffic flow on networks. American institute of

mathematical sciences Springfield„ USA, 2006. 8, 65, 71
[54] Gardner, W. G. Efficient convolution without input-output delay. Journal of the

Audio Engineering Society 43, 3 (1995), 127–136. 8, 14, 41
[55] Geisberger, R., Sanders, P., Schultes, D., and Delling, D. Contraction

hierarchies: Faster and simpler hierarchical routing in road networks. In Proceedings
of the 7th Workshop on Experimental Algorithms (WEA’08) (2008), vol. 2, Springer,
pp. 319–333. 2, 32, 49, 50

[56] Giles, M. B. M., and Pierce, N. A. N. An introduction to the adjoint approach
to design. Flow, Turbulence and Combustion 65, 3 (2000), 393–415. 8, 63

[57] Giles, M. B. M. B., and Pierce, N. A. N. Adjoint equations in CFD : duality ,
boundary conditions and solution behaviour. AIAA paper 97, 1850 (1997), 182–198.
8, 63

[58] Godunov, S. K. A difference method for numerical calculation of discontinuous
solutions of the equations of hydrodynamics. Matematicheskii Sbornik 89, 3 (1959),
271–306. 65, 67

[59] Goldberg, A. V., Kaplan, H., and Werneck, R. F. Reach for A*: Efficient
point-to-point shortest path algorithms. In ALENEX (2006), vol. 6, pp. 129–143. 50

[60] Goldberg, A. V., Kaplan, H., and Werneck, R. F. Better Landmarks within
Reach. In Workshop on Experimental Algorithms (WEA), Rome, Italy (2007). 49, 52,
53, 55, 59

[61] Goldberg, A. V., and Werneck, R. F. F. Computing point-to-point shortest
paths from external memory. In ALENEX/ANALCO (2005), pp. 26–40. 49

[62] Gomes, G., and Horowitz, R. Optimal freeway ramp metering using the asymmet-
ric cell transmission model. Transportation Research Part C: Emerging Technologies
14, 4 (2006), 244–262. 62

[63] Hall, R. W. The fastest path through a network with random time-dependent travel
times. Transportation Science 20, 3 (1986), 182. 2

[64] Hendrickson, C., and Kocur, G. Schedule delay and departure time decisions in
a deterministic model. Transportation Science 15, 1 (1981), 62–77. 5

[65] Herring, R., Hofleitner, A., Amin, S., Nasr, T. A., Khalek, A. A., Abbeel,
P., and Bayen, A. Using Mobile Phones to Forecast Arterial Traffic Through Sta-
tistical Learning. In Transportation Research Board 89th Annyal Meeting, Washington
D.C., January 10-14, 2010. 6

[66] Herring, R., Hofleitner, A., Bayen, A., and Abbeel, P. Estimating arterial

BIBLIOGRAPHY 169

traffic conditions using sparse probe data. In 13th International Conference on Intelli-
gent Transportation Systems (Madeira Island, Portugal, Sept. 2010), Ieee, pp. 929–936.
33, 39, 47

[67] Hilger, M., Köhler, E., Möhring, R. H., and Schilling, H. Fast point-to-
point shortest path computations with arc-flags. The Shortest Path Problem: Ninth
DIMACS Implementation Challenge 74 (2009), 41–72. 49, 50, 54, 59

[68] Hunter, T., Abbeel, P., and Bayen, A. M. The path inference filter: Model-
based low-latency map matching of probe vehicle data. In Algorithmic Foundations
of Robotics X (Heidelberg, Germany, 2012), Springer Tracts in Advanced Robotics,
Springer-Verlag, pp. 591:1–607:17. 6, 57

[69] Hunter, T., Hofleitner, A., Reilly, J., Krichene, W., Thai, J., Kouve-
las, A., Abbeel, P., and Bayen, A. Arriving on time: estimating travel time
distributions on large-scale road networks. arXiv preprint arXiv:1302.6617 (2013). 6

[70] Jain, S., Fall, K., and Patra, R. Routing in a delay tolerant network. In Proceed-
ings of the 2004 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (New York, NY, USA, 2004), SIGCOMM ’04, ACM,
pp. 145–158. 104

[71] Jameson, A., and Martinelli, L. Aerodynamic shape optimization techniques based
on control theory. Springer, 2000. 63

[72] Kelly, F. P. Network routing. Philosophical Transactions of the Royal Society of
London. Series A: Physical and Engineering Sciences 337, 1647 (1991), 343–367. 4

[73] Korilis, Y. A., Lazar, A. A., and Orda, A. Achieving network optima using
Stackelberg routing strategies. IEEE/ACM Transactions on Networking (TON) 5, 1
(1997), 161–173. 4

[74] Koutsoupias, E., and Papadimitriou, C. Worst-case equilibria. In Proceedings of
the 16th annual conference on Theoretical aspects of computer science (1999), Springer-
Verlag, pp. 404–413. 4

[75] Krichene, W., Reilly, J., Amin, S., and Bayen, A. M. Stackelberg Routing on
Parallel Networks with Horizontal Queues. IEEE Transactions on Automatic Control
(in review) (2013). 4

[76] Kuwahara, M. Equilibrium queueing patterns at a two-tandem bottleneck during
the morning peak. Transportation Science 24, 3 (1990), 217–229. 5

[77] Lago, A., and Daganzo, C. F. Spillovers, merging traffic and the morning com-
mute. Transportation Research Part B: Methodological 41, 6 (2007), 670–683. 5

[78] Lebacque, J. P. The godunov scheme and what it means for first order traffic flow
models. In Proceedings of the 13th International Symposium on Transportation and
Traffic Theory (1996), pp. 647–678. 104, 105

[79] L’Ecuyer, P. Stochastic Simulation in Java,
http://www.iro.umontreal.ca/~{}simardr/ssj/indexe.html, (2008). 33, 44

[80] Lespiau, J.-B., Samaranayake, S., and Bayen, A. Solving the dynamic user
equilibrium problem via sequential convex optimization for parallel horizontal queuing
networks. In Transportation Research Board 88th Annual Meeting (2015). 9

http://www.iro.umontreal.ca/~{}simardr/ssj/indexe.html

BIBLIOGRAPHY 170

[81] Leveque, R. Finite volume methods for hyperbolic problems. Cambridge University
Press, Cambridge, UK, 2002. 67

[82] Lighthill, M. J., and Whitham, G. B. On kinematic waves. II. A theory of traffic
flow on long crowded roads. Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences 229, 1178 (1955), 317–345. 4, 63, 65

[83] Lindsey, R. Existence, uniqueness, and trip cost function properties of user equilib-
rium in the bottleneck model with multiple user classes. Transportation science 38, 3
(2004), 293–314. 5

[84] Lo, H. K., Chang, E., and Chan, Y. C. Dynamic network traffic control. Trans-
portation Research Part A: Policy and Practice 35, 8 (2001), 721 – 744. 104

[85] Loui, R. P. Optimal paths in graphs with stochastic or multidimensional weights.
Communications of the ACM. 26, 9 (1983), 670–676. 2

[86] M. Kobitzsch, S. Samaranayake, D. S. Pruning Techniques for the Stochastic
on-time Arrival Problem - An Experiemental Study. 9

[87] Mahmassani, H., and Herman, R. Dynamic user equlibrium departure ime and
route choice on idealized traffic arterials. Transportation Science 18 (1984), 362–384.
5

[88] Mahmassani, H. S., and Chang, G.-L. Experiments with departur time choice
dynamics of urban commuters. Transportation Research Part B: Methodological 20B
(1986), 297–320. 5

[89] Marti, R. Multi-start methods. In Handbook of Metaheuristics, F. Glover and G. A.
Kochenberger, Eds., vol. 57 of International Series in Operations Research and Man-
agement Science. Springer US, 2003, pp. 355–368. 85, 98

[90] Merchant, D. K., and Nemhauser, G. L. A Model and an Algorithm for the
Dynamic Traffic Assignment Problems. Transportation science 12, 3 (1978), 183–199.
3, 104

[91] Merchant, D. K., and Nemhauser, G. L. Optimality conditions for a dynamic
traffic assignment model. Transportation Science 12, 3 (1978), 183–199. 3

[92] Miller, M. A., and Skabardonis, A. San Diego I-15 Integrated Corridor Manage-
ment (ICM) System: Stage II (analysis, Modeling, and Simulation. California PATH
Program, Institute of Transportation Studies, University of California at Berkeley,
2010. 6

[93] Miller-Hooks, E. D., and Mahmassani, H. S. Least Expected Time Paths
in Stochastic, Time-Varying Transportation Networks. Transportation Science 34, 2
(2000), 198–215. 2

[94] Mitchell, I. M., Bayen, A. M., and Tomlin, C. J. A time-dependent hamilton-
jacobi formulation of reachable sets for continuous dynamic games. Automatic Control,
IEEE Transactions on 50, 7 (2005), 947–957. 104

[95] Mobile Millennium. http://traffic.berkeley.edu, 2008. 2, 7, 14, 47
[96] Morton, K. W., and Mayers, D. F. Numerical solution of partial differential

equations: an introduction. Cambridge university press, 2005. 100
[97] Muralidharan, A., Dervisoglu, G., and Horowitz, R. Freeway traffic flow

BIBLIOGRAPHY 171

simulation using the link node cell transmission model. In American Control Confer-
ence, 2009. ACC’09. (2009), IEEE, pp. 2916–2921. 6

[98] Nagurney, A., Dong, J., and Zhang, D. A supply chain network equilibrium
model. Transportation Research Part E: Logistics and Transportation Review 38, 5
(2002), 281–303. 104

[99] Newell, G. F. The morning commute for nonidentical travelers. Transportation
Science 21, 2 (1987), 74–88. 5

[100] Newell, G. F. Traffic flow for the morning commute. Transportation Science 22
(1988), 47–58. 5

[101] Newell, G. F. Delays caused by a queue at a freeway exit ramp. Transportation
Research Part B: Methodological 33, 5 (1999), 337 – 350. 134, 136

[102] Newell, G. F. Delays caused by a queue at a freeway exit ramp. Transportation
Research Part B: Methodological 33, 5 (1999), 337–350. 164

[103] Nie, Y., and Fan, Y. Arriving-on-Time Problem: Discrete Algorithm That Ensures
Convergence. Transportation Research Record 1964, 1 (Jan. 2006), 193–200. 13, 16,
17, 19, 24, 35, 44

[104] Niknami, M., Samaranayake, S., and Bayen, A. Tractable Pathfinding for the
Stochastic On-Time Arrival Problem. arXiv preprint arXiv:1408.4490 (2014). 9, 162

[105] Nikolova, E., Brand, M., and Karger, D. R. Optimal route planning under
uncertainty. In ICAPS (2006), vol. 6, pp. 131–141. 3

[106] Orda, A., and Rom, R. Shortest-path and minimum-delay algorithms in networks
with time-dependent edge-length. Journal of the ACM (JACM) 37, 3 (1990), 607–625.
19

[107] Parmentier, A., Samaranayake, S., Xuan, Y., and Bayen, A. M. A mathe-
matical framework for delay analysis in single source networks. Technical report (2014.
http://dx.doi.org/10.7922/G2RN35S6). 9

[108] Peeta, S., and Ziliaskopoulos, A. Foundations of Dynamic Traffic Assignment
: The Past , the Present and the Future. Networks and Spatial Economics (2001),
233–265. 4, 104

[109] Raffard, R. An adjoint-based parameter identification algorithm applied to planar
cell polarity signaling. Automatic Control, January (2008), 109–121. 8, 63

[110] Reilly, J., Monache, M. L. D., Samaranayake, S., Krichene, W., Gaotin,
P., and Bayen, A. An efficient method for coordinated ramp metering using the
discrete adjoint method. Journal of Optimization Theory and Applications, in review
(2013). 6, 7, 9, 65, 104

[111] Richards, P. I. Shock waves on the highway. Operations research 4, 1 (1956), 42–51.
4, 63, 65

[112] Riedmiller, M., and Braun, H. Rprop-a fast adaptive learning algorithm. In
Proceedings of the International Symposium on Computer and Information Science
VII), Universitat (1992), Citeseer. 96

[113] Roughgarden, T. Stackelberg scheduling strategies. In Proceedings of the thirty-
third annual ACM symposium on Theory of computing (2001), ACM, pp. 104–113. 4,

http://dx.doi.org/10.7922/G2RN35S6

BIBLIOGRAPHY 172

63, 163
[114] Roughgarden, T. The Price of Anarchy is Independent of the Network. Computer,

May (2002), 1–24. 4
[115] Roughgarden, T. On the severity of Braess’s paradox: designing networks for selfish

users is hard. Journal of Computer and System Sciences 72, 5 (2006), 922–953. 4
[116] Roughgarden, T., and Tardos, É. Bounding the inefficiency of equilibria in

nonatomic congestion games. Games and Economic Behavior 47, 2 (2004), 389–403. 4
[117] Sabran, G., Samaranayake, S., and Bayen, A. Precomputation techniques for

the stochastic on-time arrival problem. In SIAM Meeting on Algorithm Engineering
and Experiments (2014). 8

[118] Samaranayake, S., Blandin, S., and Bayen, A. A tractable class of algorithms
for reliable routing in stochastic networks. Transportation Research Part C: Emerging
Technologies 20, 1 (2011), 199–217. 8, 55

[119] Samaranayake, S., Blandin, S., and Bayen, A. Speedup Techniques for the
Stochastic on-time Arrival Problem. In 12th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (2012), vol. 25 of OpenAccess
Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 83–96. 8

[120] Samaranayake, S., Blandin, S., Bayen, A., Samitha Samaranayake,
Sébastien Blandin, and Alexandre Bayen. Learning the dependency structure
of highway networks for traffic forecast. In Decision and Control and European Control
Conference (CDC-ECC), 2011 50th IEEE Conference on (Dec. 2011), pp. 5983–5988.
10

[121] Samaranayake, S., Holstius, D., Monteil, J., Tracton, K., Glaser, S.,
Seto, E., and Bayen, A. Real-time estimation of pollution emissions and dispersion
from highway traffic. Computer-Aided Civil and Infrastructure Engineering 29 (August
2014), 546–558. 10

[122] Samaranayake, S., Krichene, W., Reilly, J., Delle Monache, M. L.,
Gaotin, P., and Bayen, A. System Optimal Dynamic Traffic Assignment with
Partial Compliance (SO-DTA-PC). Technical report (2014. http://dx.doi.org/10.
7922/G23X84KV). 7, 8, 104

[123] Samaranayake, S., Parmentier, A., Xuan, Y., and Bayen, A. M. Solving the
user equilibrium departure time problem at an off-ramp with incentive compatible cost
functions. Technical report (2014. http://dx.doi.org/10.7922/G2057CVF). 9

[124] Schrank, D., Lomax, T., and Turner, S. Texas Transportation Institute 2010
urban mobility report. College Station, TX: Texas Transportation Institute, A&M
University (2010). 1

[125] Sedgewick, R. Algorithms in C. Addison Wesley Publishing Company, 1990. 31
[126] Simaiakis, I., and Balakrishnan, H. Queuing models of airport departure pro-

cesses for emissions reduction. In AIAA Guidance, Navigation and Control Conference
and Exhibit (2009). 104

[127] Smith, M. J., and Smith, J. The existence of a time-dependent equilibrium distri-

http://dx.doi.org/10.7922/G23X84KV
http://dx.doi.org/10.7922/G23X84KV
http://dx.doi.org/10.7922/G2057CVF

BIBLIOGRAPHY 173

bution of arrivals at a single bottleneck. Transportation science 18, 4 (1984), 385–394.
5, 144

[128] Stone, H. S. Multiprocessor scheduling with the aid of network flow algorithms.
Software Engineering, IEEE Transactions on, 1 (1977), 85–93. 104

[129] Stone, M. H. The generalized weierstrass approximation theorem. Mathematics
Magazine 21, 5 (1948), 237–254. 112

[130] Swamy, C. The effectiveness of Stackelberg strategies and tolls for network congestion
games. In Symposium on Discrete Algorithms: Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms (2007), vol. 7, pp. 1133–1142. 4, 63,
163

[131] Vickrey, W. S., and William S. Vickrey. Congestion theory and transport
investment. The American Economic Review 59, 2 (1969), 251–260. 4, 5, 9, 139, 144

[132] Wachter, A., and Biegler, L. T. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. 2005. 86, 98

[133] Waller, S. T., and Ziliaskopoulos, A. K. On the Online Shortest Path Problem
with Limited Arc Cost Dependencies. Networks 40, 4 (2002), 216–227. 2

[134] Wardrop, J. G. Some theoretical aspects of road traffic research. Proceedings of the
Institution of Civil Engineers 1 (1952), 325–378. 4

[135] Wendykier, P. JTransforms library,
http://sites.google.com/site/piotrwendykier/software/jtransforms, (2009).
33, 44

[136] Work, D., Blandin, S., Tossavainen, O.-P., Piccoli, B., and Bayen, A. A
traffic model for velocity data assimilation. AMRX Applied Mathematics Research
eXpress 1 (2010), 1–35. 33, 104

[137] Work, D. B. A traffic model for velocity data assimilation. Cell 00, 0000, 1–21. 6
[138] Wu, C.-J., Schreiter, T., and Horowitz, R. Multiple-clustering armax-based

predictor and its application to freeway traffic flow prediction. In American Control
Conference (ACC), 2014 (2014), IEEE, pp. 4397–4403. 6

[139] Yperman, I., Logghe, S., and Immers, B. Dynamic congestion pricing in a net-
work with queue spillover. In Proc. 12th World Congress on Intelligent Transportation
Systems, San Francisco (2005). 5

[140] Ziliaskopoulos, A. K. A linear programming model for the single destination system
optimum dynamic traffic assignment problem. Transportation science 34, 1 (2000), 37–
49. v, 62, 96

http://sites.google.com/site/piotrwendykier/software/jtransforms

