
2325-5870 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2016.2612828, IEEE
Transactions on Control of Network Systems

Resiliency of Mobility-as-a-Service Systems to Denial-of-Service Attacks
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Abstract— Mobility-as-a-Service (MaaS) systems such as ride
sharing services have expanded very quickly over the past years.
However, the popularity of MaaS systems make them increas-
ingly vulnerable to Denial-of-Service (DOS) attacks, in which
attackers attempt to disrupt the system to make it unavailable to
the customers. Expanding on an established queuing-theoretical
model for MaaS systems, attacks are modeled as a malicious
control of a fraction of vehicles in the network. We then
formulate a stochastic control problem that maximizes the
passenger loss in the network in steady state, and solve it
as a sequence of linear and quadratic programs. Combined
with a Jackson network simulation and an economic model of
supply and demand for attacks, we quantify how raising the
cost of attacks (via cancellation fees and higher level of security)
removes economical incentives for DoS attacks. Calibrating the
model on 1B taxi rides, we dynamically simulate a system under
attack and estimate the passenger loss under different scenarios,
such as arbitrarily depleting taxis or maximizing the passenger
loss. Cost of attacks of $15 protects the MaaS system against
DoS attacks. The contributions are thus a theoretical framework
for the analysis of the network, and practical conclusions in
terms of financial countermeasures to the attacks.

I. INTRODUCTION

A. Motivation

Mobility-as-a-Service (MaaS) systems such as ride-
sharing services and (electric) car rental programs have
been expanding very quickly over the past years, e.g. Uber,
Lyft, and Didi Kuaidi doing millions of rides a day [14].
Similarly, car-sharing programs are expanding quickly, such
as Zipcar with more than 10,000 vehicles in the USA [33],
along with City CarShare, and Car2Go. This revolution
in Personal Urban Mobility [25] is accompanied with the
growing population in dense cities with an estimate of 3B
urbanites by 2050 [1]. Besides, the increased congestion
of the road network will make car ownership no longer
sustainable. Morgan Stanley’s research shows that cars are
driven just 4% of the time [22] while the average cost of
car ownership is nearly $9000 a year [30]. For example, car
ownership has dropped by 30% from 2001 to 2015 in London
[31]. Instead, the population will increasingly rely on public
transportation (bus usage has doubled in the same period)
and MaaS systems.

Optimal management of MaaS systems: Since urban
population will heavily depend on MaaS systems, research
has become very active on their optimal management [20],
[10], [36]. Dispatching or re-balancing is necessary to ful-
fill the uneven distribution of origins and destinations of
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the requested rides. It can be done manually with human
dispatchers, by apps such as taxi hailing apps, or by incen-
tivization from the two-sided markets formed by ride-sharing
companies such as Uber or Lyft. Besides, autonomous cars
have arguably received a great deal of scientific attention,
both Google and Tesla predicting that they will be available
by 2020 [21], [8]. Hence we include fleets of autonomous ve-
hicles as part of MaaS systems, and researchers demonstrate
the sustainability of autonomous fleets, suggesting that 8000
rebalanced autonomous vehicles (70% of the size of NYC
taxi fleet) can satisfy the taxi demand in Manhattan [36].

Vulnerability to Denial-of-Service attacks: As MaaS
systems become ubiquitous, fleets of connected vehicles and
their passengers will be increasingly vulnerable to Denial-
of-Service (DoS) attacks where attackers disrupt the re-
balancing of vehicles to make them unavailable to customers.
Such attacks have already been reported: Uber claimed Lyft
requested and canceled nearly 13,000 Uber rides and Lyft
counted 5,560 canceled rides [19], [7], the goal being to steal
each other’s customers. Moreover, the vulnerability of self-
driving cars to hacking is already a major concern. For exam-
ple, General Motors created the new role of cybersecurity to
protect the company’s future autonomous vehicles [9]. Miller
and Valasek suggested that it is possible to wirelessly control
a fleet of 471,000 vehicles already on the road by exploiting
a flaw in their Internet-connected feature [13]. Hence, our
framework is also relevant for the impact analysis of DoS
attacks on autonomous MaaS systems.

Cyber-security in transportation: The security of cyber-
physical systems (and Internet of Things) have gained a
lot of attention recently [3] because the consequences of
cyber-attacks on them are not just financial, they could
result in real-world and real-time physical problems. The
vulnerability of transportation systems are real: two students
hacked the traffic app Waze causing it to report a nonexistent
traffic jam [34], a security researcher hacked traffic lights’
sensors to trick their control systems into thinking that
open roadways are congested [35]. Reilly et al. suggested
different attack scenarios on Freeways via Coordinated Ramp
Metering attacks [28].

B. Contributions and outline

To the best of our knowledge, we provide one of the first
analysis frameworks for the financial impacts of DoS attacks
on MaaS systems. Here are our contributions:

Detailed statistical methodology: Even though our model
expands upon an established queueing-theoretical framework
for the analysis of the sustainability benefits of MaaS sys-
tems, such as in [10], [36], we are among the first to provide
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a rigorous and detailed methodology for the learning and
construction of our model. Starting from the representation
of the taxi demand as a Poisson point process, we analyze
the simplifying assumptions leading to the Jackson network
model. This powerful mathematical framework enables to
analyze the performance of networked systems at a macro-
scopic level. In general, queuing models have been widely
used in transportation, computing, and telecommunication
[23] and to design factories, shops, offices and hospitals [12].

How to attack in practice? We provide realistic scenarios
of attacks on (autonomous) MaaS systems based on case
studies of existing systems. Technically, it is possible to
issue DoS attacks against Uber and Lyft with relatively
low (material) costs, either by taking rides to make the
service unavailable at the pick-up location, or cancelling
rides. These rides can be made anonymous and cheap
by purchasing short-lived phone numbers tied to human
verification farms [32] and credit card numbers on black
markets [5]. The possible attack of a fleet of connected
vehicles would also be possible at a relatively low (material)
price. As documented in [13], analyzing weaknesses in the
vehicle’s Internet-connected feature enables to gain access
to the micro-controller and send commands to its physical
parts. Assuming that all vehicles in the fleet have the same
architecture, attacking a fleet only requires the analysis of
one vehicle.

Modeling of the attacks: Attacks can be seen as mali-
cious agents controlling the vehicles of the MaaS system,
which we will refer to as Zombie passengers, following the
computer science terminology Zombie for a computer that
has been compromised remotely by a hacker to launch DoS
attacks. Expanding an established framework in which the re-
balanced MaaS system is cast into a queuing network where
the city blocks in Manhattan can be seen as server nodes (or
stations), and cars as packets moving between stations [36],
one of our main contributions is to model the attacks as a
stochastic process that controls a fraction of the packets (the
cars) for malicious purpose. This malicious process is added
to two stochastic processes introduced in [10], [36]: packets
with customers (the taxi demand) learned from the taxi data
provided by the NYC TLC, and a re-balancing process (the
taxis being dispatched) to maintain high service availability
in the network. Furthermore, to capture different types of
attacks, we also define the radius r of an attack, which is
the furthest (Manhattan or `1) distance that a Zombie can
be routed through. This captures the fact that the attacker
has a weaker control over the network than customers. For
example, if the attacker targets a ride-sharing company by
making a call and then canceling, only nearby vehicles will
be dispatched and affected. In the case of autonomous cars,
the malicious behavior is more likely to be detected if the
cars are controlled by the attacker for a long period of
time. We also assume that the total rates of attacks is upper
bounded by a budget b and study their impact with different
values of b.

Impact of Large-scale attacks: Their effect is mea-
sured in two steps. 1) a steady-state analysis where we

use the product-form stationary distribution to formulate
an optimization program for an optimal steady state attack
strategies that, e.g. maximize the customer loss or minimize
the customer time usage of the system. Despite an intractable
gradient computation (O(N4) complexity where N is the
number of stations), we propose a block-coordinated descent
algorithm in which each minimization block can be solved
efficiently. 2) Then a transient analysis with a simulation of
the network subject to the attack scheme computed in the
previous step dynamically evaluates different metrics such
as the increase in passenger loss or decrease in vehicle
availabilities for one hour of attacks, see Figure 3.

Financial analysis: We propose a cost-benefit analysis
to show the extent of damage that can be done with these
attacks. Learning the queuing model from the taxi data
provided by the NYC TLC, we show that raising the cost
of attacks to $15 is sufficient to deter rival companies from
attacking via ride cancellations. Hence our framework will
be usable to compute the optimal attack price-point of an
attacker, hence helping cab companies to adjust the cost of
attacking to protect themselves. The cost of attacks includes
explicit costs (e.g. cancellation fees, hardware purchases),
and hidden costs (e.g. probability of detection times the
penalty).

II. LEARNING THE QUEUEING MODEL

We now introduce a discretization framework that can be
used to study these systems in practice (and apply it to NYC).

A. A Poisson point process

We consider a bounded (geographical) region R ⊂ R2

and a time interval Ω in which a sequence of passenger rides
xi = (ti, oi, di) for i ∈ N are requested, where ti is the start
time of the ride, oi ∈ R its origin, and di ∈ R its destination.
We model the sequence of ride requests as a Poisson point
process X = (Xt, Xo, Xd) in the bounded space Ω×R×R
with an intensity function ρ : Ω× R × R → R+. For such
a process, occurrences in a Lebesgue-measurable set B ⊆
Ω×R×R have locations that are independent and identically
distributed (i.i.d.) in B with common density proportional to
the intensity function ρ. Hence, a ride with origin o and start
time t has its destination d ∈ R distributed following:

P (Xd = d | o, t) =
ρ(t, o, d)∫
{t}×{o}×R ρ

(1)

by applying the above property with B = {t} × {o} ×R.
For tractability, we discretize the region R into N tiles Ti

indexed by i ∈ S and the time interval Ω into time windows
of length ∆t. Blocks are chosen small enough such that all
trips end in a different block, and time intervals should be
short so that the passenger demand can be assumed constant,
see Figure 1 for an example of discretization in NYC. Then
pickup requests with origin in tile Ti and in time window τ
choose the destination tile Tj with probability

P (Xd ∈ Tj |Xt ∈ τ,Xo ∈ Ti) =

∫
τ×Ti×Tj

ρ∫
τ×Ti×R ρ

(2)
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B. Statistically learning the demand

The pickup arrival rate in tile T and within time window
τ follows a Poisson distribution with mean

∫
τ×T×R ρ. It is

well-known that the sample mean is an unbiased minimum-
variance estimator1 (by achieving the Cramer-Rao lower
bound), hence it is an efficient estimator of the Poisson
process [15]. An example of sample mean computed for each
tile in part of Manhattan is provided in Figure 1.

Fig. 1. Average passenger arrival rates in Manhattan from January
2009 to June 2015 on weekdays from 5pm to 7pm, learned from a
dataset of 1B taxi trips provided by the NYC TLC. The average pickup
rate every 10min during weekdays is provided in our video: https:
//www.youtube.com/watch?v=RwGttGlflsA.

From (2), the destination tiles Tj of a trip starting at tile
Ti and in time interval τ follows a categorical distribution
with probabilities denoted by pτij . The maximum-a-posteriori
(MAP) of the parameters {pτij}j∈S is the mode of the
posterior Dirichlet distribution

MAP({pτij}j∈S | data) =
mj + nτij∑
k∈S mk + nτik

(3)

where nτij is simply the number of trips starting at tile
Ti in time interval τ and with destination Tj , and mj are
prior observations. Since we may not have any observations
from the data,2 we choose mk = 1 for all k so that
mk+nτik > 0. A possible improvement consists in choosing a
prior distribution proportional to the destination arrival rates.

III. QUEUEING MODEL

We now drop the superscript τ since we restrict our
analysis to a specific time interval (5pm-7pm for the NYC
case study). We have considered a MaaS system in an urban
area divided into N tiles indexed by i ∈ S. We assume that
M vehicles provide service to customers between pairs of
tiles (i, j) ∈ S×S and cast the MaaS system into a Jackson

1Note that it is also a sufficient statistic for a Poisson distribution.
2In Figure 1, all observed trips starting at the edge of the region of study

finish outside of it.

Type rate routing contribution

customer φi αij MAS model [10]
balancer ψi βij re-balancing [36]
Zombie νi κij cyber-security

TABLE I
DIFFERENT TYPES OF PASSENGER WITH THEIR ARRIVAL RATES,

ROUTING PROBABILITIES, AND THE AUTHORS WHO INTRODUCED THEM.

model. Since vehicles are ‘processed’ by a server in each
tile, we will refer tiles as stations, which convey the fact
that vehicles are queuing to be picked up by customers.

A. Three types of passengers

We describe the model for vehicles picking up customers
and re-balancing themselves in the network. Finally, we
introduce our model for Zombies. Table I summarizes these
three models. Section IV will justify our assumptions.

Customer model: Customers arrive at each tile i follow-
ing a time-invariant Poisson process with rate φi > 0. Upon
arrival at a station i, a customer chooses to go to station
j 6= i with probability αij ≥ 0, where

∑
j∈S αij = 1

and αii = 0 for all i ∈ S . Furthermore, if a vehicle
is not available at a station upon arrival of a customer,
the customer leaves without service (i.e. customers do not
queue). The model also assumes that there is sufficient
capacity for vehicles to queue for passengers, as is often the
case of pickup locations or taxi stations. The travel times
for different passengers traveling from station i to station j
constitute an independently and identically distributed (i.i.d.)
sequence of exponentially distributed random variables with
mean Tij > 0. This model was used in [10] to describe a
vehicle rental company as a queuing network.

Re-balancing process: In any MaaS systems, there is a
need for re-balancing to account for uneven demand. A re-
balancing vehicle is one traveling to a destination without
customers to fulfill the demand at its destination. The process
has been studied extensively [20], [36] and we use the
framework of [36] to model it with balancers driving these
re-balancing vehicles. This paradigm is analogous to the
MaaS company “spoofing” its own drivers for re-balancing
purposes. In [36], each station i generates balancers ac-
cording to a Poisson process with rate ψi ≥ 0 and routes
these balancers to station j 6= i with probability βij , where∑
j∈S βij = 1 and βii = 0 for all i ∈ S. The re-balancing

process is assumed to be independent from the customer
arrival process. The model also supposes that the balancer is
lost if there is no car at the station upon its generation.

Cyber-security: We extend the re-balancing work of [36]
for the purpose of cyber-security analysis. We assume the
attacker can generate malicious agents or Zombies at each
station i following a Poisson process with rate νi ≥ 0 and
route them to station j 6= i with probability κij ≥ 0, where∑
j∈S κij = 1 and κii = 0 for all i ∈ S . We assume

that the re-balancing policy does not detect the attacks and
its parameters ψi and βij only depend on the customers’
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demand φi and αij . We also define the radius r of an
attack, which is the furthest (Manhattan or `1) distance that
a Zombie can be routed through. Hence we define E the set
of pairs (i, j) ∈ S × S such that routing is allowed from i
to j. In other words, denoting 1A the indicator of event A
(= 1 if A is true, = 0 otherwise), we have the constraints

1{(i,j)/∈E}κij = 0 ∀ i, j ∈ S (4)

B. Jackson network model

Following [10] and [36], the model described above can
be cast into a closed Jackson network, which we now present
with a cyber-attack extension. We combine the customer,
balancer, and Zombie processes. From the superposition of
independent Poisson processes, the total arrival process of
all three types of passengers is Poisson with rate

λi = φi + ψi + νi (5)

where φi, ψi, and νi respectively represent the arrival rates of
customers, balancers, and Zombies. A generalized passenger
that arrives will either be classified as one of the three
classes with respective probabilities φi/λi, ψi/λi, and νi/λi.
The routing probability rij := P(i → j) of a generalized
passenger arriving at station i to select a destination j is
then given by rij =

∑
class P(i → j | class)P(class). With

αij , βij , and κij being the routing probabilities associated
to each class, we have (with λi given by (5)):

rij = αij
φi
λi

+ βij
ψi
λi

+ κij
νi
λi

(6)

Stations are modeled as single-server (SS) nodes (or “sta-
tion” nodes) and the route between two stations as infinite-
server (IS) nodes (or “route” nodes). When a generalized
passenger arrives at a non-empty station, a vehicle departs
from that node to move to a route node that connects the
origin to the destination selected by that passenger. After
spending an exponentially distributed amount of time at
the route node (the travel-time), the vehicle moves to the
destination station node (see Figure 2).

From a queuing perspective, if vehicles are present at
station i, they are processed with service rate λi given by (5),
and are routed to the IS (route) node between stations i and
j with probability rij given by (6). Then vehicles at an IS
node between stations i and j are processed in parallel (i.e.
assuming infinite capacity roads with no congestion effects)
with service rate 1/Tij each and move to SS node j with
probability 1. Hence, the MaaS system is modeled as a closed
Jackson network with respect to the vehicles with vehicle
service rate µn(xn) at a generalized node n given by

µn(xn) =

{
λi if n = station i
xn/Tij if n = route i→ j

(7)

where xn ∈ {0, 1, · · · , M} is the number of vehicles at
node n (and M the number of vehicles in the network). Note
that µn only depends on xn on a route node. The routing

Fig. 2. Illustration on a three station network. On the left, a passenger
arrives at station 1 and picks a car to go to station 2. The equivalent
Jackson network is shown on the right side.

probability pnn′ from node n to node n′ is

pnn′ =


rij if n = station i, n′ = route i→ j

1 if n = route i→ j, n′ = station j
0 otherwise

(8)

C. Asymptotic Behavior and Fairness

For Jackson networks, the throughput of vehicles πn at a
generalized node n satisfies πn =

∑
n′ πn′pn′n, and we can

define the relative utilization at node n as γn = πn/µn(1).
If n is a station i, then γi = πi/λi, i.e. vehicle throughput
over passenger arrival rate. An important quantity is the
availability Ai(M), defined as the percentage of customers
who find a vehicle available at a station upon arrival. It is
given by the following steady-state probability (see [18]):

Ai(M) := P(Xi ≥ 1) =
γiG(M − 1)

G(M)
(9)

where Xi the queue length at station i ∈ S. Note that the
quantity G(M) above is the normalization factor associated
to the equilibrium state distribution of the queue lengths
{Xi}i∈S provided by the Gordon-Newell theorem [11]. The
computation of G(M) is very expensive with complexity

that grows as
(
|N |+M − 1

|N |

)
, where |N | is the cardinality

of N (i.e., the number of nodes in the network), so that
|N | = N2. Hence, we want to obtain performance metrics
without computing explicitly the quantity G(M), e.g. by
studying the asymptotic behavior of the network when the
fleet size M goes to infinity. The following result from [27]
gives the asymptotic availability at a SS node i:

ai := lim
M→∞

Ai(M) =
γi

maxj∈S γj
(10)

where maxj∈S γj is the highest relative utilization. Hence,
when M approaches infinity, stations with the highest relative
utilization can have availability arbitrarily close to 1, while
other stations have availability strictly less than 1, since in
this case γi < maxj∈S γj).
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IV. COMMENTS ON THE MODEL AND METHODOLOGY

A. Comments on the Jackson network assumptions

Exponential travel times: Although travel times are
generally not exponentially distributed, the assumption does
not affect the predictive accuracy of queuing networks [17].

Irreducibility: The customers’ routing probabilities αij
reasonably constitute an irreducible Markov chain for dense
environments.

Passenger loss: Passengers not willing to wait (they leave
the station immediately if no taxi is available) is accurate
in numerous US markets: (i) with high service availability
(the median wait time for an Uber in major U.S. cities in
2014 was under 4 min [26]), and (ii) in a competitive setting
against other transportation systems (particularly in dense
cities). The passenger loss model is particularly relevant in an
adversarial setting in which attacks aim at reducing service
availability to incur passenger loss and encourage passengers
to use a rival system. The loss model also considerably
simplifies our model because customer arrivals at a station
is equivalent to a virtual service to the vehicles currently
queuing (and available) at the station.

Re-balancing and attack processes: The re-balancing
and attacks are respectively modeled as balancers and Zom-
bies similarly to the customer model (with passenger loss),
but independently and with different arrival rates and rout-
ing probabilities, thus allowing to combine the customer
demand, the re-balancing process, and the attacks into a
single queuing network. In our case, the loss of balancers and
Zombies describe processes that encourage a re-allocation of
vehicles to stations but does not enforce it. Besides, real-
life re-balancing and attack processes are in general not
stochastic. However, with large number of packets (our case
study runs with 2500 taxis), the evolution of the stochastic
processes tends to its fluid limit, thus approximating well its
deterministic counterpart [16].

Local matching process: In our model, the matching only
occurs locally between a nearby vehicle and a passenger. For
carsharing, a vehicle at a station is matched to a passenger
upon arrival. For a hailing app, there is no physical station.
A ‘station’ represents instead a small area or tile (two city
blocks in our case study), and a matching occurs when a
requested vehicle picks up a passenger within the tile. If no
vehicle is available at the station (or tile), the passenger gets
impatient and leaves. Hence, the matching is only local and
does not affect the (malicious) re-balancing process.

B. Independence of the three processes

Optimal static re-balancing strategy: The analysis is
restricted 5-7pm weekday time period for the strong season-
ality in the passenger demand, with only small variations
within the time window. Instead of using an expansive
real-time approach (with little optimality guarantees), we
leverage the demand seasonality to efficiently compute (and
predict) optimal strategies from the sample means of the
rates and routing probabilities estimated from historical data
(weekdays at 5-7pm). Hence, even though the parameters

Fig. 3. Steady-state analysis gives re-balancing and attack strategies
for the balanced and attacked equilibrium states respectively (T = 0
and T = ∞). Since the attacked equilibrium state is not attainable in
practice, a network simulation evaluates losses after 1h of attacks.

of the re-balancing process are a function of the historical
passenger demand, both stochastic processes have constant
parameters, and are thus independent. Hence, a real-time
approach is only beneficial for large deviations from the
historical means and the robustness of the static strategy can
be assessed using estimated confidence intervals.

The re-balancing does not respond to attacks: We
assume that attacks are not detected by the system. This
is a reasonable assumption if attackers directly compromise
the re-balancing process, or if attacks occur for a short
time period during which the system does not have time
to respond. In fact, countering the attacks may require three
high-latency steps: 1) detect with high confidence unusual
deviations from the average queue lengths, 2) re-compute in
real time efficient counter-measures, 3) re-dispatch vehicles
after they completed their ongoing rides. And in our numeri-
cal experiment, we show that one hour of attack is sufficient
to double the passenger losses.

C. Computing the impact of attacks

Step 1 - steady-state analysis: We use the product-form
stationary distribution to formulate an optimization program
for the optimal attack strategies following some attacker’s
objective. Despite the analytical benefit, this approach only
optimizes for the steady state. Once attacks have started, the
new equilibrium state may be reached after a long period
of time. However, as discussed earlier, our framework only
applies for a short time period, hence losses in equilibrium
given by the analysis are likely to overestimate the losses
over the 1-hour transient period. In addition, we assume that
stations have sufficient capacity, but it is often optimal for
attackers to send all vehicles to a single destination, which
may overflow stations and breaks the assumption.

Step 2 - transient analysis: We simulate a Jackson net-
work subject to the attack scheme computed in the previous
step to dynamically evaluate the increase in passenger loss
and decrease in vehicle availabilities for one hour of attacks.
This second step resolves the limitations of the first step
by computing transient losses, and not allowing stations to
overflow, see Figure 3.

V. STEADY-STATE ANALYSIS

The contributions in this section encompass the objectives
of an attacker into an optimization framework. The steady-
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state strategy will serve as input for the network simulation.

A. Maximizing passenger loss
If the MaaS company gets a constant amount per ride,

the attacker wants to maximize customer loss, i.e. mini-
mize the customers picking a vehicle min

∑
i∈S φiAi(M).

If the MaaS system gets an amount that is proportional
to the length of the ride, a more harmful objective is
min

∑
i,j∈S φiαijTijAi(M) hence the total time usage for

the customers is minimized.3 Both objectives are of the form

min
∑
i∈S

wiAi(M) (11)

where wi > 0 are some user-defined arbitrary weights. To
avoid computing G(M) due to the complexity, the availabil-
ities Ai(M) are normalized and we study the availability
Ai(M) when the fleet size M goes to ∞ (see (10))

min
∑
i∈S

wi
γi

maxj∈S γj
= min

∑
i∈S

wiai (12)

Finally, there must be one i ∈ S such that ai = 1, hence the
objective is equivalent to finding the index k such that ak is
set to 1 and minimizing over the remaining {ai}i6=k

min
k∈S

wk · 1 + min
{ai}i6=k

∑
i6=k

wiai

 (13)

Hence, we can solve |S| = N programs and select the one
with the minimum objective value.

B. Attack budget
The most important constraints are the traffic equations of

the Jackson network. Using Lemmas 4.1 and 4.2 in [36], they
can be written in terms of SS (station) nodes and asymptotic
utilization ai

(φi+ψi+ νi)ai =
∑
j∈S

(αjiφj +βjiψj +κjiνj)aj , ∀ i (14)

Let k ∈ S such that ak = 1, then the constraint is

φk + ψk + νk =
∑
j∈S

(αjkφj + βjkψj + κjkνj)aj (15)

Note that the constraint (15) is redundant since summing
the constraints (14) for i 6= k (with ak = 1) gives (15).
Furthermore, the attacker injects Zombies with arrival rates
νi and routing matrix κij to achieve (13). With no restriction
on the attack rates, setting νi = ν > 0 for all i 6= k and
routing all the Zombies to station k with probability 1 gives,
using (15)

φk + ψk + νk =
∑
j 6=k

(αjkφj + βjkψj + ν)aj ≥
∑
j 6=k

νaj∑
j 6=k

aj ≤ (φk + ψk + νk)/ν → 0 when ν → +∞

Then the positive utilizations ai go to 0 for all i 6= k and the
problem is reduced to mink∈S wk. Hence, a more realistic
problem is setting a limited attack budget b:

∑
i∈S νi ≤ b.

3The distance Dij between stations i and j can also be included in the
objective since fares are usually a combination of the two.

C. Formulation

Given the customers’ and balancers’ demands, we define
their combined rate and routing probabilities as

ϕi := φi + ψi (16)
δij := (αijφi + βijψi)/(φi + ψi) (17)

and so the combined routing probabilities rij of the cus-
tomers, balancers, and Zombies given in (6) can be expressed
as follows

rij =
δijϕi + κijνi
ϕi + νi

∀ i, j ∈ S (18)

Given k ∈ S such that ak = 1, the Optimal Attack Problem
(OAP) consists in manipulating the Zombie arrival rates νi
and routing κij probabilities such that:

min
κij ,νi,ai

∑
i6=k

wiai (19)

s.t. ai =
∑
j∈S

δjiϕj + κjiνj
ϕi + νi

aj ∀ i ∈ S \ {k} (20)

κij ≥ 0,
∑
j

κij = 1, 1{(i,j)/∈E}κij = 0 (21)

νi ≥ 0,
∑
i

νi ≤ b (22)

We have also included the ai in the decision variables
since they vary. In fact, the ai are function of κij , νi and
can be written directly as ai(κ, ν).

LEMMA 1. For any attack strategies νi and κij:

ai > 0 for all i ∈ S (23)
ai is uniquely defined for all i ∈ S (24)

VI. ANALYTICAL RESULTS IN STEADY-STATE

We first study a scenario in which the attacker aims at
reducing the asymptotic availabilities at all but one station
by a constant factor for a network in equilibrium. In this case,
we show that the best strategy consists in routing all attacks
to a single destination and we are able to derive analytical
results for the rates of attacks.

A. Uniformly reducing availabilities

We consider a re-balancing network where the combined
rate {φi}i and routing probabilities {δij}ij of the real and re-
balancing passengers are given, and we denote {ai}i∈S the
resulting availabilities (before attacks). We consider a simple
scenario in which the attacker reduces the availabilities at all
stations by a constant factor, i.e. availability at station k is
set to 1 and α ≥ 1 is maximized such that:

ãi =

{
1 if i = k

ai/α if i 6= k
(25)

where ãi are the availabilities resulting from the attacks. Now
we propose and prove the optimality of an attack strategy that
maximizes α.
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THEOREM 1. Consider a (balanced) MaaS system with
initial asymptotic availabilities {ai}i∈S . If we are given a
budget b for the attacks that is at least a certain amount:

b ≥ (1− ak)ϕk
∑
j 6=k

δkj/aj (26)

Then the best attacks such that
∑
i νi ≤ b, resulting in station

k having asymptotic availability equal to 1 and all other
stations’ availabilities decrease by the same factor α ≥ 1
can be achieved by the following policy:

νi =

{
bδki

ai
∑

j 6=k δkj/aj
if i 6= k

0 if i = k
(27)

κij =

{
1 if i 6= k, j = k

0 otherwise
(28)

We call it the “Single-Destination Attack Policy” (SDAP)
since all attacks are routed to k. It results in:

α = ak +
b

ϕk
∑
j 6=k δkj/aj

(29)

We make some comments on the effectiveness of attacks
discussed presented in Theorem 1. Under the SDAP, ak = 1
reduces condition (26) to b ≥ 0, i.e. any budget leads to
α ≥ 1. If ak < 1, then α ≥ 1 requires a minimum positive
budget given by (26). However, if ak < 1 and (26) is not
verified, then α < 1 and re-normalizing so that we get valid
asymptotic availabilities after attacks gives

ãi =

{
α if i = k

ai if i 6= k
(30)

where there exists i 6= k such that ai = 1. In this particular
case, the attack only increases the asymptotic availability at
station k while keeping other availabilities constant.

B. Case of balanced network under attacks

The result in Theorem 1 holds for MaaS systems with or
without re-balancing passengers. If the MaaS is balanced,
i.e. ai = 1 for all i ∈ S, then the SDAP reduces to

νi = bδki ∀ i 6= k, νk = 0 (31)

κij =

{
1 if i 6= k, j = k

0 otherwise
(32)

resulting in ãi = 1/α for all i 6= k and ãk = 1, with α =
1 + b/ϕk. Hence, for a balanced network in equilibrium, the
passenger loss incurred by this attack strategy when the fleet
size approaches infinity is asymptotically∑

i∈S
wi(ai − ãi) =

∑
i6=k

wi
α− 1

α
=

b

ϕk + b

∑
i6=k

wi (33)

We note that the attacks have great effects for small budgets,
with incurred losses scaling linearly in b:∑

i∈S
wi(ai − ãi) ≈

b

ϕk

∑
i6=k

wi for b� ϕk (34)

Hence, when routing the attacked vehicles to a single destina-
tion station k, it is best to pick a station k with low customer
demand and low re-balancing rate ϕk = φk + ψk and small
weight wk. Concretely, an attack sending all the vehicles to
a single station k aims at having an excess of supply at this
station while depriving the rest of the network of vehicles.
The quantity ϕk is the rate at which the vehicles are sent
away from k from customer rides or re-dispatching, hence
it is more effective to maliciously send vehicles in parts of
the network with low activity.

C. Budget maximization as a prerequisite for optimality

We now show that all of the budget b has to be used for an
attack to be optimal. While this result is intuitive and can be
proved directly from the KKT conditions associated to the
OAP, we present an alternate proof which gives additional
insights on the OAP. Theorem 1 leads to the following result:

THEOREM 2. Equality
∑
i∈S νi = b is a necessary condi-

tion for a solution of the OAP to be optimal.

VII. BLOCK-COORDINATE DESCENT

In this section, we propose an algorithm to efficiently solve
the OAP. Noting that first-order methods are not tractable
because of the balance constraints, we propose a block-
coordinate descent algorithm in which the three blocks can be
solved very efficiently, two being linear programs (LP) with
N2 variables, and the third one a quadratically constrained
quadratic program (QCQP) with N variables (N being the
number of stations). We also add a small cost of attacking
p
∑
i νi to the objective4 such that objective becomes:

min
κij ,νi,ai

∑
i6=k

wiai + p
∑
i

νi (35)

The `1-regularization term is added for numerical reasons.
Having a term in the objective that depends on the at-
tack rates νi enables to pose the Minimum Attack Problem
(MAP) for our block-coordinate descent algorithm, when the
availabilities ai are fixed. The MAP essentially computes
a better re-allocation of the attacks (in terms of total rate
minimization) to incur the same loss

∑
i wiai to the MaaS

system. If the MAP computes a strictly better attack strategy,
then necessarily

∑
i νi < b, and from Theorem 2, the unused

part of the budget can be used to increase the customer loss
of the MaaS system, which is accomplished by the two other
steps of the block-descent algorithm.

A. Non-tractable first-order methods

The OAP (19)-(22) is non-convex because the equality
constraints in (20) are not linear, hence the well-known
Lagrangian approach fail to provide sufficient conditions
for optimality of a solution [2]. So one can only hope to
find stationary points. In addition, first-order methods such
as gradient descent algorithms are not tractable in practice.
Specifically, the vector {ai}i∈S is a function of κij , νi from
Lemma 1, hence the gradient of the objective is given by

4This can be seen as a `1-regularization term.
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∑
l 6=k wi

{
∂κij

al
}
(i,j)∈S×S where each partial derivative of

ai satisfies a set of N−1 linear equations obtained by differ-
entiating the balance constraints (20). Hence, computing the
gradient prohibitively requires to solve N2 linear programs
of dimension N − 1 by differentiating the constraints (20).
The total complexity for computing the gradient is (N2 −
N)2 ≥ (N − 1)4, where N for a typical implementation
of the model like in NYC is of the order of 500. One of
our main contributions is the design of a tractable block-
coordinate descent algorithm to solve the above problem. We
pose the Minimum Attack Problem (MAP) and the Attack
Routing Problem (ARoP) and show that they can be re-
formulated as linear programs (LP) with N2 non-negative
variables and N constraints. We solve the MAP and ARoP
efficiently with CPLEX. The Attack Rate Problem (ARaP)
has N variables which are {νi}i∈S and can be solved
efficiently using a projected gradient descent algorithm. The
gradient computation requires solving N linear programs
of dimension N − 1, hence an O(N3) complexity that is
tractable. We also note that the ARoP, MAP, and ARaP can
be interpreted as specific attack scenarios.

B. Attack Routing Problem (ARoP)

In this scenario, the attacker can only inject attacks with
fixed rates. For example, the attacker has placed devices at
different stations i ∈ S that remotely spoof the hailing apps
of nearby vehicles, to send them to specific locations. Hence,
given νi, the attacker wants to optimize the routing to achieve
objective (13). This is the Attack Routing Problem (ARoP),
which can be re-formulated as a Linear Program:

THEOREM 3. Let us consider the following linear program

min
yij

∑
ij

wiyij (36)

s.t.
∑
j 6=i

(λiyij − νjyji) =
∑
j>l

δjiϕjyjl ∀ i 6= k (37)

yij ≥ 0,
∑
j 6=k

ykj = 1 (38)

Let y?ij be an optimal solution to the above program. Then,
an optimal solution of the ARoP is

ai =
∑
j 6=i

y?ij κij = y?ij/ai (39)

We decrease the
∑
i6=k wiai part of the objective of the

OAP with respect to ai, κij by solving the above program
efficiently with CPLEX, as part of our block-coordinate
descent algorithm.

C. Attack Rate Problem (ARaP)

In this scenario, the attacker hacks the apps of the vehicles
to display “ghost” demands at specific stations i. With fixed
routing κij , the attack rates νi are chosen to achieve objective
(19). The Attack Rate Problem (ARaP) consists in optimizing
the OAP with respect to the rates νi for all i and the
asymptotic availabilities ai for i 6= k, while the routing of
attacks κij are fixed. Since the sum

∑
i6=k wiai is a function

of the νi, we compute the Jacobian matrix of the vector
{ai}i6=k, which is given by the following:

LEMMA 2. The Jacobian matrix (∂ai/∂νj)i6=k,j∈S of di-
mension (N − 1) × N has columns xj ∈ RN−1 for j ∈ S
that satisfy

(D −M)xj = vj ∀ j ∈ S (40)

where D is a diagonal matrix with entries {ϕi + νi}i6=k,
M = {φjδji+νjκji}i6=k,j 6=k, and vj ∈ RN−1 for j ∈ S are
vectors with entries {aj(κji − 1{i=j})}i6=k where 1A is the
indicator function of event A.

Solving the above N systems of N − 1 linear equations
gives the Jacobian of {ai}i6=k. Hence we can solve the ARaP
with the projected gradient descent algorithm, where g is the
gradient of the objective:

{νi}i∈S :=Π ({νi}i∈S − t g) (41)

g :=
∑
i6=k

(∂ai/∂νj)j∈S + p (42)

where t > 0 is the step size and Π is the projection onto
the `1-ball of radius b, i.e. {x ∈ RS≥0 :

∑
i∈S xi ≤ b}. We

use the O(N logN) implementation described in [6]. We use
a step size decreasing in 1/

√
n where n is the number of

iterations and complement it with a simple line search to
have a lower objective at each iteration.

t← t/2 while f({νi}i∈S − t g) > f({νi}i∈S) (43)

D. Minimum Attack Problem (MAP)

We consider a scenario in which the attacker wants to
achieve target availabilities ai at each station in the network
with the minimum cost of attacks

∑
i νi. The Minimum

Attack Problem (MAP) can be formulated as follows

min
κij ,νi

∑
i

νi (44)

s.t. ai =
∑
j∈S

δjiϕj + κjiνj
ϕi + νi

aj ∀ i ∈ S \ {k} (45)

κij ≥ 0,
∑
j

κij = 1, 1{(i,j)/∈E}κij = 0 (46)

νi ≥ 0 ∀ i ∈ S (47)

The constraints can be formulated as flow constraints

THEOREM 4. Let us define

si := aiϕi −
∑
j 6=i

ajδjiϕj ∀ i ∈ S (48)

and consider the following Linear Program

min
{xij}i6=j

∑
i,j 6=i

xij
ai

(49)

s.t.
∑
j 6=i

(xji − xij) = si ∀ i ∈ S (50)

xij ≥ 0 1{(i,j)/∈E}xij = 0 ∀ i, j ∈ S (51)
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This is always feasible. Let x?ij be an optimal solution to it.
Then, an optimal solution to the MAP is:

νi =
∑
j 6=i

x?ij/ai (52)

κij =

{
x?ij/(νiai) if νi > 0

1/
∑
j 1{(i,j)∈E} otherwise

(53)

Within the proposed block-coordinate descent framework,
we add the budget constraint (22) to the MAP using the
solution of the previous step as initial solution, and solve it
efficiently using CPLEX. Note that the objective of the above
program can be generalized to any convex function, and a
linear objective results in a min-cost-flow problem (MCFP).
This reduction to a MCFP was shown in [36] for the purpose
of re-balancing vehicles with an objective minimizing the
number of re-balancing trips

min
ψi, βij

∑
i,j

ψiTijβij (54)

where ψi, βij are the balancers arrival rates and routing
probabilities respectively. In our case, the MAP step of
our algorithm redistributes the highest attack rates among
stations, thus avoiding numerical corner cases associated to
the sparsity promoting constraint (22).

Algorithm 1 Algorithm for solving the AOP.
1: choose arbitrary station k ∈ S.
2: initialize νi and κij

3: while stopping criteria not satisfied:
4: update ai, κij via Attack Routing Pb. (ARoP) with νi

fixed.
5: update νi, κij via Min Attack Pb. (MAP) with ai fixed.
6: update ai, νi via Attack Rate Pb. (ARaP) with κij fixed.
7: return ai, νi, κij

VIII. QUANTIFYING COUNTERMEASURES

We now study the economics of the resiliency of MaaS
systems to DoS attacks and illustrate our results with a case
study in Manhattan. In particular, we conduct a cost-benefit
analysis and find that raising the expected cost of attacks to
1.5 times the gain for the attacker from incurring passenger
loss protects MaaS systems from DoS attacks.

A. Data sources and methodology

For our case study in Manhattan, we choose tiles approx-
imately of the size of two city blocks, which is a good
trade-off between precision and tractability. Manhattan is
divided into 531 tiles (see Figure 1), which gives a problem
with 5312 ≈ 300, 000 decision variables that can be solved
efficiently. The time windows are chosen to be one/two-
hour long which is small enough to ignore time variability
in the taxi demand. Using the 1.1 billion taxi trips from
January 2009 to June 2015 provided by the NYC TLC, we
extracted 75M passenger rides on all weekdays between 5pm
and 7pm and we learned the customer demand φi, αij using
the methodology presented in Section 2. The total customer

Fig. 4. Effect of Radius of Attacks. (a): Target availability pattern
following a pixelated version of the “Cal” logo. (b), (c): Best attack
policy to achieve the target with maximum `1-radius of 0.3km (1 block)
and 2km (7 blocks) respectively: each arrow shows the direction of the
κij -weighted barycenter of the destination stations j from an origin i,
and the color of each square encodes the attack rate. (d): Total attack
rate per hour needed to achieve the specified availabilities as a function
of radius. With small attack radius (b), vehicles are routed through
many intermediate stations, whereas in (c), cars from regions with low
availabilities are directly sent to the borders of Manhattan. Hence,
limiting the attack radius greatly hinders the attacks’ effectiveness.

arrival rate is about 10,600 per hour (see Figure 1) and there
are about 2,500 taxis in the network in this time period.

We then solve the MAP with objective min
∑
i,j φiTijαij

to estimate the optimal re-balancing process ψi, βij . Com-
bining the customer demand and balancing process (assum-
ing the system is balanced), the solution of the OAP provides
an attack strategy that maximizes the passenger loss in the
network. While the OAP is a useful framework for computing
optimal attack strategies for a system in equilibrium, we
also simulate a Jackson network with N2 ≈ 300, 000 nodes,
described in (7), (8), to dynamically estimate the passenger
loss L incurred by the attacks during the first hour after the
attacks have started.

B. Cost-benefit analysis

Following the methodology in [4], we propose an eco-
nomic model of supply and demand for attacks. Assuming
that attackers make rational decisions, we model a market
of attacks in which the attacker wants to maintain a positive
profit given by αL − β

∑
i νi where αL is the gain for the

attacker as a linear function the incurred passenger loss L
and β

∑
i νi the cost of the attacks. Here, L are the transient

losses which are obtained from network simulation in the
transient analysis step, not to be confused with the objective
in (12), see Section IV-C. The parameters α and β can be
seen as a level of security, where the security increases if α
is lower and β higher. Hence, given a level of security (α, β),
attackers balance costs against benefits. We now provide
some estimates of α, β.

Explicit cost of attacks: The explicit cost of attacks is
generally very low. For instance, for ride-sharing services
such as Uber or Lyft, pickup requests being cancelled using
a real account cost $5 per unit. The cost of a fake account
is less than $1 since both credit card numbers and phone
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numbers (tied to human verification farms) reportedly cost
less than $0.5 per unit [32], [5]. In addition, there is a fixed
cost, e.g. the hardware required for generating the attacks.
Following the attack on Waze [34], it is possible to emulate
Android phones on a computer. Based on the following study
[13], an attack on a fleet of Internet-connected autonomous
vehicles requires the analysis of the hardware of one vehicle
to be able to gain remote access to other vehicles of the
fleet. Hence, the fixed cost of attacking MaaS systems is
independent of the fleet size and the rate of attacks.

Hidden cost of attacks: The hidden costs are arguably
much higher than the explicit costs. For current ride-sharing
systems such as Uber and Lyft, suspicious (or malicious)
accounts can be detected and blocked easily, along with its
associated phone and credit card numbers. Buying phone
and credit card numbers on the black markets has a risk
of being caught by law enforcement agencies. These hidden
costs can be modeled as βhidden = P (detection)×Penalty i.e.
a probability of being detected times the penalty of being
caught. Hence, more efficient law enforcement and crimes
detection can achieve a higher level of security by increasing
P (detection) and the Penalty. It is worth noting that some
taxi companies, e.g. Taxis G7 in France (http://www.
taxisg7.fr/), does not require the creation of a PIN
verified account to make a request, hence P (detection) = 0
and the only (explicit) cost is the call ($.16/min). Hidden
costs also include the working time necessary for designing
DoS attacks. The cost of labor can be high and the number
of hours necessary for designing an attack is an increasing
function of the level of protection of cyber-physical systems
against security breaches.

Gain for the attacker: Reasons for DoS attacks
are multiple, e.g. extortion, blackmail, expression
of anger and criticism, punishment (for refusing
an extortion demand), see: zeltser.com/
reasons-for-denial-of-service-attacks/.
Because of the wide variety of motives, the benefits should
be estimated case by case. In the case of anti-competition
practice in two-sided networks (e.g. Uber and Lyft), the
gains for DoS attacks can be enormous since successful
platforms enjoy increasing returns to scale [29]. The high
costs and high benefits of attacks on a large-scale MaaS
system justifies the need of a business model for the attacker
to make rational decisions.

C. Controlling availabilities

In this experiment, we find the minimal cost of attacks
such that the resulting availabilities match an arbitrary set
of availabilities ai for i ∈ S, such as the “Cal” logo,
see Figure 4a. Assuming a balanced MaaS system, we first
balance the network using the methodology of [36], i.e.
solving the MAP (45)-(47) with the availabilities uniformly
equal to 1 and with an objective that minimized the number
of re-balancing vehicles (54). This yields a total rate of 2,200
re-balancing vehicles per hour. We then compute the attack
strategy on the balanced network by solving the MAP for
different attack radii. With unlimited attack radius, injecting

only 800 Zombies per hour achieves the availability pattern
encoded in the “Cal” logo. Assuming that a unit of attack
is $5 (current cancellation for a Uber/Lyft ride), only $4000
per hour is sufficient to deplete the network following this
pattern. With limited attack radius (routing only allowed
between stations i and j within 15 blocks from each other
in terms of Manhattan distance), a higher rate of attack is
needed to reproduce the logo, see Figure 4d.

D. Minimizing availabilities

To avoid numerical difficulties related to the large dis-
parities in customer arrival rates, we cluster adjacent blocks
together such that the minimum aggregated arrival rate at a
station is 30 customers per hour, resulting in a reduction
to 331 blocks. We then balance the network and apply the
proposed block-coordinate descent algorithm for solving the
OAP with an objective minimizing the customer time usage
in the network, i.e. (12) with wi =

∑
j φiαijTij . The block-

coordinate descent is given by Algorithm 1.

Fig. 5. Network Simulation Results. A simulation is run with 2650
taxis in a Jackson network. After 1 hour of balancing, the network
is attacked (following a strategy given by a solution to the OAP). The
budget of attacks is 3000 requests per hour, corresponding to 19%
of the total rate. The figure shows the passenger loss in log-scale per
station over (a): 1 hour of balancing, (b): 1 hour of attacks. (c) shows
the total number of customers lost over time. The total cumulative loss
is slightly above 2000 passengers one hour after the start of the attacks.

We do not set a limit on the radius of attacks and apply
the descent method for values of the budget b of attack rate
between 100 and 10,000 with the weight p of the `1-penalty
equal to 0.1 for b ≤ 1000 and 0.01 otherwise. The total
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customer and balancer arrival rates remains unchanged on
the reduced network, with 10,600 and 2,200 vehicles per hour
respectively, hence the total attack rate accounts for 0.8% to
44% of the total rate (all three types of passengers). Initializ-
ing with uniform Zombies arrival rate throughout the network
and uniform distributions for the routing probabilities, the
OAP gives an attack strategy sending Zombies to several
spots around the center of Manhattan, see Figure VIII-Ea and
b. In equilibrium, these target regions have high availabilities
while the rest of Manhattan has very low availabilities. These
results are similar to the analytical ones in Section VI, where
it was proved that the optimal attack strategy is one that
sends all the vehicles in a single destination station (see
Theorem 1).

E. Network simulation

Solving for the attack rates using the OAP gives very
low objective values, with a loss of customer time usage
from 60% to 100%. This surprising efficiency is in fact the
asymptotic behavior of the system under attacks, where most
of the vehicles get blocked in the center region because
the re-dispatch process does not send the vehicles in other
parts of the network in reaction to the attacks. To account
for the transient state, we run a simulation of the Jackson
network used for our model with 2500 taxis (average number
of taxis in the area at the time of the day used for our
parameter inference). We record the number of customers
lost for one hour and subtract from this the base rate of
loss when the network is balanced. One run of a Jackson
network simulation is presented in Figure 5 for a budget of
3000 attacks per hour. Slightly above 2000 passengers are
lost after one hour of attacks. This gives the seventh sample
point in Figure VIII-Ec. Figure VIII-Ec and VIII-Ed show the
results of our analysis. Assuming that the cost of an attack is
$5 (the cost of canceling an Uber/Lyft ride) and the gain of
the attacker is $10.75 (the average cost of a ride in the area
estimated from our data-set), Figure VIII-Ec shows that it is
not economical to attack with more than 5000 Zombies per
hour. From this, we can deduce that a cost of attack greater
than $15 protects the MaaS system against attacks. This can
be generalized to a cost of attacks being approximately 1.5
times higher than the gain from incurring passenger loss.

IX. CONCLUSIONS AND FUTURE WORK

We described an analysis framework for quantifying the
vulnerability to MaaS systems to DoS attacks. The Jack-
son network model enables to formulate a mathematical
program for attack strategies that maximize the passenger
loss in equilibrium. The strategy is then implemented on a
network simulation to dynamically estimate the passenger
loss incurred by the attacks. We then present a cost-benefit
analysis applied to a case study in Manhattan. In the context
of anti-competition practice, it is demonstrated that DoS
attacks costing more than $15 per unit protects the MaaS
system. The present work can be refined by, e.g., designing
an optimization program directly maximizing the transient
losses over a short time horizon, relaxing the assumption

Fig. 6. Optimal Attack Rates and Routing. (a) and (b): The attack
rates and routing probabilities for a total budget of 2000 Zombies per
hour are showed in the same style as in Figure 4, with an unlimited
radius and 3km (9 squares) radius respectively. (c): Passenger/financial
loss as a function of attacks from 10 simulations of the Jackson network
(each one associated to a given budget and a strategy computed from
the OAP). The vertical scale on the left shows the rate of passenger loss
and the one on the right the financial loss assuming that a passenger
spends $10.75 on an average. The red line denotes the price of attack
(assuming $5/unit) against the budget. If 100% of the loss is gained by
the attacker, then the red region is financially beneficial for the attacker.
The red line shows that an attack costing $5/unit (its slope) incurs a
maximum loss of $22,500/hour for the MaaS system. (d): Maximum
financial loss for the MaaS system as a function of the cost of one unit
of attack, obtained from (c). A cost of attack above $15 protects the
system.

of infinite capacity stations, and proposing countermeasures
such as an anomaly detection algorithm.
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APPENDIX

Proof of Lemma 1: By assumption, the probabilities αij
constitute an irreducible Markov chain. By equation (6), the
probabilities rij lead to an irreducible Markov chain as well.
The {ai}i vector satisfying equations (20) is proportional to
the steady state distribution for the transition probabilities
{rij}ij and by the Perron-Frobenius theorem, it is positive
[24]. Finally, the constraint ak = 1 completely fixes the
vector {ai}i. �

Proof of Theorem 1: The balance equations before attacks
are: ∑

j 6=i

ajϕjδji = aiϕi ∀ i ∈ S (55)

After attacks, the equations can be written as:∑
j 6=i

ãj(νjκji + ϕjδji) = ãi(νi + ϕi) ∀ i ∈ S (56)

Given (25), the above equation at index k is:∑
j 6=k

aj
α

(νjκjk + ϕjδjk) = νk + ϕk (57)

1

α
=

νk + ϕk∑
j 6=k aj(νjκjk + ϕjδjk)

(58)

We first maximize α with respect to the routing probabilities
{κij}ij , which is clearly achieved when κij satisfies the
policy (28). As a result, equations (56) combined with (25)
and (28) become:∑

j /∈{i,k}

aj
α
ϕjδji+ ϕkδki =

ai
α

(νi + ϕi) ∀ i 6= k (59)

Multiplying by α and subtracting (56) on both sides:

ϕkδki(α− ak) = aiνi ∀ i 6= k (60)
α = ak + aiνi/(ϕkδki) ∀ i : δki > 0 (61)

From (60), νi is proportional to δki/ai for all i 6= k, thus

νi∑
i6=k νi

=
δki/ai∑
j 6=k δkj/aj

∀ i 6= k (62)

Plugging the above expression into (61)

α = ak +

∑
i6=k νi

ϕk
∑
j 6=k δkj/aj

(63)

Hence α is maximized when
∑
i6=k νi = b, setting {νi}i∈S

to follow policy (27) (using (62)). We verify that the policy
derived above is feasible given (55). Finally, we want α ≥ 1,
which implies (26). �

Proof of Theorem 2: Suppose b > 0 (otherwise there is no
attack). Let (ai, νi, κij) be a feasible solution of the OAP
such that

∑
i∈S νi < b. We show that it is not optimal. We

combine the Zombies to the real and re-balancing passengers:

ϕ̃i := ϕi + νi (64)

δ̃ij := (δjiϕj + κjiνj)/(ϕi + νi) (65)

b̃ := b−
∑
i∈S

νi > 0 (66)

Then applying policy the SDAP with ϕ̃i, δ̃ij , b̃, ai and k
such that ak = 1 decreases the ai for i 6= k by a factor
α > 1 (using (29) and the assumptions that b, ϕk > 0) Since
the wi’s are positive by assumption and the ai’s are positive
from Lemma 1, the objective decreases by a positive amount.
Let us denote ν̃i and κ̃ij the resulting attack policy. Then,
the combination of (νi, κij) and (ν̃i, κ̃ij) given by ν̃i + νi
and (κ̃jiν̃j + κjiνj)/(ν̃i + νi) is still feasible for the OAP
and decreases the objective by a positive amount. �

Proof of Theorem 4: The following change of variables

xij := νiκijai ∀ i, j (67)

converts the MAP into the above program with {si}i∈S given
by (48) and νi =

∑
j 6=i xij/ai as a result of the change of

variable. This problem is feasible because the capacity on
each edge is unbounded and the source flows sum to 0:∑

i

si =
∑
i

aiϕi −
∑
i,j 6=i

ajδjiϕi = 0 (68)

Therefore, we can find the minimal-cost attacks that
achieve any arbitrary availabilities. Finally, if x?ij minimizes∑
i,j xij/ai then ν?i given by (52) minimizes

∑
i νi, and

feasibility of κ?ij given by (53) can be checked, hence
optimality of ν?i and κ?ij . �


