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Regularity and Lyapunov Stabilization of Weak
Entropy Solutions to Scalar Conservation Laws
Sébastien Blandin, Xavier Litrico, Maria Laura Delle Monache, Benedetto Piccoli, and Alexandre Bayen

Abstract—We consider the problem of Lyapunov bound-
ary stabilization of the weak entropy solution to a scalar
conservation law with strictly convex flux in one dimension
of space, around a uniform equilibrium. We show that for
a specific class of boundary conditions, the solution to the
initial-boundary value problem for an initial condition with
bounded variations can be approximated arbitrarily closely
in the L1 norm by a piecewise smooth solution with finitely
many discontinuities. The constructive method we present
designs explicit boundary conditions in this class, which
guarantee Lyapunov stability of the weak entropy solution
to the initial-boundary value problem. We show how the
greedy control, obtained by maximizing the decrease of
the natural Lyapunov function, may fail to asymptotically
stabilize and a brute force control generates unbounded
variation of traces. We then design a stabilizing control,
which avoid oscillations, and propose a nonlocal technique
(depending on time and the whole initial datum) which
optimizes the convergence time. Controllers performance
is illustrated on numerical benchmarks using the Godunov
scheme.

Index Terms—Boundary value problems, distributed pa-
rameter systems, Lyapunov methods, partial differential
equations.

I. INTRODUCTION

A. Motivation

The conservation principle is one of the most fundamen-
tal modeling principles for physical systems. Statements of
conservation of mass, momentum, energy are at the center of
modern classical physics. For distributed dynamical systems,
this principle can be written in conservation law form with
the use of partial differential equations (PDE). The problem of
well-posedness of the partial differential equation is concerned
with the existence, uniqueness, and continuous dependence of
the solution to the problem data [35].
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First existence results for scalar conservation laws in one
dimension of space date back to [63]. For hyperbolic systems
of conservation laws in one dimension of space, existence re-
sults were provided in [41] with the introduction of the random
choice method. Existence and uniqueness in the scalar case for
several dimensions of spaces were proven in[51], and to this date
constitute the only general results known on well-posedness
for several dimensions of space. Existence and uniqueness
for n× n hyperbolic systems of conservation laws in one-
dimension of space was shown only recently, see [21] and [23]
for systems with genuinely nonlinear or linearly degenerate
characteristic families, and [9], [15] for the general case of
systems of strictly hyperbolic conservation laws. The global
well-posedness of solutions to hyperbolic systems of conserva-
tion laws in several dimensions of space is still largely open.

The keystone of well-posedness results, and a standard ar-
gument for constructive existence proofs, is the consideration
of a functional space in which small variations in the problem
data, i.e.„ initial condition for the Cauchy problem, initial and
boundary conditions for the initial-boundary value problem
(IBVP), create only small variations in the tentative solution.

The control problem is posed from a different perspective,
and in different terms. In the case of boundary control [50], the
control problem consists of an objective trajectory for the sys-
tem in a given functional space, and the knowledge of an initial
condition. The problem of control [26] or stabilization [49] con-
sists in the existence and design of a controller, i.e., boundary
conditions in the case of boundary control or stabilization, for
which the solution to the partial differential equation stays in a
domain prescribed by the objective trajectory.

In this paper we propose to show Lyapunov stability of the
solution to the initial-boundary value problem associated with
a scalar conservation law under suitably designed boundary
conditions. We consider a scalar conservation law with smooth
strictly concave or convex flux in one dimension of space. This
partial differential equation is called the Burgers equation [45]
in the case of a quadratic convex flux, and in the case of a
concave flux, corresponds to the Lighthill-Whitham-Richards
(LWR) [58], [69] PDE in its various forms, used in particular
for macroscopic traffic flow modeling. The problem is defined
in the following section.

B. Problem Statement

Consider the scalar conservation law in one dimension of
space

∂tu+ ∂xf(u) = 0 (1)

on the domain Ω
.
= {(t, x)|t ≥ 0 and a ≤ x ≤ b}. The flux

function f(·) is assumed to be smooth (infinitely differentiable)
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and strictly convex or strictly concave.1 The initial-boundary
value problem (IBVP) for (1) in Ω with initial condition u0 :
(a, b) �→ R, and boundary conditions ua, ub : R

+ �→ R, reads

∂tu+ ∂xf(u) = 0 (2)

u(0, x) = u0(x) (3)

u(t, a) = ua(t), u(t, b) = ub(t). (4)

The Lyapunov boundary stabilization problem can now be
formulated.

Definition 1: Given a stationary solution u∗ to the PDE (1),
the Lyapunov (resp. asymptotic) boundary stabilization prob-
lem consists in the existence of boundary conditions ua, ub

depending on initial condition u0 with bounded variations (see
Section II-A) such that the following is true. The IBVP (2)–(4)
is well-posed and its solution is (resp. asymptotically) stable in
the sense of Lyapunov at u∗.

Note that Lyapunov (resp. asymptotic) stabilization consists
in the existence of a positive definite function decreasing (resp.
vanishing) in time along trajectories of the system.

Stationary solutions to the PDE include constant solutions
and solutions with a single stationary jump discontinuity, called
shock. In this paper, we address the case of constant solutions.

The well-posedness of the IBVP (2)–(4) is critical to the
definition of the problem, since the design of arbitrary boundary
conditions can make the problem ill-posed (see [74] for an
illustration on the LWR equation in the case of traffic). This
would lead to a discrepancy between the control implemented
and its realized value in the system, and a divergence between
the desired trajectory of the system and its real trajectory. In the
case of traffic, it corresponds for instance to installing a green
traffic light at the location of a traffic jam with the intended goal
that cars in the jam adopt the corresponding free-flow speed.
For well-posedness of the IBVP (2)–(4), the PDE (1) and the
boundary conditions (4) must be understood in the weak sense.
The weak formulation is presented in Section II-B.

The following section consists in a review of results on
boundary control of partial differential equations.

C. Literature Review

The problem of boundary control of partial differential equa-
tions has been the focus of ongoing research. A large volume
of literature is concerned with the problem of boundary control
of the viscous Burgers equation. Control results can be found
in [24], [25], [28], [39], [40], [47], [48], [53], [62], [65], [72].
A Lyapunov approach, from which the method presented in
this paper was inspired, has been proposed in [48], for classical
solutions to the PDE.

Lyapunov methods for classical solutions of networks of
scalar conservation laws have also been proposed in [13] and
[67], and for classical solutions of 2 × 2 systems with character-
istics speeds of constant opposite sign in [27] and [33]. Similar
work on boundary damping techniques with applications to the
Saint-Venant equations has been proposed in [30] and [68].
Switching techniques for linear hyperbolic systems are inves-
tigated in [4], and asymptotic stabilization using a stationary
feedback law in [66]. A frequency domain framework [59]

1This is equivalent to the condition of genuine nonlinearity of the character-
istic field.

has been used to design a boundary control for the linearized
Saint-Venant equations in [60] (see also [44] for boundary con-
trol of the Saint-Venant equations). A specific method for flat
systems has been introduced in [36]. For a recent application of
backstepping, the reader is referred to [76].

Methods developed specifically for well-posedness results of
conservation laws have also been applied to the problem of
boundary control. In [6], a wavefront tracking method was used
to compute the fixed horizon attainable set of initial-boundary
value problem solutions of Temple systems of conservation
laws. In [5] and [7], the authors studied the attainable sets for
the same problem, i.e., the set of functions which can be
reached by acting with controls. The problem of asymptotic
stabilization by boundary controls was studied also in [8] and
[20] under the non-characteristic condition. In particular, the
paper [20] provides a counterexample to exact controllability.

Frameworks arising from the field of optimal control have
also been applied to this problem [46]. In [10], the authors
proposed a viability framework for a Hamilton-Jacobi equation
corresponding to an integral form of the Burgers equation,
which leads to lower semi-continuous solutions. A linear re-
laxation method for the nonlinear discrete dynamics of the
asymmetric cell-transmission model, a specific instantiation of
the Godunov scheme for the LWR equation, has also been
proposed in [43], with subsequent global optimization of the
obtained equivalent convex problem.

One of the challenging features of conservation laws is the
apparition of discontinuities in finite time in the solution to the
Cauchy problem, even for smooth initial condition. This yields
difficulties for most control approaches since classical control
methods are not well-suited to handle discontinuities. In the
case of parametric initial conditions, the problem of differenti-
ating the solution to the scalar conservation law with respect to
the initial condition parameter has been specifically addressed
in [12] from a mathematical perspective. One must also note
the more general shift differentiability method for functionals
on L1 ∩BV introduced in [14] and [22] (see Section II-A for a
definition of the class of BV functions).

A second specific challenge of boundary control of the
solution to a conservation law, also due to the non-linearity of
the PDE, is the fact that weak boundary conditions have to be
considered. In this work, we specifically account for these two
issues and show the stability of the weak entropy solution to
the scalar conservation law (1). The main contributions of this
paper are the following:

• Well-posedness result: we consider data with a finite num-
ber of shocks and otherwise positive gradient and show
well-posedness of the IBVP associated to a stabilizing
control with the scalar conservation law in this class. The
corresponding piecewise smooth solution can approxi-
mate arbitrarily well the solution to an IBVP with BV
initial condition.

• Stabilization of a Lyapunov function candidate: we show
that there exists a strictly decreasing Lyapunov function
for the scalar conservation law for appropriate boundary
conditions.

• Controller design: we identify explicitly the boundary con-
ditions that maximize the decrease rate of the Lyapunov
function and show that they may not stabilize the system.
A stabilizing control is then designed. The latter keeps the
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solution in the piecewise smooth class, can be extended
to BV data and guarantees asymptotic stability (which in
turn implies L2 convergence of solutions). We also design
nonlocal strategies to improve the convergence time.

The remainder of the paper is organized as follows. Section II
defines the notations used later in the paper and states use-
ful lemmas. Section III contains the proof of well-posedness
of the initial-boundary value problem with piecewise-smooth
increasing datum with negative gradient concentrated at a fi-
nite number of locations. Preparatory derivations involving the
Lyapunov function candidate can be found in Section IV. In
Section V, we show stability of the Lyapunov function for weak
entropy solutions to the scalar conservation law remaining in
the special class with a finite number of shocks. In Section VI
we design a controller that maximizes the instantaneous de-
crease of the Lyapunov function identified previously, but
highlight several configurations in which asymptotic stability
is not achieved by this controller. We also illustrate how a brute
force controller introduces unbounded oscillations, in the form
of infinite variation of the solution traces. In Section VII we
design a new controller which guarantees asymptotic stability
and the existence of solution to the IBVP in the special class of
solutions with a finite number of shocks. Moreover, we design
nonlocal controllers, depending on the whole initial datum,
which improve the convergence time. Numerical examples
are proposed in Section VIII, and promising research avenues
related to this work in Section IX.

II. PRELIMINARIES

In this section, we introduce results subsequently used
throughout the paper.

A. BV Functions

Consider an interval J ⊂ R, and a map u : J �→ R. The total
variation of u is defined as

Tot.Var.{u} .
= sup

{
N∑
i=1

|u(xj)− u(xj−1)|
}

(5)

where the supremum is taken over all N ≥ 1 and all (N + 1)-
tuples of points xj ∈ J such that x0 < x1 < . . . < xN . If the
total variation of u is finite then we write u ∈ BV . Specific
properties of BV functions leveraged in the following sections
are presented below.2

Lemma 1: [19] Let u : (a, b) �→ R
n have bounded variation.

Then for every x ∈ (a, b), the left and right limits u(x−)
.
=

limy �→x− u(y), as well as u(x+)
.
= limy �→x+ u(y) are well de-

fined. Moreover, u has at most countably many points of
discontinuity.

The following lemma concerns piecewise constant approx-
imability of BV functions.

Lemma 2: [19] Let u : R �→ R
n be right continuous

with bounded variation. Then, for every ε > 0, there ex-
ists a piecewise constant function v such that Tot.Var.{v} ≤
Tot.Var.{u}, as well as ‖v − u‖L∞ ≤ ε. If, in addition

0∫
−∞

|u(x)− u(−∞)| dx +

+∞∫
0

|u(x)− u(∞)| dx < ∞

2Proofs of these properties can be found in section 2.4 of [19].

then one can find v with the additional property

‖u− v‖L1 ≤ ε.

The space of BV functions and its closure in L1 are at the
center of well-posedness results for conservation laws using
wavefront-tracking methods.

B. Weak Solutions to the Initial-Boundary Value Problem

It is well-known that jump discontinuities can arise in finite
time in solutions to conservation laws [35]. Thus classical
solutions do not exist in general, and it is necessary to consider
a more general formulation of the conservation law.

1) Weak Entropy Solution to the Cauchy Problem: The
weak formulation of the conservation law is obtained by con-
sidering derivatives in the sense of distribution.

Definition 2: A function u : [0, T ]× R �→ R is a weak so-
lution to the Cauchy problem (2), (3) if for any continuously
differentiable function φ with compact support contained in
(−∞, T )× R

T∫
0

∞∫
−∞

(u φt+f(u) φx) dx dt+

∞∫
−∞

u0(x) φ(0, x)dx=0 (6)

and t �→ u(t, ·) is continuous from [0, T ] into L1
loc.

Given that u is smooth around a jump discontinuity, inte-
grating the weak formulation (6) yields the Rankine-Hugoniot
relation [35] defining the speed σ of propagation of jump
discontinuities

σ Δu = Δf(u) (7)

where Δu = ur − ul is the jump in u, with ur, respectively ul,
the value of the right, respectively left, limit of u at the jump
location.

To isolate a unique weak solution to a Cauchy problem
associated with the conservation law, an additional admissibility
condition (see Section 4.5 of [29]) is required. Different condi-
tions have been proposed in the literature. In the scalar case, one
of the first admissibility conditions, due to Oleinik [63], states
that for a shock joining a left state ul and a right state ur, the fol-
lowing inequality must be satisfied for all u between ul and ur:

f(u)− f(ul)

u− ul
≥ σ ≥ f(u)− f(ur)

u− ur
(8)

where σ is the Rankine-Hugoniot speed (7). Kruzkhov [51]
showed that it was sufficient to satisfy the entropy inequality
condition for a specific family of entropy-entropy flux pairs in
the scalar case, yielding the Kruzkhov entropy condition. The
Lax admissibility condition [52], which exhibits a convenient
geometric interpretation, states that for a shock joining a left
state ul and a right state ur, the following inequality must be
satisfied:

λ(ul) ≥ σ ≥ λ(ur) (9)

where λ(u) is the characteristic speed of u (i.e., f ′(u)), and σ
is the Rankine-Hugoniot speed (7). For the case of systems one
requires that condition (9) holds for a genuinely nonlinear or
linearly degenerate i-th characteristic family with λ replaced
by the i-th eigenvalue λi of the Jacobian matrix DF (u). In
the scalar case, for a convex flux, these formulations have
been proven to be equivalent (see Section 2.1 of [55]). The
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Lax admissibility condition allows the selection of a particular
weak solution.

Definition 3: A function u : [0, T ]× R �→ R is the weak
entropy solution to the Cauchy problem (2), (3) if it is a
weak solution (definition 2), that satisfies the Lax admissibility
condition (9).

The definition of weak conditions to the IBVP requires a cor-
responding statement of weak boundary conditions, presented
in the following section.

2) Weak Boundary Conditions: The first statement of weak
boundary conditions was introduced in [11] in the scalar case in
multiple dimensions of space, with C2 flux and C2 initial and
boundary datum, using a vanishing viscosity method. In one
dimension, this formulation reads

max
k∈[α,β]

sgn (u(t, a)− ua(t)) (f (u(t, a))− f(k)) = 0 (10)

min
k∈[γ,δ]

sgn (u(t, b)− ub(t)) (f (u(t, b))− f(k)) = 0 (11)

for almost all t > 0, and where α = min(u(t, a), ua(t)), β =
max(u(t, a), ua(t)), γ=min(u(t, b), ub(t)), δ=max(u(t, b),
ub(t)), and sgn denotes the sign function. For the case of systems
of conservation laws, the interested reader is referred to [16] and
[71]. In the scalar case, at a left boundary a, the corresponding
statement of weak boundary conditions derived from the struc-
ture of the solution to the Riemann problem is the following.

Definition 4: A function u : Ω �→ R satisfies the boundary
condition ua at a if for almost every time t (in the sense
of Lebesgue measure), the solution to the Riemann problem
centered at a with initial data{

ua(t) if x < a

u(t, a) if x > a
(12)

either does not contain any wave (when left and right initial
states are the same), or contains waves with non positive speeds
(a wave with zero speed is allowed). Notice that for weak
solutions we consider the condition will hold for all times
except a finite number.

The domain of the couples boundary condition-boundary
trace satisfying the weak boundary conditions (Definition 4) is
represented in Fig. 1 for a Burgers flux. In [54], a simplified
formulation is proposed for the scalar case with strictly con-
vex continuously differentiable flux functions (see also [37]).
Similar formulations were derived for a scalar traffic model
in [74] and scalar traffic models on networks with application
to estimation in [77], following [38]. In the case of a strictly
convex continuously differentiable flux, this statement states
that for almost all times t, one of the following mutually
exclusive conditions must be satisfied:⎧⎪⎨
⎪⎩
u(t, a)=ua(t)

f ′(u(t, a))≤0 and f ′(ua(t))≤0 and u(t, a) =ua(t)

f ′(u(t, a))≤0 and f ′(ua(t))>0 and f (u(t, a))≥f (ua(t)) .
(13)

The same can be done at the downstream boundary x = b⎧⎪⎨
⎪⎩
u(t, b)=ub(t)

f ′ (u(t, b))≥0 and f ′ (ub(t))≥0 and u(t, b) =ub(t)

f ′(u(t, b))≥0 and f ′(ub(t))<0 and f (u(t, b))≥f (ub(t)) .
(14)

Fig. 1. Weak boundary conditions: in the case of a quadratic convex
flux centered at 0. The solution to the Riemann problem with initial datum
in the striped domain exhibits a wave with negative speed. For initial
datum on the first bisector, no wave arises. The white zone exists only
for a zero time duration.

A well-posedness result for the IBVP associated with a
scalar conservation law (1) with the boundary statement from
Definition 4 is presented in the following section.

C. Well-Posedness of the Initial-Boundary Value
Problem

In [11], a solution satisfying (6) in the scalar case is con-
structed using a vanishing viscosity method for the weak
boundary conditions statement (10), (11) and is shown to
be the admissible solution according to Kruzkhov entropy
condition [51].

More recently, an existence result for n× n systems using
wavefront tracking was proposed in [1]. The standard Riemann
semigroup (SRS) method, introduced in [18] for the Cauchy
problem associated with a Temple system [75] of conservation
laws, was extended to the IBVP in [2] and [3], with the bound-
ary conditions statement from Definition 4. In [3], it is shown
for a n× n system that if the SRS exist, its trajectories coincide
with wavefront tracking solutions. Uniqueness and continuous
dependence is obtained for the case of non-characteristic con-
ditions, and uniqueness for the characteristic case. The SRS is
constructed for 2 × 2 system in [2], and for the case of n× n
system in [32]. The stability of the IBVP with two boundaries
was established via vanishing viscosity for 2 × 2 systems in
[73]. We state in the scalar case for a static boundary the main
result of [2] for characteristic boundary conditions, obtained for
2× 2 systems with continuous boundary (see theoremC of [2]).
A general result for n× n systems was established in [8].

Theorem 1: [2] Let f be a smooth map such that the (1) is
strictly hyperbolic with characteristic field linearly degenerate
or genuinely nonlinear (i.e., f is linear, convex or concave). For
every δ > 0 there exists L > 0 and a continuous semigroup S
defined for data in L1 ∩BV with total variation bounded by δ,
such that

• The map t �→ u(t, ·) yields a weak solution to the IBVP
(2)–(4).

• For piecewise constant initial and boundary data, the
trajectories of the semigroup coincide with the solution
to the IBVP obtained by piecing together the standard
solutions to the Riemann problems at the points of dis-
continuity of the initial condition and at the boundary.
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• For initial data u′
0, u

′′
0, boundary data u′

a, u
′′
a, u

′
b, u

′′
b in

L1 ∩BV with total variation bounded by δ, let u′, u′′

denote the corresponding trajectories of the semigroup S,
and t′, t′′ > 0, then ‖u′(t′, ·)−u′′(t′′, ·)‖1 ≤ L(|t′−t′′|+
‖u′

0 − u′′
0‖1 + ‖u′

a − u′′
a‖1 + ‖u′

b − u′′
b‖1).

We also refer the interested reader to the work of Otto [64] for
the case where the entropy solution does not have traces at the
boundary, see also [70]. In the following section we use this
result in the case of a left and a right boundary to show that
we can restrict our Lyapunov analysis to the case of piecewise
smooth data.

III. APPROXIMATION OF SOLUTION TO

INITIAL-BOUNDARY VALUE PROBLEM

BY PIECEWISE SMOOTH SOLUTION

In this section, we present results on the approximability of
the solution to an IBVP with initial condition in BV by the
solution to an IBVP with piecewise smooth solution at all times.
We show that the solution to the IBVP with BV data can be
approximated arbitrarily closely in the L1 norm by the solution
to an IBVP with piecewise smooth data. We define the required
regularity class used throughout the paper.

Definition 5: We note PWS+ the class of piecewise smooth
functions f : R �→ R such that

• f ′ is positive (where defined).
• f has only downward jumps (i.e., f ′ seen as measure has

only negative Dirac masses).

We now state the approximability result.
Theorem 2: Consider T > 0, a < b, and let u0 : (a, b) �→ R,

ua, ub : (0, T ) �→ R be functions with bounded total variation.
For every ε > 0, there exists uε

0 : (a, b) �→ R in PWS+ and
piecewise constant boundary data uε

a, u
ε
b : (0, T ) �→ R such that

‖ua(t)−uε
a(t)‖1≤ε, and ‖ub(t)− uε

b(t)‖1 ≤ ε. Moreover, the
solution u to the IBVP for (1) and data (u0, ua, ub), and the
solution uε to the IBVP for (1) and data (uε

0, u
ε
a, u

ε
b), satisfy

∀ 0 ≤ t ≤ T, and ‖u(t, ·)− uε(t, ·)‖1 ≤ ε.
Proof: Using Lemma 2 in the compact domain [a, b], we

can approximate the initial condition u0 arbitrarily closely in
the L1 sense by a piecewise constant function uε

0 with a finite
number of discontinuities and lower total variation. Also we
can replace the upward jumps of uε

0 with smooth increasing
functions without increasing the total variation. We can also
approximate boundary data by piecewise constant functions of
lower variation.

Since uε
0 has only positive derivative, no new shock can form

in the solution inside the domain. Moreover, a finite number of
shocks will be introduced by the boundary conditions. There-
fore the solution uε will remain in the class PWS+.

Using the continuous dependence result of Theorem 1, the
resulting trajectories u, uε of the semigroup can be made arbi-
trarily close in the L1 norm by controlling the distance between
the initial conditions. �

We show that under suitable boundary conditions, the so-
lution to the IBVP with piecewise smooth data is piecewise
smooth.

Theorem 3: Let T, δ > 0, a < b, and let u0 : (a, b) �→ R be
in PWS+ and ua, ub : (0, T ) �→ R be piecewise constant. Let

u denote the solution to the IBVP (6), (3)–(12). At all times
0 ≤ t ≤ T , u(t, ·) is piecewise smooth.

Proof: Let x1, . . . , xN denote the locations of the dis-
continuities in the initial condition, including a, b. We construct
the solution to the IBVP by piecing together the shock waves
created at xi, and the classical solution constructed by the
method of characteristics between the waves. By definition, the
solution created is a solution in the sense of (6) since (1) is
satisfied in the classical sense between the waves, and the shock
waves propagate according to the Rankine-Hugoniot relation
(7). It is also the admissible solution according to the Lax
condition (9) thus the constructed solution coincides with the
trajectory of the semigroup from Theorem 2 (see [21]).

We now show that at all time, the number of discontinuities is
finite. Since there is a finite number of discontinuities in the ini-
tial and boundary conditions, a finite number of discontinuities
enters the space-time domain. In the scalar case the interaction
of two discontinuities creates no more than one discontinuity,
so the interaction of discontinuities contributes to decreasing
their number. Finally as mentioned above, since the initial
and boundary conditions are piecewise smooth increasing, all
discontinuities are created at time 0 or at the boundary. �

In the next section, we present the Lyapunov stability analy-
sis for functions in PWS+.

IV. LYAPUNOV ANALYSIS

In this section, we propose a Lyapunov function and compute
its derivative. In the following we call ũ = u− u∗ where u∗ is
a constant, hence stationary, solution around which we want to
stabilize the system, and u is the solution to the IBVP associated
with the scalar conservation law (1). Following the results from
Section III, we assume that u is in PWS+.

A. Lyapunov Function Candidate

We consider the classical Lyapunov function candidate
[48], [50]

V (t) =
1

2

b∫
a

ũ2(t, x) dx =
1

2

b∫
a

(u(t, x)− u∗)2 dx (15)

where u is a weak solution to the scalar conservation law. From
definition 3, we have t �→ u(t, ·) continuous from [0, T ] to L1,
and the function V (·) is well-defined and continuous. We index
the jump discontinuities of u(t, ·) in increasing order of their
location at time t by i = 0, . . . , N(t), including for notational
purposes the boundaries a, b, with x0(t) = a and xN (t) = b.
The Lyapunov function candidate can be rewritten as

V (t) =
1

2

N(t)−1∑
i=0

xi+1(t)∫
xi(t)

ũ2(t, x) dx. (16)

From Theorem 3, we know that for all integer i ∈ [0, N(t)),
the function u(t, ·) is smooth in the domain (xi(t), xi+1(t)),
thus ∂tu(t, ·) exists and is continuous for t such that xi(t) <
xi+1(t). Since discontinuity trajectories are differentiable with
speed given by the Rankine-Hugoniot relation (7), it follows
that at any time t such that N(t) is constant in a neighborhood
of t and the boundary trace is continuous, the function V (·) is
differentiable.
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B. Differentiation of the Lyapunov Function Candidate

In this section, we compute the derivative of the Lyapunov
function candidate (15), at any time t such that N(t) is con-
stant in a neighborhood and the boundary trace is continuous.
Differentiating expression (16) yields

dV

dt
(t) =

1

2

N(t)−1∑
i=0

xi+1(t)∫
xi(t)

∂tũ
2 dx

+
1

2

N(t)−1∑
i=0

[
ũ2 (t, xi+1(t)−)

dxi+1

dt
(t)

− ũ2 (t, xi(t)+)
dxi

dt
(t)

]
. (17)

As detailed at the end of Section IV-A, the term under the sum
is smooth, and we can write ∂tũ

2 = 2 ũ ∂tũ. Since u satisfies
the conservation law (1), we have ∂tũ = −∂xf(ũ+ u∗). The
derivative of the Lyapunov function can be written as

dV

dt
(t) =−

N(t)−1∑
i=0

xi+1(t)∫
xi(t)

ũ ∂xf(ũ+ u∗) dx

+
1

2

N(t)−1∑
i=0

[
ũ2 (t, xi+1(t)−)

dxi+1

dt
(t)

− ũ2 (t, xi(t)+)
dxi

dt
(t)

]
.

By integrating by part the sum terms, and if note F (·) a
primitive function of the flux function f(·) we have

dV

dt
(t) = ũ(t, a) f (ũ(t, a) + u∗)− ũ(t, b) f (ũ(t, b) + u∗)

− F (ũ(t, a) + u∗) + F (ũ(t, b) + u∗)

+

N(t)−1∑
i=1

[
Δi (ũf(ũ+ u∗)− F (ũ+ u∗))

− 1

2

dxi

dt
(t) Δi ũ

2

]

where Δi is defined around the discontinuity xi(t) as in (7).
Using the Rankine-Hugoniot relation, defined in (7), to write
the speed of the jump discontinuity dxi(t)/dt as a function of
the left and right jump values we obtain

dV

dt
(t) =ũ(t, a) f (ũ(t, a) + u∗)− ũ(t, b) f (ũ(t, b) + u∗)

− F (ũ(t, a) + u∗) + F (ũ(t, b) + u∗)

+

N(t)−1∑
i=1

Δi (ũf(ũ+ u∗)− F (ũ + u∗))

−
N(t)−1∑
i=1

ũ(t, xi−)+ũ(t, xi+)

2
Δif(ũ+u∗). (18)

In (18) we gather the first four terms that depend on the bound-
ary trace of the solution, and the last two terms that depend on
the shock dynamics inside the domain. In the following section,
we analyze the stability properties of the internal terms.

C. Internal Stability

The last two terms of (18) correspond to jump discontinuity
in the solution and are neither observable nor controllable from
the boundaries. We now show that these terms have a stabilizing
effect on the Lyapunov function candidate (15).

Proposition 1: Given a constant solution u∗ to the scalar
conservation law (1), we have the following inequality

N(t)−1∑
i=1

[
Δi (ũf(ũ+ u∗)− F (ũ+ u∗))

− ũ(t, xi−) + ũ(t, xi+)

2
Δif(ũ+ u∗)

]
≤ 0 (19)

i.e., the jump discontinuity dynamics of the solution u to the
IBVP, contributes to the decrease of the Lyapunov function
candidate (15).

Proof: In order to show that the term (19) is negative, we
show that each term in the sum is negative. If we note ul, ur the
value of u on the left and on the right of the jump discontinuity,
respectively, and ũl, ũr the corresponding reduced variables, we
want to show that

(ũrf(ũr + u∗)− F (ũr + u∗))−(ũlf(ũl + u∗)− F (ũl + u∗))

− ũl + ũr

2
(f(ũr + u∗)− f(ũl + u∗)) ≤ 0.

Equivalently, in the original state variable u = ũ+ u∗, we have

[((ur − u∗) f(ur)− F (ur))− ((ul − u∗) f(ul)− F (ul))]

− ul + ur − 2 u∗

2
(f(ur)− f(ul)) ≤ 0.

This can be rewritten as

F (ul)− F (ur) +
1

2
(ur − ul) (f(ur) + f(ul)) ≤ 0 (20)

which can be obtained from the Oleinik condition (8), here by
integration the left inequality of (8) between ul and ur. Thus
any solution satisfying the Oleinik entropy condition benefits
from stability of the jump discontinuity dynamics. �

Remark 1: Given that stability of the jump discontinuity
dynamics is implied by the Oleinik entropy condition, since
the flux function is strictly convex, we see that the internal
dynamics is strictly stabilizing, i.e., we have a strict decrease
of the Lyapunov function.

Remark 2: When the number of shocks is constant inside
the domain and the trace of the solution is continuous, the
internal dynamics is stabilizing in the sense that it contributes
to the decay of the Lyapunov function candidate (15). Since
the Lyapunov function candidate is continuous, the internal
dynamics is always stabilizing. This is critical for boundary
stabilization where the control action cannot apply directly
inside the domain (unlike the case of distributed control [31],
[34], [57]). From (20), one can note that the magnitude of the
internal stability does not depend on the equilibrium u∗.

Remark 3: At a time t at which the number of discontinuities
is not constant or the boundary trace is not continuous, the
Lyapunov function is not differentiable, however the difference
between the right and left derivative at t+ and t−, respectively,
can be computed. This is addressed in Section VI.

If the trace of the solution to the IBVP always takes the
value of the boundary condition, it is clear that the solution is
stabilizable using boundary control since it amounts to finding
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Fig. 2. Control space: in the case of a convex quadratic flux with
minimum at 0. Top-right quadrant, first bisector, and upper part of top
left quadrant (points D, E, F ): the control applies, i.e., the boundary
trace takes the value of the boundary condition, as represented by the
horizontal arrow. Left zone except first bisector (points A, B, C): the
control has no effect. Bottom right quadrant (point G): any control yields
a zero boundary trace, represented by a horizontal projection onto the
vertical axis.

boundary controls ua, ub such that g(ua)<g(ub), where g :
x �→(x−u∗) f(x)−F (x) is not constant (strict convexity of f ).

However, as described in Section II-B2, this assumption may
render the IBVP ill-posed and thus the control inapplicable.
In the following section, we show that the Lyapunov function
is stabilizable under the proper statement of weak boundary
conditions from definition 4.

V. WELL-POSED BOUNDARY STABILITY

In this section, we motivate and define the control space and
propose a stabilizing controller.

A. Control Space

Due to the emergence of jump discontinuities in the solution
to the conservation law (1), weak solutions have to be con-
sidered, and boundary conditions have to be considered in the
weak sense. It means that it is not always possible to enforce a
specific value of the boundary condition. This leads to consid-
ering the domain where the boundary controls apply to the so-
lution of the IBVP (introduced in [17] for the specific case of a
Burgers flux).

Definition 6: Let us denote smin, smax the minimal and max-
imal speed of the waves composing the solution to the Riemann
problem at the boundary. The control space at the left boundary
is the set of pairs (ul, ur) such that either no wave is generated
by the Riemann problem (ul = ur), or smin ≥ 0 and smax > 0.
The control space at the right boundary is the set of pairs
(ul, ur) such that either no wave is generated by the Riemann
problem (ul = ur), or smin < 0 and smax ≤ 0.

Definition 4 from Section II-B2 and definition 6 are compat-
ible. Definition 4 is a weak formulation that characterizes the
couples boundary condition-boundary trace prevailing for non-
zero time durations. Definition 6 categorizes the couples bound-
ary conditions-boundary trace, potentially existing for zero time
durations, leading to the boundary trace instantaneously taking
the value of the boundary condition (see Figs. 1 and 2).

Proposition 2: Let m denote the minimizer of the strictly
convex flux function f . The control spaces Ca, Cb at the left and

right boundaries, respectively, are characterized as the set of
pairs (ul,ur) such that one of the following properties is satisfied:

Ca .
=(ul, ur) s.t.

⎧⎪⎨
⎪⎩
ul=ur

ul≥m and ur≥m

ul≥m and ur≤m and f(ul)>f(ur)

(21)

Cb .
=(ul, ur) s.t.

⎧⎪⎨
⎪⎩
ul=ur

ul≤m and ur≤m

ul≥m and ur≤m and f(ul)<f(ur).

(22)

Proof: Following Definition 6, we characterize the cases
in which the solution to the Riemann problem with initial datum
(ul, ur) exhibits no wave [first line of (21) and (22)], or waves
entering the domain, with at least one non-characteristic wave
speed. The second line of (21) and (22) corresponds to entering
shock waves or rarefaction waves arising between left and right
states with characteristic speed of the same sign, and the third
line corresponds to the case of shock waves entering the domain
arising between left and right states with characteristic speed of
opposite sign. �

One may note that in Proposition 2, the term ul corresponds
to the boundary condition at boundary a and to the boundary
trace at boundary b. Similarly the term ur corresponds to the
boundary trace at boundary a and to the boundary condition at
boundary b.

A graphical representation of the control space for the left
boundary a is presented in Fig. 2, in the case of the Burgers
flux, i.e., a quadratic convex flux with minimum at 0. Cases for
which the minimum is not zero can be retrieved by translation.
For a general smooth strictly convex flux, a similar represen-
tation is obtained with lines replaced by curves in the figure.
Fig. 2 illustrates the following distinct interactions between
the boundary condition, or control, and the boundary trace, or
observed value.

• In the domain of weak boundary conditions with negative
wave speed arising at the boundary (white zone on the
left of vertical axis), the control does not apply. If the up-
stream value u(t, a) is observed, and a control is applied
such that the couple u(t, a), ua(t) is represented by the
point A, no actuation happens. The trace u(t, a) does not
change, it is not impacted by the control chosen. Similarly,
no actuation is possible at points B and C, and in general
in the left white zone.

• In the top right quadrant and upper part of top left quad-
rant of the control space (striped zone), corresponding to
line 2 and 3 of (21) respectively, a control action applies;
the trace u(t, a) of the solution takes the control value.
If a control is applied to a boundary trace value such
that the pair is represented by the point D, the trace
instantaneously takes the value of the control and the
resulting configuration is the projection of D onto the
first bisector. Similar behavior occurs with the points E
and F , which belong to the control space. The part of
the bottom left quadrant such that the control and the
trace of the solution are equal is also part of the strong
boundary conditions domain according to definition 6 and
its characterization in Proposition 2.

• In the bottom right quadrant, any control action yields a
vanishing boundary trace, which is illustrated in the case
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Fig. 3. Representation of the variations of g: for a Burgers flux
function f in the case u∗<0 (left) and in the case u∗>0 (right). The
points u=m (m=0 in this case) and u = u∗ (u∗ = ±0.5 in this case)
are local extrema of g.

of the application of a control ua(t) such that the couple
(u(t, a), ua(t)) is represented by the point G. The trace
of the solution u(t, a) takes the value 0, as illustrated by
a horizontal projection onto the axis x = 0. The control
has an action, but not the one intended (i.e., applied), thus
the bottom right quadrant is not part of the control space
(see Definition 6).

Using the characterization of the control space introduced in
this section, we show in the following section that the system is
stabilizable.

B. Lyapunov Stabilization

In this section, we prove that there exist boundary conditions
in the control space (21), (22) such that the candidate Lyapunov
function (15) is strictly decreasing.

Lemma 3: Let g : u �→ (u− u∗) f(u)− F (u), with f a
smooth strictly convex function, and F a primitive of f . Let
m denote the minimum of f . The function g is smooth on the
real line, and satisfies the following properties:

• g is strictly increasing in (−∞,min(m,u∗)), strictly
decreasing in (min(m,u∗),max(m,u∗)), and strictly in-
creasing in (max(m,u∗),+∞).

• For u > v such that f(u) = f(v), we have g(u) > g(v).

Proof: The fact that g is smooth results from the smooth-
ness of f . The first property is obtained by computing the deriv-
ative g′(u) = (u − u∗) f ′(u) of g, and noting that f is strictly
convex with minimum at m. To prove the second property, let us
consider u > v such that f(u) = f(v). The difference g(v)−
g(u) reads g(v)− g(u) = F (u)− F (v) + (v − u) f(u) that is
strictly negative by strict convexity of f . �

The function g is represented for the case of the Burgers flux
function in Fig. 3 with the arbitrary choice of g(m) = 0.

Theorem 4: Let V (·) denote the candidate Lyapunov func-
tion (15) for the PDE (1). There exist boundary conditions
ua(·), ub(·) in the control spaces (21), (22), respectively, such
that the following holds. If the corresponding solution to the
IBVP is in the class PWS+ then the function V (·) is strictly
decreasing, thus the solution is stable in the sense of Lyapunov.

Proof: We show that at any given time t > 0, it is always
possible to choose controls ua(t), ub(t) in the control space
such that there holds g(u(t+, a)) < g(u(t+, b)). We consider
the case of u∗ < m, and recall that the derivation below corre-
spond to the case of a strictly convex flux.

• If u(t, a) ≥ m and u(t, b) > m then any boundary con-
dition ua(t) ≥ m is in the upstream control space. Since
g is strictly increasing in [m;∞), with ub(t) = u(t, b), it

is possible to obtain the strict decrease of the Lyapunov
function by choosing ua(t) in [m,u(t, b)[.

• If u(t, a) ≥ m and u(t, b) ≤ m then any boundary con-
ditions ua(t) ≥ m, ub(t) ≤ m are in the control space.
Since g is decreasing in [u∗,m] it is possible to choose
boundary controls in the control space that guarantees
g(ua(t)) < g(ub(t)), e.g. ua(t) = m, ub(t) = u∗.

• If u(t, a) < m and u(t, a) = u∗ and u(t, b) ≤ m any
boundary condition ub(t) ≤ m is in the downstream con-
trol space. Since u∗ is a local maximum of g, it is possible
to obtain the strict decrease of the Lyapunov function.

• If u(t, a) = u∗ and u(t, b) ≤ m the choice u(t, b) = u∗

gives a neutral effect of the boundary terms on the
Lyapunov function. By assumption we know that the so-
lution u is in PWS+, hence in this case either the solution
is identically equal to u∗ or contains shock waves which
yields a strictly decreasing Lyapunov function.

• If u(t, a) < m and u(t, b) > m,

— If g(u(t, a)) < g(u(t, b)) the choice ua(t) = u(t, a)
and ub(t) = u(t, b) in the control space leads to the
strict decrease of the Lyapunov function.

— If g(u(t, a)) ≥ g(u(t, b)) and u(t, a) = u∗, since u∗ is
a local maximum of g and according to second result
of lemma 3, it is possible to pick ub(t) ≤ m such that
f(ub) > f(u(t, b)) and g(ub) > g(u(t, a)).

— If g(u(t, a)) ≥ g(u(t, b)) and u(t, a) = u∗, the choice
ub(t) = u∗ is in the downstream control space and
yields a neutral effect of the boundary terms. Similarly
to above, by assumption on the regularity of the solu-
tion, we have either the solution identically equal to u∗

or the Lyapunov function strictly decreasing.

The case u∗ > m can be treated similarly. The case u∗ = m
can be treated similarly, however involves greater reliance on
the internal dynamics. Specifically internal dynamics are the
sole contributor to the decrease of the Lyapunov function in
the Case 2 and 4 above, and the controller is passive (equal to
the boundary trace) in the Case 5 above. �

Remark 4: The set of boundary values (ua(t), ub(t)) which
guarantee stabilization, as described in the proof of Theorem 4
(in the case u∗ < m), is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[m,u(t, b))× {u(t, b)} if (u(t, a), u(t, b)) ∈ [m,+∞)

×(m,+∞)

(m,+∞)× (−∞,m) if (u(t, a), u(t, b)) ∈ [m,+∞)

×(−∞,m]

s.t. g (ua(t)) < g (ub(t))

{u(t, a)} × {u∗} if (u(t, a), u(t, b)) ∈ (−∞,m)

×(−∞,m]

{u(t, a)} × {u(t, b)} if (u(t, a), u(t, b)) ∈ (−∞,m)

×(m,+∞)

and g (u(t, a)) < g (u(t, b))

{u(t, a)} × {u∗} if (u(t, a), u(t, b)) ∈ (−∞,m)

×(m,+∞)

and g (u(t, a)) ≥ g (u(t, b)) .
(23)
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TABLE I
UPSTREAM BOUNDARY: ADMISSIBLE BOUNDARY CONTROLS
AND CORRESPONDING WAVE CREATED AT THE UPSTREAM

BOUNDARY BASED ON THE VALUE OF THE TRACE OF
THE SOLUTION AT THIS BOUNDARY

We highlight that the boundary values (23) only provide sta-
bility, and not asymptotic stability in general. In the following
section we instantiate a greedy controller which maximizes the
instantaneous decrease of the Lyapunov function, and also illus-
trate that the greedy controller may fail to provide asymptotic
stability.

In Section VII we then design an improved controller which
guarantees asymptotic stability and we show that the solution
resulting from these boundary controls and an initial condition
in the class PWS+ remains in PWS+.

VI. MAXIMIZING INSTANTANEOUS LYAPUNOV

FUNCTION DECREASE RATE

In this section, we characterize the values of the control, in
the control space, that minimize the Lyapunov function deriva-
tive. Since boundary controls introducing a shock wave contrib-
ute with a negative term to the internal dynamics, we propose to
first characterize the type of wave introduced in specific regions
of the control space.

A. Nature of the Waves Created by Boundary Control

The type of wave created at the boundary impacts the value of
the derivative of the Lyapunov function. In the scalar case, the
type of wave arising is defined by the Lax entropy condition (9).
This allows us to partition the control space according to the type
of wave introduced by the control. Table I summarizes for the
upstream boundary the cases in which the boundary control
belongs to the control space, with mention of the type of wave
introduced.

From Proposition 1, we have that the internal dynamics re-
sulting from the existence of entropic shock waves contributes
to the decrease of the Lyapunov function. Here we characterize
the benefits of the change in the number of shock waves in the
solution, resulting from internal interaction, and entrance or exit
of a discontinuity at the boundary.

Proposition 3: At a time t at which the number of jump
discontinuities N(t) changes:

• If two shock waves interact, the derivative of the
Lyapunov function decreases.

• If a discontinuity crosses the left boundary, let us note u−

the value of the boundary trace at time t− and u+ the
value of the boundary trace at time t+. The jump in the
derivative of the Lyapunov function reads

S(u−, u+)
.
=

dV

dt
(t+)− dV

dt
(t−)

=
(
f(u+)− f(u−)

) ũ− + ũ+

2

(24)

in which the term (f(u+)− f(u−)) can be checked to
be always positive for a convex flux and always negative
for a concave flux. Hence the jump in the derivative of
the Lyapunov function depends on the sign of −(ũ− +
ũ+)/2=u∗ − (u− + u+)/2:

— If u∗ − (u− + u+)/2 < 0, entering and exiting shocks
increase the derivative of the Lyapunov function in the
case of a convex flux and decrease the derivative of the
Lyapunov function in the case of a concave flux.

— If u∗ − (u− + u+)/2 > 0, entering and exiting shocks
decrease the derivative of the Lyapunov function in the
case of a convex flux and increase the derivative of the
Lyapunov function in the case of a concave flux.

The case of right boundary can be treated similarly chang-
ing the sign in (24).

Proof: The result is proven in the Appendix. �
In the following section, we leverage these results to design

a stabilizing boundary controller that maximizes the instanta-
neous decrease rate of the Lyapunov function.

B. Greedy Boundary Control

The boundary control that maximizes the decrease rate of
the Lyapunov function is the boundary control in the control
space, that either introduces a rarefaction wave and minimizes
the jump in the Lyapunov function derivative (18), or introduces
a shock wave at the boundary and minimizes the jump in the
Lyapunov function derivative resulting from the change in the
boundary trace and in the number of shock waves (24). The cor-
responding optimization problem can be formulated as follows.

Proposition 4: Let u denote the solution to the IBVP associ-
ated with the scalar conservation law(1). The upstream boundary
control ur

a and downstream boundary control ur
b that minimize

the decrease of the Lyapunov function by introducing rarefaction
waves or no waves at the boundary can be obtained by solving

ur
a

.
= arg min

{u|(u,u(t,a))∈Ca and u≤u(t,a) }
g(u)

ur
b
.
= arg max

{u|(u(t,b),u)∈Cb and u≥u(t,b) }
g(u).

The upstream boundary control us
a and downstream boundary

control us
b that minimize the decrease of the Lyapunov function

by introducing discontinuities at the boundary, can be obtained
by solving

us
a
.
= arg min

{u|(u,u(t,a))∈Ca and u>u(t,a) }
S (u(t, a), u)

us
b
.
= arg max

{u|(u(t,b),u)∈Cb and u<u(t,b) }
S (u(t, b), u) .

Proof: This results from the characterization of the cases
when the boundary control introduces a rarefaction wave or a
shock wave, and the previous analysis on the resulting evolution
of the Lyapunov function derivative. �

Based on the expressions from Proposition 4 and using for-
mula (23), we exhibit a greedy boundary control (ua(t), ub(t))
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Fig. 4. Greedy stabilizing controller: in the case of a quadratic convex
flux centered at 0, for u∗ < m. The cases correspond to the rows of the
controller expression in equation (25).

maximizing the instantaneous decrease of the Lyapunov func-
tion, reading as follows (for the case u∗ < m):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{m} × {u(t, b)} if (u(t, a), u(t, b)) ∈ [m,+∞)

×(m,+∞)

{m}×{u∗} if (u(t, a), u(t, b))∈ [m,+∞)

×(−∞,m]

{u(t, a)}×{u∗} if (u(t, a), u(t, b))∈(−∞,m)

×(−∞,m]

{u(t, a)}×{u(t, b)} if (u(t, a), u(t, b))∈(−∞,m)

×(m,+∞) and g (u(t, b))>g(u∗)

{u(t, a)}×{u∗} if (u(t, a), u(t, b))∈(−∞,m)

×(m,+∞) and g (u(t, b))≤g(u∗)

(25)

and the action of the controller are illustrated in Fig. 4. While
the greedy controller (25) maximizes the instantaneous de-
crease of the Lyapunov function, we illustrate in the following
example that asymptotic stability may not be obtained. We also
illustrate the naive brute force control (ua(t) = u∗, ub(t) = u∗)
may create oscillations at the boundary, in the form of infinite
variation in time of the solution trace.

Example 1: Without loss of generality, we choose u∗ < m
and define û by u∗ < m < û and f(û) = f(u∗) Given 0 <
Δ < (a+ b)/2, such that that ((b− a)/4Δ) ∈ N, and 0 < k <
û we consider the following initial datum on (a, b):

u0(x)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m if x ∈
(
a, a+b

2

)
û−k if x ∈

(
a+b
2 +(2 p) Δ, a+b

2 +(2 p+1) Δ
)

p ∈
{
0, . . . , b−a

4 Δ − 1
}

û+k if x∈
(
a+b
2 +(2 p+1) Δ, a+b

2 +(2 p+2) Δ
)

p ∈
{
0, . . . , b−a

4 Δ − 1
}
.

This case corresponds to the first row of equation (25), hence
the applied boundary controls is (ua(t) = m, ub(t) = u(t, b)).
Since the characteristic speed of m is zero, the right boundary
value converges towards m only in infinite time, hence the
system remains in the configuration characterized by the first
row of equation (25), and converges to the steady state m over
the interval (a, b), not reaching the target u∗ < m. Hence we
have stability but not asymptotic stability.

For the same example, one may note that the brute force con-
trol (ua(t) = u∗, ub(t) = u∗) has no action on the system when

u(t, b) = û+ k since the control values are outside of the con-
trol space. While when u(t, b) = û− k, the brute force control
induces slow backward moving shock waves (û− k, u∗) from
the right boundary which interact with fast forward moving
shock waves (û+ k, û− k) coming from the initial datum, and
create slow forward moving shock waves (û+ k, u∗), hence we
observe large oscillations at the right boundary (irrespective of
the size of the oscillations in the initial datum). More precisely,
the trace at the boundary x = b oscillates between the value
u∗ and values in the interval [û− k, û+ k], generating a total
variation in time which satisfies: TVt(ub) ≥ ((b− a)/4Δ)(û−
k − u∗). Since Δ is arbitrary this oscillation can not be bounded
from above, even for k arbitrarily small. In other words, we
can produce arbitrarily big oscillations with initial data u0 of
uniformly bounded variation in space. Eventually all the waves
generating by oscillating initial datum exit the domain and the
naive control produces backward moving shock waves (m,u∗)
which yield convergence.

In the following section we present an improved controller
providing Lyapunov asymptotic stability.

VII. LYAPUNOV ASYMPTOTIC STABILITY

In this section we design an improved controller which
guarantees Lyapunov asymptotic stability. We first define a
feedback control (depending only on the trace at boundary of
the unknown) in Section VII-A, and show, in Theorem 5, that
the associated solution to the corresponding IBVP remains
in the class PWS+ for initial data u0 in the same class. The
latter result allows to provide, in Theorem 6, BV estimates for
the solution and the boundary controls. Finally, in Theorem 7,
we use the BV estimates to extend the construction to BV initial
data and prove Lyapunov asymptotic stability.

A. Controller Design

The asymptotic convergence issue highlighted in the
Example 1 stems from the fact that if the system reaches a con-
figuration corresponding to the first row of (25), given the pre-
scribed control values, it may remain in that configuration, which
grants stability but prevents asymptotic stability for u∗ < m.

Without loss of generality, we focus on the case u∗ < m. We
define û > m by f(û) = f(u∗), ǔ > m by g(ǔ) = g(u∗) and
ū = (û+ ǔ)/2. By Lemma 3, we deduce that ǔ < û and thus
ǔ < ū < û. The specific choice of ū will guarantee the decrease
of V (·) (as it would any other control chosen in the interval
]ǔ, û[.) We propose to define the controller (ua(t), ub(t)) at any
time t as a function of the pair of boundary traces of the solution
(u(t, a), u(t, b)), i.e., ua(t) = ua(u(t, a), u(t, b)) and ub(t) =
ub(u(t, a), u(t, b)) according to the following rules:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{m}×{u(t, b)} if (u(t, a), u(t, b))∈ [m,+∞)

× (ū,+∞)

{m}×{u∗} if (u(t, a), u(t, b))∈ [m,+∞)

× (−∞, ū]

{u(t, a)}×{u∗} if (u(t, a), u(t, b))∈(−∞,m)

× (−∞, ū]

{u(t, a)}×{u(t, b)} if (u(t, a), u(t, b))∈(−∞,m)

× (ū,+∞).

(26)
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One may note that with this definition, similarly to the case
of the definition (25), the type of boundary controls provided
are feedback type boundary control since they depend only on
the trace of the unknown at the boundaries, whereas the “non-
local” boundary controls defined below in (31) and (32) depend
also on the initial state.

B. Existence of Solution for Asymptotically
Stabilizing Controller

To apply Theorem 4, we need to define boundary controls
ua, ub, which will guarantee the solution to the corresponding
IBVP to remain in the class PWS+ for initial data u0 in the
same class. We prove such result for the boundary control
providing asymptotic stability of the Lyapunov function (15).
For simplicity, we assume u∗ < m being the other case similar.

Theorem 5: Consider an initial datum u0 in PWS+ and the
boundary controls given by formula (26). Then, the correspond-
ing IBVP admits a unique solution which is in the class PWS+

for all times. Moreover, the function V (·) is strictly decreasing,
thus the solution is stable in the sense of Lyapunov.

Proof: We first show that for u0 in PWS+, the bound-
ary controls are well defined and piecewise smooth in time.
Moreover, the solution remains in the class PWS+.

First, we enumerate the following cases:
• Case 1: u(t, a) ≥ m, u(t, b) > ū.
• Case 2: u(t, a) ≥ m, u(t, b) ≤ ū.
• Case 3: u(t, a) < m, u(t, b) ≤ ū.
• Case 4: u(t, a) < m, u(t, b) > ū.

In Case 1, the boundary controls generate a rarefaction wave
from the left boundary, no wave on the right boundary and the
traces verify u(t+, a) = m and u(t+, b) = u(t, b) > ū > m
(where u(t+, ·) indicates the limit at time t from the above).

In Case 2, the boundary controls generate a rarefaction wave
from the left boundary, a rarefaction wave or a shock from
the right boundary and the traces verify u(t+, a) = m and
u(t+, b) = u∗.

In Case 3, the boundary controls generate no wave from the
left boundary, a rarefaction wave or a shock on the right bound-
ary and the traces verifyu(t+,a)=u(t, a)<m andu(t+, b)=u∗.

In Case 4, the boundary controls generate no wave from
the left and right boundary and the traces verify u(t+, a) =
u(t, a) < m and u(t+, b) = u(t, b) > ū > m.

From this analysis, we verify that the control is well defined
for constant traces and the corresponding solution remains in
the class PWS+. We are left to verify that the solution is well
defined and remains in the same class for waves interacting with
the boundary and we proceed again by cases.

In Case 1: if a wave interacts with the left boundary, then no
wave is produced, while for the right boundary a shock may
arise and we transition to Case 2. In Case 2: if a wave interacts
with the left or right boundary, then no wave is produced and
we transition to Case 1 or Case 3. In Case 3: if a wave interacts
with the left or right boundary, then no wave is produced and
we remain in Case 3 or transition to Case 4. In Case 4: if a
wave interacts with the left boundary, then no wave is produced,
while for the right boundary a shock may arise and we transition
to Case 3. This concludes the analysis of interacting waves.

Since ǔ < ū < û, the controls (26) satisfy the conditions
given in the proof of Theorem 4. In particular, the choice of ū
guarantees that g(u(t+, a)) < g(u(t+, b)) when the control is

defined according to the fourth line of (26). Then we conclude
that V (·) is strictly decreasing. �

In order to extend our results to initial data u0 in BV (and
not necessarily in PWS+) we provide estimates on the total
variation in time of the controls TVt(ua), TVt(ub), and in space
of the generated solution TVx(u(t, ·)).

Theorem 6: Consider an initial datumu0 in PWS+, the bound-
ary controls given by formula (25) and let us indicate by u(t, x)
the corresponding solution. Then, definingC=2(supx |u0(x)−
m|+ |m− u∗|), we have the following estimates:

TVx (u(t, ·))≤ TVx(u0) + C + |ū− u∗| (27)
TVt(ua)≤ TVx(u0) + C (28)

TVt(ub)≤ TVx(u0)+C+|ū− u∗|·TVx(u0)+C

|ū− û| . (29)

Proof: Let us start showing that

TVx (u(0+, ·)) ≤ TVx(u0) + C. (30)

We consider cases 1, 2, 3, and 4 as in the proof of Theorem 5.
In case 1 a wave is generated from the left boundary of
strength |u(t, a)−m|; in Case 2, a wave is generated from
the left boundary of strength |u(t, a)−m| and a wave from
the right boundary of strength |u(t, b)− u∗| ≤ |u(t, b)−m|+
|m− u∗|; in Case 3 a wave is generated from the right boundary
of strength |u(t, b)− u∗|; in Case 4 no wave is generated from
the boundaries. We thus obtained the desired estimate.

We now pass to the other estimates dealing with wave
interactions by cases as in the proof of Theorem 5. We use the
symbol Δ to indicate the change in total variation due to the
interaction. For instance if t̄ > 0 is the interaction time of a
wave then ΔTVt(ua) = TVt(ua; [0, t̄])− TV (ua; [0, t̄[).

In Case 1 if a wave (u(t, a), ũ) interacts with the left
boundary, then, for the wave to have negative speed, we must
have ũ < m = u(t, a). Therefore no wave is generated from
the boundaries and we transition to Case 4. Moreover, we
get ΔTVx (u(t, ·)) = −|u(t, a)−ũ| < 0, as well asΔTVa =
|u(t, a)−ũ|,ΔTVb=0. In Case 1 if a wave (ũ, u(t, b))
interacts at time t̄ with the right boundary, then we distinguish
two cases. If ũ > ū no wave is generated, we remain in Case
1 and we get ΔTVx(u(t, ·))= − |u(t, b)−ũ| < 0, as well as
ΔTVb= |u(t, b)− ũ|,ΔTVa=0. Otherwise, if m ≤ ũ ≤ ū,
then the shock (ũ, u∗) is generated from the right boundary, we
transition to Case 2 and we get

ΔTVx (u(t, ·)) = |u∗ − ũ| − |u(t, b)− ũ| ≤ |ū− u∗|
ΔTVt(ua) = 0

ΔTVt(ub) = |u(t, b)− u∗| ≤ |u(t, b)− ũ|+ |ũ− u∗|
≤ TVx (u(t̄−, ·)) + |ū− u∗|.

In Case 2 if a wave (u(t, a), ũ) interacts with the left boundary,
then no wave is generated from the boundaries and we
transition to Case 3. Moreover we have, as for the Case 1
ΔTVx(u(t, ·))=−|u(t, a)− ũ|<0, as well asΔTVa=|u(t, a)−
ũ|,ΔTVb = 0. In Case 2 if a wave (ũ, u(t, b)) interacts at time
t̄ with the right boundary, then, for the wave to have positive
speed, we must have ũ > û > ū. Thus no wave is generated
and we transition to Case 1. Moreover, we get ΔTVx(u(t, ·)) =
−|u(t, b)−ũ|<0ΔTVb= |u(t, b)−ũ|,ΔTVa=0. For Case
3 we have the same analysis as Case 2. More precisely, if a
wave interacts with the left boundary no wave is generated and
we remain in Case 3, while if a wave interacts with the right
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Fig. 5. Graphical representation of transitions between cases 1 to 4.
The arrow labels indicate: the boundary reached by the interacting wave,
l for left and r for right, and ΔTV > 0 if the total variations may increase.
Transitions from a case to itself are not represented for simplicity.

boundary then no wave is generated and we transition to Case 4.
Moreover we get the same estimates for the total variations.

In Case 4 if a wave (u(t, a), ũ) interacts with the left
boundary, then, for the wave to have negative speed, we
must have ũ < m. Therefore no wave is generated from
the boundaries and we remain in Case 4. Moreover, we
get ΔTVx(u(t, ·)) = −|u(t, a)−ũ| < 0, as well asΔTVa=
|u(t, a)−ũ|,ΔTVb=0. In Case 1 if a wave (ũ, u(t, b)) interacts
at time t̄ with the right boundary, then we distinguish two cases.
If ũ > ū no wave is generated, we remain in Case 4 and we
get ΔTVx(u(t, ·)) = −|u(t, b)− ũ| < 0, as well asΔTVb =
|u(t, b)− ũ|,ΔTVa = 0. Otherwise, if ũ ≤ ū, then the shock
(ũ, u∗) is generated from the right boundary, we transition to
Case 3 and we get

ΔTVx (u(t, ·)) = |u∗ − ũ| − |u(t, b)− ũ| ≤ |ū− u∗|
ΔTVt(ua) = 0

ΔTVt(ub) = |u(t, b)− u∗| ≤ |u(t, b)− ũ|+ |ũ− u∗|
≤ TVx (u(t̄−, ·)) + |ū− u∗|.

The results of the estimates are summarized in Fig. 5. It is
easy to notice that transitions from Cases 1, 2 to Cases 3, 4
are irreversible. Therefore, multiple increases in total variation
can occur only for transitions 1-2-1 (that is from Case 1 to
Case 2 and then back to Case 1) and for transitions 4-3-4. We
prove estimates for the transitions 1-2-1, being the Case 4-3-4
entirely similar. We denote by (ũ1, u

1
b) the interacting wave for

transition 1–2 and by (ũ2, u
2
b = u∗) the interacting wave for the

transition 2-1. Notice that m ≤ ũ ≤ ū < u1
b and ū < û < ũ2.

Again we use the symbol Δ to indicate the change in total
variations before and after the transition 1-2-1. Using the above
estimates, we get

ΔTVx (u(t, ·)) = |u∗ − ū| −
∣∣ũ2 − u2

b

∣∣ ≤ |u∗ − ū| − |û− ū|
≤ −|û− ū| < 0.

In other words, each transition 1-2-1 (and similarly 4-3-4)
gives rise to a decrease of TVx(u(t, ·)) which is bounded away
from zero. Therefore, we deduce that TVx(u(t, ·)) is bounded
and transitions 1-2-1 can occur only a finite number of times
(namely (TV (u(0+, ·)))/|û− ū|). Combining this result with
the estimates of Cases 1, 2, 3 and 4 and (30), we get the estimates
(27)–(29). �

We are now ready to state last theorem of this section:
Theorem 7: Consider an initial datum u0 in BV and the

boundary controls given by formula (26), then there exists

a unique entropic solution to the corresponding IBVP prob-
lem. Moreover, estimates (27)–(29) hold true. Finally we have
limt→+∞ V (t) = 0, i.e., limt→+∞ ‖u(t, ·)− u∗‖L2 = 0.

Proof: Consider an approximating sequence un
0 of u0

such that un
0 ∈ PWS+ and TV (un

0 ) ≤ TV (u0). Applying
Theorem 5, we get the existence of entropic solutions un(t, x)
to the corresponding IBVP problems. Moreover, estimates
(27)–(29) hold true for un. By Helly Theorem, there ex-
ists a subsequence of un such that the solution un and the
corresponding boundary controls un

a(t) and un
b (t) converge

strongly in L1 to some limit w, wa and wb. Moreover,
estimates (27)–(29) hold true. Therefore, for almost every
t we get that wa(t) = ua(w(t, a+), w(t, b−)) and wb(t) =
ub(w(t, a), w(t, b)) [according to formula (26)]. We conclude
that w is a solution to the IBVP with initial condition u0 and
boundary controls given by formula (26). Uniqueness follows
from standard theory for IBVP.

Because of estimates (28) and (29), there exist the asymptotic
limits of boundary controls w∞

a = limt→+∞ wa(t) and w∞
b =

limt→+∞ wb(t). From formula (26), we deduce that w∞
a ≤ m.

Similarly, we must have w∞
b = u∗ or w∞

b > ū. In all cases the
solution w to the IBVP, for t sufficiently large, will attain the
boundary values, so solve the conservation law on the whole
real line.

Now, if w∞
a ≥w∞

b then w∞
b =u∗ and we can apply Theorem 2

of [61], thus the solution decays to the traveling shock
(w∞

a , w∞
b ). However, this traveling shock has negative speed

unless w∞
a =w∞

b =u∗. Thus we conclude that V (t) tends to 0.
Otherwise, if w∞

a < w∞
b then we can apply Theorem 4 of

[61] and deduce that w decays to an N -wave formed by two
shocks enclosing the rarefaction (w∞

a , w∞
b ). If the first shock

has positive speed, then the solution w tends uniformly to w∞
a

and we conclude as before. Similarly, if the second shock has
negative speed, then the solution w tends uniformly to w∞

b and
conclude as before. Finally, if the first shock has negative speed
and the second positive speed then they asymptotically exit
the domain [a, b] and the solution w decays to the rarefaction
(w∞

a , w∞
b ). Now, if w∞

b >ū then, for t sufficiently big, the char-
acteristics with positive speed corresponding to values of the
solution u in the interval [m, ū[ will reach the right boundary.
But this contradicts the definition of w∞

b as limit of boundary
controls given by (26) and the fact that the solution attains the
boundary value for sufficiently large t. Therefore w∞

b =u∗. The
rarefaction (w∞

a , w∞
b ) is then encompassed of characteristics

with negative speed, thus exit the domain, unlessw∞
a =w∞

b =u∗.
Thus we conclude that V (t) tends to 0 also in this case. �

C. Non-Local Controls

As we noticed the greedy control may not stabilize the
system to u∗, while the brute force control ua ≡ ub ≡ u∗

may overshoot (and not be in the control space) and produce
oscillations. Finally, control (26) stabilizes the system, but the
stabilization time can be far from optimal (and the same is for
the brute force ones). Therefore, in this Section, we show a
nonlocal control unl

a,b which fast stabilizes the system to u∗. We
use the term nonlocal to indicate that this control will depend
not only on the values of the traces u(t, a) and u(t, b).

We focus again, for simplicity, on the case u∗ < m. Let
A = supx∈[a,b] u0(x) and Â < m be such that f(Â) = f(A).
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Fig. 6. Numerical solution of burgers equation: Evolution of the
solution for the various controllers with oscillating initial data.

For every U < Â we define

T1(U) =
(b − a) (A− U)

f(U)− f(A)
, T0(U) = T1 −

(b− a)

|f ′(U)| (31)

and set unl
a as in (26), while

unl
b (t) =

{
U 0 ≤ t ≤ T0

u∗ T0 < t < +∞.
(32)

The meaning of this control is as follows. First we send a
large shock (u0(a), U) with negative speed to move the system
in the zone u < m and then apply the stabilizing control. Notice
that T1 is computed as the maximal time taken by the big shock
to cross the interval [a, b], while T0 is the time at which the char-
acteristic corresponding to u∗ should start from b to reach a at
time T1. These choices will guarantee the desired effect. Notice
also that T0 is a safe choice, but smaller values may give a better
performance. In the following section we present numerical
results of the implementation of the boundary control proposed.

VIII. NUMERICAL EXAMPLES

In this section, we present numerical results obtained for
a benchmark scenario. The numerical scheme used is the
standard Godunov scheme [42] with 200 cells in space and a
time discretization satisfying the tight Courant-Friedrich-Levy
(CFL) condition [56]. We consider the flux function u �→ u2/2,
the equilibrium state u∗ = −1, and the space domain [0, 1] with
the oscillating initial condition: u0(x) = 1 + 0.5 sin(20x).

In Fig. 6 we present the evolution of the system under four
different controllers: the greedy boundary control (defined in
proposition 4), the brute force boundary control ua = ub = u∗,
the stabilizing control [formula (25)] and nonlocal control (for-
mula (32) with U = −2 and T0 as defined in (31). The greedy
control allows oscillations to exit from the right boundary but
the solution does not converge to the steady state u∗ = −1.
On the other side the brute force control converges to the
steady state but generates oscillations on the right boundary
as can be seen in Fig. 7, top. The stabilizing control also
converges but it is less oscillating with respect to the brute

Fig. 7. Downstream trace and lyapunov functions: the Lyapunov
functions for different controls are represented in the bottom subfigure.
The downstream boundary are represented in the top subfigure respec-
tively.

Fig. 8. Convergence time of the Lyapunov function: dependence of
the convergence time of the Lyapunov function from U and T0. The
convergence time is defined as the first time for which V (t) ≤ 0.1.

force control. The non local control guarantees convergence
and avoids oscillations. The evolution of the solution under
the action of the stabilizing control and the brute force control
are very similar. The decrease of the corresponding Lyapunov
functions is represented in Fig. 7, bottom. One can note how the
nonlocal control decreases much faster than the other methods.

To study the dependence of the nonlocal control stabilization
performance on the parameters U and T0 we run several simu-
lations with different values of these parameters, see Fig. 8 for
U ∈ [−2.1,−1.5] and T0 ∈ [0.5, 2]. The convergence time is
defined as the first time such that V (t) ≤ 0.1. We notice that
longest convergence time corresponds to U = −1.5 and T0 =
0.5 while the fastest corresponds to U = −2.1 and T0 = 1.
Moreover, for each fixed U there exists an optimal switching
time T0 that minimizes the convergence time.

To further illustrate the oscillations of the boundary trace gen
erated by the brute force control we simulated the case in which
the initial datum is strongly oscillating:u0(x)=1+0.3 sin(50x).
In Fig. 9 the trace of the brute force control shows, at initial
times, one big oscillations and then the oscillations continues
until t=1. For the stabilizing control the oscillations are smaller
but they extend for a longer period up to time t=1.5.
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Fig. 9. Downstream trace: value of the solution at the right boundary
for a strong oscillating initial data.

IX. CONCLUSION

In this paper, we introduced a new technique for Lyapunov
boundary stabilization results of weak entropy solutions to
scalar conservation laws.

We proved that under suitable regularity of the initial and
boundary data, the solution to the initial-boundary value prob-
lem could be considered to be piecewise regular with a finite
number of discontinuities. This allows the use of functional
analysis tools available for smooth functions.

We then computed the derivative of the Lyapunov function,
and showed that the boundary control maximizing its decrease,
called greedy control, may fail to stabilize. Therefore, we de-
signed a new stabilizing controller that achieve the desired result.
Moreover, we provided estimates of the total variation in space
of the corresponding solution and in time of controls, allowing
the treatment of BV initial data and the proof ofL2 convergence.

We also introduced nonlocal controls (depending on the
whole initial datum) which improve the convergence time.

Numerical results illustrate the various control techniques,
including oscillation phenomena introduced by brute force
control (setting the boundary value always equal to the desired
equilibrium).

Extension to this work include the treatment of non-uniform
stationary conditions, and the case of networks, for more ap-
plicable results to reliable water distribution and congestion
control on the road network.

APPENDIX

PROOF OF PROPOSITION 3

Proof: We show each part of proposition 3 separately.

• We show that in the case of |N(t+)| = |N(t−)| − 1
due to the interaction of two shocks inside the domain,
there is a decrease in the slope of the derivative of the
Lyapunov function if and only if the Rankine-Hugoniot
speed of the left shock is greater than the Rankine-
Hugoniot speed of the right shock, which is a necessary
condition for the interaction. We compute the difference
in the right and left derivative, at time t, of the Lya-
punov function, by taking the difference of equation (18)
at time t+ and t−. It is clear that the boundary terms

cancel out, and that in the sum terms, only the terms
corresponding to the interacting shocks and the created
shock do not cancel out. We note (u+

l , u
+
r ) the left and

right values at the created shock at time t+. We use
similar notations for the interacting shocks at time t−.
The left and right states of the left shock at time t− are
denoted (u−

1l, u
−
1r), and the left and right states of the

right shock at time t− are denoted (u−
2l, u

−
2r). We note

that by continuity outside of the jump locations, we have
u−
1r = u−

2l, and u−
1l = u+

l and u−
2r = u+

r . After some long
but straightforward algebra, this allows us to simplify the
difference to dV /dt(t+)−dV /dt(t−)=1/2[(f(u−

1r)−
f(u−

1l))(u
−
2l−u−

2r) + (f(u−
2r)− f(u−

2l))(u
−
1r − u−

1l)] and
the right side is negative if and only if the two shocks
intersect, which is satisfied by assumption.

• In the case of a shock entering or exiting from the bound-
ary, we show that the sign of the difference in the right
and left derivative, at time t, of the Lyapunov function,
depends on the sign of u∗ − (u− + u+)/2. We compute
the difference between the Lyapunov function derivative
at time t+ and at time t−. It is clear that only the boundary
term at time t+ and t−, and the term corresponding to
the entered or exited shock do not cancel out. If we
note u− the boundary trace at t− and u+ the boundary
trace at t+, we obtain after simplification dV /dt(t+)−
dV /dt(t−) = (f(u+)− f(u−)) ũ− + ũ+/2 for both en-
tering and exiting shocks. We treat the case of a shock
entering the domain from upstream boundary for a convex
flux. We have u+ > u− from the entropy condition, hence
from the Rankine-Hugoniot relation we obtain f(u+) >
f(u−) since the shock speed is positive. So the jump in the
Lyapunov derivative is negative if and only if ũ− + ũ+ <
0, which is equivalent to (u− + u+)/2 < u∗. �
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