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Regrets in Routing Networks: Measuring the Impact

of Routing Apps in Traffic

THÉOPHILE CABANNES, MARCO SANGIOVANNI, ALEXANDER KEIMER, and
ALEXANDRE M. BAYEN, University of California, Berkeley

The impact of the recent increase in routing apps usage on road traffic remains uncertain to this day. The
article introduces, for the first time, a criterion to evaluate a distance between an observed state of traffic
and the user equilibrium of the traffic assignment: the average marginal regret. The average marginal regret
provides a quantitative measure of the impact of routing apps on traffic using only link flows, link travel times,
and travel demand. In non-atomic routing games (or static traffic assignment models), the average marginal
regret is a measure of selfish drivers’ behaviors. Unlike the price of anarchy, the average marginal regret in
the routing game can be computed in polynomial time without any knowledge of user equilibria and socially
optimal states of traffic. First, this article demonstrates on a small example that the average marginal regret
is more appropriate to define proximity between an observed state of traffic and an user equilibrium state of
traffic than comparing flows, travel times, or total cost. Then, experiments on two different models of app
usage and three networks (including the whole L.A. network with more than 50,000 nodes) demonstrate that
the average marginal regret decreases with an increase of app usage. Sensitivity analysis of the equilibrium
state with respect to the app usage ratio proves that the average marginal regret monotonically decreases
to 0 with an increase of app usage. Finally, using a toy example, the article concludes that app usage could
become the new Braess paradox.
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1 INTRODUCTION

1.1 Context

The Importance of Reducing Traffic. Road traffic costs the U.S. billions in GDP every year [14].
Reducing road congestion is a way to reduce fuel consumption and emissions, to increase economic
productivity, and to improve the daily life of motorists. During the past decade, new mobility
services have grown with the rise of the mobile internet (mobility as a Service, GPS-routing apps,
carpooling). These new mobility services have not translated in reduced road congestion, however.
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On the contrary, some recent traffic services have been blamed for contributing to alleged new
congestion patterns [22, 30, 36, 37] due to the increase in “through traffic.”

New Traffic Patterns Generated by Routing Apps. The past decade has witnessed the explosion of
cell phone use [10], in particular in the context of mobility. Today, INRIX, HERE, Google, Apple,
Waze, and TomTom are used by a large number of motorists [8]. These routing apps have created
new traffic patterns called cut-through traffic [37]. As the number of app users increases, arterial
roads are subjected to higher flows of vehicles due to cut-through traffic [9]. Solving this problem
will require new public policy approaches, such as regulation of congestion and routing to reduce
the negative externalities of cut-through traffic [26].

Modeling App Usage. In some approaches, traffic engineers have used game theory to model traf-
fic macroscopically [28, 32]. In these models, every vehicle is assumed to follow an optimal travel
time path. Since routing apps propose a fastest path [39], their impact needs to be explained with
new traffic models that take into account the newly available information. Such new models inves-
tigate this problem by introducing a distinction between non-app users and app-users [9, 18, 37].

Addressing Drivers’ Selfishness. The core of the problem is that mapping apps provide fastest
paths to app users by design [39]. It is known that providing the best “selfish” path to users com-
peting for the same commodity can lead to outcomes that are not socially optimal [25, 28]. The
price of anarchy [32] can be used to measure how bad selfish routing is [33]. However, there is
no known “function” that allows one to measure how “selfish” an observed traffic assignment is.
Using game theory [1] and the framework of routing games [27], this article introduces a new
concept to address this question: the average marginal regret.

1.2 Contributions

The key contributions of the article consist of the following:

• The average marginal regret for the static traffic assignment problem. From a given static
traffic assignment model, this article introduces the average marginal regret. The average
marginal regret is the expected time-saving a driver has in the network if they change their
path to an optimal one. It enables to understand how close an observed traffic assignment
is from a Nash equilibrium. This article shows that the average marginal regret can be
computed with only the knowledge of the traffic demand and the link flows and link travel
times of the network. To extend traffic assignment frameworks from traffic planning to real-
time control, the ability to define metrics from only observable data is imperative. Note that
this is not the case for the price of anarchy [33], where socially optimal patterns and Nash
equilibrium patterns need to be known in order to compute it.

• Simulation-based assessment of the impact of navigational apps on traffic using the average
marginal regret. Through simulations, we illustrate that an increase of app usage leads to
a decrease in the average marginal regret of the traffic state. The traffic state converges to
a Nash equilibrium when app usage increases. Due to having full information about the
status of the network, drivers can actually make their choices based on Wardrop’s first
principle (compare Remark 2.6). Before the emergence of apps, drivers could only learn
from iterations of commuting. Therefore, they would much likely never explore the “full
capacity of the network,” i.e., would never reach Wardrop’s equilibrium.

• Theoretical convergence of the traffic state toward a Nash equilibrium when app usage
increases. By modelling app usage with the restricted path choice model [9] and splitting
vehicles between app users and non-app users uniformly across the network, we show that
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the average marginal regret monotonically decreases to 0 when the ratio of app users in-
creases to 100%. The traffic state converges to a Nash equilibrium when app usage increases.

1.3 Organization of the Article

The remainder of this article is organized as follows: First, the average marginal regret for the
static traffic assignment is introduced in Section 2. Then, in Section 3, it is shown—using models
described in [9, 37]—that an increase in app usage leads to a decrease of the average marginal
regret.

2 STATIC TRAFFIC ASSIGNMENT AND THE AVERAGE MARGINAL REGRET

In this section, the classical framework of the static traffic assignment [28] is introduced. Then,
a benchmark example is presented explaining how one can define a measure of how far a flow
allocation is from a Nash equilibrium. Finally, the average marginal regret is introduced.

2.1 The Static Traffic Assignment

The static traffic assignment [28] is traditionally defined on a network G. For each path p of the
network, the path flow hp of the path p is the flow of vehicles using this path p. Assuming that the
path flow allocation is static, the link flow on an edge e—the flow of vehicles using the edge e of
G—is the sum of the path flows of all paths using the edge e . Then, for a given flow demand vector
ddd—which assigns for each origin o and destination d in the network, a flow demand dod —we say
that a path flow allocation h = (hp)p is feasible if for any origin destination pair (o,d ), the demand
between o and d is equal to the sum of the flows on the paths between o and d . We assume that
the travel time tp of each path p is the sum of the travel times te of every edge e used by the path
p. We assume that the travel time te of the edge e is only a function of the link flow on the edge fe
and of the characteristics of the link e (such as length, speed limit, etc.). A flow allocation is called
a user equilibrium if all paths used between an origin o and a destination d have the same travel
time for every o,d pair (Wardrop’s first condition [38]). We precise this in the following:

2.1.1 Framework [28].

Definition 2.1 (Network and Paths). Given a finite strongly connected directed graph G = (V,E)
whereV is the set of vertices and E ⊂ V ×V the set of edges (links), we call, for each origino ∈ V
and destination d ∈ V , Pod the set of feasible paths without cycles from o to d .

Definition 2.2 (Path Flows). For each path p ∈ P = ⋃
o,d ∈V

Pod , we define:

• The flow hp using path p (path flows). We note the path flow vector h = (hp)p∈P .

• The indicator δp = (δp (e ))e ∈E , where δp (e ) =
{

1 if e ∈ p,
0 else.

This vector is called indicator of links included in the path p. We denote the incidence matrix
Δ = (δp)p∈P .

Definition 2.3 (Link Flows). For each link e ∈ E, we define fe as the flow using link e (link flow).
We note the link flow vector f = ( fe )e ∈E .

Remark 2.1 (Static Equilibrium Model). We assume static equilibrium conditions, i.e., ∀p ∈ P, hp

is constant over time and we have f = Δh (with Δ the incidence matrix in Definition 2.2).

Definition 2.4 (Feasible Assignment). Given a demand ddd ∈ R |V |×|V |+ , we define:

• Hddd = {h ∈ R |P |+ | ∀(o,d ) ∈ V2,
∑

p∈Pod
hp = dod }, the set of feasible path flow allocations.

• Fddd = Δ Hddd = {f | ∃ h ∈ Hddd , s.t. f = Δh}, the set of feasible link flow allocations.
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Fig. 1. Network to illustrate the framework. We have V = {v1,v2,v3}. E = {e1, e2, e3} where e1 =

(v1,v2), e2 = (v1,v3), and e3 = (v2,v3). Pv1,v3 = {(e1, e3), (e2)}. If we name p = (e1, e3) ∈ Pv1,v3 , then δp =

(1, 0, 1). P = {(e1), (e2), (e3), (e1, e3)}. If we have 100 travelers with (o,d ) = (v1,v3), then we would have
Fddd = {(x , 100 − x ,x ), x ∈ [0, 100]}.

Figure 1 illustrates this framework on a benchmark network.

Definition 2.5 (Travel Time Function). For each edge e ∈ E, we define the edge (link) travel time
function that gives the edge (link) travel time given the edge (link) flow: te : fe → te ( fe ). We as-
sume te to be continuous. We then define the travel time vector t(f ) = (te ( fe ))e ∈E .

For each path p ∈ P, we define the travel time function of the path p as: tp : f → tp (f ) =∑
e ∈E te ( fe ) · δp (e ).
We sometimes refer to the travel time of a path as the cost of the path.

Remark 2.2 (Travel Time Function). During the remainder of this article, travel time functions
are assumed to be increasing as functions of the corresponding link flows. More vehicles on a link
increase the travel time of this specific link. The article assumes that drivers want to minimize
their travel time. However, the travel time can be interpreted as any type of cost (i.e., gas emission
[19], . . . ), and it will not change the following results.

Definition 2.6 ([27] Non Atomic Routing Game). The set (G,ddd, t) defines the non-atomic routing
game [27].

Definition 2.7 ([28] User Equilibrium). For the traffic demandddd , a flow allocation f = Δh ∈ Fddd is
a user equilibrium if and only if:

∀o,d ∈ V, ∀p ∈ Pod , hp ·
(
tp (f ) − min

p̃∈Pod

tp̃ (f )
)
= 0. (1)

Theorem 2.8 ([27] Routing Game). The user equilibrium is the Nash equilibrium of the non-
atomic routing game (G,ddd, t) [23, 27, 31, 34].

Remark 2.3 (Routing Game). Non-atomic routing games are games with an uncountable (or con-
tinuous) number of players (referred to as potential games [23, 34]). Players are divided in types
corresponding to every origin destination pair. Some notions defined in a classic non-cooperative
game with a finite number of players [1, test] (like regret, ϵ-Nash equilibrium, average regret, or
average-ϵ-Nash equilibrium) can be extended to potential games (uncountable number of players)
using measure theoretical tools to deal with the continuous number of players.

Definition 2.9 ([11] Marginal Regret). We define the (marginal) regret of a driver as the difference
between their travel times and the optimal travel times between their origins to their destinations.
Because in the non-atomic routing game the number of drivers is uncountable, we define the regret
for the type of drivers on a path p (called then regret of path p) as:

rp (f ) = tp (f ) − min
p̃∈Pod

tp̃ (f ).
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Definition 2.10 (ϵ-User Equilibrium). For the traffic demand ddd , a flow allocation f = Δh ∈ Fddd is
an ϵ-user equilibrium for ϵ ∈ R>0 if and only if:

∀o,d ∈ V, ∀p ∈ Pod , hp > 0⇒ tp (f ) − min
p̃∈Pod

tp̃ (f ) < ϵ . (2)

Remark 2.4 (ϵ-User Equilibrium). A strategy profile of a non-cooperative game is an ϵ-Nash
equilibrium if no one can increase their payoff by ϵ by changing their strategy unilaterally [1]. In
an ϵ-Nash equilibrium no one has a (marginal) regret above ϵ . This notion is an extension from the
discrete game framework to non-atomic routing game framework using measure theoretical tools.
To our knowledge, it is the first time that an ϵ-Nash equilibrium is defined for potential games.

As an ϵ-user equilibrium considers the worst case for one path, we introduce the notion of
average ϵ-user equilibrium:

Definition 2.11 ([2] Average ϵ-User Equilibrium). Let ϵ ∈ R>0. For the traffic demand ddd , a flow
allocation f = Δh ∈ Fddd is an average ϵ-user equilibrium if and only if:

1

‖ddd ‖1

∑
o,d ∈V

∑
p∈Pod

hp ·
(
tp (f ) − min

p̃∈Pod

tp̃ (f )
)
< ϵ . (3)

Remark 2.5 (Average ϵ-User Equilibrium). In an average ϵ-user equilibrium, an average “player”
(infinitesimal fraction of traffic) can expect to save ϵ by changing unilaterally her/his strategy
(path). As highlighted in Reference [2], this notion is similar to the definition of (ϵ,δ )-Nash equi-
libria in Reference [15].

Definition 2.12 (Social Optimum). For the traffic demand ddd , a flow allocation f ∈ Fddd is a social
optimum if and only if:

∀f ′ ∈ Fddd , t(f )
f ≤ t(f ′)
f ′. (4)

Remark 2.6 ([38] Wardrop’s Conditions).

• At a user equilibrium, the cost on all routes—with the same origin and destination—used
in the road network are equal, and less than the ones that would be experienced by a single
player on any unused route in the network (Wardrop’s first principle).

• At a social optimum, the average cost is a minimum (Wardrop’s second principle).
• A user equilibrium is not necessarily a social optimum [7, 33].

2.1.2 Variational Inequality and Minimization Problem Formulation. For a non-atomic routing
game, Nash equilibria are known to be easy to compute, as they can be expressed as the solution
to a convex optimization problem, using a convex potential function (Rosenthal function) [31].

Definition 2.13 ([28] Variational Inequality). We define the variational inequality problem as find-
ing an f ∈ Fddd , such that:

∀f ′ ∈ Fddd , t(f )
 (f ′ − f ) ≥ 0. (5)

Definition 2.14 ([31] Minimization Problem). We define the following optimization problem with
the classical Rosenthal potential:

min
f ∈Fddd

∑
e ∈E

∫ fe

0
te (x ) dx . (6)

Property 2.1 ([31] Interpretation and Eqivalences). If for all links e ∈ E, the link travel
time functions te ( fe ) are strictly increasing functions of the link flow fe , then the solution of the
minimization problem (6), the variational inequality (5), and the user equilibrium (1) are the same:
(i.e., (1)⇐⇒ (5)⇐⇒ (6)).
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2.2 Introducing the Average Marginal Regret

This section is focused on introducing a function to evaluate how far a traffic state is from a
user equilibrium. We present the characteristics desired for this function. We first discuss several
quantities one might consider using and explain their advantages and disadvantages. Then, we
introduce a new function that best responds to this goal: the average marginal regret.

2.2.1 Evaluating the Distance between a Traffic State and a User Equilibrium. An observed traffic
state—defined as a feasible flow allocation f (Definition 2.4)—could be neither a user equilibrium
nor a social optimum. It can be interesting to know how far from a user equilibrium this traffic
state is. For example, it would constitute a way to know whether drivers efficiently chose the route
that minimizes their own travel time given the flow allocation f . This is particularly relevant for
Section 3 to experimentally assess the impact of routing apps on traffic. It can also be used to un-
derstand under which conditions the use of apps will have an impact on a given traffic assignment
(given that app usage decreases regrets of drivers). To achieve this goal, we define a function R̄
that takes as an input the traffic state f and returns a positive real value that quantifies how far
this traffic state f is from a user equilibrium.

Formally, given a network G, a traffic demand ddd , and a travel time vector function t, R̄ should
satisfy the following properties:

i. R̄ : Fddd �→ R+, is a function of a feasible flow allocation f and returns a non-negative real
value.

ii. R̄ (f ) = 0 ⇐⇒ f is a user equilibrium. The function should characterize all user equilib-
ria.

iii. If R̄ (f ) < ϵ , then f is at an average-ϵ-user equilibrium for ϵ ∈ R>0 given.
iv. For every f ∈ Fddd , R̄ (f ) is tractable, i.e., R̄ (f ) can be computed in polynomial time with

respect to |E | and |V |.
v. R̄ is a continuous function of the flow allocation f .

These properties should satisfy for every network G, traffic demandddd and travel time vector func-
tion t.

Remark 2.7 (Distance). As we want R̄ to be only a function of the observed state of traffic
f , it cannot be defined as a mathematical distance. Section 2.2.2 presents why defining R̄ (f ) =
minfue∈Sue d (f , fue)—where Sue is the set of user equilibrium flow allocation and d is a metric like
d (x ,y) = ‖x − y‖2—would not satisfied properties we want for R̄ .

2.2.2 A Benchmark Example to Give Some Context and Refute Possible Nash Gap Quantifier

Candidate Functions. In this section, we present different functions that can be considered to quan-
tify the gap between an observed state of traffic and a user equilibrium. We present a benchmark
network to show that the average marginal regret is more appropriate to define R̄ than the other
candidates of functions.

The Case Considered. Let us consider the network in Figure 2. The network consists of two nodes
(O and D) and two paths (p1 and p2). The cost of each path depends on the flow on this path (f1
and f2). The functions are given in Figure 2: t1 ( f1) = 1 + f1 and t2 ( f2) = M + 2 + f2 with M ≥ 0
given. We consider a demand of dOD = 1 between O and D. The user equilibrium flow can be
directly determined from the Wardrop first principle: f ue

1 = 1 and f ue
2 = 0. We note fue the vector

fue = ( f ue
1 , f

ue
2 ). Now, imagine that we observe a traffic flow f̂ where f̂1 = 1 − α and f ue

2 = α with
0 ≤ α ≤ 1 given. We seek to understand what kind of functions could serve as good candidates (in
the sense of properties (i), (ii), (iii), (iv), and (v) defined in Section 2.2.1) to measure how far the

observed flow f̂ is from a Nash equilibrium (here fue).
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Fig. 2. Benchmark network example to illustrate the average marginal regret.

Inadequacy of a Flow-based Function. A first intuition approach might consist of comparing the

link flows between the observed state f̂ and the Nash equilibrium flow fue: R̄ (f̂ ) = ‖fue − f̂ ‖2. In

the case considered, we have that R̄ (f̂ ) =
√

2α . The function R̄ (f̂ ) satisfies properties (i), (ii), and

(iv) for the case we consider. But the function R̄ (f̂ ) does not satisfy the property (iii). Indeed, R̄ (f̂ )
does not depend on M (or on the differences on the cost of both paths). Therefore, we consider
that a flow-based function is not relevant to quantify a gap to Nash.

Inadequacy of a Cost-based Function. Another possible approach would be to consider the travel

time function R̄ (f̂ ) = ‖t(fue) − t(f̂ )‖2. In the case considered, the travel time function is just a

translation of the flow vector, so we still have R̄ (f̂ ) =
√

2α . For the same reasons than the flow-
based function, we consider the cost-based function inadequate.

Inadequacy of a Hybrid-based Function. A third approach is to consider norm on f · t(f ): R̄ (f̂ ) =

|fue · t(fue) − f̂ · t(f̂ ) | (like in Reference [29]). But, as seen in Definition 2.12, f · t(f ) is the total
travel time on the network (the sum of the travel times of all cumulated flows). So, any function
on f · t(f ) will be related to the social optimality of the solution. This will not satisfy the fact that
we want to measure a gap between a traffic state f and a user equilibrium. In the case considered,

R̄ (f̂ ) = α |M − 1 + 2α |. If |M − 1 + 2α | = 0, f̂ is not a Nash equilibrium, but R̄ (f̂ ) = 0. So, R̄ (f̂ ) does
not satisfy the property (ii).

Inadequacy of a Price of Anarchy-like Function. Considering an idea similar to the price of anarchy

[33], one can define R̄ (f̂ ) = f̂ ·t(f̂ )
fue ·t(fue ) , where fue is a user equilibrium. This is similar to the hybrid-

based function: f̂ ·t(f̂ )
fue ·t(fue ) = 1 + 1

fue ·t(fue ) · (f̂ · t(f̂ ) − fue · t(fue)). Therefore, this type of function is

equivalent to a hybrid-based function and thus is inadequate for our purpose.

The Worst “Marginal Regret” of Vehicles Function. Another type of approach is to define R̄ us-
ing the game theoretical framework. Using marginal regret, we do not need to know every user
equilibrium flow allocation fue to find out whether a state of traffic is a user equilibrium. A user
equilibrium is defined as a state of traffic where nobody can achieve a better travel time by be-
ing the only one changing their route (Wardrop’s first condition 2.6): i.e., no one has marginal

regret. One idea is to define R̄ (f̂ ) as the worst marginal regret of drivers in the observed traffic

assignment. This is equivalent to define R̄ (f̂ ) as the smallest ϵ such that f̂ is a ϵ-Nash equilibrium:

R̄ (f̂ ) = max
o,d

max
p∈Pod
hp>0

(
tp (f̂ ) − min

p̃∈Pod

tp̃ (f̂ )

)
.

As the marginal regret is defined for a path flow allocation hp and not a link flow allocation f ,

property (i) is not satisfied. Assuming hp is known, properties (i) and (ii) are satisfied. As ‖ · ‖1
n
≤

‖ · ‖∞, property (iii) is also satisfied. Satisfying property (iv) is more complicated, as the number
of paths of a network is generally an exponential function of the number of nodes |V | and the
number of links |E |.
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Property (v) is not satisfied. For the considered case, we have that R̄ (f̂ ) =
{

M + 2α if α > 0
0 if α = 0 .

We see that R̄ (f̂ ) is not continuous in f̂ . If α = 0, then R̄ (f̂ ) = 0. However, if α = 0+, then

R̄ (f̂ ) = M .

The Average “Marginal Regret” of Vehicles Function. Based on the definition of the average-ϵ-Nash

equilibrium, we define R̄ (f̂ ) as the smallest ϵ such that f̂ is at average-ϵ-Nash equilibrium:

R̄ (f̂ ) =
1

‖ddd ‖1
·

∑
(o,d )∈V2

∑
p∈Pod

hp · (tp (f̂ ) − πod (f̂ )),

where πod (f̂ ) = minp̃∈Pod
tp (f̂ ). We will use this function as R̄ in the remainder of the article.

Section 2.2.3 shows that the function satisfies properties (i), (ii), (iii), (iv), and (v).

2.2.3 The Average Marginal Regret. In this section, we formulate the average marginal regret,
which quantifies how much time an average driver can expect to save by changing their path to
the optimal one. Then, some properties of the average marginal regret are presented. In particular,
the average marginal regret satisfies the properties in Section 2.2.1.

Definition 2.15 (Best Path, Optimal Flow Pattern). Given a flow allocation f ∈ Fddd , which provides
the cost vector t(f ), we define:

• An optimal path between o and d , as p∗
od

(f ) ∈ argminp∈Pod
δ
p t(f ) = P∗

od
(f ).

• An all-or-nothing allocation y(f ) based on the travel times at the flow f , as y(f ) =∑
o,d ∈V dod · δp∗

od
(f ) for δp∗

od
(f ) ∈ P∗od

(f ). In this definition, the full od demand dod is allo-

cated to an optimal path (between o and d) computed with the current flow allocation f .

Remark 2.8 (Existence and Non-uniqueness). For all f ∈ Fddd , p∗
od

(f ) and y(f ) exist but might not
be unique.

We define the average marginal regret as the inner product of the travel time vector and the
actual flow allocation minus the all-or-nothing flow allocation normalized with the total demand.

Definition 2.16 (Average Marginal Regret). We define the average marginal regret of the flow
pattern f ∈ Fddd as follows:

R̄ (f ) :=
1

‖ddd ‖1
t(f )
 (f − y(f )), (7)

where ‖ddd ‖1 =
∑

o,d ∈V
dod and y(f ) is an all-or-nothing solution as in Definition 2.15.

Remark 2.9 (Measuring the Average Marginal Regret). Because the average marginal regret is a
function of only the link flow, the link travel time, and the traffic demand, it can be accessed with
loop detectors and demand survey. Knowing the path flows is not required to measure the average
marginal regret. The function R̄ satisfies the property (iv) in Section 2.2.1.

After defining the average marginal regret, we introduce its properties.

Definition 2.17 (Shortest Travel Time). Any optimal path p∗
od

(f ) (see Definition 2.15) is a short-

est path (with respect to cost) between o and d given the cost on each link t(f ): t(f )
δp∗
od

(f ) =

minp∈Pod
t(f ). For every o,d ∈ V , we define:

πod (f ) := t(f )
δp∗
od

(f ) .

Remark 2.10 (Interpretation of the Average Marginal Regret). Since tp (f ) − πod (f ) represents the

time a driver on path p ∈ Pod could save by choosing the best path for their trip, R̄ can be inter-
preted as the average time a driver could save by changing unilaterally their path.
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Using f = Δh, we have:

t(f )
f =
∑

(o,d )∈V2

∑
p∈Pod

hp · tp (f ),

t(f )
y(f ) =
∑

(o,d )∈V2

t(f )
δp∗
od

(f ) · dod =
∑

(o,d )∈V2

πod (f ) · dod ,

R̄ (f ) =
1

‖ddd ‖1
·

∑
(o,d )∈V2

��
�
��
�

∑
p∈Pod

hp · tp (f )��� − dod · πod (f )��� ,∑
p∈Pod

hp = dod ⇒ R̄ (f ) =
1

‖ddd ‖1
·

∑
(o,d )∈V2

∑
p∈Pod

hp ·
(
tp (f ) − πod (f )

)
.

Note that this shows that R̄ is defined even if y(f ) is not unique.

Property 2.2 [The Average Marginal Regret is a Positive Real Value and Characterizes
All User Eqilibria]. As p∗

od
(f ) is the fastest path between o and d , we have

1

‖ddd ‖1
· t(f )
 (f − y(f )) = max

x∈Fddd

1

‖ddd ‖1
· t(f )
 (f − x) ≥ 0. (8)

Thus:

R̄ (f ) = 0 ⇐⇒ ∀f ′ ∈ Fddd , t(f )
 (f ′ − f ) ≥ 0. (9)

Equation (8) implies that ∀f ∈ Fddd , R̄ (f ) ≥ 0: R̄ : Fddd �→ R+, is a function of a feasible flow allo-
cation and returns a positive real value (property (i) in Section 2.2.1).

Equation (9)—using the variational inequality definition of user equilibrium (Definition 2.13)—
provides that R̄ (f ) = 0 ⇐⇒ f is a user equilibrium (property (ii) in Section 2.2.1).

Remark 2.11. The variational inequality tells us that none of the players can have a better out-
come by choosing a different path in isolation. The average marginal regret identifies which travel
time any player could expect to save by rerouting.

Property 2.3 [The Average Marginal Regret as a Measure of Driver Efficiency]. Given
ϵ ∈ R>0, from Remark 2.10, it is straightforward that ∀f ∈ Fddd , R̄ (f ) ≤ ϵ ⇐⇒ f is an average-ϵ-
Nash equilibrium (Definition 2.11). This is property (iii) in Section 2.2.1.

So, the average marginal regret is a good way to characterize how close to a user equilibrium the
state of traffic is.

A player is defined as efficient if they take one best route between their origin and destination as
their path. Then R̄ can be interpreted as a measure of the efficiency of the drivers.

The closer R̄ is to 0, the less inclined players are to change their paths. If R̄ = 0, we are at a user
equilibrium.

Property 2.4 [Continuity]. The average marginal regret R̄ (f ) is continuous with respect to f .
Property (v) in Section 2.2.1 is satisfied.

Proof. We have R̄ (f ) = 1
‖ddd ‖1 t(f )
 (f − y(f )) = 1

‖ddd ‖1 (t(f )
f −min
f̃ ∈Fddd

t(f )
f̃ ). Because t(f ) is

continuous with respect to f (Definition 2.5), it suffices to show that min
f̃ ∈Fddd

t(f )
f̃ is continu-

ous with respect to f . This is a linear program (LP) (Fddd defined in Definition 2.3 is a polytope).
The optimal objective value of an LP is continuous with respect to perturbation on the objective
function [6]. �
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Remark 2.12 (Computational Time). An optimal path p∗
od

can be found in O ( |E | · log( |V |)) with

Dijkstra’s algorithm. R̄ can be found in O ( |E | · |V | log( |V |)) with a sequential application of |V |
Dijkstra’s algorithms. Therefore, the average marginal regret satisfies property (iv).

The average marginal regret R̄ can be computed with “local data” only, i.e., link cost, link flow,
and demand. Definition 2.16 shows that we only need to compute the inner product of the travel
time vector and the difference between the flow allocation and the all-or-nothing flow allocation
given the current travel time vector. To compute the all-or-nothing flow allocation, only the de-
mand and the current travel time vector are needed.

ALGORITHM 1: Frank Wolfe’s algorithm: the average marginal regret as a criterion of convergence

Data: (V,E), ϵ ∈ R>0, ddd ∈ R |V |×|V |+ , t ∈ R |E |+ → R |E |+
Set k = 1;

Take any fk ∈ Fddd ;

while R̄ (fk ) > ϵ do

k = k + 1;

fk = fk−1 + 1
k
· (y(fk−1) − fk−1);

end

Result: fk

Remark 2.13 (Frank Wolfe’s Algorithm [2, 16]). The user equilibrium can be seen as a routing
game [27]. It has been shown that a no-regret learning algorithm in selfish routing converges to a
user equilibrium of the system [2, 3, 20].

For solving the minimization problem (6), we can use Frank Wolfe’s algorithm [16], a projected
gradient descent algorithm. This algorithm minimizes R̄ over each iteration of the algorithm. It is
equivalent to a no-regret learning algorithm [2]:

At the termination of this algorithm, we have R̄ (f ) ≤ ϵ . Here, ϵ is an input parameter of the
algorithm that represents the accuracy threshold on the value of f .

3 ADDRESSING THE IMPACT OF NAVIGATIONAL APPS ON TRAFFIC USING

THE AVERAGE MARGINAL REGRET

The aim of this section is to apply the previous considerations to the impact of navigational apps
on traffic. The average marginal regret is used to achieve this goal. First, we present traffic models
that take into account app usage [9, 37], used as a baseline to apply our framework. Then, we
show on simulations that the average marginal regret decreases when app usage increases. Finally,
sensitivity analysis of the equilibrium state of the restricted path choice model with respect to the
app usage ratio proves that the average marginal regret monotonically decreases to 0 with an
increase of app usage.

3.1 Modeling App Usage

We use two models from previous works to capture app usage [9, 37]. Simulations of these models
are used to compute the evolution of the average marginal regret with the increase of app usage
in the next section.

Both models separate drivers into populations: the app users and non-app-users. It is assumed
that both types of drivers want to minimize their own travel time. In both models, app users are
assumed to know the travel time of every path of the network. The demand is assumed to be static,
and so the travel time of paths. The difference between the two models is the way to model non-
app users. In the first one, the cognitive cost model [37], non-app users pay a “cognitive cost” to
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Fig. 3. Benchmark network (above) and path travel times (on the left) and the average marginal regret (on
the right) as a function of the percentage of app usage. On a benchmark network, the traffic converges to a
user equilibrium state when app usage increases.

access arterial roads. In the second one, the restricted path choice model [9], non-app users stay on
paths given by road signs.

3.2 App Usage Leads to a Decrease of the Average Marginal Regret

In this section, we compute the user equilibrium of the restricted path choice model for different
ratios of app users/non-app users on two networks. First, on a benchmark network with three
paths, we show that the average marginal regret converges to 0 as app usage increases. Then, on
the full L.A. network, we show the same phenomenon.

The Bureau of Public Roads (BPR) Function [4]. For each link, we define a link capacity ce ∈ R>0,
which is roughly the total flow a link can have before being congested [4]. Then, we define the

link travel function as te ( fe ) = de

ve
(1 + 0.15(

fe

ce
)4) with de ∈ R>0 and ve ∈ R>0 the length and the

free-flow speed of the link. de

ve
is the free-flow travel time of the link e . The function te is referred

to as the BPR function in transportation literature [4, 28].

Open-source Code to Solve Static Traffic Assignment Used for the Work. Transportation networks
with road capacity, free-flow travel times, and travel demand are available in open-source form on
the website noted in Reference [35]. A static traffic assignment solver can be found on the website
noted in Reference [21]. Open Street Map and OSMNX [5] can be used to model the considered
road network.

3.2.1 App Usage on a Benchmark Network. The first computation (shown in Figure 3) studies
the impact of the number of app users on the traffic state. The highway capacity is 6,000 veh./h.
The arterial road capacity is fixed at 2,000 veh./h. The od demand is set to 20,000 veh./h (more than
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Fig. 4. L.A. network considered for Section 3.2.2. On the left: a map of the L.A. basin; on the right: the graph
we use to model the L.A. basin.

Fig. 5. Average marginal regret as a function of the percentage of app usage on the L.A. network. The average
marginal regret decreases monotonically to 0 when app usage increases.

the capacity to observe congestion). We split the demand between the two populations of drivers:
app usersddda and non-app usersdddna . We haveddda +dddna = ddd andddda = α ddd with α ∈ [0, 1]. We call α
the ratio (or percentage) of app users. Using the restricted path choice model [9] (and Section 3.3),
non-app users stay on the highway regardless of the traffic conditions.

With 0% routed users, the entire flow stays on the highway. As the ratio of app users increases,
app users start using Arterial Road 2 (AR2), because it is faster than the congested highway. This
transfer relieves the freeway but increases congestion on AR2. When the travel time on AR2 be-
comes as high as the travel time on Arterial Road 1 (AR1), app users start taking AR1 as well.
Travel times stop evolving when app usage reaches 18%, which corresponds to a travel time equal-
ization phenomenon: in these conditions, no app user can reroute to decrease their travel time and
Wardrop’s first condition is reached.

The average marginal regret decreases with the increase of app usage. It reaches 0 when app
usage reaches 18%; at this point, the user equilibrium condition is reached.

3.2.2 App Usage on the L.A. Network. The second simulation is performed on the L.A. network
(Figure 4). Simulations use the cognitive cost static model [37] with app user percentages ranging
from 0% to 100%, with a 1% increment. For each of these simulations, traffic demand data is collected
from the American Community Survey, composed of 96,077 od pairs. The network is built from
Open Street Map. Traffic demand is set consistently at rush-hour levels to find the effects of app
usage when networks are congested.

We see that the average marginal regret decreases monotonically with the increase of naviga-
tional app usage (Figure 5). The fact that the decrease is monotonic is important here. This shows
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Fig. 6. Impact of the increase of app usage on path choice and path travel time for a specific (o,d pair) pair
with the increase of app usage. Above: the five main paths are used by app users. The blue path is the main
path used by non-app users. Below on the right: the travel time of the five paths as a function of app usage.
Below on the left: the percentage of flow of app users on the five paths as a function of app usage. When there
are no app users, every vehicle uses the highway. The green side road is a shortcut for app users. When there
is more than 35% of app users, the green path is not a shortcut anymore. This path gets congested because
of other motorists that use this path for their trips. App users always use paths that have the smallest travel
time.

that, whatever the percentage of app users is, the traffic will be closer to a user equilibrium when
app usage increases.

Remark 3.1. For every simulation run and on every type of network, the average marginal regret
monotonically decreases with the increase of navigational app usage. This is not the case with the
price of anarchy, which depends on the network configuration.

We show the evolution of path flow for a particular o,d pair. This (o,d pair) has been chosen to be
one of the (o,d pairs) with the highest demand. This particular (o,d pair) starts slightly southeast of
Compton and ends just north of Burbank. Figure 6 shows the top five paths taken for this o,d pair.
Almost all of these paths take the SR 2 through Glendale. One takes the I-210 through Pasadena
(the green one).

In the 0% to 35% app usage range, almost all app users take the green path, which is the fastest.
But then, with 35% app usage, app users begin to take other paths, particularly the blue (Path 1)
and red (Path 3) ones. 35% app usage is exactly when the travel time of path green, blue, and red
equalize. App users always follow the fastest paths. Then, after 35% app usage, the travel time of
the other paths fall below that of the green path and all app users leave the green path for other
paths.

Remark 3.2 (Travel Time Evolution). It is important to see that here the travel time of these paths
depends on other o,d pairs. Even after 35% app usage, when no rerouting occurs, the path travel
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time still varies, Mainly because drivers from other o,d pairs still change their path while the ratio
of app usage increases.

3.3 Theoretical Convergence of the Restricted Path Choice Model to Nash

with the Increase of App Usage

Let us model traffic assignment with app usage with the restricted path choice model [9]. App users
possess perfect knowledge of the path set Pod between every origin o ∈ V and destination d ∈ V
(see Definition 2.1). Non-app users route themselves on a non-empty subset Pna

od
of the possible

path Pod (Pna
od
⊂ Pod ) between every origin o ∈ V and destination d ∈ V . The app users’ path flow

vector is denoted by ha and the non-app users’ path flow vector by hna (see Definition 2.2). We
note h = ha + hna . Let α ∈ [0, 1] be the ratio (of percentage) of app users (as in Section 3.2.1). If
α = 1, the restricted path choice model is equivalent to the static traffic assignment defined in
Section 2.1 and Reference [28]. In this case, every vehicle possesses perfect information and user
equilibrium is reached.

Definition 3.1 ([9] User Equilibrium of the Restricted Path Choice Model). Wardrop’s first condition
for the restricted path choice model can be expressed as:

ha
p ·

(
tp (Δh) − πa

od

)
= 0, ∀o,d ∈ V, ∀p ∈ Pod , (10)

hna
p ·

(
tp (Δh) − πna

od

)
= 0, ∀o,d ∈ V, ∀p ∈ Pna

od , (11)

ha
p ≥ 0, ∀o,d ∈ V, ∀p ∈ Pod , (12)

hna
p ≥ 0, ∀o,d ∈ V, ∀p ∈ Pna

od , (13)

πod ≥ 0, ∀o,d ∈ V, (14)

πna
od ≥ 0, ∀o,d ∈ V, (15)∑

p∈Pna
od

hna
p = (1 − α )dod , ∀o,d ∈ V, (16)

∑
p∈Pod

ha
p = αdod , ∀o,d ∈ V . (17)

With the assumption of strictly increasing travel time functions (as in Property 2.1), only a
unique flow allocation satisfies the above Wardrop’s condition (Reference [9, Property 4.2] and
Reference [6]). Following Remark 2.1, Definition 2.2, and Definition 2.4, we denote it f�α = Δ(ha,� +

hna,�). For this flow allocation, app users are routed on the shortest path inside Pod and non-
app users routed themselves on the shortest path inside Pna

od
. Therefore, app users do not have

“regrets” while non-app users “regret” to not know Pod . We can express the average marginal
regret associated with f�α (as in Remark 2.10):

R̄ (f�α ) =
∑

o,d ∈V

∑
p∈Pod

hp ·
(
tp (f�α ) − min

p̃∈Pod

tp̃ (f�α )

)
,

Equation (10),Equation (11) ⇒ R̄ (f�α ) =
∑

o,d ∈V

∑
p∈Pod

ha
p · (πod (f�α ) − πod (f�α )) + hna

p ·
(
πna

od
(f�α ) − πod (f�α )

)
,

πod (f�α ) = πod (f�α ) ⇒ R̄ (f�α ) =
∑

o,d ∈V

∑
p∈Pod

hna
p ·

(
πna

od
(f�α ) − πod (f�α )

)
.

Then, Equation (16) gives:

R̄ (f�α ) = (1 − α )
∑

o,d ∈V
dod ·

(
πna

od
(f�α ) − πod (f�α )

)
. (18)
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Similarly to satisfying property (v) of the average marginal regret (continuity with respect to the
link flow allocation, see Section 2.2.1), we are interested in the continuity of R̄ (f�α ) with respect
to α .

Theorem 3.2 [Continuity of the Average Marginal Regret With the Ratio of App
Users]. The average marginal regret R̄ (f�α ) is continuous as a function of α .

Proof. This follows from the continuity of the average marginal regret (see Property 2.4) and
of the continuity of f�α with respect to α . The continuity of f�α with respect to α is due to the
convexity of the restricted path choice model (Definition 3.1, see Reference [9, Property 4.2] for
the convexity, and Reference [17, Theorem 1] for a more detailed proof). �

Theorem 3.3 [Monotonicity and Convergence to Nash]. For α1,α2 such that 0 ≤ α1 ≤
α2 ≤ 1:

R̄ (f�α2
) ≤ R̄ (f�α1

) and lim
α2→1
R̄ (f�α2

) = 0.

Proof. First, given that R̄ (f�α ) is continuous with α (Theorem 3.2), R̄ (f�α=1) = 0 (Equation (18))

gives that lim
α→1
R̄ (f�α ) = 0.

Then, we can use the sensitivity analysis of the travel cost πod (f�α ) and πna
od

(f�α ) with respect to
α (as in References [13, 24]). By using Equation (18), we have:

R̄ (f�α1
) − R̄ (f�α2

) = (1 − α1)
∑

o,d ∈V
dod ·

(
πna

od (f�α1
) − πod (f�α1

)
)

− (1 − α2)
∑

o,d ∈V
dod ·

(
πna

od (f�α2
) − πod (f�α2

)
)
,

= (α2 − α1)
∑

o,d ∈V
dod ·

(
πna

od (f�α1
) − πod (f�α1

)
)

+ (1 − α2)
∑

o,d ∈V
dod ·

((
πna

od (f�α1
) − πna

od (f�α2
)
)
− (πod (f�α1

) − πod (f�α2
))
)
.

Because α1 ≤ α2 and πna
od

(f�α1
) ≥ πod (f�α1

), then (α2 − α1)
∑

o,d ∈V dod · (πna
od

(f�α1
) − πod (f�α1

)) ≥ 0.
Using Dafermos sensitivity analysis of travel cost with respect to the demand [13, Theorem

4.2], we will show that
∑

o,d ∈V dod · ((πna
od

(f�α1
) − πna

od
(f�α2

)) − (πod (f�α1
) − πod (f�α2

))) ≥ 0. Since (1 −
α2) ≥ 0, it will complete the proof.

Changing the problem (in Definition 3.1) into a stationary traffic assignment problem by

vectorizing it, we denote π̃o,d = (πod (f�α1
), πna

od
(f�α1

)), d̃o,d = (α1 dod , (1 − α1) dod ), and π̃�
o,d
=

(πod (f�α2
), πna

od
(f�α2

)), d̃
�

o,d = (α2 dod , (1 − α2) dod ). This notation is inspired by Dafermos [13].
Then, the Dafermos sensitivity analysis of the travel cost with respect to the demand [13, Theo-
rem 4.2] gives:

∑
o,d ∈V

(π̃�
o,d − π̃o,d )
 (d̃

�

o,d − d̃o,d ) ≥ 0.

Going back to previous notations:∑
o,d ∈V

(πod (f�α2
) − πod (f�α1

))
 ((α2 − α1) do,d ) −
(
πna

od (f�α2
) − πna

od (f�α1
)
)


((α2 − α1) do,d ) ≥ 0,
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Fig. 7. Braess network considered. Cost on every link are given as a function of the link flow.

(α2 − α1)
∑

o,d ∈V
do,d ·

(
((πod (f�α2

) − πod (f�α1
)) −

(
πna

od (f�α2
) − πna

od (f�α1
)
))
≥ 0,

∑
o,d ∈V

do,d ·
(((

πna
od (f�α1

) − πna
od (f�α2

)
)
−

((
πod (f�α1

) − πod (f�α2
)
))
≥ 0.

This shows the claim R̄ (f�α1
) ≥ R̄ (f�α2

). �

The average marginal regret decreases monotonically to zero when the ratio of app users in-
creases uniformly using the restricted path choice model.

3.4 When App Usage is Worse for Everybody

This section shows on a toy example that the increase of app usage could lead to a situation worse
for everybody (even for the app users). Indeed, Section 3.2 shows that the increase of app usage
leads the traffic to converge to a Nash equilibrium. It is known that Nash equilibria traffic assign-
ment can be worse than socially optimal traffic assignment [25, 28, 33]. In traffic, this is known as
the Braess paradox [7]. We claim that routing apps can reproduce the Braess paradox!

To this end, let us consider a network with four nodes (A,B,C,D) and three paths (ABD, ACD,
and ABCD). The demand is set to 100 vehicles that want to go from A to D. Link cost functions are
defined in Figure 7. This is equivalent to the experiment of Reference [12].

App users are routed on the shortest path between ABCD, ABD, and ACD. Non-app users are
assumed to not know the path BC . Therefore, they are routed on the shortest path between ABD
and ACD.

We observe the evolution of the travel time of app users and non-app users as a function of the
percentage of app users (Figure 8).

In this particular case, even if the usage of apps decreases the average marginal regret, the travel
time of every vehicle increases with an increase of app usage. This toy example shows that the
use of apps might not be beneficial for society. Indeed, the article shows that app usage leads the
state of traffic to converge to a Nash equilibrium (using the average marginal regret as quantifier),
which usually is not socially optimal.

Remark 3.3 ([36] The Average Marginal Regret for Dynamic Traffic Assignment). The average
marginal regret can also be defined and evaluated for the dynamic traffic assignment problem.
Simulations using Aimsun show that the average marginal regret also decreases when app us-
age increases in a dynamic traffic environment [36]. However, more research is required to prove
properties like monotonically decrease of the marginal regret when the percentage of app users
increases in a time-dynamical environment.
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Fig. 8. Impact of the increase of app usage on the Braess network: everybody gets a worse travel time when
app usage increases. On the left: the average marginal regret as a function of app usage. The average marginal
regret of the drivers decreases monotonically when app usage increases. On the right: the travel time of app
users (blue) and non-app users (orange) as a function of app usage. The travel time of every traveller (non-app
users and app users) increases when app usage increases.

4 CONCLUSION

In conclusion, this article introduces the average marginal regret, which is a measure of how selfish
drivers behave. The average marginal regret is defined in order to characterize user equilibria. This
article shows that the average marginal regret is the best candidate for quantifying how far an
observed state of traffic is from a Nash equilibrium. Simulations show that app usage increase leads
to a decrease of the average marginal regret. This article proves that the average marginal regret
decreases monotonically to 0 when app usage increases using the restricted path choice model.
This proves that the traffic state converges to a Nash equilibrium when app usage increases. As a
Nash equilibrium is not necessarily socially optimal, app usage can have a bad impact on drivers’
travel times. A toy example is presented, where app usage translates in a worse travel time for
everyone.

Future work will define the concept of average-ϵ-Nash equilibrium from a measure theory point
of view and try to extend the current work to the dynamic traffic assignment framework [18].
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