Reachability/Unsafe Region Analysis for Drifters

Matthew Chong

Presentation Outline

- Introduction
- Motivation and Problem Statement
- Mathematical Tools
- Implementation
- Results

Introduction

http://float.berkeley.edu/drifters

Motivation

- A network of drifters in a river can provide realtime updates on river conditions.
- Long term operation requires avoiding obstacles and collision with the shore.

Problem Statement

 Regions of unsafe operation must be determined in order to prevent collisions between the drifter and the shore.

Consider a simple dynamical system with bounded input

$$\begin{split} \dot{x} &= a_x(t) \\ \dot{y} &= a_y(t) \\ \|a\|_2 \leq \bar{a} \end{split}$$

- How do we define reachability?
 - Assume x₀ = (0,0), then reachable set is the set of states such that there exists a sequence of actions a(t) to maneuver the system to that set
 - For this system, R² is reachable

- Minimum-Time-to-Reach is an extension upon this idea
- By the time $t = \tau$, what states are reachable?

 Backward Reachability – Modify model to include constant disturbance

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} a_x(t) \\ a_y(t) \end{bmatrix} + \begin{bmatrix} 0.75 \\ 0.5 \end{bmatrix}$$

• Define a target set, T
$$T = \{(x, y) | x^2 + y^2 \le 1\}$$

• From what states can we guarantee controllability into *T*?

• From what states can we guarantee controllability into T?

Implementation

• We start with a dynamics model

$$\dot{x} = f(x, a, b)$$

- x is the state
- a defines drifter inputs
- *b* defines disturbance inputs

$$\begin{split} \dot{x} &= w_x(x, y) + a_x(t) + b_x(t) \\ \dot{y} &= w_y(x, y) + a_y(t) + b_y(t) \\ \|a\|_2 &\leq \bar{a}, \quad \|b\|_2 \leq \bar{b} \end{split}$$

Hamilton-Jacobi-Isaacs PDE

 Use numerical solver (Level Set Toolbox) to solve HJI PDE for v(x, t):

$$v_t(x,t) + \min[0, H(x, v_x(x,t))] = 0$$

• Need to define a target set, T, and Hamiltonian

•
$$v(x,0) = v_0(x) = \begin{cases} -1, \text{ for } x \in T \\ +1, \text{ otherwise} \end{cases}$$

• $H(x,p) = \max_{\|a\|_2 \le \bar{a}} \min_{\|b\|_2 \le \bar{b}} p^T f(x,a,b)$

Target Set Definition 6.301 6.3 6.299 6.298 0~ 6.297 -1 4.2342 6.296 4.234 4.2338 6.295 4.2336

4.2334

4.2332

6.294

4.233

6 x 10 12

6.303

5 x 10

6.302

Hamiltonian

- $H(x,p) = \max_{\|a\|_{2} \le \bar{a}} \min_{\|b\|_{2} \le \bar{b}} p_{1}[w_{x} + a_{x} + b_{x}] + p_{2}[w_{y} + a_{y} + b_{y}]$
- $= p_1 w_x + p_2 w_y + [\bar{a} \bar{b}] \sqrt{(p_1^2 + p_2^2)}$

Flowfield Data

|4

Visualization of v(x, t)

Time-varying flowfield

No Inputs – Free Drift

Comparisons

Simulated Trajectories

Conclusion

- This method has seen actual use in determining safe/unsafe regions for determining control strategies
- Modeling Assumptions
 - Unrealistic model
- Visualize safe and unsafe trajectories

References

- Mitchell, I. A Toolbox of Level Set Methods. I June 2007. UBC.
- Bayen, A., Santhanam, S., Mitchell, I., Tomlin, C. A differential game formulation of alert levels in ETMS data for high altitude traffic. 2003. AIAA 2003-5341.
- Mitchell, I., Bayen, A., Tomlin, C. A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. July 2005. IEEE Transactions on Automatic Control, Vol. 50, No. 7.
- Weekly, K.Anderson, L.Tinka, A., Bayen, A. Autonomous river navigation using the Hamilton-Jacobi framework for underactuated vehicles. 2011. ICRA.
- Bayen, A. ME 236/EE 291 Course Notes.
- REALM, River Estuary and Land Model.

Thanks!

(22)