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Abstract

Data Assimilation in Large-scale Networks of Open Channels

by

Mohammad Rafiee Jahromi

Doctor of Philosophy in Engineering-Mechanical Engineering
and the Designated Emphasis

in
Communication, Computation and Statistics

University of California, Berkeley

Professor Alexandre M. Bayen, Co-Chair
Professor Andrew K. Packard, Co-Chair

This dissertation is mainly focused on assimilation of data into hydrodynamic models of
water flow in open channel networks, which is motivated by the need for accurate flow
models in various applications such as emergency response and flood monitoring systems,
automated gate systems and hydrological studies. We investigate application of different data
assimilation techniques in different scenarios to incorporate the available flow measurements
obtained from sensors into flow models to improve their accuracy.

Water flow in open channels is an instance of the so-called distributed parameters systems,
in which the dynamics of the system is described by a set of partial differential equations. As
the flow model, the Saint-Venant equations, also known as shallow water equations, which
are a set of first-order hyperbolic nonlinear partial differential equations are used. Different
practical scenarios are considered. In a case in which streaming measurements of the flow
are available and real-time estimation of the flow state is desired, we present how standard
state estimation techniques such as the Kalman filter, the Extended Kalman filter and the
Unscented Kalman filter can be applied to integrate the available measurements into the
shallow water equations. It is also shown how these techniques can be adapted to a case
in which some of the model parameters are unknown to estimate the unknown parameters
along with the state of the system.

For data assimilation in large-scale networks which lead to high dimensional models, ap-
plication of two sequential Monte Carlo methods, the optimal sampling importance resam-
pling and the implicit particle filters, are considered. The computational cost of propagating
each particle is higher in implicit particle filters, however, they provide more accurate results
with smaller number of particles by choosing the particles in a way that they belong to the
high probability regions of the posterior density function. We also propose a maximum-a-
posteriori-based method to perform the state estimation, which is shown to perform better
in terms of both accuracy and computational cost for the application of interest.
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For flow estimation in tidally influenced channels, an efficient estimation method that
takes advantage of spectral decomposition of the state is proposed. The estimation problem
is formulated as a least squares regression with an l1-norm regularization, known as the
LASSO, and a homotopy-based algorithm is implemented to solve the resulting optimization
problem recursively as new measurements become available.

Finally, we consider the problem of optimal topology design in multi-agent systems for
efficient average consensus. The network design problem is posed in two different ways. (1)
Assuming that the maximum communication cost, i.e. the maximum number of communi-
cation links, is known, the goal is to find the network topology which results in the fastest
convergence to the consensus (in presence of communication time delays on the links). (2) If
a minimum performance of the protocol is required, the design problem is posed as finding
the network with lowest possible communication cost which fulfills the required performance.
The design problem is formulated as an optimization problem which is finally transformed
to a mixed integer semidefinite program.
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Chapter 1

Introduction

1.1 Central topic of the dissertation

Data assimilation is the process of integrating observations or measurements into a math-
ematical model of a physical system, in order to estimate some quantities of interest. Re-
cently, data assimilation has provided rapid advances in geosciences such as meteorology,
oceanography and hydrology [1, 3, 7, 69, 20, 24, 48, 81, 90]. Different methods for assim-
ilating data include variational data assimilation [8, 67, 35, 74, 17], filtering-based meth-
ods [50, 73, 86, 117, 115, 118, 16, 89], optimal statistical interpolation [85], or the Newtonian
relaxation [65, 95].

Water flow in open channels is an example of the so-called distributed parameters systems
in which the dynamics of the system can be modelled by a set of partial differential equations
(PDEs). These systems are also called infinite dimensional systems in that the state of the
system is a function of both time and a continuum of space. Among PDEs, a specific class,
called conservation laws [41, 88], are most commonly used to describe physical systems. As
the name suggests, these models are obtained from conservation laws governing the physics
of the system. For modelling the water flow in rivers and open channels, the Saint-Venant
equations, which are a set of coupled first-order hyperbolic nonlinear PDEs are commonly
used [40, 2, 77]. These PDEs are obtained from conservation of mass and conservation of
momentum and are usually derived for two cases of one-dimensional and two-dimensional
models. In the one-dimensional case, the state of the system is the discharge (flow) and the
stage (water depth) or equivalently the average flow velocity and the stage. In other words, a
one-dimensional model describes the time evolution of discharge and stage everywhere along
a channel. A two-dimensional model has the two components of flow velocity vector on
the water surface and the stage as its state. One-dimensional and two-dimensional models
are both used extensively in hydraulics. In this thesis, we focus on data assimilation and
estimation of one-dimensional models.
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Analytical solutions to Saint-Venant equations do not exist except in some particular
cases due to the strong nonlinearities in the momentum equation [77, 36]. These equations
are usually solved numerically using different discretization schemes. Solving the PDEs
requires a knowledge of the initial and boundary conditions. An accurate knowledge of the
initial conditions, the values of the state everywhere along the channel at the initial time,
is not typically possible. However, the inaccuracies in the assumed initial conditions only
affect the initial portion of the solution and if the PDEs are solved for a long enough period
of time, the effect of these inaccuracies are washed away as the time evolves. The boundary
conditions, which are the time series of the values of the flow variables at the open boundaries
of the domain of interest, are usually obtained from sensors measuring the corresponding
flow variables at the boundaries.

Due to different sources of error, the solution obtained from solving the PDEs numerically
does not exactly match the true state of the system. The error in the solution arises from
different sources such as the modelling assumptions and simplifications, inaccurate knowledge
of the model parameters and bathymetry, errors introduced by numerical methods for solving
the PDEs and the measurement noise in the measurements of the boundary conditions.
When additional observations (measurements) of the system are available, it is desirable
to take advantage of these measurements to improve the model. It is important to note
that these measurements typically contain noise and uncertainty as well and are not to be
assumed as perfectly accurate. However, they still provide additional information about the
state of the system which can be used to improve the model results. In this dissertation,
we consider different scenarios in which some measurements of the flow in an open channel
system are available and we propose different data assimilation techniques to incorporate
these measurements into a flow model to reduce the mismatch between the values computed
by the model and the actual system throughout the whole domain of interest.

As for the sensors measuring the flow quantities, in addition to traditional static sensors,
we consider cases in which Lagrangian measurements of the flow are available. Lagrangian
measurements are measurements of the flow properties at a point moving with the flow along
the streamline whereas Eulerian measurements are measurements of the flow properties at
a fixed location. Lagrangian sensors which move with the flow and report their location and
possibly other local quantities of interest (temperature, salinity, etc.) are commonly used in
oceanography [9, 51, 105] (usually referred to as drifters) and in river hydraulics [4, 112, 106,
107, 16, 17]. Lower production and maintenance cost, as well as flexibility in deployment,
are the main advantages of the drifters over the traditional static sensors. These drifters are
equipped with GPS receivers and report their position, velocity and other measurements at
every time step. The bathymetry at the corresponding cross-section can be used to estimate
the discharge from the drifter velocity which is assumed to be equal to the local flow velocity.

The data assimilation methods proposed are implemented on different channels and net-
works of open channels in Sacramento-San Joaquin Delta in northern California and an
artificial channel located on the eastern border of Carl Blackwell Lake, in Stillwater, Ok-
lahoma. The Sacramento-San Joaquin Delta in northern California is a complex network
of over 1150 km of tidally influenced channels and sloughs covering 738,000 acres of land
and is of great significance in California as it is the main source of drinking water in the
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state. It is also the source of irrigation of most of California’s farmland. One of the main
challenges that the California Department of Water Resources (DWR) faces in the Delta
today is maintaining a sound levee system to protect the islands, towns and farms in the
Delta and the freshwater supply streaming through the Delta. Since 1980, 18 Delta islands
have been partially or completely flooded and recent studies have found that Delta levees
are deteriorating. Water salinity is another major issue in the Delta which affects the pota-
bility of drinking water supplies, the quality of farmland irrigation supplies, and the aquatic
ecosystems in the Delta. During the dry periods of the year, salty water propagates from
the ocean to the Delta which makes the water impotable leading to the purchase of drinking
water from other sources at a much higher cost. Finally, another issue is the Delta’s ecosys-
tem. In the fall of 2004, fish surveys reported rapid declines in several pelagic species such
as striped bass, green and white sturgeon, perch, Chinook salmon, threadfin shad and delta
smelt [84]. In dealing with all of these issues and other issues that arise in open channels and
irrigation systems, having access to an accurate flow model is very beneficial. For instance, a
real-time model of the flow in a network can help to respond to emergency conditions, such
as a gate malfunction or a flood, properly by monitoring the state of the system and taking
preemptive measures against possible damages.

In chapter 7, we shift gears to a problem in consensus theory. The motivation is the
application of distributed and consensus-based algorithms [10], [15], [33] to fuse sensor data
which can potentially be utilized in experiments with a large number of sensors (drifters)
deployed. More precisely, the problem considered in the chapter is how to optimally design
the communication network topology in multi-agent systems with a decentralized commu-
nication architecture to achieve consensus among the agents as efficiently as possible. More
precisely, noting that the communication network can be represented by an algebraic graph
in which the nodes represent the agents, the edges represent the communication links and
the weights on the edges represent the weights used in the consensus algorithm, the goal is
to determine a Laplacian matrix which corresponds to a network which results in converg-
ing to the consensus most efficiently. We define the efficiency in two ways: (1) Assuming
that the maximum communication cost, i.e. the maximum number of communication links,
is known, the design objective is to find the network topology which results in the fastest
convergence to the consensus (in presence of communication time delays on the links). (2)
If a minimum performance of the protocol is required, the design problem can be posed
as finding the network with lowest possible communication cost which fulfills the required
performance. In both approaches, we formulate the problem of finding the optimal com-
munication graph among a class of directed graphs, strongly balanced digraphs, as a Mixed
Integer Semidefinite Program (MISDP). By solving this MISDP, the optimal graph and the
weights on communication links are obtained.

1.2 Contributions of the dissertation

The contributions of this dissertation are as follows:
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• Construction of state-space models for networks of open channels using shallow water
equations and consistency constraint at the junctions.

• Application of standard filtering techniques, the Kalman filter, the extended Kalman
filter, the unscented Kalman filter to perform state and parameter estimation for open
channel flow using drifter (Lagrangian sensor) data.

• Application of sequential Monte Carlo methods, the optimal sampling importance re-
sampling and recently-developed implicit particle filters to perform state estimation in
large-scale open channel networks and comparison of their performance and develop-
ment of a maximum a posteriori approximate method to perform the state estimation
with continuous and intermittent measurements.

• Development of an efficient estimator for real-time flow estimation in tidal channels
using the recursive LASSO.

• Formulating the optimal communication network topology design for efficient average-
consensus in multi-agent system as a Mixed Integer Semidefinite Program (MISDP).

1.3 Organization of the dissertation

In chapter 2, we present the one-dimensional shallow water equations, also known as the
Saint-Venant equations. It is shown how these equations can be discretized and state-space
models can be constructed to describe the flow in networks of open channels. In chapter
3, we show how different standard filtering-based state estimation methods, such as the
Kalman filter, the Extended Kalman filter and the Unscented Kalman filter can be used
to estimate the flow state using the available measurements. In chapter 4, we present an
experiment which was performed on an artificial channel adjacent to Carl Blackwell Lake,
in Stillwater, Oklahoma on November 10, 2009 in which a number of drifters were deployed
to measure flow velocities in the case of simulating a levee break. The experiment data were
used to investigate how the state estimation methods can be adapted to estimate unknown
model parameters along with the state of the system in real time using the available flow
measurements. In chapter 5, we investigate application of Monte Carlo-based techniques
to assimilate data into models of large-scale networks of open channels. To perform data
assimilation for such high dimensional systems, it is important to use techniques that are
computationally tractable so that they can be implemented in real time. In particular, we
implement a particle filter, the optimal sampling importance resampling filter, to assimilate
data into the shallow water equations. We show how a recently-developed Monte Carlo
method, the implicit particle filter, can be applied to the problem of interest to produce
better results. In this chapter, we also present a few heuristic methods to perform the data
assimilation with better accuracy and lower computational cost in the case of application of
interest. Chapter 6 is concerned with a case in which estimates of flow variables are desired at
a specific location in a tidal channel when observations of flow are available at other locations
along the channel. After deriving a z-domain transfer function representation of Saint-Venant
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equations, the estimation problem is posed as a parametric input estimation problem. We
formulate the resulting estimation problem as a least squares with an l1-norm regularization,
also known as the LASSO, which we solve recursively using a homotopy-based algorithm.
In chapter 7, the problem of optimal network topology design in in multi-agent systems for
efficient average consensus is considered. The design problem as an optimization problem
and after algebraic manipulation of the constraints and application of duality theory and
optimality conditions, the optimization problem is formulated as a Mixed Integer Semidefinite
Program (MISDP) which can be solved using over-the-shelf optimization packages such as
YALMIP and SEDUMI. Finally, the dissertation is summarized in the concluding chapter
8. The results presented in chapters 3 and 4 were published in conference papers [96, 100]
and a journal article [111]. The research on the application of Monte Carlo methods and
the implicit particle filters were published in a conference paper [97] and a journal article
under review [98]. Finally, the results of chapter 6 is part of the submitted journal article
[62]. Finally, the results presented in chapter 7 were published in a conference paper [99].
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Chapter 2

One-Dimensional Model of Flow in

Open Channels

Open channel flow can be modelled by so-called distributed parameters systems. A phys-
ical system which is modelled by a set of partial differential equations (PDE) is called a
distributed parameters system. In this chapter, we present the flow model used in the ap-
plications that will be presented in later chapters. For most of the applications considered
in later chapters, a discrete-time state space model of the flow in a channel or a network of
channels is needed. Here, we also explain how the governing partial differential equations
can be discretized and consistency constrains at the junction can be used to construct a
discrete-time state space model of the flow for a network of open channels. For the case of
state estimation using the Kalman filter, presented in chapter 3, a linear state-space model
desired. In the current chapter, we focus on construction of a nonlinear state-space model
and we postpone the construction of the linear state space model to chapter 3 where it is
used.

2.1 Saint-Venant Model

In unsteady flow, velocities and stage (depth) at any location in a channel vary with time.
In one dimensional flow models, discharge and stage are functions of space and time and
therefore they are considered as the dependent variables. This means that two PDEs are re-
quired to fully described the flow. These equations can be derived from conservation of mass
and conservation of momentum. This yields two coupled first-order hyperbolic PDEs which
are called the Saint-Venant equations. The Saint-Venant model is one of the most common
models used for modeling the flow in open channels and irrigation systems [40], [2], [108].

6



The one dimensional Saint-Venant equations are derived with the following assumptions:

• The flow is one dimensional, i.e. the velocities are uniform and the water level across
the cross sections is horizontal.

• The vertical accelerations are negligible and the pressure is hydrostatic.

• The channel bed slope is small so that the cosine of the angel that the bottom of the
channel makes with the horizon is almost equal to unity and the sine of the angel can
be approximated with the tan.

• The frictional bed resistance is the same as that of steady flow so that the Manning or
Chezy equations can be used to approximate the mean boundary shear stress.

• The channel bed is stable and the bed elevations don’t change with time.

While in a general case, lateral inflow and outflows can be considered, we assume there
is no lateral inflow or outflow.

For prismatic channels, the Saint-Venant equations can be written as follows [108]:

T
∂H

∂t
+
∂Q

∂x
= 0 (2.1)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+

∂

∂x
(ghcA) = gA(S0 − Sf ) (2.2)

for (x, t) ∈ (0, L)×<+, where

• L is the river reach (m).

• Q(x, t) is the discharge or flow (m3/s) across cross section A(x, t) = T (x)H(x, t).

• H(x, t) is the stage or water-depth (m).

• T (x) is the free surface width (m).

• D = A/T is the hydraulic depth (m).

• Sf (x, t) is the friction slope (m/m).

• Sb is the bed slope (m/m).

• hc is the distance of the centroid of the cross section from the free surface (m), see Fig.
2.1.

• g is the gravitational acceleration (m/s2).
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The friction slope is empirically modelled by the Manning-Strickler’s formula [77]:

Sf =
m2Q2P 4/3

A10/3
(2.3)

with Q(x, t) = V (x, t)A(x, t) the discharge across cross-section A(x, t), P the wetted perime-
ter, i.e. the perimeter of the wetted portion of the cross-section (see Fig. 2.1), and m the
Manning’s roughness coefficient (sm−1/3).

Figure 2.1: Illustration of the wetted perimeter P and hc.

In the case of sub-critical flow, the boundary conditions are taken to be upstream flow
Q(0, t) and downstream stage H(L, t) or vice versa [77].

For channels with non-rectangular cross-sections, three correction parameters, α, η and γ
can be introduced through the following equations, A = αTH, P = η(2T +H) and hc = γH.
These parameters are calculated based on the average stage.

2.2 Discretization

We use the Lax diffusive scheme [37], [108] which is a first-order explicit scheme to
discretize the equations at internal grid points. Using f to represent the state variables, Q
and H, the derivatives become

∂f

∂t
=
fk+1
i − 1

2
(fki+1 + fki−1)

∆t
(2.4)

∂f

∂x
=

(fki+1 − fki−1)

2∆x
(2.5)

using traditional finite difference discretization notation, with subscript i for space and su-
perscript k for time.

Applying this scheme to equations (2.1) and (2.2), we obtain the following set of finite
difference equations,

8



Ak+1
i =

1

2
(Aki−1 + Aki+1)− 4t

24x(Qk
i+1 −Qk

i−1) (2.6)

Qk+1
i =

1

2
(Qk

i−1 +Qk
i+1)

− 4t
24x

[(
Q2

A
+ gAhc

)k
i+1

−
(
Q2

A
+ gAhc

)k
i−1

]
(2.7)

+4t
(
φki+1 + φki−1

2

)
(2.8)

where
φ = gA(Sb − Sf ) (2.9)

This scheme is stable provided that the Courant-Friedrich-Lewy (CFL) condition holds,
i.e.

∆t

∆x
|V + C| ≤ 1 (2.10)

where C =
√
gD is the wave celerity and V is the average velocity.

However, the equations above may only be used for interior grid points. At the bound-
aries, these equations cannot be applied since there is no grid point outside the domain.
Therefore, another method needs to be used to compute the unknown variables at the bound-
aries. Here, we use the method of specified time intervals to compute these variables [37]. In
this method, after computing the characteristics, the boundary grid point is projected back-
ward to the previous time step along its corresponding characteristic curve. After computing
the variables at the projected point, which is usually done by using linear interpolation, the
characteristic equations are used to compute the unknown variable at the boundary grid
point at the next time step.

Denoting the projected points corresponding to the upstream and downstream boundary
conditions by subscripts L and R, respectively, the resulted update equations for upstream
stage and downstream velocity read as follows [37]

Hk+1
1 = Hk

L +
Ck
L

g
(V k+1

1 − V k
L ) + Ck

L∆t(SkfL − Sb1) (2.11)

V k+1
N = V k

R + g
Hk
R −Hk+1

N

Ck
R

− g∆t(SkfR − SbN ) (2.12)
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where the velocity and wave celerity at projected points can be calculated as

V k
L =

V k
1 + β(Ck

1V
k

2 − Ck
2V

k
1 )

1 + β(−V k
1 + V k

2 + Ck
1 − Ck

2 )
(2.13)

Ck
L =

Ck
1 + βV k

L (Ck
1 − Ck

2 )

1 + β(Ck
1 − Ck

2 )
(2.14)

V k
R =

V k
N + β(Ck

NV
k
N−1 − Ck

N−1V
k
N)

1 + β(−V k
N + V k

N−1 + Ck
N − Ck

N−1)
(2.15)

Ck
R =

Ck
N + βV k

R(Ck
N−1 − Ck

N)

1 + β(Ck
N − Ck

N−1)
(2.16)

where β =
∆t

∆x
, Ck

i is the wave celerity at cell i at time k, and N is the number of cells.

Figure 2.2: Illustration of method of specified time intervals.

2.2.1 Internal Conditions for Confluence in Channel Network

In order to apply this model to a channel network, it is necessary to impose networked
internal boundary conditions at every confluence in the channel network. Here, the internal
boundary conditions constraints are briefly described for a simple confluence as in Figure 2.3
which comprises three channels.

The constraints corresponding to the internal boundary conditions of stage and discharge
are as follows:

H1 = H2 = H3

Q1 = Q2 +Q3

10



where H1, H2, and H3 represent the stage in the cross sections 1, 2, and 3, respectively,
and Q1, Q2, and Q3 are the discharge at the three cross sections. The first equation is
simply consistency of stage in all channels at the junction and the second equation is just
the conservation of mass at the junction.

The discretized equations obtained from the Lax scheme and the method of specified
time intervals along with the internal boundary constraints assembled to obtain a state-
space model for the entire network of interest, written in a compact form as follows

xk+1 = f(xk, uk) (2.17)

where xk is the state vector at time k which consists of discharge and stage at all cells
throughout the whole network excluding the external boundary condition variables, and the
input vector uk contains the external boundary conditions.

Channel 3

Channel 1
Channel 2

1
2

3

Internal BC

External BC

External BC

External BC

Figure 2.3: Illustration of internal and external boundary conditions for a channel network. Image:

courtesy of Qingfang Wu [119].

2.2.2 Stochastic State-space Model

The effect of modelling uncertainties, as well as inaccuracies in measurements of the
inputs, are commonly considered as an additive noise term in the state equations (2.17) to
obtain a stochastic equation

xk+1 = f(xk, uk) + vk (2.18)

The noise vk is usually assumed to be zero-mean white Gaussian and

E[vkv
T
l ] = Qkδkl (2.19)

x0 ∈ Rm is the initial state which is also assumed to be Gaussian and

x0 = N (x̄0, P0) (2.20)
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where x̄0 and P0 are the initial guesses for state and error covariance.

Similarly, the errors and uncertainties in the measurements can be taken into account by
adding a noise term to the measurement model to obtain

zk = g(xk, k) + ek (2.21)

where g is the function that relates the measurements to the state vector and ek is the
measurement noise of the sensors which is assumed to be zero-mean white Gaussian and

E[eke
T
l ] = Rkδkl (2.22)

We also assume that the process and measurement noises and the initial conditions are all
uncorrelated.

2.2.3 Summary

In this chapter, we showed how a stochastic state-space model describing the flow in
a network of open channels can be constructed. We discretized the one-dimensional Saint-
Venant equations and used the consistency constraints at the junctions to build a state-space
model in which the state vector consists of the discharge and stage at all grid points in the
network excluding the boundary conditions and the input vector contains the boundary
conditions.
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Chapter 3

State Estimation in Open Channels

using the Kalman filter and its

extensions

In the previous chapter, we obtained a discrete state-space model describing the dynam-
ics of the flow in open channel networks. Simplifications and numerical approximations made
to obtain such a model result in discrepancies between the model and the actual system. In
many applications including automated gate control systems, emergency response and flood
monitoring systems and real-time hydrologic studies, estimating the flow state in real time
is needed. When measurements of the flow, other than the boundary conditions, are avail-
able, it is desired to integrate the additional measurements into the flow model to improve
the model accuracy. In this chapter, we specifically focus in a case in which Lagrangian
measurements of the flow are available. Lagrangian measurements are measurements of the
flow properties at a point moving with the flow along the streamline whereas Eulerian mea-
surements are measurements of the flow properties at a fixed location. Lagrangian sensors
which move with the flow and report their location and possibly other local quantities of
interest (temperature, salinity, etc.) are commonly used in oceanography [9, 51, 105] (usu-
ally referred to as drifters) and in river hydraulics [4]. Lower production and maintenance
cost, as well as flexibility in deployment are the main advantages of the drifters over the
traditional static sensors. These drifters are equipped with GPS receivers and report their
position and other measurements at every time step. The position of the drifters at every
time step can be used to approximate the velocity of the flow at the corresponding location
and time step. Then the goal is to estimate the average velocity of the flow throughout the
whole domain of interest, i.e. at all discretized cells, using the local velocity measurements
of the flow obtained from a number of drifters.
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In this chapter, we apply a few standard state estimation techniques such as the Kalman
Filter (KF), the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF).
Application of any of these filters require a state-space model of the system. In the previous
chapter, we showed how a nonlinear state-space model can be obtained from the shallow
water equations. Nonetheless, for application of the Kalman filter a linear state-space model
of the system is required. In this chapter, we first linearize the Saint-Venant equations and
construct a linear state-space model of the flow in an open channel. We then review the KF,
EKF and UKF and apply the methods on a section of Sacramento River above Georgiana
Slough in Sacramento-San Joaquin Delta in northern California and present the numerical
results.

3.1 Linear State-space model of the flow

To obtain a linear state-space model of the flow, the Saint-Venant equations first need
to be linearized around a steady state, often called the backwater curve. In what follows, we
explain how the backwater curve can be calculated and how the equations can be linearized
around the calculated steady state. The linearized equations are then discretized to obtain
a linear state-space model describing the flow in an open channel.

In this chapter, we use a form of the Saint-Venant equations which the average velocity V
and stage H instead of discharge and stage as its state variables. The Saint-Venant equations
with V and H as state variables have the following form

T
∂H

∂t
+
∂(THV )

∂x
= 0 (3.1)

∂V

∂t
+ V

∂V

∂x
+ g

∂H

∂x
+ g(Sf − Sb) = 0 (3.2)

with the Manning-Strickler’s formula

Sf =
m2V |V |P 4/3

(TH)4/3
(3.3)

3.1.1 Steady flow: Backwater curve

Backwater curve is the longitudinal profile of the surface of the water in a non-uniform
flow in an open channel when the water surface is naturally or artificially raised above its
normal level. Denoting the variables corresponding to the steady state by adding a bar, ·̄,
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the steady state equations can be written as:

dV̄ (x)

dx
= − V̄ (x)

H̄(x)

dH̄(x)

dx
− V̄ (x)

T (x)

dT (x)

dx
(3.4)

dH̄(x)

dx
=

Sb − S̄f
1− F̄ (x)2

(3.5)

with C̄ =
√
gH̄ the wave celerity, F̄ = V̄ /C̄ the Froude number. Throughout this disserta-

tion, we assume the flow to be sub-critical, i.e., F̄ < 1.

Remark 1 In the case of uniform flow, the steady velocity, V̄ (x) = V̄ , and the normal

depth, H̄(x) = Hn, can be calculated by solving the normal depth equation, S̄f = Sb.

3.1.2 Linearized Saint-Venant Model

The Saint-Venant equations are nonlinear in the flow variables V and H. It is a common
practice to linearize the equations when a linear model of the system is desired [5], [6]. Each
term f(V,H) in the Saint-Venant model can be expanded in a Taylor series around the
steady state flow variables V̄ (x) and H̄(x). Considering only the first order perturbations,
f(V,H) ≈ f(V̄ , H̄) + (fV ) |(V̄ ,H̄)v(x, t) + (fH) |(V̄ ,H̄)h(x, t). The first order perturbations in
velocity (resp. stage) is given by v(x, t) = V (x, t)− V̄ (x) (resp. h(x, t) = H(x, t)− H̄(x)).

After substituting the expressions of H and V with H̄ + h and V̄ + v in equations (3.1)
and (3.2) and some manipulation of terms, the linearized Saint-Venant model for the per-
turbed flow variables v and h can be written in the following form

ht + H̄(x)vx + V̄ (x)hx + α(x)v + β(x)h = 0 (3.6)

vt + V̄ (x)vx + ghx + γ(x)v + η(x)h = 0 (3.7)

with α(x), β(x), γ(x) and η(x) given by

α(x) =
dH̄

dx
+
H̄

T

dT̄

dx
(3.8)

β(x) = − V̄
H̄

dH̄

dx
− V̄ (x)

T (x)

dT (x)

dx
(3.9)

γ(x) = 2gm2 |V̄ |
H̄

4
3

− V̄

H̄

dH̄

dx
− V̄ (x)

T (x)

dT (x)

dx
(3.10)

η(x) = −4

3
gm2 V̄ |V̄ |

H̄
7
3

(3.11)
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3.1.3 Discretization: Lax Diffusive Scheme

We use the Lax diffusive scheme [37], [108] which is a first-order explicit scheme to dis-
cretize the equations. Using f to represent the dependent variables, v and h, the derivatives
become

∂f

∂t
=
fk+1
i − 1

2
(fki+1 + fki−1)

∆t
(3.12)

∂f

∂x
=

(fki+1 − fki−1)

2∆x
(3.13)

Applying this scheme to equations (3.6) and (3.7), we get:

hk+1
i =

1

2
(hki+1 + hki−1)

− ∆t

4∆x
(H̄i+1 + H̄i−1)(vki+1 − vki−1)

− ∆t

4∆x
(V̄i+1 + V̄i−1)(hki+1 − hki−1)

− ∆t

2
(αi+1v

k
i+1 + αi−1v

k
i−1)

− ∆t

2
(βi+1h

k
i+1 + βi−1h

k
i−1) (3.14)

vk+1
i =

1

2
(vki+1 + vki−1)

− ∆t

4∆x
(V̄i+1 + V̄i−1)(vki+1 − vki−1)

− g∆t

2∆x
(hki+1 − hki−1)

− ∆t

2
(γi+1v

k
i+1 + γi−1v

k
i−1)

− ∆t

2
(ηi+1h

k
i+1 + ηi−1h

k
i−1) (3.15)

This scheme is stable provided that the Courant-Friedrich-Lewy (CFL) condition holds,
i.e.

∆t

∆x
|V + C| ≤ 1 (3.16)

3.1.4 Discrete State-Space Model

Using the discretization of the constitutive equations, we can form a linear state-space
model as follows

xk+1 = Axk +Buk (3.17)
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where
xk = (vk2 , · · · , vkI , hk1, · · · , hkI−1)T (3.18)

and uk is the boundary conditions, i.e. the upstream velocity perturbation and downstream
stage perturbation,

uk = (vk1 , h
k
I )
T (3.19)

vki and hki are velocity and stage perturbations at cell i at time k∆t, respectively, and I is
the number of cells used for the discretization of the channel.

3.2 State Estimation Framework

3.2.1 Process Model

Modeling the uncertainties by adding a noise term wk to the state-space equation (3.17)
leads to

xk+1 = Axk +Buk + wk (3.20)

The process noise is assumed to be white Gaussian noise and

E[wkw
T
l ] = Qkδkl (3.21)

z0 ∈ Rm is the initial state and it is assumed that

x0 = N (x̄0, P0) (3.22)

3.2.2 Measurement Model

The information of the position of the drifters equipped with GPS can be used to obtain
Lagrangian measurements of the flow velocity. Each drifter reports its current position at
every time step k which is used to calculate the speed of the drifter at every time step. Since
our estimation method is based on a one-dimensional model of the flow, we have the drifter
released at the center line of the channel and we assume it stays on the center line as it
moves along the channel. This is a realistic assumption as long as the drifter is moving on
the same channel since the lateral components of the flow velocity are usually negligible.

Denoting the collection of average velocities obtained from the drifters at time step k by
zk, the measurement model can be written as

zk = Hkxk + ek (3.23)

where e(k) is the measurement noise on the sensors which is assumed to be white Gaussian
noise and

E[eke
T
l ] = Rkδkl (3.24)
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We also assume that the process and measurement noises and the initial conditions are all
independent.

Note that the observation operator Hk is time-varying since the drifters are moving with
the flow and therefore the cells at which the flow velocity is measured are changing over
time.

Defining the mean and the covariance of the estimations with the following notations

x̂k = E[xk|z0, · · · , zk] (3.25)

x̂−k = E[xk|z0, · · · , zk−1] (3.26)

P−k = Σk|k−1 (3.27)

Pk = Σk|k (3.28)

the iterations of the Kalman filter can be written as follows [18, 79]
Time update:

x̂−k = Ax̂k−1 +Buk (3.29)

P−k = APk−1A
T +Q (3.30)

Measurement update:

Kk = P−k C
T
k (HkP

−
k H

T
k +R)−1 (3.31)

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (3.32)

Pk = (I −KkHk)P
−
k (3.33)

3.2.3 Extended Kalman Filter

In the Extended Kalman Filter (EKF), the states of the system are approximated by
a Gaussian random variable and are propagated through a linearized approximation of the
state equations. The prior mean of the state is fed into the state equations to yield the
prediction of the state. The posterior covariance matrices are calculated for a linear model
which is obtained from linearizing the state equations around the current estimate [18].

With the stochastic state-space model given in the previous section, the iterations of the
EKF can be summarized as follows

Time update:

x̂k|k−1 = f(x̂k−1|k−1, uk−1, 0) (3.34)

Pk|k−1 = Φk−1Pk−1|k−1ΦT
k−1 +Bk−1Qk−1B

T
k−1 (3.35)
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Measurement update:

Kk = Pk|k−1G
T
k (GkPk|k−1G

T
k +DkRkD

T
k )−1 (3.36)

ŷk = Gkx̂k|k−1 (3.37)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk) (3.38)

Pk|k = (I −KkGk)Pk|k−1 (3.39)

where

Φk−1 =
∂f

∂x

∣∣∣∣
x̂k|k−1,uk−1

, Bk−1 =
∂f

∂w

∣∣∣∣
x̂k|k−1,uk−1

(3.40)

Figure 3.1: Schematic of the unscented transformation.

3.2.4 Unscented Kalman Filter

In the Unscented Kalman Filter (UKF), the statistical properties of the prior distribu-
tion are used to choose a set of weighted sigma points deterministically. After propagating
each sigma point through the nonlinear model, the statistical properties of the posterior
distribution are calculated [66], [116], [61].

Defining the augmented state as xak = [xTk , w
T
k , e

T
k ]T , for the stochastic model given in

the previous section, the UKF algorithm can be summarized as follows
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Initialize with:

x̂0|0 = E[x0] = x̄0 (3.41)

P0|0 = E[(x0 − x̄0)(x0 − x̄0)T ] = P0 (3.42)

x̂a0 = E[xa] = [x̂T0 0 0]T (3.43)

P a
0 = E[(xa0 − x̄a0)(xa0 − x̄a0)T ] =

P0 0 0
0 Q0 0
0 0 R0

 (3.44)

Calculate the weights of sigma points:

W
(m)
i =


λ

na + λ
if i = 1

1

2(na + λ)
otherwise

(3.45)

W
(c)
i =


λ

na + λ
+ (1− α2 + β) if i = 1

1

2(na + λ)
otherwise

(3.46)

where na is the dimension of the augmented state, λ is defined as λ = α2(na + κ) − na

where α, β and κ are scaling parameters. α determines the spread of the sigma points and
is usually taken as a small positive number. The parameter κ is usually taken as 0 and β
is chosen based on the prior distribution which is set to 2 for the case of Gaussian distribution.

In each iteration,

Calculate sigma points:

X a
k−1|k−1 =[ x̂ak−1|k−1, x̂ak−1|k−1 +

√
na + λP̃ a

k−1|k−1,

x̂ak−1|k−1 −
√
na + λP̃ a

k−1|k−1 ] (3.47)

where P̃ a
k−1 is the Cholesky factor of P a

k−1.

Time update:

X x
k|k−1 = f(X x

k−1|k−1, uk−1, 0) (3.48)

x̂k|k−1 =
2na+1∑
i=1

W
(m)
i X x

i,k|k−1 (3.49)

Pk|k−1 =
2na+1∑
i=1

W
(c)
i (X x

i,k|k−1 − x̂k|k−1)

× (X x
i,k|k−1 − x̂k|k−1)T (3.50)
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Yk|k−1 = GkX x
k−1|k−1 (3.51)

ŷk|k−1 =
2na+1∑
i=1

W
(m)
i Yi,k|k−1 (3.52)

where X x
k−1|k−1 is the first n rows of Xk−1|k−1 and X x

i,k−1|k−1 denotes the ith column of X x
k−1|k−1.

Measurement update:

Pyk =
2na+1∑
i=1

W
(c)
i (Yi,k|k−1 − ŷk|k−1)

× (Yi,k|k−1 − ŷk|k−1)T (3.53)

Pxkyk =
2na+1∑
i=1

W
(c)
i (X x

i,k|k−1 − x̂k|k−1)

× (Yi,k|k−1 − ŷk|k−1)T (3.54)

Kk = PxkykP
−1
yk

(3.55)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk) (3.56)

Pk|k = Pk|k−1 −KkPykKTk (3.57)

3.3 Implementation

3.3.1 Experiment Set-up

The method is implemented on a part of the Sacramento River, upstream of the inter-
section with the Georgiana slough. The Sacramento River is a part of the Sacramento-San
Joaquin Delta in California which is an integral part of California’s water system. The
bathymetry of the channel, shown in Figure 3.2, is provided by the United States Geological
Survey (USGS). The section of interest is of 900m length and is 85m wide in the narrowest
part and 190m wide in the widest part. For discretization, we divide the channel to 30 cells
with each cell being 30m long. This results in a state-space model with 58 states as described
in section 3.1.4.

The so-called forward simulation is performed in a commercial hydrodynamic soft-
ware TELEMAC 2D [103] to generate the true state as well as the drifter position data.
TELEMAC uses a streamline upwind Petrov-Gelerkin based finite element solver for hydro-
dynamic equations. The mesh used for the simulation has 1939 nodes and 3525 triangular
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Figure 3.2: Bathymetry in Sacramento River. The bathymetry on this section of the Sacramento River

varies from -14m in the deepest part to +2 on the river banks. Image: courtesy of Qingfang Wu [119].

elements. The boundary conditions, shown in Figure 3.4, are computed using the Delta Sim-
ulation Model II (DSM2) [29]. DSM2 is a model of the San Francisco Bay and Sacramento
Delta that provides discharge and surface elevation at various locations every one hour. The
flow diagram of the implementation procedure is shown in Figure 3.3. Note that the true
state generated by the 2D simulation in TELEMAC must be converted to 1D data to be
compared with the estimation results which are based on a 1D model of the flow.

The experiment starts at 3:40PM on March 16th 2007. The simulation runs for two and
a half hours before the experiment so that the effects of the initial conditions are washed
away and the model is stabilized. The time frame of the experiment is chosen such that the
flow variations are as noticeable as possible. Also, as it can be seen in Figure 3.4, there is an
abrupt change in the boundary conditions at 4PM which is a result of linear interpolation
of the DSM2 data. This enables us to evaluate the performance of the Kalman filter in
estimating the flow states in case of sudden changes in the condition of flow.

At 3:40PM, a single drifter is released at the upstream end of the river. The drifter moves
with the current and its position is recorded at every time step. The trajectory of the drifter
is illustrated in Figure 3.5. The data assimilation starts as soon as the drifter is released
and it ends when the drifter reaches the downstream end of the river, at 4:18PM. At each
time step, the velocity of the drifter is approximated by the difference between its current
and previous position divided by the time step, ∆t, which is chosen to be 3 seconds in this
experiment. This gives us a measurement of the velocity of the current at the position of
the drifter at every time step.
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Figure 3.3: Flow diagram of the implementation procedure.

3.3.2 Numerical Results

Figure 3.7 shows the estimated velocity and the true velocity at four different cells.
Figure 3.8 shows the time evolution of the relative error of the estimated velocity which is
calculated using the following formula

error(k) =

√∑Ncell

i=1 (uki − ûki )2∑Ncell

i=1 (uki )
2

(3.58)

where uki and ûki are the true and estimated values of the velocity at cell i and time step k.

As can be seen in Figure 3.8, the relative error decreases quickly and reaches below 4%
at time step 50 and remains below 4% until time step 400. After time step 400, ignoring
the fluctuations, the error increases relatively rapidly. Note that time step 400 corresponds
to 4pm which is the time when an abrupt change in the boundary conditions occurs. In
fact, the increase in the error after time step 400 is due to the fact that the deviation of the
state of the system from the steady state around which the system has been linearized gets
too large. Furthermore, as it can be seen in Figure 3.7, after time step 400, there are some
noticeable fluctuations in the system which are essentially a result of the fluctuations in the
velocity boundary conditions which can be seen in Figure 3.4. In spite of the abrupt change
in the boundary conditions and also the oscillations in the forcing function of the system,
the relative error stays below 15% until the end of the experiment. The relative error in case
of using the linear model without using any measurements is also shown in Figure 3.8. This
in fact proves that incorporating the measurements obtained from the drifter into the model
significantly improves the estimation results.

The computational cost of the method is very reasonable. In the above experiment
with a state-space model of 58 states, each iteration of the Kalman filter takes less than 1
millisecond on a 2.4GHz Pentium dual core processor.
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Figure 3.4: The boundary conditions.

To implement the EKF and UKF, we perform a longer experiment. The experiment
starts at 3:00PM and ends at 5:00PM on March 16th 2007. At 3:00PM, a single drifter
is released at the upstream end of the domain. The drifter moves with the current and
its position is recorded at every time step. The trajectory of the drifter is illustrated in
Figure 3.5. When the drifter reaches the downstream end of the domain, another drifter is
released at the upstream ends. This procedure is repeated until the end of the experiment
so that there is one drifter in the channel at all times during the experiment.

Figure 3.7 shows the estimated velocity and the true velocity at two different cells cor-
responding to both the EKF and the UKF algorithms. Figure 3.8 shows the time evolution
of the relative error of the estimated velocity for both cases of EKF and UKF.

As can be seen in Figure 3.8, after time step 200, the error reduces to below 10% and it
stays around 10% most of the time until the end of the experiment. It is also interesting to
note the relative error corresponding to both EKF and UKF are very similar. Figure 3.8 also
shows the relative error corresponding to the one dimensional Saint-Venant model without
using Lagrangian measurements. It can be seen that utilizing the Lagrangian measurements
via both filters reduces the relative error by about 6% most of the time during the experiment.
Also, comparing the results with the case of using the Kalman filter based on a linearized
model of the flow, the performance of the Kalman filter is slightly better initially for about
800 time steps. But, both nonlinear filters outperform the Kalman filter significantly after
this period of time. It can be seen that the relative error in case of the KF starts to increase
rapidly after time step 1200. However, in case of the nonlinear filters, the error stays around
10% until the end of the 2-hour experiment. This can be explained according the fact that
as the system’s state deviation from the steady state around which the model has been
linearized increases, the linear model diverges from the underlying dynamics of the system.
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Figure 3.5: Trajectory of the drifter.

3.3.3 Implementation with experiment data in Sacramento River

In this section, we present an experiment performed with drifters in Sacramento River at
the junction of Georgiana Slough, between points A, B and C as shown in Figure 3.9. The
experiment was done on Sep 10, 2011 at 9:30 AM for a period of three hours. 12 drifters
were released at location A in the map of Figure 3.9 and as they reached points C or E, they
were retrieved by the team members and were released at the upstream point A again. The
lengths of sections A-D, D-B and D-C are 2,928 ft., 2,658 ft. and 1,446 ft., respectively. The
upstream stage at point A, the stage at point B and the discharge at point C are used as
the boundary conditions and they are obtained from USGS sensors. Figure 3.10 shows the
boundary conditions for the duration of the experiment.

The information of the position of the drifters equipped with GPS can be used to obtain
Lagrangian measurements of the flow velocity. Each drifter reports its current position at
every time step which is used to calculate the speed of the drifter at every time step. In
order to derive the relation between the drifter velocity and the flow at the corresponding
cross-section, we assume a quartic velocity profile on the surface and a logarithmic profile
along the depth [25]. For a given particle moving at a distance y from the center line and
z from the surface, the particle’s velocity vp(y, z) is related to the flow Q with the following
equations:

vp(y, z) = FT (y)FV (z)
Q

A
(3.59)

with

FT (y) = Aq +Bq

(
2y

w

)2

+ Cq

(
2y

w

)4

(3.60)
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Figure 3.6: The time evolution of the estimated velocity and the true velocity at four cells.

Aq +Bq + Cq = 0 (3.61)

Aq +
Bq

3
+
Cq
5

= 1 (3.62)

FV (z) = 1 +

(
0.1

κ

)(
1 + log

(z
d

))
(3.63)

where w is the channel width, d is the water depth, and Aq, Bq and Cq are constants and
κ = 0.4. Aq is commonly calculated experimentally and equations (4.6) and (4.7) are used
to compute Bq and Cq.

Denoting the collection of velocity measurements obtained from the drifters at time step
k by yk, the measurement model can be written as

yk = g(xk, k) (3.64)

Note that the observation operator g is time-varying since the drifters are moving with
the flow. Therefore, the cells at which the flow velocity is measured are changing over time.

Before using the drifter data, a data pre-processing is done. In particular, based on the
drifter velocity, it is determined if the drifter is drifted towards the bank or is being carried
in a boat in which case the data is thrown away.

With the above measurement model, we apply the extended Kalman filter to perform
state estimation. Figure 3.11, shows the downstream discharge at point B computed by the
forward simulation, the EKF and the true value obtained from USGS sensor. As can be seen
in this figure, assimilation of drifter data into the model improves the estimated discharge
at this location.
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Figure 3.7: The time evolution of the estimated velocity and the true velocity corresponding to EKF

algorithm (top) and UKF algorithm (bottom) at the 12th and the 22nd cells.
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Figure 3.9: The map of area of the experiment at the junction of Sacramento River and Georgiana Slough

near the city of Walnut Grove, CA.
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Figure 3.10: The boundary conditions, upstream stage and downstream discharges for the duration of the

experiment.
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Figure 3.11: The downstream discharge at point B computed by the forward simulation, the EKF and the

true value obtained from USGS sensor.
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Chapter 4

Combined state-parameter Estimation

using the extended Kalman filter

Following the previous chapter in which we presented how standard filtering-based esti-
mation methods can be used to perform real-time state estimation of flow in open channels,
in the current chapter, we consider a case in which real-time estimation of flow in an open
channel is desired while some of the model parameters are unknown. In practice, it is some-
times not possible to obtain an accurate approximation of the parameters of the model
because of lack of proper equipment, time constraints, costs, etc. As a matter of fact, one
of the motivations of using drifters to obtain measurements as opposed to traditional static
sensors is their applicability in new areas where no infrastructure is available. For instance,
in case of an emergency (e.g. a levee break, gate malfunction), measurements of the flow
can be obtained by releasing a group of drifters in the region of interest and use these mea-
surements to model the flow in real time. For such applications, there will not be enough
time to design an experiment to identify the model parameters, or even if all the parameters
have been identified before, in case of an emergency, the flow conditions (e.g. the channel
geometry) may change significantly such that the former values of parameters are no longer
accurate enough. One possible approach is to assume a rough approximation of the param-
eter and perform the data assimilation method. However, depending on the sensitivity of
the model to the unknown parameters, the error introduced by these approximations may
be large. In this chapter, we propose a method to estimate the unknown model parameters
along with the state in real time by augmenting the unknown parameters to the state vec-
tor and applying the extended Kalman filter to perform state estimation on the augmented
state-space model. It is clear considering parameters as unknown as opposed to having fixed
values adds to the degrees of freedom of the model and hence may improve the estimation
results.

We evaluate the performance of the method using data collected from an experiment
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performed at the USDA-ARS Hydraulic Engineering Research Unit (HERU) in Stillwater,
Oklahoma in November 2009. Since the bottom elevation of the channel is not available,
the bed slope of the channel is assumed as an unknown parameter. Compared to the case
of performing state estimation assuming a zero bed slope, it is shown that considering the
bed slope as an unknown parameter and using the measurements to estimate it improves the
model prediction.

4.1 State-Space Model

The discretized equations obtained in section 2.2 can be used to obtain a state-space
model

xk+1 = f(xk, uk) (4.1)

where xk is the state vector at time k

xk = (Qk
2, · · · , Qk

N , H
k
1 , · · · , Hk

N−1)T (4.2)

and the input uk contains the boundary conditions, i.e. the upstream flow and downstream
stage,

uk = (Qk
1, H

k
N)T (4.3)

Qk
i and Hk

i are the flow and stage at cell i at time k∆t, respectively, and N is the number
of cells used for the discretization of the channel.

Assuming that all model parameters are known, when measurements of the flow other
than the boundary conditions are available, these measurements can be incorporated into
the state-space model using one of the standard nonlinear filters, e.g. the extended Kalman
filter. However, in practice, it is sometimes impossible or expensive to obtain accurate values
for one or more of these parameters. For instance, it is usually a difficult task to obtain an
accurate value for the bed slope of a channel. As will be shown in section 4.3.3, the results of
the model are very sensitive to the value of the bed slope. In such cases, proper experiments
can be designed to obtain measurements of the system and these measurements may be used
later to identify the unknown parameters. Nevertheless, it is sometimes not possible to carry
out this kind of experiments beforehand due to time constraints, lack of proper equipment,
high costs, etc.

In order to obtain estimates of the unknown parameters in real time, we augment a vector
of unknown parameters vk to the state vector and consider vk+1 = vk as the time evolution of
the parameters. A nonlinear filter can then be applied to the augmented state-space model
to simultaneously estimate the parameters and the actual state of the system.

4.1.1 Measurement Model

The information of the position of the drifters equipped with GPS can be used to obtain
Lagrangian measurements of the flow velocity. Each drifter reports its current position at
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every time step which is used to calculate the speed of the drifter at every time step. In
order to derive the relation between the drifter velocity and the flow at the corresponding
cross-section, we assume a quartic velocity profile on the surface and a logarithmic profile
along the depth [25]. For a given particle moving at a distance y from the center line and
z from the surface, the particle’s velocity vp(y, z) is related to the flow Q with the following
equations:

vp(y, z) = FT (y)FV (z)
Q

A
(4.4)

with

FT (y) = Aq +Bq

(
2y

w

)2

+ Cq

(
2y

w

)4

(4.5)

Aq +Bq + Cq = 0 (4.6)

Aq +
Bq

3
+
Cq
5

= 1 (4.7)

FV (z) = 1 +

(
0.1

κ

)(
1 + log

(z
d

))
(4.8)

where w is the channel width, d is the water depth, and Aq, Bq and Cq are constants and
κ = 0.4. Aq is commonly calculated experimentally and equations (4.6) and (4.7) are used
to compute Bq and Cq.

Denoting the collection of velocity measurements obtained from the drifters at time step
k by yk, the measurement model can be written as

yk = g(xk, k) (4.9)

Note that the observation operator g is time-varying since the drifters are moving with
the flow. Therefore, the cells at which the flow velocity is measured are changing over time.

4.1.2 Stochastic State-space Model

The effect of modelling uncertainties, as well as inaccuracies in measurements of the
inputs, are commonly considered as an additive noise term in the state equations (4.1) to
obtain a stochastic equation

xk+1 = f(xk, uk, wk) (4.10)

The noise wk is usually assumed to be zero-mean white Gaussian and

E[wkw
T
l ] = Qkδkl (4.11)

x0 ∈ Rm is the initial state which is also assumed to be Gaussian and

x0 = N (x̄0, P0) (4.12)
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where x̄0 and P0 are the initial guesses for state and error covariance.

Similarly, the errors and uncertainties in the measurements can be taken into account by
adding a noise term to the measurement model (4.13) to obtain

yk = g(xk, ek, k) (4.13)

where ek is the measurement noise of the sensors which is assumed to be zero-mean white
Gaussian and

E[eke
T
l ] = Rkδkl (4.14)

We also assume that the process and measurement noises and the initial conditions are all
independent.

4.2 Extended Kalman Filter

In the Extended Kalman Filter (EKF), the states of the system are approximated by
a Gaussian random variable and are propagated through a linearized approximation of the
state equations. The prior mean of the state is fed into the state equations to yield the
prediction of the state. The posterior covariance matrices are calculated for a linear model
which is obtained from linearizing the state equations around the current estimate [18].

With the stochastic state-space model given in the previous section and the following
notations

x̂k|k−1 = E[xk|y0, y1, · · · , yk−1] (4.15)

x̂k|k = E[xk|y0, y1, · · · , yk] (4.16)

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T |y0, y1, · · · , yk−1] (4.17)

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)T |y0, y1, · · · , yk] (4.18)

the iterations of the EKF can be summarized as follows

Time update:

x̂k|k−1 = f(x̂k−1|k−1, uk−1, 0) (4.19)

Pk|k−1 = Φk−1Pk−1|k−1ΦT
k−1 +Bk−1Qk−1B

T
k−1 (4.20)

Measurement update:

Kk = Pk|k−1G
T
k (GkPk|k−1G

T
k +DkRkD

T
k )−1 (4.21)

ŷk = Gkx̂k|k−1 (4.22)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk) (4.23)

Pk|k = (I −KkGk)Pk|k−1 (4.24)
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where

Φk−1 =
∂f

∂x

∣∣∣∣
x̂k|k−1,uk−1

, Bk−1 =
∂f

∂w

∣∣∣∣
x̂k|k−1,uk−1

(4.25)

4.3 Implementation

4.3.1 Sensor Hardware

The Floating Sensor Network project at UC Berkeley (http://float.berkeley.edu) designs
and builds drifters for riverine and estuarine environments. Six second-generation drifters
were used in this experiment.

Figure 4.1: Overview of the drifter hull manufactured by the floating sensor network project. Left: closed.

Right: open.

The hull is manufactured at UC Berkeley using low-cost, small-run manufacturing tech-
niques. The drifter has a vertical cylinder configuration in order to present a uniform profile
to surface currents while also supporting the antennas a small distance above the waterline.
The hull consists of four major components, shown in Figure 4.1: a hand-cast fiberglass
lower hull (A), machined aluminum parts for the watertight seal (B), a commercially avail-
able fiberglass pipe for the upper hull (C), and a vacuum-formed polycarbonate top cap (D).
The lower hull is flooded so that water quality sensors mounted in the bulkhead may contact
the water but also be mechanically protected. In order to keep the center of mass below the
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center of buoyancy (a necessary condition for stability), 800 g of ballast must be located at
the bulkhead between the upper and lower hull. The battery that powers the electronics is
part of this ballast. Our standard configuration is to use a 200 g battery and a 600 g lead
weight. The battery and water quality sensor are labelled (E) in Figure 4.1.

Figure 4.2: The downstream stage (m).

4.3.2 Mission Description

In November 2009, an experiment was performed at the USDA-ARS Hydraulic Engineer-
ing Research Unit (HERU) in Stillwater, Oklahoma. The HERU facility, located adjacent to
Lake Carl Blackwell, has a gravity-fed supply canal which can have a controlled rate of up
to 4.25m3/s (150 ft3/s). The supply canal feeds a number of experimental units which are nor-
mally used for investigations into levee reliability, reservoir safety, and spillway design [28].
For our experiment, we deployed drifters into the supply canal itself. The upstream bound-
ary condition was the supply canal flow control, set to 1.42 m3/s (50 ft3/s); the downstream
boundary condition was a gate that could be raised or lowered to restrict the flow out of the
experimental region. In this experiment, the downstream gate was opened as soon as the
final drifter was released. The water stage was captured at the downstream boundary with
a video camera. Figure 4.2 shows the stage at the downstream end of the channel. As can
be seen in this figure, the downstream stage is initially 1.33 m and it starts to decrease as
the downstream gate is opened until it becomes 0.92m.

Drifters were released at approximately 30 s intervals near the upstream boundary, at
point A in Figure 4.3. After travelling through the canal for approximately 400 s, they were
individually retrieved at point B. Point C marks the location of the downstream control gate.

Figure 4.4 shows the cross section of the prismatic channel over most of its extent.
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Figure 4.3: HERU facility, with experimental channel annotated. Image courtesy of USGS.

Figure 4.4: Channel profile, including minimum and maximum water height.

4.3.3 Numerical Results

The discretization is done by dividing the channel to 60 cells and the temporal step size
is chosen as 1 s. Since we do not have any data about the bottom elevation of the channel,
we cannot calculate the bed slope of the channel. In order to determine the sensitivity
of the model with the given boundary conditions to the value of the bed slope, we run the
forward simulation with three different values of bed slope. In each case, the initial condition
is chosen to be the backwater curve (steady state) which is computed using the following
equations:

∂Q

∂x
= 0 (4.26)

∂H

∂x
=

gA(S0 − Sf )
−Q2 Tb+2H

H2(Tb+H)2
+ g(TbH +H2)

(4.27)

where Tb is the bottom width.
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Figure 4.5: Two drifters in the HERU facility supply canal.

Figure 4.6 shows the flow and stage at the 10th cell for the three values of bed slope. It is
not surprising to see that the results of forward simulation varies significantly with different
values of the bed slope.

To implement the data assimilation method, we use the measurements obtained from
five drifters. We then estimate the velocity of the 6th drifter using the estimated flow which
we compare with its actual value obtained from the 6th drifter. We implement the extended
Kalman filter with and without estimating the bed slope. Figure 4.7 shows the flow and stage
at a few different cells predicted by the forward simulation (i.e. state-space model) assuming
the bed slope is zero, estimated flow and stage by performing the data assimilation method
while the bed slope is assumed to be zero, and estimated flow and stage by performing the
data assimilation method and estimating the bed slope as an unknown parameter. As can
be seen in Figure 4.2, the downstream stage starts to decrease at around time step 150 due
to the gate opening. As can be seen in Figure 4.7, the flow increases as a result of opening
the gate. It can be seen in Figure 4.7 that the stage reduction caused by opening the gate
propagates backward through the channel. However, in case of assuming the bed slope as
an unknown parameter, this reduction is stage is more moderate. In particular, at cell 10,
no decrease in the stage is seen. This is due to the fact that for a nonzero bed slope, the
backwater curve (steady state) is not uniform. Since the initial estimate of the bed slope
is taken to be equal to zero, the extended Kalman filter is initialized by a uniform steady
state corresponding to a zero bed slope. However, as the estimated bed slope deviates from
zero, the steady state of the system deviates from uniform steady state accordingly. While
the values of flow and stage estimated by the data assimilation methods seem physically
more reasonable, it is not possible to formally evaluate the performance of the method by
looking at these figures. In order to obtain a more quantifiable assessment of the method,
we calculate the velocity of the 6th drifter using the estimated flow at the corresponding cell.
We use the same velocity profiles on the surface and along the depth as described in section
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Figure 4.6: The flow (top) and stage (bottom) at the 10th cell for Sb = 0 (green), Sb = 0.001 (red),

Sb = 0.002 (blue).

4.1.1 to calculate the drifter velocity from the estimated flow. Figure 4.8 shows the velocity
of the 6th drifter predicted by the forward simulation and both data assimilation methods
as well as its actual value. As can be seen in this figure, the data assimilation methods
significantly improve the estimation results. Also, it can be seen that considering the bed
slope as an unknown parameter and using the measurements to estimate it improves the
estimation results further.

4.3.4 Summary

In this chapter, we considered a situation in which real-time estimates of flow state were
desired while some of the model parameters were unknown. The method proposed was to
augment the unknown parameters to the state vector and consider them as virtual state with
identity time evolution factor and apply the extended Kalman Filter to perform the state
and parameter estimation simultaneously.
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Figure 4.7: The flow (m3/sec) (top) and stage (m) (bottom) at the 10th, 20th, 30th, 40th cells, forward

simulation (green), EKF with zero bed slope (red), EKF with estimating bed slope (blue).
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Figure 4.8: the velocity of the 6th drifter, forward simulation (green), EKF with zero bed slope (red),

EKF with estimating bed slope (blue) and the actual drifter measurements (black).

40



Chapter 5

State estimation in large-scale

networks of open channels using

sequential Monte Carlo

In the previous chapters, we focused on estimation of flow in one open channel or a small
network of open channels and we applied filtering-based techniques to perform real-time state
and parameter estimation. For large networks, the model will have high dimensions and
computationally efficient and scalable methods are needed to make the real-time estimation
tractable.

In the last decade, sequential Monte Carlo methods, also known as Particle Filters have
attracted a lot of attention among researchers and practitioners [59, 78, 21, 45, 46]. Particle
filters and their variations have been extensively applied to estimation problems in geo-
sciences, such as meteorology and hydrology, due to their generality and scalability. More
specifically, particle filters can be applied to nonlinear systems and they do not require
Gaussianity assumptions on the noises. In [57, 83], particle filters have been used to assimi-
late water stage measurements of rivers obtained from the Synthetic Aperture Radar (SAR)
into hydraulic models. In [86], the authors use the particle filter to estimate parameters as
well as the state in a hydrologic model. In particle filters, the posterior probability density
function is approximated by a number of particles with their corresponding weights. These
particles are propagated forward and their weights are updated at every time step. A larger
number of particles results in more accurate results while it increases the computational
cost of the method. Nonetheless, particle filters have shown to encounter different problems
when implemented on various systems. The most critical issue observed in implementations
of particle filters is the degeneracy problem [46]. When degeneracy happens, almost all of
the particle weights vanish after a number of iterations meaning that most of the samples
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get too far from the actual state of the system and consequently they no longer contribute
to approximating the posterior density function. Different methods have been developed
to deal with the degeneracy problem among which sampling Importance Resampling (SIR)
filter is a most commonly used approach [72]. In the SIR filter, after each time step, the
density function is resampled so that the samples with small weights are discarded and more
probable samples are duplicated according to their weights.

A more subtle issue which usually arises with particle filters is that even with resampling,
a lot of particles end up having small weights meaning that they correspond to low-probability
regions. Hence, the number of particle contributing to the approximation of the posterior
density function is usually smaller than the actual number of particles and most of the
computational effort is wasted on unlikely particles. To overcome this problem, Implicit
Particle Filter is introduced in [39, 38, 87]. Implicit particle filtering is a method to obtain
high-probability samples from the density function. Implicit sampling requires solving an
underdetermined equation for each particle at every time step when a measurement becomes
available. While the cost of sampling can be higher in implicit filters, more accurate results
may be obtained with a smaller number of particles as the particles belong to the high-
probability region of the density function.

In the current chapter, our goal is to evaluate the performance of different types of Monte
Carlo methods for real-time state estimation of water flow in complex networks of open chan-
nels. In particular, we are interested to see how implicit particle filters, developed recently,
perform in a practical application compared to particle filters in terms of both accuracy and
computational complexity. After constructing a state-space model for the network under con-
sideration from the Saint-Venant equations, we apply a number of state estimation methods
to incorporate some available measurements into the model in two situations: when measure-
ments of the system are available at every time step and when the measurements become
available intermittently. Given the observation model is linear and we assume the noises
are Gaussian, we apply the optimal SIR filter to the system in which case p(xk|xk−1, zk),
which is chosen as the importance density, happens to be a Gaussian density function. We
also consider a case in which measurements of the system become available intermittently,
i.e. we do not have measurements at every time steps, and we apply the implicit particle
filter to incorporate these measurements in order to obtain estimates. We use the random
map method [87] to solve the implicit sampling equation. In this method, the samples are
parametrized via a random map and samples are obtained by solving an algebraic equation
of one variable, for each sample, which is obtained from substituting the random map in the
implicit sampling equation. To calculate the minimum of the function Fj, which is required
for the sampling equation, and for a matrix used in the random map, the Jacobian and
Hessian matrices of this function need to be calculated for each particle and each step of
the minimization algorithm. As will be seen, although, this function is algebraically very
complex for our system, we are able to calculate most entries of the Jacobian and Hessian
matrices of this function analytically. This significantly reduces the computational cost of
the implicit sampling.

We also consider a few different heuristics to improve the estimation results and to
reduce the computational cost of the methods. We consider a case in which observations are
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available at every time step. But, we apply the implicit particle filter and do the sampling
over time intervals of a desired length. We change the implicit filter equations slightly to
incorporate all the available measurements during the interval. As will be seen, this heuristic
method is very effective in the case of the system under consideration. We believe this block-
sampling implementation of implicit particle filter when measurements are available at every
time step can be beneficial in the case of dynamic systems with band-diagonal structure, i.e.
systems where the value of the state at each cell is determined by the value of the state at
the neighboring cells at the previous time step. Note that most physical system lie in this
category since in such systems, information propagates in space continuously with time. We
will elaborate more on this in section 5.3.1.

As a second heuristics, we propose a maximum a posteriori (MAP) estimation method
to calculate the state trajectory over the time interval between two measurements at time
steps k + 1 and k + r, which maximizes the posterior density function in this interval. This
requires the knowledge of the conditional probability density function p(xk|z1:k) which we
approximate by a Gaussian density function, mean and covariance of which are calculated
from the estimation over the previous interval. As will be seen, this amounts to a probabilistic
version of weak constraint 4D-Var [113, 114] which is a variational data assimilation method
used in meteorology. In cases in which the posterior density is symmetric or is almost
symmetric and the approximation of conditional density p(xk|z1:k) with a Gaussian density
is not too inaccurate, the MAP method may provide more accurate estimates while having
a much lower computational cost than the implicit filter. In fact, after implementation and
comparison of the performance of this method with the other estimation schemes, it will be
seen that this method outperforms the implicit particle filter in terms of both accuracy and
computational cost for the application of interest.

5.1 Optimal sampling Importance Resampling Filter

In Bayesian estimation, the goal is to recursively calculate the conditional probability
density function (pdf) p(xk|z1:k), where xk is the state vector at time k and z1:k is the set of
measurements obtained up to time step k. Assuming the initial state pdf p(x0) is known, the
pdf p(xk|z1:k) may be calculated recursively in two steps, prediction step and update step. The
prediction step uses the state-space model to propagate the conditional pdf forward in time.
In other words, it calculates p(xk|z1:k−1) given p(xk−1|z1:k−1) via the Chapman-Kolmogorov
equation

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (5.1)

In the update step, when the measurements zk become available, the conditional pdf is
updated using the Bayes’ rule
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p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(5.2)

where

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk (5.3)

While the above set of equations theoretically solve the Bayesian estimation problem,
analytic solutions are tractable only in certain simplified cases, e.g. Kalman filter for linear
systems with Gaussian noise [68]. For more general cases, different approximate solutions
have been devised. Extended Kalman filters [18], approximate grid-based filters, unscented
Kalman filters [66, 116, 61] and particle filters [45] are examples of these approximate meth-
ods.

Particle filtering is a sequential Monte Carlo method which calculates approximate solu-
tions to the above equations for a general case of nonlinear systems with arbitrary process
and measurement noises. The basic idea behind particle filters is that the posterior pdf
p(x0:k|z1:k), where x0:k = {xj, j = 0, · · · , k} is the set of all state vectors up to time k, is ap-
proximated using a number of particles or random samples with their corresponding weights
(probabilities). In other words

p(x0:k|z1:k) ≈
Ns∑
i=1

wikδ(x0:k − xi0:k) (5.4)

where xi0:k is the ith sample and wik is its corresponding weight (the weights are normalized
so they sum to one) and Ns is the number of samples. The estimates are computed using
the particles and their associated weights and the weights are chosen using the principle of
importance sampling [23].

A common problem with the sequential importance sampling particle filter is the degen-
eracy problem. However, a good choice of importance density can reduce the degeneracy of
the particles. In this work, we choose the importance density q(xk|xik−1, zk) to be

q(xk|xik−1, zk) = p(xk|xik−1, zk)

=
p(zk|xk, xik−1)p(xk|xik−1)

p(zk|xik−1)
(5.5)

It has been shown [46] that this choice of importance density minimizes the variance of
true weights, w∗ik defined as w∗ik = p(xik|z1:k)/q(x

i
k|xik−1, zk) which in turn maximizes the ef-

fective sample size defined as Neff =
Ns

1 + Var(w∗ik )
. We assume the process and measurement

noises are mutually independent and independent identically distributed (i.i.d.) Gaussian
and
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vk−1 ∼ N (0, Qk−1) (5.6)

ek−1 ∼ N (0, Rk−1) (5.7)

With this assumption, for systems with nonlinear dynamics and linear measurement
model

xk = fk(xk−1) + vk−1 (5.8)

zk = Hkxk + ek (5.9)

it has been shown that p(xk|xik−1, zk) is Gaussian [46, 43] and

p(xk|xk−1, zk) = N (mk,Σk) (5.10)

p(zk|xk−1) = N (Hkfk(xk−1), Qk−1 +HkRkH
T
k ) (5.11)

with

Σ−1
k = Q−1

k−1 +HT
k R
−1
k Hk (5.12)

mk = Σk(Q
−1
k−1fk(xk−1) +HT

k R
−1
k zk) (5.13)

With this choice of importance density, the weights update equation simplifies to [21]

wik ∝ wik−1p(zk|xik−1) (5.14)

= wik−1

∫
p(zk|x′k)p(x′k|xik−1)dx′k (5.15)

When the measurements are obtained, (5.11) can be used to calculate p(zk|xik−1) to
update the weights using equation (5.14).

In cases in which the degeneracy occurs even with this choice of importance density,
resampling can be done whenever the effective sample size becomes too small [34]. In this
resampling method, each particle generates a number of duplicates proportional to its weight
and particles with small weights are discarded. A pseudo-code description of the resampling
algorithm is provided in Algorithm 1 below [21]. The algorithm generates a new set of

particles {xj∗k }Ns
j=1 with equal weights

1

Ns

.

Algorithm 1: Resampling Algorithm
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[{xj∗k , wjk, ij}Ns
j=1] = RESAMPLE[{xik, wik}Ns

i=1]
Initialize the CDF: c1 = 0
for i = 2 to Ns do

Construct CDF: ci = ci−1 + wik
end for
Start at the bottom of the CDF: i = 1
Draw a starting point: u1 ∼ U[0, N−1

s ]
for j = 1 to Ns do

Move along the CDF: uj = u1 +
j − 1

Ns
while uj > cj do
i = i+ 1

end while
Assign sample: xj∗k = xik

Assign weight: wjk =
1

Ns

Assign parent: ij = i
end for

Algorithm 2 below illustrates the particle filter with resampling

Algorithm 2: Particle filter with resampling

[{xj∗k , wjk}Ns
j=1] = PF[{xik−1, w

i
k−1}Ns

i=1, zk]
for i = 1 to Ns do

Draw xik ∼ q(xk|xik−1, zk) = p(xk|xik−1, zk) from (5.10)
Assign the particle a weight, wik, using (5.15).

end for
Calculate total weight: t =

∑Ns

i=1w
i
k

for i = 1 to Ns do

Normalize: wik =
wik
t

end for

Calculate N̂eff =
1∑Ns

i=1(wik)
2

if N̂eff < NT then
Resample using algorithm 1:
[{xik, wik,−}Ns

i=1] = RESAMPLE[{xik, wik}Ns
i=1]

end if
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5.2 Implicit Particle Filter

As discussed in the previous section, the main issue with the particle filters is the fact
that many of the particles end up in low-probability regions and consequently, a considerable
amount of computational effort is wasted in propagating these particles forward while they
do not contribute to the approximation of the posterior density. Implicit particle filters have
been developed to solve this problem [39, 38, 87]. The basic idea behind implicit particle
filters is to create samples with high probability. Although, the computational cost per
particle is in general higher in implicit filters, a better accuracy may be obtained by using a
smaller number of particles than traditional particle filters.

We consider a case in which intermittent observations are available. Suppose that we
have a collection of Ns particles, {xjk, for j = 1, · · · , Ns} and we have a set of observations
z0:k up to time step k. We consider a case in which the next observation of the system, zk+r

becomes available at time k + r. We can write the posterior as

P (xj0:k+r|z0:k, zk+r) = P (xj0:k|z0:k)

× P (xjk+1|xk) · · ·P (xjk+r−1|xjk+r−2)

× P (xjk+r|xjk+r−1)P (zk+r|xjk+r)/Zk (5.16)

where Zk is a normalization factor. The goal of implicit sampling is to obtain high probability
samples from P (xj0:k+r|z0:k, zk+r). This is done by defining a function Fj(xk+1:k+r) via [87]

exp(−Fj(xjk+1:k+r)) = P (xjk+1|xk) · · ·P (xjk+r−1|xjk+r−2)

× P (xjk+r|xjk+r−1)P (zk+r|xjk+r)/Zk (5.17)

A high-probability sample can be obtained by solving the following algebraic equation for
xjk+1:k+r

Fj(x
j
k+1:k+r)− φj =

1

2
ξTj ξj (5.18)

where ξj is a sample from a zero-mean Gaussian distribution, Pξ = N (0, I) and φj =
minFj(X). It is clear that with this sampling method, we obtain a sample with high prob-
ability.

The weights corresponding to the particles are calculated as follows

wjk+1 ∝ wjk+1exp(−φj)J (5.19)

where J =

∣∣∣∣∣det
∂xjk+1:k+r

∂ξj

∣∣∣∣∣ is the Jacobian of the map between ξj and the particle trajectory

xjk+1:k+r.

In the special case of the system considered in this article in which the observation
model is linear and the process noise and measurement noise are assumed to be Gaussian,
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the function Fj will have the following form

Fj(x
j
k+1:k+r) = log

(
1

(2π)(nr+m)/2

k+r∏
i=k

1√
detQi

1√
detRk+r

)

+
1

2

k+r−1∑
i=k

(xi+1 − f(xi, ui))
TQ−1

k (xi+1 − f(xi, ui))

+
1

2
(zk+r −Hk+rxk+r)

TR−1
k+r(zk+r −Hk+rxk+r) (5.20)

To implement the implicit particle filter for the system considered, the main tasks at
each time step are calculating minFj(X), the Jacobian of the implicit map J , and solving
equation (5.18) for each particle to obtain a sample. In what follows, we elaborate on how
we handle each one of these problems for our application.

5.2.1 Calculating the minimum of implicit sampling functions

To calculate minFj(X), we use the Newton’s method for which we need to calculate the
Jacobian and Hessian of Fj. Note that the function Fj is in general a different function
for each particle. Therefore, the Jacobian and Hessian must be calculated for each particle
individually. This may make the implicit sampling procedure computationally expensive in
cases in which the Jacobian and Hessian of Fj cannot be calculated analytically. Fortunately,
in our case we can calculate the partial derivatives for the interior grid points analytically.
And we use a numerical method to calculate the partial derivatives at boundary points. This
reduces the computational cost of the implicit sampling significantly.

We can write the Jacobian, J j, of Fj as

J j(xjk+1:k+r) = (Ak+1, · · · , Ak+r) (5.21)

Ak+1 = (Xk+1 − f(xk))
TQ−1

k (5.22)

Ai = (Xi+1 − f(xi))
TQ−1

i − (Xk+1 − f(xk))
TQ−1

i Jf (xi)

for i = k + 2, · · · , k + r − 1 (5.23)

Ak+r = (Xk+r+1 − f(xk+r))
TQ−1

k+r−1

+ (Hxk+r − z)R−1
k+r−1H (5.24)

where Jf (x
j
k) is the Jacobian matrix of the system’s state-space function f which we calculate

analytically for interior grip points and numerically at the boundary points in each channel.
The analytical partial derivatives of f for interior grid points are provided in Appendix ??.

The Hessian of Fj can be written as a band block-diagonal sparse matrix where the
diagonal blocks are as follows
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HF =


D1 C1 0 · · · 0

CT
1 D2 C2

. . .
...

0 CT
2

. . . . . . 0
...

. . . . . . Dr−1 Cr−1

0 · · · 0 CT
r−1 Dr


With

Ci = −Jf (xi+1)TQ−1
i+1

Dr = Q−1
r +HT

k+rR
−1Hk+r

Di = Q−1
i + Jf (xi)

TQ−1
i+1Jf (xi) + Lli, i < r

Lli = (xi+1 − f(xi))
TQ−1

i+1H
l
f (xi)

where Hl
f (xi) =

[
∂2fs
∂xl∂xt

]
s,t

is a slice of the Hessian matrix of the system’s state-space

function f which we calculate analytically for interior grid points and numerically at the
boundary points in each channel. The analytical partial derivatives of f for interior grid
points are provided in appendix ??. Note that fs denotes the sth component of f .

To obtain the initial seed for the Newton method in computation of minFj(X), we run
the forward simulation with the mean of particles as initial condition and we run a few steps
of Newton method to polish the initial guess of the minimizing solution. We use a line-search
method to find a proper step size for the Newton method.

5.2.2 Solving the sampling equation via a random map

In order to solve equation (5.18), we use the random map method introduced in [87].
Assuming that the level-sets of the function Fj are closed, the following map is considered
as the map between ξj and xjk+1:k+r

xjk+1:k+r = µj + λjL
T
j ηj (5.25)

where ηj = ξj/
√
ξTj ξj is the direction of the sample ξj of the Gaussian reference variable

ξj ∼ N (0, I), µj is the location of the minimum of Fj, i.e. Fj(µj) = φj, and Lj ∈ Rnr×nr

is an invertible matrix chosen deterministically. It has been observed that taking Lj as the
Cholesky factorization of the inverse of the Hessian, i.e. H−1

j = LjL
T
j is a good choice for

Lj specially if Fj is nearly quadratic.

Note that in equation (5.25), only λj is unknown after the reference Gaussian variable
is sampled. By substituting equation (5.25) in equation (5.18), one obtains an algebraic
equation for the single scalar λj which can be easily solved. This will yield a sample for
the particle trajectory xjk+1:k+r. Assuming the level-sets of function Fj are closed, solving
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equation (5.25) for λj corresponds to a solution of equation (5.18) in a specific direction,
LTj ηj.

5.2.3 Calculating the Jacobian of the implicit sampling function

By differentiating equation (5.25), we obtain [87]

∂xjk+1:k+r

∂ξj
= LTj

(
ηj
∂λj
∂ξj

)
+ λLTj

∂ηj
∂ξj

(5.26)

After some manipulations, the Jacobian of the implicit map can be written as

J = 2 |detLj| ρ1−nr/2
j |λrn−1

j

∂λj
∂ρj
| (5.27)

where ρj = ξTj ξj and
∂λj
∂ρj

can be calculated numerically.

A pseudo-code description of the implicit particle filter is presented in Algorithm 3.

Algorithm 3: Implicit Particle filter with resampling

[{xjk, wjk}Ns
j=1] = Imp-PF[{xjk−1, w

j
k−1}Ns

j=1, zk]
for j = 1 to Ns do

Calculate φj = min Fj(X).
Draw a sample ξj ∼ N (0, I)
Calculate the Hessian of Fj, Hj and set Lj = chol(H−1

j )
Substitute the random map, equation (5.25) in the sampling equation (5.18) and solve
for λj to obtain a sample trajectory xjk+1:k+r.
Calculate the Jacobian of the implicit map using (5.27).
Update the particle weight, wjk, using equation (5.19).

end for
Calculate total weight: t =

∑Ns

j=1w
j
k

for j = 1 to Ns do

Normalize: wjk =
wjk
t

end for

Calculate N̂eff =
1∑Ns

j=1(wjk)
2

if N̂eff < NT then
Resample using algorithm 1:
[{xjk, wjk,−}Ns

j=1] = RESAMPLE[{xjk, wjk}Ns
j=1]

end if
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5.3 Heuristics

5.3.1 Implicit Particle Filter with Block Sampling

In this section, we consider a case in which observations are available at every time step.
It is known that in the case of systems with linear observation model and Gaussian noises
when measurements are available at every time step, the implicit particle filter becomes
equivalent to the optimal SIR filter [87]. Nonetheless, as a heuristic method, we use the
implicit particle filter to do the sampling every r time steps while using the measurements
at all time steps instead of sampling at every time step. We believe that for systems with
band-diagonal structure, i.e. systems in which the value of each state at the next time step
is determined by the current values of its neighboring states, this heuristic method may
improve the estimation results. The shallow water model used in the current article is an
example of such a system. As can be seen in the discretized Saint-Venant equations in section
2.2, the value of flow or stage at each cell is determined by values of flow and stage at its
neighboring cells at the previous time step. In such systems, the information is propagated
in space one cell every time step. Therefore, a measurement provides information about the
value of the state at a cell which is r cells far from the location of the measurement at r time
steps before. This suggests that using all the measurements obtained over a block of time
steps and performing the sampling over the block may improve the results. To implement
this method, the implicit function needs to be slightly modified as follows so that the filter
uses all the available measurements

P (xj0:k+r|z0:k+r) = P (xj0:k|z0:k)

× P (xjk+1|xk) · · ·P (xjk+r−1|xjk+r−2)P (xjk+r|xjk+r−1)

× P (zk+1|xjk+1) · · ·P (zk+r|xjk+r)/Zk (5.28)

Fj(x
j
k+1:k+r) = log(

1

(2π)(nr+m)/2

k+r∏
i=k

1√
detQi

1√
detRk+r

)

+
1

2

k+r−1∑
i=k

(xi+1 − f(xi, ui))
TQ−1

k (xi+1 − f(xi, ui))

+
1

2

k+r∑
i=k+1

(zi −Hk+rxk+r)
TR−1

k+r(zi −Hk+rxk+r) (5.29)

And the Jacobian and Hessian must be changed accordingly.

5.3.2 Maximum a posteriori (MAP) estimation

The idea investigated in this section is to propagate the maximum-probability trajectory
obtained in the minimization step of the implicit particle filter forward and use that as the
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estimates. This significantly reduces the computational cost of the method as there will
be no need to create particles. Moreover, the minimization problem needs to be solved
only once instead of once for each particle. The simplest thing to do would be to calculate
maxxk+1:k+r

P (xk+1, · · · , xk+r|xk, zk+r) with using xk as a deterministic vector obtained from
the maximization over the previous time interval. However, this does not take into account
the uncertainty in the value of xk. In order to account for the uncertainty in xk, one can
consider xk as a random variable. Considering xk as a random variable, we aim to find the
maximum a posteriori (MAP) estimate of the state trajectory over the interval between time
steps k + 1 and k + r, i.e. the solution of the following optimization problem

x̂k:k+r = arg max
xk:k+r

P (xk, · · · , xk+r|z1:k+r) (5.30)

The cost function in equation (5.30) can be factored as follows

P (xk:k+r|z1:k+r) =
P (xk:k+r|z1:k)P (zk+r|z1:k, xk:k+r)

P (zk+r|z1:k)

=
P (xk|z1:k)P (xk+1:k+r|xk)P (zk+r|xk+r)

P (zk+r|z1:k)
(5.31)

Defining the function F̃ as

exp(−F̃ (xk:k+r)) = P (xk|z1:k)P (xk+1:k+r|xk)P (zk+r|xk+r) (5.32)

we have
x̂k:k+r = arg min

xk:k+r

F̃ (xk:k+r) (5.33)

Now, we explain how we solve the above optimization problem. It can be readily seen that

F̃ (xk:k+r) = F (xk+1:k+r)− log(P (xk|z1:k)) (5.34)

where F is the function defined in equation (5.17). The posterior density function P (xk|z1:k)
is not generally available, but we approximate it with a Gaussian density, N (x̂k, Kk). The
mean, x̂k, is the estimate of xk obtained from solving the MAP estimation over the previous
interval. To find the covariance, we approximate P (xk−r:k|z1:k) with a Gaussian density with
covariance being equal to the inverse of the Hessian of P (xk−r:k|z1:k) which is already available
to us from solving the MAP estimation over the previous time interval. We then obtain the
covariance of the marginal density P (xk|z1:k) which is the desired covariance matrix Kk.

For the case of the system under consideration, we can write

F̃ (xk:k+r) = log

(
1

(2π)(nr+m)/2

k+r∏
i=k

1√
detQi

1√
detRk+r

)

+
1

2

k+r−1∑
i=k

(xi+1 − f(xi, ui))
TQ−1

k (xi+1 − f(xi, ui))

+
1

2
(zk+r −Hk+rxk+r)

TR−1
k+r(zk+r −Hk+rxk+r)

+
1

2
(xk − x̂k)TK−1

k (xk − x̂k) (5.35)
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Start

Set k = 0, x̂k = x0,Kk = P0

Approximate
(xk|z1:k) ∼ N (x̂k,Kk)

Set Σk as the inverse of the Hes-
sian of −log P (xk:k+r|z1:k) and set
Kk as the last diagonal block of Σk

of size n, system’s state dimension.

Calculate

x̂k:k+r = arg min
xk:k+r

F (xk+1:k+r)+
1

2
(xk− x̂k)TK−1

k (xk− x̂k)

k < T

Stop

k = k + r

yes

no

Figure 5.1: Flow chart of the MAP estimation heuristic method.

The optimization problem (5.33) can be solved using the Newton method with the forward
simulation predicted state trajectory as the initial seed to obtain an optimal solution. Note
that F̃ (xk:k+r) has one additional quadratic term than F (xk+1:k+r) and the calculated Jaco-
bian and Hessian of F need to be slightly changed to obtain those of F̃ (xk:k+r).

It is not hard to see that the above approach is similar to the weak constraint 4D-Var
method where a cost function consisting of quadratic terms accounting for model error,
measurement error and error in the initial conditions is minimized [113, 114].

Figure 5.1 shows a flow chart of the MAP estimation algorithm presented in this section.

Note that in cases in which the posterior density P (xk+1, · · · , xk+r|xk, zk+r) is symmetric,
the MAP estimates will be more accurate than the estimates obtained from the weighted
average of the particles and as the number of particles converges to infinity, the weighted
average estimate converges to the MAP estimate which is the trajectory which maximizes the
posterior density. In cases in which the posterior density P (xk+1, · · · , xk+r|xk, zk+r) is close
to symmetric and the approximation of P (xk|z1:k) with a Gaussian density is reasonable, we
expect that the MAP method introduced above to be a very appealing estimation method
as it may provide more accurate estimates with a much lower computational cost than the
optimal SIR and the implicit particle filter. As we apply the method for the system under
consideration, we will see in section 5.4 that this is the case for this system. In other
words, we obtain more accurate results with a smaller computational cost by using the MAP
method.
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Table 5.1: The names and geometry information of the subchannels in the open channel network in

Sacramento-San Joaquin Delta in California used for the implementations.

Channel River Length Avg. width Avg. depth
1-2 Italian Slough 14198 234.0 14.0
2-3 Italian Slough 2723 203.4 16.4
2-5 Italian Slough 3227 437.5 10.3
3-4 Old River 4754 351.3 21.8
3-5 Old River 5022 351.2 22.0
5-6 Old River 4313 238.4 13.0
5-11 West Canal 10041 253.0 28.0
6-7 Victoria Canal 8760 386.5 18.3
6-8 Old River 2722 276.3 15.2
8-9 Old River 2793 109.0 11.7

Channel River Length Avg. width Avg. depth
8a9 Old River 5347 157.1 9.0
9-10 Old River 2456 109.0 11.7
9a10 Old River 5062 157.1 9.0
10-11 Old River 7744 198.4 12.4
11-13 Old River 2609 266.0 19.0
13-14 Old River 3857 245.0 17.8
14-16 Old River 12089 176.0 10.0
14-15 Mendota Canal 12500 196.0 18.0
13-17 Grant Line Canal 15831 404.0 16.0
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Figure 5.2: A flow diagram of the experiment.

5.4 Implementation

We consider a network of 19 subchannels and one reservoir in the southern part of
Sacramento-San Joaquin to implement the data assimilation methods. The Sacramento-San
Joaquin Delta, in northern California, is the hub of California’s water system. This complex
network covers 738,000 acres interlaced with over 1150 km of tidally influenced channels and
sloughs and approximately 50 percent of California’s average annual streamflow flows to the
Delta. Figure 5.3 shows a map of the Delta.

The network considered for implementation consists of the Clifton Court Forebay and
its surrounding channels which are parts of the Old River, the Italian Slough, the Mendota
Canal, the West Canal, the Victoria Canal and the Grant Line Canal and is located on
the northern side of Tracy. Figure 5.4 shows a satellite picture of the area and a map of
the network with the channel configuration of the network, considered in building a one-
dimensional model of the flow. As can be seen in this figure, this network consists of one
reservoir, 19 subchannels and 10 junctions. The total length of the channels in the network
is 38,420 m. Figure 6.4 shows a cross section of some of the channels. Note that the channels
are not uniform and the presented cross sections correspond to a particular location along the
channels. Table 5.1 presents the name and some geometry information about the channels.
The channels are represented by their parent nodes from figure 5.4.

Figure 5.2 shows a flow diagram of the experiment. We use the Delta Simulation Model
II (DSM2) to obtain measurements for boundary conditions and data assimilation as well
as to evaluate our results. DSM2 is a one dimensional mathematical model, developed in
the California Department of Water Resources (DWR), for dynamic simulation of hydrody-
namics, water quality and particle tracking in the Delta. DSM2 can calculate stages, flows,
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velocities, transport of individual particles, and mass transport processes for conservative
and non-conservative constituents, including salt, water temperature, dissolved oxygen, and
dissolved organic carbon. We use DSM2 since there are not enough USGS sensor stations in
the area of interest to obtain boundary conditions and additional flow measurements needed
for the data assimilation. DSM2 is one of the reference models used by the DWR for op-
erations and will be considered in this work as the ground truth. Figure 5.6 compares the
discharge and stage at the upstream of Old River (node 4 in Figure 5.4) generated by DSM2
with the USGS sensor measurements for June 10-12, 2006 and illustrates the applicability of
DSM2 as a modeling tool to compute discharge and stage at locations where we need them
for boundary conditions or as virtual sensor measurements.

5.4.1 Numerical results

We perform an experiment for a period of 25 hours using historical data corresponding
to June 12, 2006. We obtain the boundary conditions and measurements used for data
assimilation from DSM2. As boundary conditions, discharge is imposed at nodes 1, 7, 15, 16
and 17 and stage is imposed at nodes 4 and 12. Figure 5.7 shows the boundary conditions.
The Tracy pumping plant is located at node 15 and as can be seen in Figure 5.7 (b), there
is a constant outflow soon after the experiment starts and there is no outflow at node 1 for
the period of the experiment. In order to model the measurement noise, we add a zero-mean
Gaussian noise with variance of 5 ft6/s2 and 0.05 ft2 to the boundary conditions for discharge
and stage measurements, respectively.

The number of cells in each subchannel is chosen in a way that the spatial step size in
the subchannel is close to and not smaller than 900 ft and the temporal step size is chosen
to be 15 sec. This choice of spatial step size results in 204 cells for the full network. Since
at each internal cell, there are two states, discharge and stage, and there is one state at the
boundary cells, we will have a 401 dimensional system. We run DSM2 with spatial step size
of 5,000 ft and temporal step size of 15 min. We run DSM2 starting one day earlier so that
the effects of inaccurate initial conditions are washed away and the DSM2 results are close
to reality from the beginning of the experiment.

Figure 5.8 shows the stage at two different locations computed by our model, the forward
simulation, compared to the stage at the corresponding locations obtained from DSM2. As
can be seen in this figure, the stage obtained from the forward simulation and DSM2 match
closely. This is true at all locations throughout the network. However, there is a discrepancy
between the discharge computed by the forward sim and DSM2. This is due to the fact
that the bathymetry used for the forward simulation is different than that of DSM2. DSM2
computes the water surface (relative free surface elevation with respect to a datum) and we
use the same bathymetry used for the forward sim to convert the water surface to stage.
This decreases the sensitivity of stage to bathymetry which explains the lower discrepancy
in stage computed by DSM2 and the forward sim.

To perform data assimilation, we only focus on assimilating discharge to improve the
forward simulation results. We use six discharge measurements at the middle of channels
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Figure 5.3: The Sacramento-San Joaquin Delta, image adapted from [80]. The small box on the southern

part of the Delta is the network considered for implementation of the methods proposed in the current

article.

57



(a) (b)

Figure 5.4: (a) Satellite image of the channel network around the Clifton Court Forebay used for the

experiment. (b) The network connectivity of the channel network used for the experiment consisting of 19

subchannels, 10 junctions and one reservoir. As boundary conditions, discharge is imposed at nodes 1, 7,

15, 16 and 17 and stage is imposed at nodes 4 and 12 where node 12 represents the reservoir. The red stars

show the locations from which flow measurement are obtained for data assimilation.

3-4, 6-8, 9a10, 10-11, 5-11, 13-14, the locations of which are shown by red stars in Figure
5.4 (b). The process and measurement noises are assumed to be zero-mean white Gaussian
noise. We assume that the noise on different measurements are uncorrelated. At each cell,
the process noise on discharge is assumed to be correlated with the discharge at its four
neighboring cells from each side. The variance on discharge at each cell is taken to be 25
ft6/s2 and the correlations are taken to be 20 ft6/s2, 12 ft6/s2, 8 ft6/s2, 4 ft6/s2 with the discharge
at the neighboring cells, respectively. These approximations of the noise variance were chosen
based on sample variances of the process noise at a few locations in the network and other
variances and correlations were approximated accordingly. The sensor measurements are
obtained from DSM2 and a zero-mean Gaussian noise with a variance of 50 ft6/s2 is added
to these measurements to simulate the uncertainty in the measurements.

Using these flow measurements, the optimal SIR filter is applied. Figure 5.9 shows the
results of the forward simulation and the SIR filter with 1000 particles compared to the
corresponding results obtained from DSM2. The discharge at six locations in the network
are illustrated for the period of the experiment. As can be seen in this figure, the SIR filter
improves the model results significantly. In order to quantify the performance of the methods
rigorously, we calculate the relative error throughout the whole domain at each time step
using the following formula

E(k) =

√∑Ncells

i=1 (Q̂k
i −Qk

i )
2∑Ncells

i=1 (Qk
i )

2
(5.36)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.5: The cross-section of some of subchannels in the network used for the experiment, channels (a)

14-16 (b) 3-4 (c) 14-15 (d) 10-11 (e) 9-a-10 (f) 8-a-9 (g) 6-8 (h) 6-7 (i) 5-6 (j) 1-2 (k) 2-5 (l) 2-3.
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Figure 5.6: A comparison of the DSM2 prediction of flow and stage at node 4 in Figure 5.4 and USGS

sensor measurements, corresponding to June 10-12, 2006.
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Figure 5.7: The boundary conditions, discharge at nodes (a) 16, (b) 15, (c) 17, (d) 7, and stage at nodes

(e) 4 , and (f) 12.
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Figure 5.8: The stage computed by the forward simulation compared to DSM2 results, at channels (a)

5-11, and (b) 8-9.
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where Qk
i and Q̂k

i are the true value of the flow and the estimated flow at cell i and time
step k, respectively.

The implicit particle filter is also applied for two cases, a case with sparse measurements
and as case in which measurements are available every time step, but we apply the first
heuristic method to perform the sampling over intervals of 10 time steps while using all
the available measurements. Figure 5.10 shows the time evolution of the relative error
corresponding to the forward simulation, the SIR filter with 1000 particles and the implicit
particle filter with 50 particles while using measurements at every time step and performing
block-sampling. It can be seen in this figure that the relative error of the forward simulation
has large peaks corresponding to more than 60 % error. The SIR filter reduces the relative
error to below 20 % almost at all times. It can also be seen that using the implicit particle
filter with the block-sampling heuristic method discussed in section 5.3.1 improves the results
further. The relative error corresponding to the implicit particle filter with block-sampling
remains below 10 % most of the time.

The MAP estimation method proposed in section 5.3.2 is also implemented for both cases
of sparse measurements and measurements available at every time step. Figure 5.10 compares
the time evolution of the relative error of the implicit particle filter with block-sampling with
50 particle and the MAP method for the case where measurements are available at every time
step. As can be seen in this figure, the MAP method improves the relative error compared
to the implicit particle filter almost at all times.

We implement different estimation methods discussed in previous sections for different
scenarios and in order to compare the performance of different methods in different cases,
we calculate the average of the relative error per time step over the period of the experiment
as follows

Ē =

√∑T
k=1

∑Ncells

i=1 (Q̂k
i −Qk

i )
2∑T

k=1

∑Ncells

i=1 (Qk
i )

2
(5.37)

In the cases of SIR filter and the implicit particle filter, the relative error is a random
variable due to the randomness in propagation of the particles. Therefore, we perform the
assimilation 10 times for each scenario in these cases to calculate the mean and variance of
the relative error.

In Table 5.2, the average relative error is provided for the forward simulation, the optimal
SIR and implicit particle filters with block-sampling for a few different number of particles,
as well as, the MAP method. As can be seen in this table, performing data assimilation using
the optimal SIR filter reduces the average error of the model from about 23% to around 10%
which is a significant improvement. More interestingly, using the implicit particle filter with
block-sampling reduces the average error to about 8%. As discussed before, this is due to
the fact that using more measurements before sampling, results in more accurate samples,
especially in cases where information propagates in space continuously with time. Also, note
that increasing the number of particles improves the results slightly. Unfortunately, we were
not able to run the methods for larger number of particles due to the required computational
time. For instance, implementing the implicit particle filter with 50 particles for the period
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Figure 5.9: Time evolution of discharge at six channels in the network, (a) channel 11-13 (b) channel 8-9

(c) channel 5-6 (d) channel 3-5 (e) channel 3-4 (f) channel 2-5, obtained from the forward simulation, the

optimal SIR filter compared with the ground truth, i.e. DSM2 results.
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Figure 5.10: Time evolution of relative error for (a) forward simulation, optimal SIR and implicit particle

filter with block-sampling, (b) the implicit particle filter with block-sampling and the MAP method.

of the experiment on a 2.6 GHz Dual Core desktop takes a few days. Finally, note that the
MAP method improves the results further and reduces the average relative error to about
7%. It is remarkable that the MAP method provides the best estimate considering the fact
that the computational cost of the MAP method is also less than other methods. In the
MAP method the minimization is solved only once at every time interval in contrast to once
for every particle in the case of the implicit particle filter and there is also no need to solve
the sampling equation.

Note that the particle filters even with one particle decrease the model error signifi-
cantly by taking advantage of the six additional discharge measurements used for the data
assimilation.

Table 5.2: Average Relative error corresponding to the forward simulation, the optimal SIR, the implicit

particle filters with block-sampling (IMP PF with BS) for a few different number of particles, and the MAP

method, for a case where measurements are available at every time step.

Method Number of particles Error(%): mean/variance
Forward sim. - 23.36

SIR 1 10.87 / 0.63
SIR 10 10.41 / 0.48
SIR 100 10.28 / 0.39
SIR 1000 10.15 / 0.30

Imp PF with BS 1 8.03 / 0.41
Imp PF with BS 10 7.74 / 0.26
Imp PF with BS 50 7.55 / 0.21

MAP - 6.92

63



We also consider a case in which sparse measurements are available. We assume that
measurements become available every 10 time steps and we implement the implicit particle
filter and the MAP method to incorporate the sparse measurements into the model. Note
that it is not necessary to assume the time interval between the measurements is fixed,
although, the implementation is done with this assumption. Table 5.3 shows the relative
error in the case of sparse measurements resulted from using the implicit particle filter and
the MAP method. As can be seen in this table, the MAP method provides a smaller average
error than the implicit filter.

Table 5.3: Average Relative error corresponding to the implicit particle filters (IMP PF) for 10 and 50

particles, and the MAP method, for a case in which measurements are available at every 10 time steps.

Method Number of particles Error(%): mean/variance
Imp PF 1 14.31 / 0.47
Imp PF 10 13.88 / 0.32
Imp PF 50 13.68 / 0.27
MAP - 11.72

Finally, in the case in which measurements are available at every time step, we investigate
the effect of r, i.e. the length of the sampling time interval, on the performance of the methods
for the case of the implicit particle filter with block-sampling and the MAP method. Table
5.4 provides the relative error corresponding to four different values of r. Note that when
r is taken to be 1, the implicit particle filter has the same error as the optimal SIR filter.
This is consistent with the fact that in the case of a linear observation model and Gaussian
noise, the implicit particle filter recovers the optimal SIR filter. It is also interesting to see
that r = 5 provides the least error in both cases. We think that this is for two reasons.
First, the dimension of the problem increases with r. More precisely, the dimension of the
state trajectory over the interval increases linearly with r. Therefore, larger inaccuracies will
result from numerical processes, e.g. solving the minimization problem, as the dimension of
the problem increases. Second, as r becomes large, some of the measurements used for the
estimation of the state trajectory may become irrelevant, i.e. the measurements obtained at
the end of the interval may not contain relevant information about the state at the beginning
of the interval if the length of the interval, r, is too large.

Finally, in order to compare the computational complexity of each of the methods dis-
cussed, we provide the average computational time per time step for each case, while imple-
mented on a 2.6 GHz Dual Core desktop computer, in Table 5.5. It should be emphasized
that the programs are not currently written in an efficient way specially in the case of the
implicit particle filter. As can be seen in this table, the computational time of the implicit
filter with 10 particles is almost the same as that of the optimal SIR with 500 particles.
Nonetheless, as seen in table 5.2, the implicit filter with 10 particles produces an average
error of about 8% while the optimal SIR produces an average error of about 10%. Also, note
that the MAP method has a lower average computational time than the implicit filter. In
fact, it can be seen that the computational time of the MAP method is almost that of the
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Table 5.4: Average Relative error corresponding to the implicit particle filters with block-sampling (IMP

PF with BS) for 10 particles, and the MAP method, for a case in which measurements are available at every

time step, for four different values of r.

r Imp PF with BS MAP
1 10.89 / 0.48 10.38
5 7.52 / 0.22 6.20
10 7.74 / 0.26 6.92
20 9.83 / 0.35 8.96

implicit filter divided by the number of particles. This is because in the MAP method the
minimization, which is the most costly step of the implicit filtering, is done once as opposed
to once for every particle in the case of implicit filters.

Table 5.5: Average computational time of the methods per time step, for the optimal SIR, the implicit

particle filter with block-sampling (IMP PF with BS) and the MAP method.

Method Number of particles Avg. comp. time/time step (sec)
SIR 10 0.14
SIR 50 0.54
SIR 500 5.16

Imp PF with BS 10 5.24
Imp PF with BS 50 25.57

MAP - 0.55

5.4.2 Summary

Application of a few Monte Carlo methods to estimate flow in open channel networks
was the subject of this chapter. Considering a case in which measurements are available
at every time step, we implemented the optimal sampling importance resampling filter.
We also considered a case in which sparse measurements are available, i.e. measurements
become available every r time steps, where r could be a random integer in general (although,
we considered a fixed r in this work). We implemented a random map implementation of
the implicit particle filter implemented to incorporate the sparse measurements into the
model. A heuristic maximum a posteriori -based method was also proposed in which the
goal is to maximize the posterior density of the state trajectory over the interval given all
measurements. By approximating the conditional density of the state at the beginning of
the interval with a Gaussian density, we were able to solve the corresponding optimization
problem with the same computational cost as the optimization problem in the case of implicit
filters. It was observed that the MAP method provides more accurate estimates than the
implicit particle filter for the current application while having a lower computational cost.
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In the following chapter, we investigate an optimization-based estimation technique for
flow estimation in tidally forced channels.
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Chapter 6

Flow estimation in tidal channels

using the LASSO

In previous chapters, real-time state and parameter estimation of flow in open channels
was investigated and different situations were considered. In some applications, estimates
of flow state at all grid points may not be desired. In this chapter, we consider a case in
which streaming measurements of flow in a tidal channel are available and the goal is to
efficiently estimate flow variables in a specific location along the channel in real time. Using
the linearized Saint-Venant equations, we derive a z-domain transfer function representation
of the flow in the channel which relates the flow variables that are measured to the ones that
are desired such that the desired flow variables are the inputs and the measured variables
are the outputs of this multi input-multi output (MIMO) system. Hence, the estimation
problem boils down to an input estimation problem. After parametrizing the inputs using
the dominant tidal modes, we cast the parameter estimation problem as an optimization
problem which minimizes the l2-norm of the error (difference between the measurements and
the model predictions) with an l1-norm regularization.

This optimization problem which is the least squares problem with an l1-norm regular-
ization is called the LASSO in the literature [110] which has generated a lot of interest in
the statistics [110, 44], signal processing [22, 30] and machine learning [60, 91] communities,
in particular for estimation problems. It has been shown that the solution of the LASSO is
sparse in the expression considered in the l1-norm penalty [110] which is a desirable property
in numerous problems in order to achieve model selection [31], data compression [32], or for
obtaining interpretable results.

The LASSO can easily be transformed to a quadratic program by introducing new slack
variables for each component of the l1-norm which can be solved efficiently using standard
over-the-shelf optimization packages [64]. A specialized interior-point method for large-
scale problems was introduced in [70]. Other methods to solve the LASSO include iterative
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thresholding algorithms [42, 55, 104], feature-sign search [75], bound optimization meth-
ods [53] and gradient projection algorithms [54]. Homotopy methods have also been applied
to the LASSO to compute the full regularization path when the regularizaion parameter
µn varies [94, 49, 82]. They are particularly efficient when the solution is very sparse [47].
When the training samples are obtained sequentially, Garrigues et al. [56] introduce a ho-
motopy algorithm to compute the solution of the LASSO recursively. We use this algorithm
to solve the LASSO that will be resulted from the estimation approach we consider in this
section. The l1-norm penalty we consider is the difference between the decision variables
(unknown parameters) and their estimates from the previous time step. Since the solution
to the LASSO is sparse, only a few of estimates of the tidal amplitudes get updated at every
time step. In other words, as new measurements of the flow become available, the LASSO
is solved recursively to update the estimates of the most significant tidal modes.

6.1 The LASSO problem

The LASSO (6.1) was first introduced in [110]. The LASSO is essentially the least
square regression problem with an l1-norm regularization. In other words, it is a convex
optimization problem in which the cost function consists of the l2-norm of an affine function
of the decision variables and an l1-norm of the decision variables. In mathematical terms, it
can be written as the following optimization problem

x = arg min
x∈Rm

1

2

n∑
i=1

(aTi x− yi)2 + µn||x||1 (6.1)

For large enough regularization parameters, the solution to the LASSO is sparse. In
order to see this fact, note that the LASSO can be written equivalently in its dual form as
follows:

x = arg min
x∈Rm

1

2

n∑
i=1

(aTi x− yi)2 : ||x||1 ≤ η (6.2)

Figure 6.1 shows the level sets of the cost function which are circles and it can be seen
that the optimal solution lies on a vertex of the polytope ||x||1 = η which results in a sparse
solution.

In this section, we summarize previous work which used the optimality conditions to
solve this optimization problem [49, 56]. The objective function of (6.1) is convex and non-
smooth since the l1-norm is not differentiable when there exists an index i such that the ith

element of x (denoted xi) equals zero. There is a global minimum at x if and only if the
subdifferential of the objective function at x contains the 0-vector. The subdifferential of
the l1-norm at x is the following set

∂‖x‖1 =

{
v ∈ Rm :

{
vi = sgn(xi) if |xi| > 0
vi ∈ [−1, 1] if xi = 0

}
68



Figure 6.1: illustration of the solution to the LASSO.

where sgn(·) is the sign function.

Let A ∈ R|In|×m be the matrix whose ith row is equal to aTi , and let y = (yi)
T
i∈In be the

vector of response variables.

The optimality conditions for the LASSO problem (6.1) are given by AT (Ax−y)+λv = 0,
v ∈ ∂‖x‖1.

We define as the active set (resp. non active set), the indices representing non-zero
elements (resp. zero elements) of x. The active and non-active sets are referenced by the
subscripts a and na respectively.

For example Aa is the matrix representing the columns of A in the active set. The vector
xa represents the non-zero coordinates of x and xna is the 0-vector. The index ai (resp.
nai) references the ith coordinate of the active (resp. non active set). Since v ∈ ∂‖x‖1, the
ith coordinate of va is vai = sgn(xai), and the ith coordinate of vna is vnai ∈ [−1, 1]. If the
solution is unique, it can be shown that ATaAa is invertible, and we can rewrite the optimality
conditions as

xa = (ATaAa)
−1(ATa y − µnva)

−µnvna = ATna(Aaxa − y)

Note that if we know the active set and the signs of the coefficients of the solution, thus
the vector va, we can compute it in closed form. When observations come sequentially, it
is possible to solve the LASSO problem recursively using a homotopy algorithm [56]. We
present the details of this algorithm in the next section.
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6.2 Recursive LASSO

The homotopy-based algorithm which we use to solve the LASSO recursively as new
measurements become available considers the following problem:

x(t, µ) = arg min
x∈Rm

1

2

∥∥∥∥( A
taTn+1

)
x−

(
y

tyn+1

)∥∥∥∥2

2

+ µ ‖x‖1 .

Adding (resp. removing) a point is equivalent to computing the path from the solution
at t = 0 to the solution at t = 1 (resp. from t = 1 to t = 0). Varying the regularization
parameter is equivalent to computing the path from the solution at µ = µn to the solution
at µ = µn+1, in other words, we have xn = x(0, µn) and xn+1 = x(1, µn+1) where xn and xn+1

represent the solution to the LASSO when the nth and (n + 1)th batches of measurements
become available, respectively.

The homotopy-based algorithm computes the path from xn to xn+1 in two steps:

Step 1: Vary the regularization parameter from µn to µn+1 with t = 0. It is shown
that the regularization path between µn and µn+1 is piecewise linear [110]. Since in the ap-
plication presented in this work we have taken the regularization parameter to be constant,
we do not review this step here and we refer the reader to [110] for more details.

Step 2: Vary the parameter t from 0 to 1 with µ = µn+1. In what follows we explain how
this step can be implemented.

It has been proven [56] that x(t, µ) is a piecewise smooth function of t and the active
set and the signs of the coefficients changes only at a finite set of transition points. We
know that if the active set and the signs of the parameters are known, the solution to the
LASSO can be calculated analytically. Therefore if one can calculate the transition points
and changes in the active set and the parameter signs at these points, the solution at the
previous time step x(0, µ) can be used to obtain the new solution x(1, µ). We now explain
how the transition points can be calculated:

Defining the notation w(t)T = (vT1 , w2(t)T ) ∈ ∂ ‖ x(t) ‖1, a transition point is reached
when either an entry of x1(t) becomes zero or one of the entries of w2(t) reaches one in
absolute value.

We first calculate the points at which an entry of x1(t) becomes zero. Let Ã =

(
A
aTn+1

)
and ỹ =

(
y

yTn+1

)
. Partitioning Ã =

(
Ã1Ã2

)
and xTn+1 = (xTn+1,1, x

T
n+1,2) according to the

active set, we have

x1(t) = x̃1 −
(t2 − 1)ē

1 + α(t2 − 1)
u (6.3)
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where

x̃1 = (ÃT1 Ã1)−1(ÃT1 ỹ − µν1) (6.4)

ē = aTn+1,1 − x̃1 − yn+1 (6.5)

α = aTn+1,1(ÃT1 Ã1)−1an+1,1 (6.6)

u = (ÃT1 Ã1)−1an+1,1 (6.7)

Defining t1i as the value of t such that x1i(t) = 0, we have

t1i =

(
1 +

(
ēui
x̃1i

− α
)−1

) 1
2

(6.8)

We now calculate the points at which an entry of w2(t) reaches one in absolute value.
Denoting the values of t such that w2j(t) = 1 and w2j(t) = −1 by t+2j and t−2j, respectively,
we have

t+2j =

1 +

(
ē(x(j) − cTj Ã1u)

−µ− cTj ẽ
− α

)−1
 1

2

(6.9)

t−2j =

1 +

(
ē(x(j) − cTj Ã1u)

−µ− cTj ẽ
− α

)−1
 1

2

(6.10)

(6.11)

Therefore, the transition point t∗ will be equal to min mini t1i,minj t
+
2j,minj t

−
2j.

Putting everything together, the homotopy algorithm can be summarized as below

Algorithm 1: Homotopy algorithm for recursive LASSO

1: Compute the path from x(0, µn) to x(0, µn+1).
2: Initialize the active set as the non-zero entries of x(0, µn+1) and let v1 and an+1,1 be
the subvectors of v = sign(x(0, µn+1)) and an+1 corresponding to the active set and Ã1 the
submatrix of Ã whose columns correspond to the active set. Initialize t∗ = 0 and x̃1 using
equation 6.4.
3: Calculate the next transition point t∗∗.
while t∗∗ < t∗ or t∗∗ ≥ 1 do

if The entry of x1(t∗∗) corresponding to the ith decision variable becomes zero then
Remove i from the active set and update v accordingly.

end if
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if The entry of w2(t∗∗) corresponding to the jth decision variable reaches one in absolute
value then

Add j to the active set and set vj equal to 1 or −1 accordingly.
end if
4: Update v1, Ã1, an+1,1 and x̃1 according to the updated active set.
Set t∗ = t∗∗ and calculate the next transition point t∗∗.

end while
5: Calculate the final value at t = 1, where the non-zero entries of the decision vector are
given by x̃1.

The above recursive algorithm may be initialized with one data point (a, y) for which
case the active set will have at most one element and defining i0 = arg maxi|a(i)| and
v = sign(ya(i0)), we have

x(1) =


1

(a(i0))2
(ya(i0) − µ1v)ei0 if |ya(i0)| > µ1

0 otherwise
(6.12)

In the next section, we will apply LASSO to perform water flow estimation in tidal
channels. In this application, at each time step, as new set of data become available, the
l1 − norm penalty we consider, consists of the difference between the decision variables and
the solution at the previous time step. In other words, the recursive estimation problem has
the following form

xn+1 = arg min
x∈Rm

1

2

n∑
i=1

(aTi x− yi)2 + µ||x− xn||1 (6.13)

where xn represents the solution to the LASSO before the (n + 1)th batch of data arrived.
Given the solution to the LASSO results in a solution which is sparse in the value of the
l1−norm regularization, the above recursive estimator updates only the most significant pa-
rameters as new measurements become available. Note that the above optimization problem
can be transformed to the standard LASSO form by a change of variable as x̄ = x− xn and
all the machinery discussed in this section can be applied to solve this optimization problem
recursively.

6.2.1 Water Flow Estimation in Tidal Channels

In this section, we present an application of the LASSO to estimate water flow (discharge)
in tidal channels. More precisely, having measurements of the flow at a given location in
a channel with tidal forcing, the goal is to estimate the flow in any desired location in the
channel. We first derive a transfer function representation of flow in z domain using the
linearized Saint-Venant equations. The derived transfer function corresponds to a multi-
input multi-output (MIMO) system whose outputs are the available measurements and the
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inputs are the flow and stage at the location where an estimate is desired. The estimation
problem is then posed as an input estimation problem. After parametrizing the inputs using
the dominant tidal modes, we use recursive LASSO to estimate the unknown parameters,
i.e. the mode amplitudes, recursively. The l1-norm penalty that we consider in LASSO is the
difference between the decision variables and the optimal solution at the previous time step.
LASSO enforces a sparse variation in the estimated parameters and it essentially updates
the most dominant modes at every time step.

While more traditional state estimation methods such as Kalman filtering could be used
to estimate the flow everywhere throughout the channel, the proposed method is particularly
useful when estimates of the flow are desired only at a specific location along the channel.

Transfer Function Representation of Shallow Water Equations

To obtain the open-loop transfer matrix of the system, we follow the same method as
introduced in [5]. Applying z-transform to equations (3.7) and (3.6) and rearranging terms,
we obtain the following ordinary differential equation

d

dl

(
qz(l)
hz(l)

)
= Az(l)

(
qz(l)
hz(l)

)
(6.14)

with

Az(l) =


0 −T0(l)( z−1

∆tz
)

−( z−1
∆tz

) + β0(l)

T0(l)(C0(l)2 − V0(l)2)

2V0(l)T0(l)( z−1
∆tz

) + γ0(l)

T0(l)(C0(l)2 − V0(l)2)

 (6.15)

Defining ζ(l) = (qz(l), hz(l))
T , the differential equation (6.14) has a solution of the form

ζ(l) = Γz(l, 0)ζ0 (6.16)

For the case of uniform flow, Az does not depend on l and consequently the solution to
the differential equation can be calculated analytically and we will have

Γz(l, 0) = eAzl (6.17)

To solve the differential equation for a general case, the method introduced in [5] can
be used. Using this method, the interval [0, l] is divided to smaller intervals 0 = l0 < l1 <
· · · < ln = l, lk+1 = lk + Lk over which the flow can be approximated by uniform flow and
after solving the differential equation over the small intervals, the overall transfer matrix is
obtained by multiplying the individual transfer matrices, i.e. we can write

Γz(l, 0) =
n∏
k=1

eAzlk (6.18)
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Figure 6.2: The block diagram of system transfer functions.

Approximating the matrix exponentials with the first m terms, we have

eAzlk = I + (Azlk) +
1

2!
(Azlk)2 + · · ·+ 1

m!
(Azlk)m (6.19)

This will result in a transfer matrix Γz(l, 0) whose entries are polynomials of degree nm
in z. This transfer matrix relates the upstream discharge and stage with the discharge and
stage at any location along the channel.

With the location at which estimates of discharge is desired and the locations of the
available measurements fixed, we can carry out the same procedure as above to obtain
transfer matrices between the desired discharge, qd, and each measurement, yi. Denoting
the transfer matrix corresponding to each yi by Gi(z) =

[
Gq
i (z) Gh

i (z)
]
, we can construct a

block diagram as shown in Figure 6.2.

Estimation set-up

In channels with tidal forcing, the flow and stage can be considered as the superposition
of the dominant modes of the tides and accordingly qd and hd can be parametrized as follows

qd(k) = a0 +

Nmodes∑
i=1

aicos(wik) + bisin(wik) (6.20)

hd(k) = c0 +

Nmodes∑
i=1

cicos(wik) + disin(wik) (6.21)

where Nmodes is the number of dominant modes considered.
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With the above parametrization of Qd and Hd, the estimation problem boils down to
estimation of the coefficients ai, bi, ci, di for i = 1, · · · , Nmodes.

Let us define

u(k) = (qd(k), hd(k))T (6.22)

xq = (a0, a1, · · · , aNmodes, b1, · · · , bNmodes)
T (6.23)

xh = (c0, c1, · · · , cNmodes, d1, · · · , dNmodes)
T (6.24)

C(k) = (1, cos(w1k), · · · , cos(wNmodesk),

sin(w1k), · · · , sin(wNmodesk)) (6.25)

and let y(k) = (y1(k), · · · , yp(k))T be the vector of deviation of p available measurements
from their corresponding steady state at time step k. We can now write

yi(k) =qd ∗ gqi + hd ∗ ghi + e(k)

=
mn∑
j=1

C(k − j)xqgqi (j) + C(k − j)xhghi (j) + e(k) (6.26)

where {gqi (j)}mnj=1 and {ghi (j)}mnj=1 are the impulse responses of Gq
i (z) and Gh

i (z), respectively,
and e(k) represents the error and ∗ represents convolution.

We can write equation (6.26) in compact form as follows

yi(k) = Ai(k)x+ e(k) (6.27)

where

Ai(k) =
mn∑
j=1

[
C(k − j)gqi (j) C(k − j)ghi (j)

]
(6.28)

We formulate the estimation problem as the following optimization problem

x̂K = arg min
x
‖ Ax− y ‖2

2 +µK ‖ x− x̂K−1 ‖1 (6.29)

where

A = [A1(1)T , · · · , Ap(1)T , · · · , A1(K)T , · · · , Ap(K)T ]T (6.30)

y = (y1(1), · · · , yp(1), · · · , y1(K), · · · , yp(K))T (6.31)

The l1-norm penalty enforces the variations of the estimates to be sparse. In other words,
at each time step, the amplitudes corresponding to the more significant modes are updated.

Implementation

We implement the method on a 23.4 km long channel in Sacramento-San Joaquin Delta
in northern California which is a complex network of over 1150 km of tidally influenced
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channels and sloughs which cover 738,000 acres of land. The Delta is of great significance
in the state of California as it is the main source of drinking water for more than 20 million
Californians and it is the source of irrigation of most of California’s farmland. The channel
chosen for the implementation is located on the southern side of Sacramento as shown in
Figure 6.3. Figure 6.4 shows the channel cross section at a few different locations along the
section used for the experiment. As can be seen in this figure, the free surface width of the
channel is about 440 ft. and the average depth of the channel is about 35 ft..

Figure 6.3: The map of the channel used for implementation.

Figure 6.4: The cross-section profile of the channel at eight different locations along the channel.

The Delta Simulation Model II (DSM2) is used as the flow model to obtain the measure-
ments of the flow used for performing the estimation and also to evaluate the quality of the
estimates. DSM2 is a one-dimensional mathematical model of the flow in Sacramento-San
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Joaquin Delta which has been developed in the California Department of Water Resources
(DWR). DSM2 uses measurements from USGS sensors as boundary conditions and provides
discharge and stage at any location within the Delta. More detailed information about DSM2
can be found in [19].

To perform the estimation, we run DSM2 based on historical data starting August 10,
2006 until August 12, 2006. We consider a case in which estimations of the discharge at
location 1 is desired when the flow measurements at location 2 are available. To obtain a
parametrization of discharge and stage, we perform a spectral analysis of the downstream
flow and we use the first eight dominant modes to parametrize the discharge. Figure 6.5
shows the power spectrum of the downstream discharge for the month of July 2006. We
perform the estimation for 200 time steps with temporal step size of 15 minutes. Figure 6.6
shows the estimated flow at location 1 and the ground truth, i.e. the flow obtained from
DSM2.
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Figure 6.5: The power spectrum of the downstream discharge for the month of August 2006.

Summary

We applied the LASSO to estimate flow in a tidal channel. Given flow measurements at a
location in the channel, we used the linearized Saint-Venant equations to obtain the transfer
matrix between the flow at any desired location and the measurements. After parametrizing
the flow considering the dominant tidal modes, we applied LASSO to estimate the unknown
parameters. By considering an L1-norm penalty which is taken as the difference between
the decision variables and their estimates obtained at the previous time step, the variations
in the estimated parameters are imposed to be sparse, hence, using the available data to
only update the most significant parameters at every time step. In cases in which estimates
of the flow are desired at a specific location along the channel, this method can be used to
perform real-time estimation efficiently.

77



0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1
x 10

4

Time (hours)

F
lo

w
 (

cf
s)

 

 
True flow
Estimated flow

Figure 6.6: The estimated and true flow at location 1.
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Chapter 7

Optimal Network Topology Design in

Multi-Agent Systems for Efficient

Average Consensus

In the previous chapters, we focused on applying and developing data assimilation tech-
niques to incorporate sensor measurements into flow models. In the implementations and
experiments presented, two types of sensors, drifters and static sensors, were used. In appli-
cations in which a large number of sensors (drifters) are deployed to obtain flow measure-
ments in large networks of open channels, it may be appropriate to implement decentralized
communication architecture among the sensors. In such cases, distributed algorithms and
consensus-based algorithms must be utilized to fuse the sensor data [10], [15], [33]. In this
chapter, we consider a topic in consensus theory which is how to optimally design the com-
munication network topology in multi-agent systems with a decentralized communication
architecture to achieve consensus among the agents as efficiently as possible.

Distributed consensus algorithms have received a lot of attention among researchers in
the last few years. This is mainly because of their application in various multi-agent systems,
including formation control in robotic systems [52], [101] and flocking [92], cooperation in
networked multi-agent systems [93], [102], distributed sensor fusion and estimation [10],
[15], [33] among other examples. The average-consensus algorithm mainly developed in [14]
is the most popular consensus algorithm. Authors in [14] have studied the convergence
and performance of the average-consensus algorithm under different conditions. It is shown
that the convergence speed of the average-consensus protocol is determined by the second
smallest eigenvalue of the Laplacian matrix of the mirror graph of the network which is
itself determined by the topology of the network. A natural question that arises is how
to choose the weights on communication links, the entries of the adjacency matrix of the
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graph, in order to achieve the best performance. In most cases, the network designer can also
determine which agents communicate with each other. Therefore, one can go even further
and investigate the best communication topology, i.e. the communication graph as well as
the weights on the links, so that the performance of the consensus algorithm is optimized.

Since the development of the average-consensus algorithm, extensive efforts have been
made to improve the performance of the algorithm. Authors in [121] consider the problem
of fast distributed linear averaging in discrete time. They define the asymptotic convergence
factor which they maximize by taking the weights on the links as decision variables. They
formulate this maximization problem for networks with undirected graphs as a semidefinite
program. Authors in [11] show that the convergence speed of the average-consensus protocol
may be increased dramatically by adding a few long-range communication links. Authors in
[120] use genetic algorithm (GA) methods to optimize the long-range link configuration to
obtain a small-world network with a faster consensus. In [71] assuming that the weights for
a link between two nodes is a function of the distance between the nodes, the authors find
the best positional configuration of the nodes in order to maximize the convergence speed of
the average-consensus protocol.

In this chapter, we consider the network design problem for fast consensus in a general
setting. It is assumed that a uniformly constant time delay exists on all communication links.
We introduce two approaches to design an efficient network. In the first approach, with a
given number of agents, the goal is to find the network topology such that the communication
cost of the network is less than a given value and the average-consensus protocol converges
as fast as possible in presence of communication time-delays on the links. In the second
approach, a minimum performance is required for the protocol and the goal is to find the
most efficient communication topology, which is a topology with the lowest communication
cost, which fulfills the required performance condition. Here, by communication topology,
we mean the configuration of the communication graph as well as the weights on the com-
munication links. We formulate both forms of the problem as a Mixed Integer Semidefinite
Program (MISDP). The resulted MISDP can be used as a powerful network design tool in
other ways as well. For instance, consider a case where a network has already been designed.
The method presented here can be used to investigate how much the performance of the
network can be improved if a number of communication links are added. Depending on the
extent of the improvement, the designer may consider slight increase of the number of com-
munication links. Similarly, as will be seen in examples in the last section of this chapter,
in some cases, eliminating some of the communication links does not affect the convergence
speed of the protocol. In such cases, the communication cost of the network can be reduced
without degrading the performance of the network.

The more general setting of directed graphs is considered. In fact, the case of undirected
graphs will be included as a special case. Also, a more interesting case which is the case of
networks with undirected graphs but non-symmetric weights is included in this setting. To
this end, we first generalize a few theorems that are previously proven for undirected graphs
to the case of directed graphs in section 7.2; to our knowledge the extension of these results
for undirected graphs have not previously been proven in the literature.
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7.1 Background

We consider a network of n agents with underlying communication graph G. Let G =
(V , E ,A) be a weighted directed graph with V = {v1, · · · , vn} the set of n nodes of the graph,
E ⊆ V × V the set of edges of the graph, and A = [aij] the weighted adjacency matrix of
the graph. If agent i does not communicate with agent j, i.e. eij /∈ E , aij = 0, otherwise aij
is a positive number. An edge of G can be denoted by eij = (vi, vj). The set of indices of
the nodes is denoted by I = {1, 2, · · · , n}. The set of neighbors of a node vi is defined as
Ni = {vj ∈ V|(vi, vj) ∈ E}.

Let xi ∈ R be the state of node vi which might represent a physical quantity, e.g.
position, velocity or the heading angle of agents. A network is defined as Gx = (G, x) with
x = [x1, · · · , xn]T where G is called the topology of the network and x is called the state
(value) of the network. The nodes vi and vj are said to agree if xi = xj. We say that a
consensus has been reached among the nodes of a network if xi = xj for all i, j ∈ I, i 6= j in
which case the common value of all nodes is called the group decision value.

A dynamic network is a dynamical system with state (G, x) where the value of x evolves
in time according to the network dynamics ẋ = F (x, u) = [f(x1, u1), · · · , f(x1, u1)]T . The

average-consensus problem is the problem of calculating
1

n

∑n
i=1 xi(0) in a distributed way,

meaning that the input of each node ui only depends on the states of the node and
its neighbors. The state feedback ui = ki(xj1 , · · · , xjmi

) is called a protocol if we have{
vj1 , · · · , vjmi

}
⊆ {vi}∪Ni. A protocol is said to asymptotically solve the average-consensus

problem if
1

n

∑n
i=1 xi(0)1 with 1 a 1-by-n vector of ones is an asymptotically stable equilib-

rium of ẋ = F (x, k(x)).

For a weighted digraph, the in-degree and the out-degree of node vi is defined as follows:

degin(vi) =
n∑
j=1

aji, degout(vi) =
n∑
j=1

aij (7.1)

The degree matrix of a graph is defined as ∆ = diag(A1) or equivalently as a diagonal matrix
with the ith diagonal entry being equal to the out-degree of the ith node vi.

A few definitions and previously-proven theorems that are used in the subsequent sections
are stated here. We refer the reader to [14], [12] and [13], for further details.

Definition 1 A directed graph (digraph) is said to be strongly connected if there exists a

path between any two distinct nodes of the graph.

Definition 2 A digraph is said to be balanced if the in-degree of each node is equal to its

out-degree.
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Consider the following protocol

ẋ(t) = −Lx(t) (7.2)

where L is the Laplacian of the graph G which is defined as L = ∆−A, or equivalently

ẋ(t) = u(t) (7.3)

with
ui(t) =

∑
vj∈Ni

aij(xj(t)− xi(t)) (7.4)

Theorem 7.1.1 Let G be a digraph with Laplacian matrix L. Denoting the maximum node

out-degree of G by dmax(G), all eigenvalues of L lie in the following disk in the complex plane:

D = {z ∈ C | |z − dmax(G)| ≤ dmax(G)} (7.5)

Theorem 7.1.2 In a network with a directed graph, the above protocol globally asymptoti-

cally solves a consensus problem if the graph is strongly connected. With this assumption,

this protocol globally asymptotically solves the average-consensus problem if and only if the

graph is balanced.

Definition 3 Let G = (V , E ,A) be a weighted digraph. The mirror of G denoted by Ĝ is

the underlying undirected graph of G with the adjacency matrix Â = [âij] where

âij = âji =
aij + aji

2
(7.6)

Theorem 7.1.3 Let G be a digraph with Laplacian L. Then Ls = Sym(L) = (L+ LT )/2 is

the Laplacian matrix of the mirror of G, Ĝ, if and only if G is balanced.

Theorem 7.1.4 In a network of integrators with a balanced strongly connected digraph, the

protocol (7.2) solves the average-consensus problem globally asymptotically with a speed equal

to λ2(Ĝ), the Fiedler eigenvalue of the mirror graph of G. λ2(Ĝ) is also called the algebraic

connectivity of Ĝ.
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Assuming that there is time-delays on communication links, protocol (7.4) changes to

ui(t) =
∑
vj∈Ni

aij(xj(t− τij)− xi(t− τij)) (7.7)

where τij is the delay on the communication link between vi and vj.

Theorem 7.1.5 In a network of integrators with a fixed, undirected and connected graph

and equal time-delay τ > 0 on all links, protocol (7.7) globally asymptotically solves the

average-consensus problem if and only if τ < π/2λmax(L), where λmax(L) is the maximum

eigenvalue of L.

Theorem 7.1.6 If a directed graph G is strongly connected, then rank(L) = n− 1 where L

is the Laplacian of G and n is the number of nodes of the graph. For the case of undirected

graphs, this is a necessary and sufficient condition, i.e. an undirected graph G is connected

if and only if rank(L) = n− 1.

Definition 4 The communication cost of a network is defined as the number of its commu-

nication links, i.e.

C =
n∑

i,j=1

sgn(aij) (7.8)

sgn denotes the sign function which takes negative numbers to -1, 0 to 0 and positive numbers

to 1.

7.2 Preliminary results

The in-valency and out-valency of a node in a directed graph is defined as the number of
edges ending on the node and starting from the node, respectively. A weak path in a directed
graph is a sequence of distinct nodes vi1 , · · · , vim such that either (vik , vik+1) or (vik+1, vik)
belong to the set of edges of the graph for i = 1, · · · ,m. A digraph is called weakly connected
if any two distinct nodes of the graph can be connected by a weak path.

Definition 5 We call a weighted directed graph geometrically balanced if the graph is bal-

anced and the in-valency of each node of the graph is equal to its out-valency.
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The following theorem states that strongly-connectedness is equivalent to weakly-
connectedness for the case of geometrically balanced graphs. Note that it is necessary that
the in-valency and out-valency of each node are equal for the following result to hold. This
condition is not satisfied for any balanced graph; in balanced graphs the in-degree and out-
degree of each node are equal.

Theorem 7.2.1 Let G be a digraph such that the in-valency of each node is equal to its

out-valency. Then G is strongly connected if and only if it is weakly connected.

Proof 1 We refer the reader to any book on algebraic graph theory, e.g. [58], for a proof.

The following theorem generalizes Theorem 7.1.6 to the case of directed graphs.

Theorem 7.2.2 Let G be a geometrically balanced digraph. Then G is strongly connected if

and only if rank(L̂) = n− 1 where L̂ is the Laplacian of the mirror graph of G and n is the

number of nodes of G.

Proof 2 This can be proven directly from Theorems 7.1.6 and 7.2.1.

The following theorem provides a sufficient condition for convergence of protocol (7.7) for
the case of directed graphs. This theorem can be considered as a weak extension of Theorem
7.1.5 to the case of networks with directed graphs.

Theorem 7.2.3 In a network of integrators with a fixed, strongly connected and balanced

digraph and equal time-delay τ > 0 on all links, protocol (7.7) globally asymptotically solves

the average-consensus problem if τ ≤ 1

2dmax(G)
where dmax(G) is the maximum degree of the

graph G.

Proof 3 The first part of the proof follows directly from the proof of Theorem 7.1.5 [14].

Since the time delay on all links are assumed to be equal, we have
∑n

i=1 ui = 0 which implies

that Ave(x) is invariant under protocol (7.7). Therefore, we just need to prove that (7.7)

is stable. Since X(s) = (sIn + e−τsL)−1x(0), it suffices to show that all zeros of Zτ (s) =

(sIn+e−τsL), lie in the left half plan or at the origin for a graph with the prescribed properties.
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First, note that any eigenvector v of Zτ (s) is an eigenvector of L and vice versa. Since the

graph is assumed to be strongly connected, L has a simple eigenvalue at the origin. In fact,

s = 0 in the direction of v0 is a zero of Zτ (s) where v0 is an eigenvector corresponding to

the eigenvalue of L at the origin. Let us denote any nonzero eigenvalue of L by λ and its

corresponding eigenvector by v. For s 6= 0 being a zero of Zτ (s) in the direction of v, i.e.

Zτ (s)v = 0, we must have

1

λ
+
e−τs

s
= 0 (7.9)

Thus, using the Nyquist stability criterion, protocol (7.7) is stable if the net encirclement of

the Nyquist plot of Ω(s) =
e−τs

s
around −1

λ
is zero.

We have

Ω(jv) =
e−jvτ

jv
= −sin(vτ)

v
− j cos(vτ)

v
(7.10)

Note that Re(Ω(jv)) ≥ −τ meaning that the Nyquist plot of Ω(s) is entirely on the right side

of −τ .

According to Theorem 7.1.1, we know that all eigenvalues of L lie on or inside the disk

D = {z = zr + jzim ∈ C | (zr − dmax(G))2 + z2
im ≤ dmax(G)2} where dmax(G) is the maximum

out-degree of the graph G. For any z = zr + jzim ∈ D \ {0}, we have

(zr − dmax(G))2 + z2
im ≤ dmax(G)2 (7.11)

⇐⇒ z2
r + z2

im ≤ 2zrdmax(G) (7.12)

⇐⇒ −zr
z2
r + z2

im

≤ −1

2dmax(G)
(7.13)

This implies that the map f(z) = −1

z
transforms D \ {0 + j0} into the half space H = {z =

zr + jzim ∈ C | zr ≤
−1

2dmax(G)
}. Therefore, Re

(
−1

λ

)
lies in H for all nonzero eigenvalues λ

of L. As a result, if τ ≤ 1

2dmax(G)
, the net encirclement of the Nyquist plot of Ω(s) =

e−τs

s

around −1

λ
is zero and protocol (7.7) is stable.
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7.3 Optimal network design

7.3.1 Network design for fast consensus

Our goal is to design a communication topology for a network with a given number of
nodes such that the convergence speed of protocol (7.7) is maximized while the communica-
tion cost of the network is below a predefined value Cmax and an equal non-zero time-delay
which is less than τmax exists on all communication links.

According to Theorems 7.1.4, 7.2.2 and 7.2.3, the network design problem can be formu-
lated as the following optimization program:

max
L∈Rn×n

λ2(L̂) (7.14)

s.t. L̂ =
L+ LT

2
(7.15)

L̂ � 0 (7.16)

lij ≤ 0 ∀i, j ∈ I, i 6= j (7.17)

L1 = 0 (7.18)

1TL = 0 (7.19)

The underlying graph of L is strongly connected. (7.20)

dmax(G) ≤ 1

2τmax

(7.21)

C =
n∑

i,j=1,i 6=j

sgn(−lij) ≤ Cmax (7.22)

where lij is the entry of L located at the ith row and jth column of L.

In the above optimization program, equation (7.15) expresses L̂ in terms of L, con-
straints (7.17) and (7.18) ensure that L is a legitimate Laplacian matrix. Constraint (7.19)
is imposed to make L correspond to a balanced graph. According to Theorem 7.2.3, con-
straints (7.19), (7.20) and (7.21) are needed to ensure the convergence of the average-
consensus protocol. Finally, constraint (7.22) imposes the bound on the communication
cost of the network.

Our goal is to transform the above optimization program to a standard convex optimiza-
tion program which can be solved efficiently using the available solvers. As will be seen later,
we transform the above problem to a Mixed Integer Semidefinite Program (MISDP).

We start with the constraints. We shall transform all constraints to affine equalities
or Linear Matrix Inequalities (LMI). In fact, constraints (7.15), (7.17), (7.18) and (7.19)
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are already in the desired form. We deal with constraint (7.20) after constraints (7.21)
and (7.22). Constraint (7.21) may be formulated as

lii ≤
1

2τmax

∀i ∈ I. (7.23)

In order to transform constraint (7.22), we prove the following theorem

Theorem 7.3.1 For each lij ≤ 0, i, j = 1 · · · , n, i 6= j introduce a binary variable γij ∈

{0, 1}. Assuming an arbitrarily small lower bound M < 0 on lij for i, j = 1 · · · , n, i 6= j, the

following two sets of expressions are equivalent:

1.

lij ≤ 0 i, j = 1, · · · , n, i 6= j (7.24)

n∑
i,j=1,i 6=j

sgn(−lij) ≤ Cmax (7.25)

2.

γij ∈ {0, 1} i, j = 1, · · · , n, i 6= j (7.26)

lij ≤ 0 i, j = 1, · · · , n, i 6= j (7.27)

lij < 1− γij i, j = 1, · · · , n, i 6= j (7.28)

lij ≥ γijM i, j = 1, · · · , n, i 6= j (7.29)

n∑
i,j=1,i 6=j

γij ≤ Cmax (7.30)

Proof 4 We first show that equations (7.26), (7.27), (7.28) and (7.29) state that lij = 0 if

and only if γij = 0 for i, j = 1, · · · , n, i 6= j. Suppose lij = 0, then equation (7.29) implies that

γij = 0, and all other inequalities remain valid. If γij = 0, then equations (7.27) and (7.29)

imply that lij = 0 and other inequalities are valid. Equivalently, we have lij < 0 ⇔ γij = 1

for i, j = 1, · · · , n, i 6= j and this completes the proof.
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If we restrict the graph to strongly balanced digraphs, we can write constraint (7.20) in
the desired form. We use the boolean variables defined in the above theorem to enforce the
condition that the in-valency and out-valency of all nodes of the underlying graph of L are
equal. This can be written as

Γ1 = ΓT1 (7.31)

where Γ ∈ {0, 1}n×n is a binary matrix with Γij = γij for i, j = 1, · · · , n, i 6= j and Γii = 0
for i = 1, · · · , n.

By using Theorem 7.2.2, we can replace constraint (7.20) by the following condition

rank(L̂) = n− 1 (7.32)

Since L̂ is a positive semidefinite matrix with one eigenvalue equal to zero, we have the
following equivalence [63]:

rank(L̂) = n− 1⇐⇒ λ2(L̂) > 0 (7.33)

Consequently, constraints (7.20) and (7.16) can be replaced by conditions (7.31)
and (7.33).

Performing all transformations so far, the optimization program (7.14) can be written as
the following mixed integer program:

max
L∈Rn×n,Γ∈{0,1}n×n

λ2(L̂) (7.34)

s.t. L̂ =
L+ LT

2
(7.35)

lij ≤ 0 ∀i, j ∈ I, i 6= j (7.36)

L1 = 0 (7.37)

1TL = 0 (7.38)

lii ≤
1

2τmax

∀i ∈ I (7.39)

γij ∈ {0, 1} i, j = 1, · · · , n, i 6= j (7.40)

γii = 0 i = 1, · · · , n (7.41)

lij < 1− γij i, j = 1, · · · , n, i 6= j (7.42)

lij ≥ γijM i, j = 1, · · · , n, i 6= j (7.43)
n∑

i,j=1,i 6=j

γij ≤ Cmax (7.44)

λ2(L̂) > 0 (7.45)

Γ1 = ΓT1 (7.46)

We are now left with the cost function and constraint (7.45) which need to be transformed
to LMIs.
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For the second smallest eigenvalue of the Laplacian of a graph, we can write [58]

λ2(L̂) = min
z 6=0

zT L̂z

‖z‖2
: 1T z = 0 (7.47)

By defining W = zzT , we can write

λ2(L̂) = min
W∈Sn

〈W, L̂〉 (7.48)

s.t. W � 0 (7.49)

TrW = 1 (7.50)

W1 = [0]n×1 (7.51)

rank(W ) = 1 (7.52)

where the inner product between two matrices, W and L̂ is defined as 〈W, L̂〉 = Tr(L̂W ).
We first relax the rank constraint and form the dual. Then we show that the rank relaxation
is exact. After eliminating the rank constraint, i.e. constraint (7.52), the dual problem can
be written as follows

L(W,V, ν1, ν2) =〈W, L̂〉 − 〈W,V 〉
+ ν1(1−TrW ) + νT2 W1 (7.53)

where V ∈ Sn+, ν1 ∈ R, ν2 ∈ Rn.

g(V, ν1, ν2) = min
W∈Sn

〈W, L̂− V − ν1I + ν21
T 〉+ ν1 (7.54)

=

{
ν1 if L̂− V − ν1I + ν21

T = 0

−∞ otherwise
(7.55)

Therefore,

d∗ = max
V ∈Sn

+,ν1∈R,ν2∈Rn
g(V, ν1, ν2) (7.56)

= max
ν1∈R,ν2∈Rn

ν1 (7.57)

s.t. (ν2)1 = · · · = (ν2)n = α (7.58)

ν21
T − ν1I + L̂ � 0 (7.59)

= max
ν1,α∈R

ν1 (7.60)

s.t. α11T − ν1I + L̂ � 0 (7.61)
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We now show that the rank relaxation, i.e. relaxation of constraint (7.52), is exact. In
other words, eliminating constraint (7.52) does not change the optimal value.

The primal and the dual problems are both strictly feasible. Hence, according to the
Slater’s theorem, strong duality holds and the primal and dual problems are both attained
by some primal-dual triplet (W ∗, ν∗1 , α

∗). Therefore, the Karush-Kuhn-Tucker (KKT) con-
ditions are necessary and sufficient for the optimal solutions [27, 26]. These conditions are
as follows

• Primal feasibility: W ∗ � 0, TrW ∗ = 1, W ∗1 = [0]n×1

• Dual feasibility: α∗11T − ν∗1I + L̂ � 0

• Complementary slackness: (α∗11T − ν∗1I + L̂)W ∗ = 0

Suppose W ∗ is a primal optimal solution. The last KKT condition proves that (α∗11T −
ν∗1I+L̂)W ∗ = 0, therefore for any non-zero column w∗ of W ∗ we have: (α∗11T−ν∗1I+L̂)w∗ =
0. After normalizing w∗ we have: w∗(w∗)T � 0, Trw∗(w∗)T = 1, w∗(w∗)T1 = [0]n×1. Hence,
w∗(w∗)T is a primal optimal solution whose rank is equal to 1. This proves the exactness of
the rank relaxation.

Finally, the optimization program (7.34) can be formulated as the following MISDP

Optimization Program.I:

max
L∈Rn×n,Γ∈{0,1}n×n,ν,α∈R

ν (7.62)

s.t. L̂ =
L+ LT

2
(7.63)

lij ≤ 0 ∀i, j ∈ I, i 6= j (7.64)

L1 = 0 (7.65)

1TL = 0 (7.66)

ν > 0 (7.67)

α11T − νI + L̂ � 0 (7.68)

lii ≤
1

2τmax

∀i ∈ I (7.69)

γii = 0 i = 1, · · · , n (7.70)

lij < 1− γij i, j = 1, · · · , n, i 6= j (7.71)

lij ≥ γijM i, j = 1, · · · , n, i 6= j (7.72)

Γ1 = ΓT1 (7.73)

1TΓ1 ≤ Cmax (7.74)

Note that constraint (7.67) is imposed as a replacement for constraint (7.45).

A few remarks are in order:
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Remark 2 For cases in which some constraints exist on communications between agents

due to geometric configuration, hardware capabilities, etc., appropriate constraints may be

imposed in the above program. For instance, if agent i may not communicate with agent j

because of long distance between them, the constraint lij = 0 can be added to the constraints

of the above program to incorporate this condition.

Remark 3 If the communication topology of the network is fixed a priori, the weights on

the links may be chosen optimally by solving a SDP obtained from Optimization Program I

after omitting constraints (7.70), (7.71), (7.73) and (7.88).

Remark 4 Note that the problem of designing a network with undirected communication

graph is a special case of the above problem. However, we can use Theorem 7.1.5 instead

of Theorem 7.2.3 to ensure the convergence of protocol (7.7). Therefore, we should impose

λmax(L) <
π

2τmax

. To transform this constraint to a LMI, using the following formulation of

the maximum eigenvalue of a matrix

λmax(L) = max
y 6=0

yT L̂y

‖y‖2
(7.75)

we have

max
y 6=0

yTLy

‖y‖2
<

π

2τmax

⇐⇒ yTLy

‖y‖2
<

π

2τmax

∀y 6= 0 (7.76)

⇐⇒ π

2τmax

I − L � 0 (7.77)

The Optimization Program I reduces to the following for the case of networks with

undirected graphs
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Optimization Program.II:

max
L∈Sn,Γ∈{0,1}n×n,ν,α∈R

ν (7.78)

s.t. lij ≤ 0 ∀i, j ∈ I, i < j (7.79)

L1 = 0 (7.80)

ν > 0 (7.81)

α11T − νI + L � 0 (7.82)

π

2τmax

I − L � 0 (7.83)

γij = γji i, j = 1, · · · , n, i < j (7.84)

γii = 0 i = 1, · · · , n (7.85)

lij < 1− γij i, j = 1, · · · , n, i < j (7.86)

lij ≥ γijM i, j = 1, · · · , n, i < j (7.87)

1

2
1TΓ1 ≤ Cmax (7.88)

7.3.2 Network design for low communication cost

In this section, we adapt the previous results to another situation, in which a minimum
performance in terms of the convergence speed of the consensus protocol (7.7) is desired and
the goal is to design a network with the lowest possible communication cost which fulfills
the performance requirement.

We assume that the desired performance is given in terms of the Fiedler eigenvalue of
the mirror graph, i.e. a network is desired such that λ2(L̂) ≥ λmin

2 where L̂ is the Laplacian
of the mirror graph. Note that this assumption is valid since λ2(L̂) determines the speed of
convergence of the group disagreement.

According to the results of the previous section, this design problem can be formulated
as the following mixed integer semidefinite program:
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Optimization Program.III:

min
L∈Rn×n,Γ∈{0,1}n×n,ν,α∈R

1TΓ1 (7.89)

s.t. L̂ =
L+ LT

2
(7.90)

lij ≤ 0 ∀i, j ∈ I, i 6= j (7.91)

L1 = 0 (7.92)

1TL = 0 (7.93)

ν > λmin
2 (7.94)

α11T − νI + L̂ � 0 (7.95)

lii ≤
1

2τmax

∀i ∈ I (7.96)

γii = 0 i = 1, · · · , n (7.97)

lij < 1− γij i, j = 1, · · · , n, i 6= j (7.98)

lij ≥ γijM i, j = 1, · · · , n, i 6= j (7.99)

Γ1 = ΓT1 (7.100)

Note that constraints (7.68) and (7.94) guarantee that λ2(L̂) > λmin
2 .

7.4 Numerical examples and simulation results

In this section, we provide some numerical examples and simulation results. The op-
timization programs are solved using YALMIP [76] with SeDuMi [109] as the SDP solver.
In all of the following examples, the communication time-delay upper bound is taken as .1
second, i.e. τmax = 0.1.

Example 1 In this example, we implement Optimization Program I for two cases, a network

of 5 agents with Cmax = 14, and a network of 9 agents with Cmax = 20. Figure 7.1, shows the

optimal graphs in both cases. The eigenvalue distribution of the Laplacian matrices of the

optimal mirror graphs are shown in Tables 7.1 and 7.2. As can be seen in Table 7.1, for the

first network, n = 5, all eigenvalues of the Laplacian of the optimal mirror graph, except the

smallest one which has to be 0, are equal to 6.2500. Furthermore, by solving Optimization

Program I for larger Cmax, we realize that increasing the maximum allowable communication

cost does not change the optimal solution. This means that this communication topology pro-
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Figure 7.1: Optimal graphs, n = 5 (left), n = 9 (right), corresponding to Example 1, obtained by solving

Program.I.

Figure 7.2: Optimal undirected graph, corresponding to Example 2, obtained by solving Program.II.

vides the best possible performance that one could possibly achieve for the average-consensus

algorithm in terms of the convergence speed. On the other hand, note that the optimal graph

has only 10 links. This means that adding any number of communication links to the network

will not have any effect on the convergence speed of the average-consensus protocol.

In the second network, it can be seen in Figure 7.1 that the optimal graph has only 18

links although Cmax was set to 20. This is due to the fact that we are restricting the feasible

set to the case of strongly-balanced graphs for which the in-valency of each node must be equal

to its out-valency.
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Table 7.1: Eigenvalues of the Laplacian of the optimal mirror graph for the first network in Example 1.

λ1(L̂) λ2(L̂) λ3(L̂) λ4(L̂) λ5(L̂)
0.0000 6.2500 6.2500 6.2500 6.2500

Table 7.2: Eigenvalues of the Laplacian of the optimal mirror graph for the second network in Example 1.

λ1(L̂) λ2(L̂) λ3(L̂) λ4(L̂) λ5(L̂)
0.0000 4.0672 4.0672 4.0672 4.0672

λ6(L̂) λ7(L̂) λ8(L̂) λ9(L̂)
5.6734 5.6734 8.6922 8.6922

Example 2 In this example, we implement Optimization Program II for designing an undi-

rected network of 12 agents with Cmax = 18. Figure 7.2 and Table 7.3 show the optimal graph

and the eigenvalue distribution of the optimal Laplacian matrix, respectively. The optimal

graph has 18 links.

Table 7.3: Eigenvalues of the Laplacian of the optimal graph for the network in Example 2.

λ1(L̂) λ2(L̂) λ3(L̂) λ4(L̂) λ5(L̂) λ6(L̂)
0.0000 4.3669 4.3669 4.6505 4.6505 7.4023

λ7(L̂) λ8(L̂) λ9(L̂) λ10(L̂) λ11(L̂) λ12(L̂)
7.4023 12.6726 13.1070 13.1070 15.7080 15.7080

Example 3 In this example, we design the cheapest (in the sense of communication cost)

network for a network of 7 agents for different values of λmin
2 which is a user defined param-

eter that determines the minimum required convergence speed of the protocol. Optimization

Program III is solved for all cases. Figure 7.3 shows the optimal graphs for four values of

λmin
2 , 2.5, 4, 4.75, 5. As can be seen in Figure 7.3, the communication cost of the optimal

network is 12, 14, 18 and 21 for these four cases, respectively. The eigenvalue distribution

of the Laplacian matrices of the optimal mirror graphs for different values of λmin
2 is shown

in Table 7.4. Figure 7.4 shows the communication cost of the optimal network for different

values of λmin
2 . This plot can be very useful in designing network topologies. It can be seen

in Figure 7.4 that improving the network topology for a faster consensus is very costly in
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terms of communication cost when λmin
2 = 4.5. In fact, changing λmin

2 = 4.5 to λmin
2 = 5

increases the communication cost by 50%. However, the network topology can be improved

from λmin
2 = 3 to λmin

2 = 4.5 without increasing the communication cost of the network.

Figure 7.3: λ2(L̂) ≥ 2.5 (top, left), λ2(L̂) ≥ 4 (top, right), λ2(L̂) ≥ 4.75 (bottom, left), λ2(L̂) ≥ 5 (bottom,

right), corresponding to Example 3, obtained by solving Program.III.
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Figure 7.4: Communication cost of the optimal graph for different values of λmin
2 for the network in

Example 3.

Table 7.4: Eigenvalues of the Laplacian of the optimal mirror graph for the network in Example 3.

λmin
2 λ2(L̂) λ3(L̂) λ4(L̂) λ5(L̂) λ6(L̂) λ7(L̂)

1 1.1206 1.1206 3.6387 3.6387 5.6580 5.6580
2 2.0000 2.0000 4.9593 6.6657 7.2069 8.9154
3 3.4497 3.5003 4.6388 4.7704 6.5879 6.8518
4 4.0182 4.0299 4.6207 5.7061 7.6199 7.9180
5 5.4412 5.4473 5.4533 5.4579 5.4616 5.4690

5.7 5.7650 5.7658 5.7674 5.7679 5.7684 5.7703

97



Chapter 8

Conclusions and future work

8.1 Summary

This dissertation presented different methods for assimilation of data into mathematical
models of flow in open channels and networks of open channels. First, the Saint-Venant model
which is a set of nonlinear partial differential equations was presented. It was shown how
these equations can be discretized using explicit discretization schemes and a characteristic-
based discretization method to obtain a state-space model of the flow in a network of open
channels. Standard state estimation techniques such as the Kalman filter, the Extended
Kalman filter and the Unscented Kalman filter, were applied to estimate the state of the
system in real time. In a case in which an accurate knowledge of some of the model pa-
rameters is not available, it was shown how these state estimation methods can be used
to simultaneously estimate the unknown parameters and the state of the system given the
available measurements of the flow. It was also shown how Lagrangian sensors, also called
drifters, can be used to obtain measurements of the flow. These drifters which are equipped
with GPS receivers and communication modules move with the flow and transmit their po-
sitions and velocities at every time step. Knowing the bathymetry of the channel at the
corresponding cross section, these local flow velocity measurements can be used to calculate
the flow or discharge at the corresponding cross section. In comparison to traditional static
sensors, drifters have much lower production and maintenance cost. They can be deployed
in any area which is of interest and be retrieved at the end. In particular, they can be
utilized in cases of emergency response and in places where an appropriate infrastructure is
not available. An example of such deployments was presented in an experiment performed to
simulate a levee break in an artificial channel located on the eastern border of Carl Blackwell
Lake, in Stillwater, Oklahoma.

For data assimilation in large-scale networks of open channels which lead to high dimen-
sional models, more sophisticated methods were used to tractably perform state estimation
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in real time. The optimal sampling importance resampling filter which is an instance of par-
ticle filters, also known as sequential Monte Carlo, was applied to perform state estimation
for such nonlinear and high dimensional models. Also, we presented the application of a
recently developed Monte Carlo method, the implicit particle filter, to the flow estimation
problem. We investigated the performance of this method in terms of accuracy of estimation
results and the computational cost. It was shown that although the computational cost of
propagating each particle is higher in the implicit particle filter, better estimation results
can be achieved with smaller number of particles. This is because in implicit particle filter,
the particles are all chosen such that they belong to a high probability region of the posterior
probability density function. Moreover, it was seen that the implicit particle filter could be
easily applied in the case of intermittent observations. More precisely, in a practical situation
in which measurements of the flow are not available at every time step, the implicit particle
filter was applied to incorporate the measurements as they become available to the model.
Two heuristic approaches were also studied. In particular, a maximum a posteriori based
method was proposed to perform the data assimilation with a lower computational cost.

Another practical case was considered in which estimation of flow variables at a specific
location in a channel with tidal forcing was desired while measurements of the flow at other
locations were available. The estimation problem was posed as an input estimation problem
after obtaining a transfer matrix representation of the Saint-Venant equations. The inputs
were parametrized using the dominant tidal modes and the LASSO, least squares with l1-
norm regularization was used to estimate the unknown parameters. A homotopy-based
algorithm was used to solve the LASSO recursively to update the most significant unknown
parameters, tidal amplitudes, as new measurements would become available.

Finally, we considered the problem of optimal network topology design in multi-agent
systems for efficient average consensus. The communication network topology can be repre-
sented using algebraic graphs. After generalizing some results proven for undirected graphs to
the case of directed graphs, the problem of designing a network with optimal communication
graph for efficient average-consensus protocol was considered. We posed the problem in two
different ways. One approach was to find the topology which results in the fastest possible
average-consensus while the communication cost, i.e. the number of communication links, is
less than a given value and the network tolerates communications time delays of smaller than
a given bound. In the second approach, under the same conditions, a minimum convergence
speed is desired and the design problem is posed as finding the communication topology with
the lowest communication cost that provides the desired speed performance. We formulated
both design problems as a mixed integer semidefinite program. The problem was solved
for the case of directed graphs and the case of undirected graphs is considered as a special
class. Moreover, in applications where an undirected communication topology is desired, the
convergence speed of the protocol can be improved by considering non-symmetric weights on
the communication links, i.e. an undirected graph with a non-symmetric adjacency matrix.
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Figure 8.1: Hidden Markov Model.

8.2 Topics of future research

Research can be done in a few different directions to continue the work presented in
this dissertation. One direction of interest, would be to use historical measurements of
the flow in the network of interest to estimate the covariance matrices of the process and
measurement noises. In the rest of this chapter, we explain this can be done using the
expectation maximization (EM) method.

8.2.1 Noise identification via expectation maximization (EM)

We can consider the state-space model constructed in section 3.1.4, as a Hidden Markov
Model (HMM), as shown in Figure 8.1. With the Gaussianity assumptions we made on the
process and measurement noises, the transition and emission probabilities are Gaussian and
we have

x0 ∼ N (x̄0, P0) (8.1)

xk|xk−1 ∼ N (f(xk−1), Q) (8.2)

zk|xk ∼ N (Hxk, R) (8.3)

With these, the hidden Markov model is fully characterized and Q and R are the param-
eters we are aiming to estimate. The hidden Markov model is a partially observed graphical
model where zk’s are the observed variables and xk’s are the latent variables. In such mod-
els, the expectation maximization (EM) algorithm is the standard method to estimate the
unknown parameters, θ = Q,R.

To apply the EM algorithm, the complete log likelihood needs to be calculated:
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lc(D|θ) =log p(z, x|θ) = log

(
p(x0)

T−1∏
k=0

p(xk+1|xk, Q)
T∏
k=0

p(zk|xk, R)

)

=log p(x0) +
T−1∑
k=0

log p(xk+1|xk, Q) +
T∑
k=0

log p(zk|xk, R)

=− log
(

(2π)
1
2

(n+m)(T+1)(detP0)
1
2 (detQ)

T
2 (detR)

T+1
2

)
+ (x− x̄0)TP−1

0 (x− x̄0) +
T−1∑
k=0

(xk+1 − f(xk))
TQ−1(xk+1 − f(xk))

+
T∑
k=0

(zk −Hxk)TR−1(zk −Hxk) (8.4)

Taking derivatives of lc(D|θ) with respect to Q and R and setting them equal to zero,
we obtain the following estimates for Q and R:

Q̂ =
1

T

T−1∑
k=0

(xk+1 − f(xk))(xk+1 − f(xk))
T (8.5)

R̂ =
1

T + 1

T∑
k=0

(zk −Hxk)(zk −Hxk)T (8.6)

Hence, ΦQ(x1:T ) =
∑T−1

k=0 (xk+1 − f(xk))(xk+1 − f(xk))
T and ΦR(x1:T , z1:T ) =

∑T
k=0(zk −

Hxk)(zk −Hxk)T are the sufficient statistics for Q and R, respectively. In the E step of the
EM algorithm, we need to calculate the conditional expectations of the sufficient statistics,
i.e. E[ΦQ(x1:T )|z0:T , Q

t] and E[ΦR(x1:T , z1:T )|z0:T , R
t]. We calculate the expected sufficient

statistics via Monte Carlo (forward-filtering, backward smoothing), which is explained in the
next section:

E[ΦQ(x1:T )|z0:T , Q
t] ≈ 1

Ns

Ns∑
i=1

ΦQ(xi1:T )

E[ΦR(x1:T , z1:T )|z0:T , R
t] ≈ 1

Ns

Ns∑
i=1

ΦR(xi1:T , z1:T )

where {xi1:T} is the collection of samples obtained from the particle smoother.

The M step consists of the following recursive equations:

Q̂t+1 =
1

T
Φt
Q (8.7)

R̂t+1 =
1

T + 1
Φt
R (8.8)
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Backward smoothing: For the backward smoothing procedure, a sequential Monte
Carlo approximation is presented below [45]

p(xk|z1:T ) ≈
Ns∑
i=1

wik|T δ(xk − xik) =
Ns∑
i=1

wik

[
Ns∑
j=1

wik+1|T
p(xjk+1|xik)∑Ns

l=1w
l
kp(x

j
k+1|xlk)

]
δ(xk − xik) (8.9)

Having obtained the forward weights {wik|i = 1, · · · , Ns, k = 1, · · · , T}, equation (8.9)

can be used to calculate the smoothed weights
{
wik|T |i = 1, · · · , Ns, k = 1, · · · , T

}
, recur-

sively.
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