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Abstract

Topics in Large-Scale
Sparse Estimation and Control

by

Tarek Sami Rabbani

Doctor of Philosophy in Engineering-Mechanical Engineering
and the Designated Emphasis

in
Computational Science and Engineering

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

In this thesis, we study two topics related to large-scale sparse estimation and control.
In the first topic, we describe a method to eliminate features (variables) in ℓ1-regularized
convex optimization problems. The elimination of features leads to a potentially substantial
reduction in computational effort needed to solve such problems, especially for large values
of the penalty parameter. Our method is not heuristic: it only eliminates features that are
guaranteed to be absent after solving the optimization problem. The feature elimination
step is easy to parallelize and can test each feature for elimination independently. Moreover,
the computational effort of our method is negligible compared to that of solving the convex
problem.

We study the case of ℓ1-regularized least-squares problem (a.k.a. LASSO) extensively and
derive a closed-form sufficient condition for eliminating features. The sufficient condition can
be evaluated by few vector-matrix multiplications. For comparison purposes, we present a
LASSO solver that integrates SAFE with the Coordinate Descent method. We call our
method CD-SAFE, and we report the number of computations needed for solving a LASSO
problem using CD-SAFE and using the plain Coordinate Descent method. We observe
at least a 100 fold reduction in computational complexity for dense and sparse data-sets
consisting of millions of variables and millions of observations. Some of these data-sets can
cause memory problems when loaded, or need specialized solvers. However, with SAFE, we
can extend LASSO solvers capabilities to treat large-scale problems, previously out of their
reach. This is possible, because SAFE eliminates variables and thus portions of our data at
the outset, before loading it into our memory.

We also show how our method can be extended to general ℓ1-regularized convex prob-
lems. We present preliminary results for the Sparse Support Vector Machine and Logistic
Regression problems.
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In the second topic of the thesis, we derive a method for open-loop control of open channel
flow, based on the Hayami model, a parabolic partial differential equation resulting from a
simplification of the Saint-Venant equations. The open-loop control is represented as infinite
series using differential flatness, for which convergence is assessed. Numerical simulations
show the effectiveness of the approach by applying the open-loop controller to irrigation
canals modeled by the full Saint-Venant equations.

We experiment with our controller on the Gignac Canal, located northwest of Montpellier,
in southern France. The experiments show that it is possible to achieve a desired water flow
at the downstream of a canal using the Hayami model as an approximation of the real-
system. However, our observations of the measured water flow at the upstream controlled
gate made us realize some actuator limitations. For example, deadband in the gate opening
and unmodeled disturbances such as friction in the gate-opening mechanism, only allow us to
deliver piece-wise constant control inputs. This fact made us investigate a way to compute
a controller that respects the actuator limitations. We use the CD-SAFE algorithm, to
compute such open-loop control for the upstream water flow. We compare the computational
effort needed to obtain an open-loop control with certain dynamics using the CD-SAFE
algorithm and the plain Coordinate Descent algoirthm. We show that with CD-SAFE we
are able to obain an open-loop control signal with cheaper computations.
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Chapter 1

Introduction

In the first part of the thesis, we present a method that can eliminate variables in an
ℓ1−regularized convex optimization problem, that arises in statistics [54], signal process-
ing [8], machine learning, engineering and other fields. The variables or features selected
for elimination is done in a cheap pre-processing step a-priori to solving the problem. Our
method is novel because it is not a heuristic, any feature eliminated is guaranteed to be
absent after solving the problem with all its original features. Thus we give our method
the name Safe Feature Elimination (SAFE). Although we concentrate in this work on the
ℓ1−regularized least-squares problem or the LASSO, the main idea behind our method can
be generalized to other convex problems involving ℓ1 regularization.

Performing SAFE depends only on the features of interest for elimination and thus our
method can be run independently of other features in the model and in parallel. For ex-
tremely large datasets, where there are millions of observations, high dimensions or both, the
bottle-neck in processing the data can be just in loading the data into memory. SAFE pro-
vides a way to resolve this issue by reducing dimensions or eliminating features. SAFE is a
preprocessing method that can complement the specific solvers of a particular ℓ1−regularized
convex problem and possibly introduce huge savings in computational complexity by elimi-
nating features. For example, the interior-point method for the LASSO in [27] has a com-
plexity of order O (min(n,m)2max(n,m)) flops, where n is the number of variables (features)
and m the number of data points. Hence it is of interest to be able to efficiently eliminate
features in a pre-processing step and reduce the memory requirements and computational
cost for solving the problem.

An interesting fact is that SAFE can be very aggressive at removing features at some
particular values of the regularization parameter. The specific application we have in mind
involves large data sets of text documents, and sparse matrices based on occurrence, or other
score, of words or terms in these documents. We seek extremely sparse optimal solutions,
even if this means operating at values of the penalty parameter that are substantially larger
than those dictated by a pure concern for predictive accuracy. This fact opens the hope
that, at least for the application considered, the number of features eliminated by using our
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SAFE method is high enough to allow a dramatic reduction in computing time and memory
requirements.

1.1 Related Work

Feature selection methods are often used to accomplish dimensionality reduction, and are of
utmost relevance for data-sets of massive dimension, see for example [14]. These methods,
when used as a pre-processing step, have been referred to in the literature as screening
procedures [14, 15]. They typically rely on univariate models to score features, independently
of each other, and are usually computationally fast. Classical procedures are based on
correlation coefficients, two-sample t-statistics or chi-square statistics [14]; see also [18] and
the references therein for an overview in the specific case of text classification. Most screening
methods might remove features that could otherwise have been selected by the regression
or classification algorithm. However, some of them were recently shown to enjoy the so-
called “sure screening” property [15]: under some technical conditions, no relevant feature is
removed, with probability tending to one.

Screening procedures typically ignore the specific regression or classification task to be
solved after feature elimination. In this work, we propose to remove features based on the
supervised learning problem considered, that is on both the structure of the loss function
and the problem data. Unlike screening procedures, the features in SAFE are eliminated
according to a sufficient, in general conservative condition.

1.2 Contributions

The first contribution of this part of the dissertation is the formulation of the Safe Feature
Elimination problem (chapters 3 and 5), or the SAFE test problem. The SAFE test prob-
lem is a convex optimization problem, whose solution can be used to construct a sufficient
condition for eliminating features in an ℓ1−regularized convex optimization problem. The
formulation depends on the structure of the loss function and (only) on the feature to be
tested for elimination. The formulation allows us to construct sufficient conditions for elim-
inating multiple features at the same time, or in parallel, because each SAFE test problem
for some feature is independent of the others.

The second contribution is the closed-form solution of the SAFE test problem when the
loss function of the convex problem considered is the square-loss function (chapters 3 and 4),
i.e. the ℓ1−regularized least-squares problem. The explicit solution allows us to construct
the sufficient condition for eliminating features very efficiently, with a negligible total cost
of computations.
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1.3 Organization

The first part of the dissertation is organized as follows. In chapter 2, we introduce the
LASSO problem or the ℓ1−regularized least-squares problem. The chapter is self-contained,
we explain all the background needed to derive our Safe Feature Elimination method, includ-
ing the concepts of a Dual Problem, weak and strong duality. We also describe the solution
of the LASSO problem as a function of the ℓ1 regularization used. Although in this chapter
we derive the dual problem and strong duality theory for the LASSO, the procedures and
concepts used in the derivation are the same for other convex problems.

In chapter 3, we derive the Safe Feature Elimination method for the LASSO. We ex-
plain how to use SAFE to reduce memory requirements for solving a LASSO problem and
how to improve the computational cost of LASSO solvers. We verify the advantages that
SAFE provides using numerical experiments with datasets obtained from text classification
problems.

In chapter 4, we derive a SAFE method more aggressive at removing features than the
one introduced in chapter 3. We express the sufficient condition for eliminating features in
closed-form, thus allowing us to efficiently implement the method. We also integrate our
SAFE test in a Coordinate-Descent algorithm for solving the LASSO, we call our algorithm
CD-SAFE. We experiment with our algorithm using large-scale datasets, some are large
enough to cause memory problems when just loading them1. We show that it is possible to
treat datasets with fewer computational operations than using the plain Coordinate-Descent
algorithm. This improvement in computational complexity allows us to extend the reach of
the Coordinate-Descent algorithm to large-scale problems.

In chapter 5, we adapt our Safe Feature Elimination method for the LASSO to a more
general class of l1− regularized convex problems. We show some preliminary results for deriv-
ing SAFE methods for the ℓ1−regularized hinge loss function (also known as ℓ1−regularized
support vector machine) and ℓ1−regularized logistic regression.

1.4 Notations

For notations, we represent scalars by lower-case font and vectors by lower-case bold font like
v = [v1, ..., vn]

T . For any vector v, we consider the following representation of sub-vectors:

vA =
[

va1 , ..., va|A|

]

,

where A =
{

a1, ..., a|A|
}

is an index set and |A| is its cardinality. Sometimes we refer to Ak

as the kth element in the set A. Depending on context, we use small Greek letters to refer
to vectors like θ = [θ1, .., θm]

T or scalars like ν. We refer to matrices by uppercase bold font

1We assume a machine is used with 8 GB of RAM .
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like X = [x1, ...,xn], and similarly we represent sub-matrices by

X :,A =
[

xa1 , ...,xa|A|

]

.

We also refer to the ith entry of a vector xj as xj(i).
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Chapter 2

All about LASSO

2.1 Introduction

Least Absolute Shrinkage and Selection Operator (LASSO) [54] is the ℓ1-regularized least-
squares problem,

P(λ) : φ(λ) := min
w

1

2
‖Xw − y‖22 + λ ‖w‖1 , (2.1)

where X = (a1, . . . ,am)
T ∈ R

m×n is the feature matrix of observations, ai ∈ R
n, i =

1, . . . , m is a given set of m observations, y ∈ R
m is the response vector,λ > 0 is a regular-

ization parameter and w ∈ R
n is the optimization variable.

The ℓ1 norm regularization introduces some attractive properties to the solution of the
LASSO problem. One of these important properties is that a solution w⋆ of P(λ) is sparse
or has few non-zero elements. More specifically, there exist a sequence of increasing values
of λ: 0 = λk < · · · < λ0 = λmax where the solution w⋆ is piece-wise linear as a function of λ
with breakpoints at λ = λi, i = 0, ..., k − 1 and w⋆ = 0 for all λ ≥ λmax (see section 2.3 for
more details).

To illustrate the sparsity of the LASSO solution, we show the regularization path for
the LASSO problem, the solution as a function of λ, solved on the diabetes dataset [43]
in Figure 2.1(a). We also show the number of non-zero elements in the solution in Figure
2.1(b). The diabetes dataset has 10 features, at λ/λ0 = 1, all elements in the solution are
zero as shown in Figure 2.1(b). For λ/λ0 < 1, breakpoints happen when a zero entry of
w⋆ becomes a non-zero, or vice-versa. Generally, the number of non-zeros in the solution
increases for lower values of the regularization parameter.

The concepts and derivations presented in this chapter are crucial for the understanding
of our Safe Feature Elimination method for the LASSO. We start by deriving a dual problem
of the LASSO in section 2.2. We derive the strong duality result of the LASSO and present
the optimality conditions. We then derive the regularization path result in section 2.3.



CHAPTER 2. 7

2.2 A Dual Problem of the LASSO

The Safe Feature Elimination method (SAFE) method relies on duality and optimality con-
ditions. We review and derive the appropriate facts for the LASSO.

Generally, a dual problem is a transformation on the primal problem, and has properties
that are related to the primal problem. For instance, it provides a lower bound on the value of
the objective function of the primal problem. For the LASSO problem, strong duality holds
and the value of the objective function of the primal problem at optimum can be recovered
by solving its dual. Moreover, knowing the optimal solution of the dual problem, or the dual
optimal point, allows us to identify the zeros and non-zeros of the optimal solution of the
primal problem.

A dual to the LASSO problem (2.1) is

D(λ) : φ′(λ) := max
θ

G(θ) :
∣

∣θTxk
∣

∣ ≤ λ, k = 1, . . . , n, (2.2)

with xk ∈ R
m, k = 1, . . . , n, the k-th column of X and G(θ) = 1

2
‖y‖22 − 1

2
‖θ + y‖22. In

this context, we call P(λ) the primal problem, w the primal variable, and w⋆ a primal
optimal point. The dual problem D(λ) is a convex optimization problem with dual variable
θ ∈ R

m. We call θ dual feasible when it satisfies the constraints in D(λ). Figure 2.2 shows
the geometry of the feasibility set in the dual space.

Weak duality implies that the quantity G(θ) gives a lower bound on the optimal value
φ(λ) for any dual feasible point θ, i.e. G(θ) ≤ φ′(λ) ≤ φ(λ),

∣

∣θTxk
∣

∣ ≤ λ, k = 1, . . . , n. Since
strong duality holds for the LASSO, the optimal value of φ′(λ) achieves φ(λ), φ′(λ) = φ(λ),
at θ⋆ the dual optimal point. Furthermore, we can construct a dual optimal point from a
primal optimal point using the relation θ⋆ =Xw⋆ − y. In addition, knowledge of θ⋆ allows
us to identify the zeros in w⋆ by checking the optimality condition

∣

∣θ⋆Txk
∣

∣ < λ⇒ w⋆(k) = 0. (2.3)

In this section, we derive the aforementioned dual problem in (2.2), in addition to the weak
and strong duality results.

2.2.1 Dual Problem and Weak Duality

We derive (2.2) by introducing an equivalent problem to P(λ),

P(λ) : φ(λ) := min
w,z

1

2
‖z‖22 + λ ‖w‖1 : z =Xw − y, (2.4)

where we have defined a new slack variable z ∈ R
m , and have set this variable equal to

Xw − y, i.e. z = Xw − y. We form the Lagrangian function by associating the dual
variable, θ ∈ R

m , to the equality constraint,

L(w, z, θ) =
1

2
‖z‖22 + λ ‖w‖1 + θT (Xw − y − z) .
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The partial maximization of L(w, z, θ) over θ has the same value as the objective function
of (2.4) subject to the equality constraints. This fact,

max
θ

L(w, z, θ) =

{

1
2
‖z‖22 + λ ‖w‖1 : z =Xw − y,

+∞ otherwise,

can be recognized by substituting any infeasible point (z,w) with z 6= Xw − y into both
functions. By convention, the objective function of P(λ), takes the value +∞ for infeasible
points. Taking θ(i) = tsign

(

aTi w − yi − zi
)

, i = 1, ..., m, with t → +∞, the supremum of
L(w, z, θ) over θ also takes the value +∞ and thus the two formulations are equivalent.

We rewrite the primal problem in terms of the Lagrangian function,

P(λ) : φ(λ) := min
w,z

max
θ

L(w, z, θ), (2.5)

and use the min-max inequality,

max
θ

min
w,z

L(w, z, θ) ≤ min
w,z

max
θ

L(w, z, θ). (2.6)

We define the dual function
g(θ) = min

w,z
L(w, z, θ),

and call the problem,
D(λ) : φ′(λ) := max

θ
g(θ), (2.7)

a dual problem of the LASSO. We note that g(θ) provides a lower bound on φ(λ) of P(λ) for
any feasible dual variable θ, i.e. g(θ) ≤ φ′(λ) ≤ φ(λ). This result is noted as weak duality.

Expression of g(θ). We write g(θ) as a minimization problem over each variable w and
z,

g(θ) = min
w,z

L(w, z, θ),

= min
w,z

1

2
‖z‖22 + λ ‖w‖1 + θT (Xw − y − z) ,

= min
z

(

1

2
‖z‖22 − θTz

)

+min
w

(

λ ‖w‖1 + θTXw
)

− θTy,

then we decompose the variables into summations,

g(θ) = min
z

m
∑

i=1

(

1

2
z2i − θizi

)

+min
w

n
∑

i=1

(

λ |wi|+
(

xTi θ
)

wi
)

− θTy,

=

m
∑

i=1

min
zi

(

1

2
z2i − θizi

)

+ λ

n
∑

i=1

(

min
wi

|wi|+
1

λ

(

xTi θ
)

wi

)

− θTy. (2.8)
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We define the following two optimization problems that appear in (2.8),

T1(α) := min
z

1

2
z2 − αz, (2.9)

and
T2(α) := min

w
|w| − αw. (2.10)

The optimal solution z⋆ of T1(α) is z
⋆ = α, and T1(α) takes the value

T1(α) = −1

2
α2.

The optimal solution w⋆ of T2(α), satisfies the conditions,

w⋆ =











w

∣

∣

∣

∣

∣

∣

∣











w ≥ 0 α = 1,

w ≤ 0 α = −1,

w = 0 |α| < 1,











, (2.11)

and T2(α) takes the value

T2(α) =

{

0 |w| ≤ 1,

−∞ otherwise.

Using the results above, we obtain

g(θ) =

{

G(θ)
∣

∣xTi θ
∣

∣ ≤ λ i = 1, ..., n,

−∞ otherwise,
(2.12)

with G(θ) = −1
2
‖θ‖22 − θTy.

A Weak Dual Problem. We substitute the expression of g(θ) in (2.7) and we obtain

D(λ) : φ′(λ) := max
θ

G(θ) :
∣

∣xTi θ
∣

∣ ≤ λ, i = 1, ..., n, (2.13)

with G(θ) = 1
2
‖y‖22 − 1

2
‖θ + y‖22 := −1

2
‖θ‖22 − θTy. For any point θ ∈ R

m, g(θ) gives
a lower bound on the objective value of the LASSO problem φ(λ). For non-feasible θ,
θ /∈

{

θ
∣

∣

∣

∣xTi θ
∣

∣ ≤ λ, i = 1, ..., n
}

, the lower bound is trivial (−∞). More interesting lower
bounds are obtained when θ is feasible. The best lower bound is φ′(λ) and is obtained at
θ⋆ the dual optimal point of D(λ), i.e. φ′(λ) = G(θ⋆). We call the gap between φ(λ) and
φ′(λ), g(λ) = φ(λ)− φ′(λ), the duality gap and it is always non-negative, i.e. g(λ) ≥ 0.



CHAPTER 2. 10

2.2.2 Strong Duality

For the LASSO problem, strong duality is obtained, which is to say equality holds in (2.6)
and the duality gap is zero, i.e. g(λ) = 0. As a consequence of strong duality, the solutions,
θ, w, z are the same in both formulations of (2.6). This allows us to make two conclusions
on the relation between the primal solution w⋆ and the solution of the dual problem θ⋆.
From the optimal solution of (2.9), we have θ⋆ = z⋆ := Xw⋆ − y, and from the optimal
solution of (2.10), we have

w⋆ =











w⋆

∣

∣

∣

∣

∣

∣

∣











w⋆(i) ≥ 0 xTi θ
⋆ = −λ,

w⋆(i) ≤ 0 xTi θ
⋆ = λ,

w⋆(i) = 0
∣

∣xTi θ
⋆
∣

∣ < λ,

, i = 1, ..., n











. (2.14)

In this section, we prove the Strong Duality theorem for the LASSO.

Theorem 2.2.1 (Strong Duality of the LASSO) Consider the Dual Problem D(λ) in
(2.13), and assume that φ′(λ) is finite and θ⋆ is an optimal solution. Let I be the set of all
indices, I = {1, ..., n}, and A± be the sets of active constraints at θ⋆:

xTi θ
⋆ = λ : i ∈ A−, xTi θ

⋆ = −λ : i ∈ A+,
∣

∣xTi θ
⋆
∣

∣ < λ : i /∈ A = A− ∪ A+,

Then the following statements hold true:

1. There exist a w⋆ = (w1, ..., wn)
T ∈ R

n that satisfies

wi ≥ 0 : i ∈ A+, wi ≤ 0 : i ∈ A−, wi = 0 : i /∈ A,
∑

i∈A
xiwi = θ

⋆ + y.

2. The point w⋆ is the optimal solution of the LASSO problem given in
(2.1).

3. The value φ′(λ) achieves φ(λ) at the optimal solution θ⋆.

Proof: Let X̄
±
be the matrices defined by the indices A±,

X̄
+
=X :,A+ ∈ R

m×|A+|, X̄
−
=X :,A− ∈ R

m×|A−|,

respectively. We assume that there is no w̄+ � 0 with w̄+ ∈ R|A+|, and no w̄− � 0 with

w̄− ∈ R|A−|, such that X̄
+
w̄+ + X̄

−
w̄− = θ⋆ + y, i.e. We need to show that there exist

w̄+ ∈ R|A+| and w̄− ∈ R|A−| that satisfy

θ⋆ + y /∈ S =
{

X̄
+
w̄+ + X̄

−
w̄− ∣

∣w̄+ � 0, w̄− � 0
}

.
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By the strict separating hyperplane theory, applied to θ⋆ + y and S, there exist a u such
that

uT (θ⋆ + y) > uTX̄
+
w̄+ + uTX̄

−
w̄−,

for all w̄+ � 0 and w̄− � 0.
Evaluating the right-hand side at w̄+ = 0 and w̄− = 0, we obtain

uT (θ⋆ + y) > 0 ≥ uTX̄+
w̄+ + uTX̄

−
w̄−.

Taking the right-hand side of the above inequality,

0 ≥ uTX̄+
w̄+ + uTX̄

−
w̄−, (2.15)

and evaluating it at w̄− = 0, we obtain

0 ≥ uTX̄+
w̄+.

Since w̄+ � 0, we have
(

X̄
+
)T

u � 0. Similarly we evaluate (2.15) at w̄− = 0 and we

obtain
(

X̄
−
)T

u � 0.

We consider θ = θ⋆+ tu. We have the following fact, θ is feasible, i.e.
∣

∣xTi θ
∣

∣ ≤ λ, i ∈ I,
for some sufficiently small negative values of t . Consider any index i ∈ A−, the inequality

x−T
i θ = x−T

i θ⋆ + tx−T
i u = λ+ tx−T

i u ≤ λ,

holds true for t ≤ 0 since x−T
i u ≥ 0 . And, for any index i ∈ A+, the inequality

x+T
i θ = x+T

i θ⋆ + tx+T
i u = −λ + tx+T

i u ≥ −λ,

holds true for t ≤ 0 since x+T
i u ≤ 0 . When the index i /∈ A = A− ∪ A+, the inequality

∣

∣xTi θ
∣

∣ =
∣

∣xTi θ
⋆ + txTi u

∣

∣ ≤ λ,

holds true for sufficiently small negative t. More specifically, it holds true for any t ∈ [t̄, 0]
with

t̄ = inf

{

1

|xTi u|
(

λ−
∣

∣xTi θ
⋆
∣

∣

)

| i /∈ A
}

.

Finally, we evaluate the objective function of the Dual Problem D(λ) at θ,

G(θ) =
1

2
‖y‖22 −

1

2
‖θ⋆ + tu+ y‖22 ,

=
1

2
‖y‖22 −

1

2
‖θ⋆ + y‖22 −

1

2
‖tu‖22 − tuT (θ⋆ + y) .
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We have the following inequality,

G(θ) ≥ 1

2
‖y‖22 −

1

2
‖θ⋆ + y‖22 ,

when the condition

−1

2
‖tu‖22 − tuT (θ⋆ + y) ≤ 0, (2.16)

holds true. Assuming t ≤ 0, we have

1

2
t2 + tũT (θ⋆ + y) ≤ 0,

with ũ = u

‖u‖22
. The inequality above is equivalent to

t ≥ −2ũT (θ⋆ + y) ,

or
t ∈ [−2ũT (θ⋆ + y) , 0].

This is a contradiction, because we have constructed a feasible point θ with an objective
value greater than G(θ⋆).

We conclude that there exist w̄+ � 0 and w̄− � 0, such that

θ + y = X̄
+
w̄+ + X̄

−
w̄−.

Therefore, for w⋆ ∈ R
n, such that

w⋆ =











wi

∣

∣

∣

∣

∣

∣

∣











wi = 0 i /∈ A
wi = w̄

+(k+i ) i ∈ A+

wi = w̄
−(k−i ) i ∈ A−

, i ∈ I











, (2.17)

with k±i = {k |A±
k = i}, we have the following statement,

wi ≥ 0 : i ∈ A+, wi ≤ 0 : i ∈ A−, wi = 0 : i /∈ A,
∑

i∈A
xiwi = θ + y,

holds true and the first part of our theorem is proved.
We prove that w⋆ is the optimal solution of the LASSO problem given in (2.1), by

checking the sub-gradient condition

c(w) =XT (Xw − y) ∈ −λ∂ ‖w‖1 , (2.18)

with

∂ ‖w‖1 =











g(i)

∣

∣

∣

∣

∣

∣

∣











g(i) = 1 w(i) ≥ 0

g(i) = −1 w(i) ≤ 0

|g(i)| < 1 w(i) = 0

, i ∈ I











,
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at w = w⋆. From the first part of our theorem, there exists a w⋆ such that θ⋆ =Xw⋆ − y,
with properties defined in (2.17), if θ⋆ is the optimal solution of D(λ) and

xTi θ
⋆ = λ : i ∈ A−, xTi θ

⋆ = −λ : i ∈ A+,
∣

∣xTi θ
⋆
∣

∣ < λ : i /∈ A = A− ∪ A+.

We conclude that the sub-gradient condition c(w⋆) ∈ −λ∂g in (2.18) holds true and w⋆

is the optimal solution of the LASSO problem.
Finally, we prove that φ′(λ) achieves φ(λ) by substituting θ⋆ = Xw⋆ − y in G(θ). We

have

φ′(λ) = −1

2
‖θ⋆‖22 − θ⋆Ty,

=
1

2
‖θ⋆‖22 − θ⋆T (θ + y) ,

=
1

2
‖Xw⋆ − y‖22 −w⋆TXTθ⋆,

=
1

2
‖Xw⋆ − y‖22 −

∑

i∈A+

(

−λw̄+(i)
)

−
∑

i∈A−

(

λw̄−(i)
)

.

We recognize that

‖w⋆‖1 =
∑

i∈A+

w̄+(i) +
∑

i∈A−

(

−w̄−(i)
)

,

and φ′(λ) reduces to

φ′(λ) =
1

2
‖Xw⋆ − y‖22 + λ ‖w⋆‖1 ,

= φ(λ).

2.2.3 Optimality Conditions and Geometric Interpretation

The optimality conditions introduced by the strong duality theorem has geometric interpre-
tations that can help in understanding our Safe Feature Elimination method presented in
Chapter 3.

Let c = (c1, ..., cn) ∈ R
n be the feature matrix and optimal dual-point correlation vector,

i.e. c(λ) = XTθ⋆(λ) with θ⋆(λ) the optimal dual point of (2.13) at λ. By the optimality
conditions of Theorem 2.2.1, we have

ci(λ) = λ ⇒ wi ≤ 0,

ci(λ) = −λ ⇒ wi ≥ 0,

|ci(λ)| < λ ⇒ wi = 0,
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for i = 1, ..., n. To illustrate these optimality conditions, we solve the LASSO with feature
matrix X and response y obtained from the the diabetes dataset [43]. In Figure 2.3, we
show a plot of the quantity ci(λ) and the corresponding LASSO solution wi for two features
out of the 10 features in the model .

In Figure 2.3(a), we notice that both features have values of c(λ) ∈]−λ, λ[, where |c(λ)| =
λ is shown in the red dotted-line and the vertical dotted-lines represent the breakpoints of
the regularization path. For lower values of the regularization parameter λ, ci(λ) associated
with one (blue) feature of the two features takes the value λ and its corresponding weight wi
takes a non-positive value in Figure 2.3(b). Similarly, the ci(λ) for the other (green) feature
takes the value −λ and its corresponding weight wi takes a nonnegative value.

Another geometric interpretation of the inequality |ci(λ)| < λ can be seen in the dual
space θ. When the point θ⋆ is inside a slab S =

{

θ
∣

∣

∣

∣xTk θ
∣

∣ ≤ λ
}

defined by the feature xk,
i.e. θ⋆ ∈ S, then strict inequality holds as shown in Figure 2.4.

Some algorithms, like the interior point method of [27], do not return exact zeros in the
solution of the LASSO problem. The optimality conditions are used as a proxy to determine
the zero entries of the primal solution by forming (or using) an approximate of the optimal
dual point θ⋆ and then checking the inequality |ci(λ)| < λ. When θ⋆ is not a good estimate,
the optimality conditions might result in setting some non-zero entries of w⋆ to zero. In
Appendix A, we provide a method for thresholding the solution based on controlling the
perturbation of the objective function that is induced by thresholding.

The optimality conditions obtained from strong duality allow us to know the zero entries
of the LASSO solution without actually solving the LASSO primal problem. In Figure 2.5,
we recover all the zero entries for the diabetes dataset by only solving the dual problem.
This fact is useful in deriving our Safe Feature Elimination method, which is essentially a
cheap way for finding the zero elements of the LASSO solution at optimum without solving
the LASSO problem.

2.3 LASSO Regularization Path

The LASSO solution for all parameters λ ≥ 0 is refereed to as the regularization path and
reads:

w⋆(λ) =
λk − λ

λk − λk+1

w(k+1) +
λ− λk+1

λk − λk+1

w(k), λ(k+1) ≤ λ ≤ λ(k), k = 0, ..., kmax − 1,

where w(k) is the solution of the LASSO with λ = λ(k) , λ0 =
∥

∥XTy
∥

∥

∞ and λ(k), k =

0, ..., kmax is an increasing sequence, i.e. λ: 0 = λ(kmax) < · · · < λ(0). The solution for
λ > λ(0) is w⋆ = 0. In this section, we derive this result and provide an algorithm for
building the regularization path for a particular LASSO problem with feature matrixX and
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response y. We start by looking at the LASSO dual problem and then we deduce the primal
solution as a function of λ.

2.3.1 The Dual Solution Path

We consider the dual problem D(λ) and construct the dual optimal solution θ⋆ for all λ ≥ 0.
We notice that G(θ) is strongly convex and admits θ⋆ = −y as its global optimal solution
when the point −y is feasible, i.e. λ > λ(0) :=

∥

∥XTy
∥

∥

∞. When λ = λ(0), one of the

inequality constraints is active, we have
∣

∣xTj θ
∣

∣ = λ for some index j, and the constraint

remains active until some value λ = λ(1).
We provide a template problem in the following proposition that will help us derive the

dual solution for all λ > 0.

Proposition 2.3.1 Consider the optimization problem

Pλ(ỹ, l,u, λu) : θ⋆(λ) = argminθ ‖θ + ỹ‖22 :

0 ≤ λ ≤ λu

λli ≤ xTi θ ≤ λui, i = 1, ..., n

with l = (l1, ..., ln) ∈ R
n, u = (u1, ..., un) ∈ R

n, xk ∈ R
m the k-th column of feature matrix

X ∈ R
m×n, response vector ỹ ∈ R

m, and optimization variable θ ∈ R
m. Assuming ỹ is

feasible for λ ≤ λu then Pλ admits the solution θ⋆(λ) = −ỹ for λ ∈ [ λl, λu] with

λl = min
λ

{

λ : λli ≤ −xTi ỹ ≤ λui, i = 1, ..., n
}

.

Proof: Consider λ(i) = −xTi ỹ/li and λ̄(i) = −xTi ỹ/ui. We find indices j1 and j2, such
that j1 = {i |λ(i) = supi λ(i)} and j2 =

{

i
∣

∣λ̄(i) = supi λ̄(i)
}

. By construction, we have

λl = max (λj1, λj2). The function ‖θ + ỹ‖22 is strictly convex and admits θ⋆ = −ỹ as a global
minimum when it is feasible, i.e. θ⋆ = −ỹ is the solution for all λ ∈ [λl, λu].

A recursive method. We recognize that D(λ) has the same solution θ⋆ as
Pλ(y, l, u, λu) with l = −1, u = 1 and λu → ∞. Following Proposition 2.3.1 and
defining λ(0) := λl with λl computed in the proposition, the dual solution for λ ≥ λ(0) is
θ⋆ = −y .

We represent the active constraint j at λ = λ(0) by xTj y = −αjλ(0) with αj = uj if −xTj y
attains its upper bound at λ(0) and αj = lj if the lower bound is attained.

We then investigate the solution θ⋆(λ) for λ ≤ λ(0) by using Proposition 2.3.1 with some
new parameters ỹ, l, u, λu. We start by expressing the vectors θ and y in terms of the
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normal vector of the active constraint xj ,

θ =
(

xTj θ
) xj

‖xj‖22
+ θ′, xTj θ

′ = 0,

y =
(

xTj y
) xj

‖xj‖22
+ y′, xTj y

′ = 0.

We add those two constraints and obtain the following equivalent problem,

min
θ,θ′

‖θ + y‖22 :

λli ≤ xTi θ ≤ λui, i = 1, ..., n,

θ =
(

xTj θ
) xj

‖xj‖22
+ θ

′

,

y =
(

xTj y
) xj

‖xj‖22
+ y′,

xTj θ
′ = 0, xTj y

′ = 0.

In the problem above, we removed the term 1
2
‖y‖22 from D(λ) and interchanged the

maximization with a minimization for convenience. We substitute xTj y = −αjλ(0), and
express the equality constraints as implicit constraints,

min
θ,θ′

∥

∥

∥

(

xTj θ
) xj

‖xj‖22
+ θ

′

+
(

−αjλ(0)
) xj

‖xj‖22
+ y′

∥

∥

∥

2

2
:

λli −
(

xTj θ
) xT

i xj

‖xj‖22
≤ xTi θ′ ≤ λui −

(

xTj θ
) xT

i xj

‖xj‖22
, i = 1, ..., n,

θ =
(

xTj θ
) xj

‖xj‖22
+ θ

′

,

xTj θ
′ = 0, xTj y

′ = 0.

The objective function of the above optimization problem can be decomposed into

‖θ′ + y′‖22 +
1

‖xj‖22

∥

∥xTj θ − αjλ
(0)
∥

∥

2

2
,

where we have used xTj θ
′ = 0, and xTj y

′ = 0. We obtain the optimization problem

min
θ,θ′

‖θ′ + y′‖22 + 1
‖xj‖22

∥

∥xTj θ − αjλ
(0)
∥

∥

2

2
:

λli −
(

xTj θ
) xT

i xj

‖xj‖22
≤ xTi θ′ ≤ λui −

(

xTj θ
) xT

i xj

‖xj‖22
, i = 1, ..., n,

θ =
(

xTj θ
) xj

‖xj‖22
+ θ

′

,

xTj θ
′ = 0, xTj y

′ = 0.
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We assume that, at optimum, the feature that got active at λ = λ(0), will remain active when
we decrease λ below λ(0), i.e. for λ < λ(0) we have xTj θ = αjλ. Thus, we add the constraint
xTj θ = αjλ and the above optimization problem reduces to

min
θ′

‖θ′ + y′‖22 +
α2
j(λ−λ(0))

2

‖xj‖22
:

λl′i ≤ xTi θ′ ≤ λu′i, i = 1, ..., n

with l′i =
(

li − xT
i xj

‖xj‖22
αj

)

, u′i =
(

ui − xT
i xj

‖xj‖22
αj

)

for i 6= j and l′i = u′i = 0 for i = j. The

problem above has the same solution θ⋆ as Pλ(y′, l′,u′, λ(0)), for λ ∈ [λ(1), λ(0)] with λ(1) = λl
and λl the regularization parameter provided by Proposition 2.3.1. We apply the method
recursively to find the solution θ⋆ for all intervals [λ(k+1), λ(k)], k = 0, ..., kmax − 1 with kmax

the index of λ(k) = 0.
We still need to check that θ⋆(λ) computed for λ ∈ [λ(1), λ(0)] is optimal since we assumed

that the feature that got active at λ = λ(0) remains active for some λ < λ(0). From the
optimality condition of constrained convex maximization problems, a dual point θ⋆ is optimal
for D(λ) if the inequality

−∇G(θ⋆) (θ⋆ − θ) ≥ 0

holds true for all θ such that λli ≤ xTi θ ≤ λui, i = 1, ..., n.
The optimal point we found is θ⋆ = (λαj)

xj

‖xj‖22
−y′ with y′ = y+

(

λ(0)αj
) xj

‖xj‖22
, and the

optimality condition evaluates to

(θ⋆ + y) (θ − θ⋆) ≥ 0,

(

(λαj)
xj

‖xj‖22
−
(

λ(0)αj
) xj

‖xj‖22

)T (

θ − (λαj)
xj

‖xj‖22
+ y′

)

≥ 0,

(

λ− λ(0)
)

‖xj‖22
αjx

T
j

(

θ − (λαj)
xj

‖xj‖22

)

≥ 0,

(

λ− λ(0)
)

‖xj‖22
αj
(

xTj θ − λαj
)

≥ 0.

Assuming that the upper bound is active, i.e. αj = 1, then
(λ−λ(0))
‖xj‖22

αj < 0, and we have

xTj θ ≤ λ. If the lower bound is active, i.e. αj = −1 and
(λ−λ(0))
‖xj‖22

αj > 0, then we have −λ ≤
xTj θ. In both cases, the optimality condition is satisfied and θ⋆ is optimal for λ ∈ [λ(1), λ(0)].

Algorithm 1 summarizes the procedure for building the regularization path for the dual
optimal point θ⋆.
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2.3.2 The Primal Solution Path

We start with the dual solution from Algorithm 1,

θ⋆(λ) =
(

λ− λ(k)
) αj(k)xj(k)
∥

∥xj(k)
∥

∥

2

2

+ θ(k), λ ∈ [λ(k+1), λ(k)], (2.19)

with θ(0) = −y, k = 0, ..., kmax−1. We also recall the optimality condition of Theorem 2.2.1:
there exist a w⋆ such that

θ⋆ =Xw⋆ − y,
and w⋆ is the optimal solution of the LASSO.

Using induction on (2.19), we can write

θ(k) =

k
∑

i=1

(

λ(i) − λ(i−1)
) αj(i−1)xj(i−1)
∥

∥xj(i−1)

∥

∥

2

2

− y.

By inspection, we have

w(k) =
k
∑

i=1

(

λ(i) − λ(i−1)
) αj(i−1)ej(i−1)
∥

∥xj(i−1)

∥

∥

2

2

,

with ej(k) the unit vector with all entries zeros except at j(k). Finally, we express w⋆(λ) for
λ ∈

[

λ(k+1), λ(k)
]

in terms of w(k) and w(k+1),

w⋆(λ) =
λk − λ

λk − λk+1
w(k+1) +

λ− λk+1

λk − λk+1
w(k), λ(k+1) ≤ λ ≤ λ(k), k = 0, ..., kmax − 1.

2.4 Conclusion

In this chapter, we introduced the LASSO problem and explained the background needed
to derive our Safe Feature Elimination method. We have derived the dual problem of the
LASSO and stated the optimality conditions. The conclusions we can make on the values
of the primal solution of the LASSO from the solution of its dual problem, constitute the
basics for deriving SAFE as will be seen in the next chapter.
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Figure 2.1: Sparsity of the LASSO solution. (a) The regularization path for the LASSO
problem. The LASSO solution w⋆ is solved for each value of λ, on the diabetes dataset [43].
Each color represents one element of the vector w⋆. The diabetes dataset has 10 features,
at λ/λ0 = 1, all elements in the solution are zero. For lower values of the regularization
parameter, i.e. λ/λ0 < 1, breakpoints happen when a zero entry of w⋆ becomes a non-
zero, or vice-versa. These breakpoints are represented by the vertical dashed-lines. (b) The
number of non-zeros in the solution for different values of λ.
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Figure 2.2: Geometry of the dual problem D(λ). The Grey shaded polytope shows the
feasibility set of D(λ). The feasibility set is the intersection of n slabs in the dual space
corresponding to the n features xk, k = 1, ..., n, i.e. the intersection of

∣

∣xTk θ
∣

∣ ≤ λ, k =
1, ..., n. The level set {θ |G(θ) = γ1, γ1 = G(θ⋆)}, corresponds to the optimal value of the
dual function and is tangent to the feasibility set at the dual optimal point θ⋆.
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Figure 2.3: Illustration of the LASSO optimality condition. The feature matrix X and
response y used to generate these figures are obtained from the diabetes dataset [43]. (a) A
plot of ci(λ) = x

T
i θ

⋆(λ) for two features. The red dashed-lines represent the curve |c(λ)| = λ
and the vertical dotted-lines represent the breakpoints of the regularization path. For lower
values of the regularization parameter λ, ci(λ) associated with the blue feature takes the
value λ and its corresponding weight wi in (b) takes a non-positive value. Similarly, the
ci(λ) for the green feature takes the value −λ in (a) and its corresponding weight wi takes
a nonnegative value in (b).
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Figure 2.4: Geometry of the inequality |ci(λ)| < λ, with ci = xTi θ
⋆ in dual variable space.

The Grey shaded region is the slab corresponding to feature xi, i.e.
{

θ |
∣

∣θTxi
∣

∣ ≤ λ
}

. The

test
∣

∣θ⋆Txi
∣

∣ < λ is a strict inequality when the point θ⋆ is in the interior of the slab defined
by the feature xk (in this case k = 1). When the dual optimal point is inside a slab defined
by feature xk, the strong duality optimality condition implies that the k-th entry of the
primal optimal solution w⋆ is zero or w⋆(k) = 0.
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Figure 2.5: Recovering the non-zero elements of a LASSO problem using the Dual problem
and optimality conditions. The feature matrix X and response y used to generate these
figures are obtained from the diabetes dataset [43]. (a) A plot of ci(λ) = xTi θ

⋆(λ) for all
features in the model. The red dashed-lines represent the curve |c(λ)| = λ and the vertical
dotted-lines represent the breakpoints of the regularization path. (b) The number of non-
zero elements in the solution of the LASSO is computed by checking the number of features
that satisfy the inequality |ci(λ)| < λ. Graphically, this corresponds to the colored lines that
are encapsulated with the red dashed-line envelop in (a).
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Algorithm 1 Recursive computation of the dual solution θ⋆(λ) over the intervals
[λ(k+1), λ(k)] defined by the regularization path.

given a feature matrix X ∈ R
m×n, response y ∈ R

m.
initialize

1. Set l(0) = −1 ∈ R
m, u(0) = 1 ∈ R

m, y(0) = y .

2. Solve for Pλ(y(0), l(0),u(0),∞) in Proposition 2.3.1. Obtain λ(0) = λl and index j.

3. Set j(0) = j, αj(0) = −(xT
j(0)

y(0))
λ(0)

, θ(0) := θ⋆(λ(0)) = −y and k = 0.

repeat

1. Define l(k+1) and u(k+1) such that

l
(k+1)
i =

(

l
(k)
i − xTi xj(k)

∥

∥xj(k)
∥

∥

2

2

αj(k)

)

, u
(k+1)
i =

(

u
(k)
i − xTi xj(k)

∥

∥xj(k)
∥

∥

2

2

αj(k)

)

, for i 6= j,

and l
(k+1)
i = u

(k+1)
i = 0, for i = j.

2. Define y(k+1) such that

y(k+1) = y(k) +
(

λ(k)αj(k)
) xj(k)
∥

∥xj(k)
∥

∥

2

2

.

3. Solve for Pλ(y(k+1), l(k+1),u(k+1), λ(k)) in Proposition 2.3.1. Set index j(k + 1) = j,
αj(k+1), and λ

(k+1).

4. Set the optimal dual point to θ⋆(λ) =
(

λ− λ(k)
) αj(k)xj(k)

‖xj(k)‖2

2

+θ(k) and θ(k+1) := θ⋆(λ(k+1)).

5. Increment k. k = k + 1.

until λ(k) = 0
Set kmax = k
terminate
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Chapter 3

Safe Feature Elimination for the
LASSO

3.1 Introduction

Safe Feature Elimination (SAFE) is a method that can cheaply identify some of the zero
entries in a LASSO solution, a-priori to solving the LASSO problem. Recovering the sparsity
pattern of a LASSO solution allows us to reduce memory requirements and computational
costs when solving the problem. We present the following proposition.

Proposition 3.1.1 Consider the LASSO problem

P(λ) : φ(λ) := min
w

1

2
‖Xw − y‖22 + λ ‖w‖1 ,

with X ∈ R
m×n the feature matrix, y ∈ R

m the response vector, λ > 0 the regularization
parameter, w ∈ R

n the optimization variable, and w⋆ the optimal solution.
Let E be a set of indicies, with |E| = e such that w⋆

E = 0e ∈ R
e. Without loss of generality,

assume E = {1, .., e} and X =
(

XE , X̄
)

, then w⋆ = (0e, w̄
⋆), where w̄⋆ is the solution of

min
w̄

1

2

∥

∥X̄w̄ − y
∥

∥

2

2
+ λ ‖w̄‖1 .

Thus, we can eliminate the features corresponding to any identified zero entries of w⋆,
and we can construct a LASSO solution of the original problem using a reduced feature
matrix. The reduction in the feature-matrix size, allows LASSO algorithms presented in [4,
13, 27, 42, 11, 21, 20] and references therein, to possibly solve the LASSO with less memory
requirements and fewer computational cost.
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In Section 2.2.3, we recovered the sparsity of the LASSO solution without solving the
LASSO problem. Solving the LASSO dual problem and using its optimality conditions to
eliminate features has the drawback of expensive computations. In fact, solving the dual
problem, is as expensive as solving the primal problem. SAFE is a method that provides
a trade-off between the number of features eliminated and the amount of computations
performed. Generally, SAFE is conservative in eliminating features but computationally
very cheap, it has the cost of few (one or two) vector-matrix multiplications, yet it eliminates
enough features especially at large values of the regularization parameter.

We describe the basic idea of the Safe Feature Elimination method and derive a theorem
for eliminating features in section 3.2. We then derive a more aggressive method for elim-
inating features in section 3.3. In section 3.4, we describe how to use SAFE for reducing
memory limit problems and reducing running time when solving the LASSO. Finally, in
section 3.5, we explore the benefits of SAFE by running numerical experiments with data
derived from text classification problems, as well as randomly generated data.

3.2 The SAFE method for the LASSO

Recall the dual problem of the LASSO is

D(λ) : φ′(λ) := max
θ

G(θ) :
∣

∣xTi θ
∣

∣ ≤ λ, i = 1, ..., n,

with G(θ) = 1
2
‖y‖22− 1

2
‖θ + y‖22, and by defining c(λ) =XTθ⋆(λ), the optimality condition

is
λ > |ck(λ)| =⇒ w⋆k = 0, (3.1)

with ck the k-th entry of c. In this section, we describe the basic idea behind SAFE and
derive a SAFE-LASSO theorem for eliminating features.

3.2.1 Basic idea

Since computing θ⋆(λ), and thus c(λ), is not an option, the basic idea is to use a sufficient con-
dition for (3.1) instead. Consider the following sufficient condition: If ci(λ) ∈

[

clk(λ), c
u
k(λ)

]

and λ > c for all c ∈
[

clk(λ), c
u
k(λ)

]

, then λ > |ck(λ)| and w⋆k = 0. When using such suffi-
cient condition, the number of features eliminated is conservative, depending on the interval,
[

clk(λ), c
u
k(λ)

]

, used. Figure 3.1 and Figure 3.3 illustrate the sufficient condition using two
methods for computing the bounds

[

clk(λ), c
u
k(λ)

]

.
To derive such bounds for ci(λ), we start with the basic optimality condition

λ > |ck(λ)| := max(−xTk θ⋆,xTk θ⋆)
An equivalent formulation of the above condition is

λ > max(P (xk), P (−xk)),
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where P (x) is the optimal value of the convex optimization problem

P (x) := max
θ
xTθ : θ = θ⋆. (3.2)

We then relax the constraint θ = θ⋆ and replace it with θ ∈ Θ1 where Θ1 is a set that
contains θ⋆, i.e. θ⋆ ∈ Θ1. We have

P ′(x,Θ) := max
θ
xTθ : θ ∈ Θ,

and the value of P ′(x,Θ) is always at least equal to P (x), i.e. P ′(x,Θ) ≥ P (x). Thus, if
λ ≥ P ′(x,Θ), then λ ≥ P (x) and we conclude the sufficient condition: if

λ > max(P ′(xk,Θ1), P
′(−xk,Θ1)), (3.3)

then λ > max(P (xk), P (−xk)) and w⋆k = 0. We call P ′(x,Θ) the SAFE test problem, and
it gives the lower and upper bounds on ck(λ), c

l
k(λ) = −P ′(−xk,Θ) and cuk(λ) = P ′(xk,Θ),

respectively. Note that if the inequality in (3.3) holds true, then this is equivalent to saying
that λ > c for all c ∈

[

clk(λ), c
u
k(λ)

]

. Figure 3.1 shows a geometric interpretation of the
inequality λ > max(P (xk), P (−xk)) for one of the features in the diabetes dataset [43].

3.2.2 Obtaining Θ1 by dual scaling

The point θ⋆ = −y is optimal for the LASSO at λ = λ0 :=
∥

∥XTy
∥

∥

∞ (see Section 2.3). We

construct a feasible point θs for D(λ) by dual scaling, θs = −y λ
λ0

and propose the following
set, Θ1, that contains θ

⋆(λ).

Proposition 3.2.1 Consider the LASSO dual problem

D(λ) : φ′(λ) := max
θ

G(θ) :
∣

∣xTi θ
∣

∣ ≤ λ, i = 1, ..., n,

with θ⋆(λ) the optimal solution at λ. Then the set

Θ1 =

{

θ

∣

∣

∣

∣

θ = −y + ‖y‖2
(

1− λ

λ0

)

v, ‖v‖2 ≤ 1

}

.

contains θ⋆(λ).

Proof: We start by the definition of optimality, θ⋆(λ) is optimal for D(λ) if G(θ⋆(λ)) ≥
G(θ) for all feasible θ at λ. Since θs = −y λ

λ0
is feasible, we have

1

2
‖y‖22 −

1

2
‖θ⋆ + y‖22 ≥

1

2
‖y‖22 −

1

2
‖θs + y‖22 ,



CHAPTER 3. 28

−1

2
‖θ⋆ + y‖22 ≥ −1

2

∥

∥

∥

∥

y

(

1− λ

λ0

)∥

∥

∥

∥

2

2

,

‖θ⋆ + y‖22 ≤ ‖y‖22
(

1− λ

λ0

)2

.

Thus θ⋆ belongs to the set

Θ1 =

{

θ

∣

∣

∣

∣

∣

‖θ + y‖22 ≤ ‖y‖22
(

1− λ

λ0

)2
}

.

The inequality

‖θ + y‖22 ≤ ‖y‖22
(

1− λ

λ0

)2

,

is equivalent to

θ = −y + ‖y‖2
(

1− λ

λ0

)

v, ‖v‖2 ≤ 1.

Thus, the set Θ1 takes the form

Θ1 =

{

θ

∣

∣

∣

∣

−y + ‖y‖2
(

1− λ

λ0

)

v, ‖v‖2 ≤ 1

}

.

3.2.3 Solving the SAFE test problem

Using the proposed set Θ1, the safe test problem reads

P ′(x) := maxθ,v x
Tθ :

θ = −y + ‖y‖2
(

1− λ
λ0

)

v,

‖v‖2 ≤ 1.

We eliminate θ from the constraints of the problem and obtain

P ′(x) := maxv −yTx++ ‖y‖2
(

1− λ
λ0

)

xTv :

‖v‖2 ≤ 1.

The problem admits an optimal solution v⋆ = x
‖x‖2

and

P ′(x) = −yTx+ ‖x‖2 ‖y‖2
(

1− λ

λ0

)

. (3.4)
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Figure 3.1: SAFE test problem bounds on cj(λ) = xTj θ
⋆(λ). A plot of cj(λ) = xTk θ

⋆(λ)
for one of the features in the diabetes dataset [43] is shown in blue. The shaded region
is {c

∣

∣c ∈
[

clk(λ), c
u
k(λ)

]

} with clk(λ) = −P ′(−xk) and cuk(λ) = P ′(xk). The red dashed-
lines represent the curve |c(λ)| = λ. The test λ > max(P ′(xk), P

′(−xk)) is true when,
graphically, the shaded region is inside the dashed-line red envelope. Since, by construction,
cj(λ) is inside the shaded region, then |cj(λ)| < λ and wj = 0.

3.2.4 Basic SAFE LASSO theorem

To eliminate feature k from the feature matrix X, we need the inequality

λ > max(P ′(xk,Θ1), P
′(−xk,Θ1)), (3.5)

to hold true. The inequality above, using (3.4), reduces to

λ >
∣

∣yTxk
∣

∣ + ‖xk‖2 ‖y‖2
(

1− λ

λ0

)

.

The sufficient condition can be reduced further to read

λ > ρkλ0,

with

ρk =

∣

∣yTxk
∣

∣+ ‖xk‖2 ‖y‖2
λ0 + ‖xk‖2 ‖y‖2

,

and λ0 =
∥

∥XTy
∥

∥

∞ . We summarize the result in the following theorem:
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Theorem 3.2.1 (Basic SAFE-LASSO) For the LASSO problem P(λ) , and denoting by
xk the k-th feature of the feature matrix X, the condition

λ > ρkλ0, with ρk =

∣

∣yTx
∣

∣+ ‖x‖2 ‖y‖2
λ0 + ‖x‖2 ‖y‖2

, λ0 = max
1≤j≤n

∣

∣yTxj
∣

∣ ,

allows to safely remove the k-th feature from feature matrix X.

The computational complexity of running this test through all the features is O(mn), with
a better count if the data is sparse. The main computational burden in the test is actually
independent of λ, and can be done once and for all: it suffices to rank features according
to the values of ρk, k = 1, ..., n. Note that this test accurately predicts the sparsity of w⋆

at λ = λ0 for which all the features can be safely removed, that is, w⋆ = 0 is optimum for
P(λ0).

In the case of scaled data sets, for which ‖y‖2 = 1 and ‖xk‖2 = 1 for every k, ρk has a
convenient geometrical interpretation:

ρk =
1 + |cosαk|

1 + max
1≤j≤n

| cosαj|
,

where αk is the angle between the k-th feature xk and the response vector y. Our test then
consists in eliminating features based on how closely they are aligned with the response,
relative to the most closely aligned feature. For scaled data sets, our test is very similar to
standard correlation-based feature selection [15]; in fact, for scaled data sets, the ranking of
features it produces is then exactly the same. The big difference here is that our test is not
heuristic, as it only eliminates features that are guaranteed to be absent when solving the
full-fledged sparse supervised learning problem.

3.3 SAFE with tighter bounds on θ⋆

In this section, we assume that we are interested in solving the LASSO at some λ and we
have knowledge of a LASSO solution w⋆

0 at a regularization parameter λ0, with λ ≤ λ0.
This is a reasonable assumption as many algorithms, like coordinate descent, interior point
method, LARS like algorithms (see Section 2.3), provide such points.

In this case, we can construct a tighter bound on θ⋆(λ), i.e. construct a smaller set Θ
such that θ⋆ ∈ Θ, than what we presented in Section 3.2.2.

3.3.1 Constructing Θ

We express Θ as the intersection of two sets Θ1 and Θ2, where each set contains θ⋆, but
corresponds to different optimality conditions.
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We construct Θ1 similar to Section 3.2.2, using the optimality condition of D(λ): θ⋆ is a
dual optimal point if G(θ⋆) ≥ G(θ) for all dual feasible points θ. Let θs be a dual feasible
point to D(λ), and γ := G(θs). Obviously G(θ⋆) ≥ γ and the set Θ1 := {θ | G(θ) ≥ γ}
contains θ⋆, i.e. θ⋆ ∈ Θ1.

One way to obtain a lower bound γ is by dual scaling. We set θs to be a scaled feasible
dual point in terms of θ⋆0, θs := sθ⋆0 with s ∈ R constrained so that θs is a dual feasible
point for D(λ), that is, ‖XTθs‖∞ ≤ λ or |s| ≤ λ/λ0. We then set γ according to the convex
optimization problem:

γ = max
s

{

G(sθ⋆0) : |s| ≤ λ

λ0

}

= max
s

{

β0s−
1

2
s2α0 : |s| ≤ λ

λ0

}

,

with α0 := θ
⋆T
0 θ

⋆
0 > 0, β0 := |yTθ⋆0|. We obtain

γ =
β2
0

2α0

(

1−
(

1− α0

β0

λ

λ0

)2

+

)

. (3.6)

We construct Θ2 by applying a first order optimality condition on D(λ0): θ
⋆
0 is a dual

optimal point if gT (θ0 − θ⋆0) ≤ 0 for every dual point θ0 that is feasible for D(λ0), where
g := −∇G(θ⋆0) = θ⋆0+y. For λ ≤ λ0, any dual point θ feasible for D(λ) is also dual feasible
for D(λ0) (|θTxk| ≤ λ ≤ λ0 k = 1, . . . , n). Since θ⋆ is dual feasible for D(λ0), we conclude
θ⋆ ∈ Θ2 :=

{

θ | gT (θ − θ⋆0) ≥ 0
}

.
Figure 3.2(a) shows the geometry of Θ1, Θ2 and Θ in the dual space; Figure 3.2(b) shows

the geometric interpretation of the inequality test when it is applied to the set Θ.

3.3.2 SAFE-LASSO theorem

Our criterion to identify the k-th zero in w⋆ and thus remove the k-th feature (column) from
the feature matrix X in problem P(λ) becomes

λ > max(P ′(xk,Θ), P ′(−xk,Θ)).

We parameterize Θ in terms of θ⋆0 and γ, and P
′(xk,Θ) is represented as P (x, θ0

⋆, γ), where
P (x, θ0

⋆, γ) is the optimal value of the convex optimization problem:

P (x, θ0
⋆, γ) := max

θ
xTθ : G(θ) ≥ γ, gT (θ − θ⋆0) ≥ 0. (3.7)

We can express problem (B.1) in dual form as a convex optimization problem with two
scalar variables, µ1 and µ2:

P (x, θ0
⋆, γ) = min

µ1,µ2≥0
max
θ
xTθ + µ1 (G(θ)− γ) + µ2g

T (θ − θ⋆0)

= min
µ1,µ2≥0

−µ1γ − µ2g
Tθ⋆0 +max

θ
xTθ + µ1G(θ) + µ2g

Tθ

= min
µ1,µ2≥0

−µ1γ − µ2g
Tθ⋆0 + µ1max

θ

(

xT − µ1y
T + µ2g

T

µ1
θ − 1

2
‖θ‖22

)
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Figure 3.2: (a) Sets containing θ⋆ in the dual space. The set Θ1 := {θ | G(θ) ≥ γ}
shown in red corresponds to a ball in the dual space with center −y. The set Θ2 :=
{

θ | gT (θ − θ⋆0) ≤ 0
}

with g := ∇G(θ⋆0) shown in yellow corresponds to a half space with
supporting hyperplane passing through θ⋆0 and normal to ∇G(θ⋆0). The set Θ = Θ1 ∩ Θ2

shown in orange contains the dual optimal point θ⋆. (b) Geometry of the inequality test
λ >

∣

∣θTxk
∣

∣ , ∀θ ∈ Θ. The Grey shaded region is the slab corresponding to feature xk, i.e.
{

θ | θTxk ≤ λ
}

. The test λ >
∣

∣θTxk
∣

∣ , ∀θ ∈ Θ is a strict inequality when the entire set Θ
(shown in orange) is inside the slab defined by the feature xk. In such case, the dual optimal
point θ⋆ ∈ Θ is also inside the slab and by (3.1), we conclude w⋆(k) = 0.

We obtain:

P (x, θ0
⋆, γ) = min

µ1,µ2≥0
L(µ1, µ2) (3.8)

with

L(µ1, µ2) = −xTy +
µ1

2
D2 +

1

2µ1
‖x‖22 +

µ2
2

2µ1
‖g‖22 +

µ2

µ1
xTg − µ2 ‖g‖22 , (3.9)

and D :=
(

‖y‖22 − 2γ
)1/2

.
To solve (3.8), we take the derivative of (3.9) w.r.t µ2 and set it to zero

µ2 ‖g‖22 + xTg − µ1 ‖g‖22 = 0.

This implies that µ2 = max(0, µ1 − xT g

‖g‖22
). When µ1 ≤ xT g

‖g‖22
, we have µ2 = 0, µ1 =

‖x‖2
D

and

P (x, θ0
⋆, γ) takes the value:

P (x, θ0
⋆, γ) = −yTx+ ‖x‖2D.
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On the other hand, when µ1 ≥ xT g

‖g‖22
, we take the derivative of (3.9) w.r.t µ1 and set it to

zero:
D̃2µ2

1 = Ψ2,

with Ψ =

(

‖x‖22 −
(xT g)

2

‖g‖22

)1/2

and D̃ =
(

D2 − ‖g‖22
)1/2

. Substituting µ1 and µ2 in (3.8),

P (γ,x) takes the value:
P (x, θ0

⋆, γ) = θ⋆T0 x+ΨD̃.

Figure 3.3 shows a comparison between the bound computed using P (x, θ0
⋆, γ) and that of

(3.4).

Figure 3.3: Comparison of two SAFE test bounds on cj(λ). Knowledge of a LASSO solution
at some regularization parameter λ0 leads to better bounds on the quantity cj(λ). Figure
3.1 is superposed with the red shaded region, which is computed using (3.11). The bound
clk(λ) = −P (−xk, θ0⋆, γ)) and cuk(λ) = P (xk, θ0

⋆, γ)), accurately predict the value of ck(λ)
at λ = λ0. For λ ≤ λ0, the the bound estimates are tighter than those provided in (3.5),
graphically the red shaded region is always inside the blue one.

Theorem 3.3.1 (SAFE-LASSO) Consider the LASSO problem P(λ). Let λ0 ≥ λ be a
value for which an optimal solution w⋆

0 ∈ R
n is known. Denote by xk the k-th feature

(column) of the matrix X. Define

E = {k | λ > max(P (xk, θ0
⋆, γ), P (−xk, θ0⋆, γ)} , (3.10)
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where

P (x, θ0
⋆, γ) =

{

θ⋆T0 xk +ΨkD̃(γ) ‖g‖22 ‖xk‖2 ≥ D(γ)xTk g,

−yTxk + ‖xk‖2D(γ) ‖g‖22 ‖xk‖2 ≤ D(γ)xTk g,
(3.11)

with

θ⋆0 =Xw
⋆
0 − y, g := θ⋆0 + y, α0 := θ

⋆T
0 θ

⋆
0, β0 := |yTθ⋆0|, γ :=

β2
0

2α0

(

1−
(

1− α0

β0
λ
λ0

)2

+

)

,

D(γ) =
(

‖y‖22 − 2γ
)1/2

, D̃(γ) =
(

D(γ)2 − ‖g‖22
)1/2

, Ψk :=

(

‖xk‖22 −
(xT

k g)
2

‖g‖22

)1/2

.

Then, for every index e ∈ E , the e-th entry of w⋆ is zero, i.e. w⋆(e) = 0, and feature xe can
be safely eliminated from X a priori to solving the LASSO problem P(λ)

When we don’t have access to a solutionw⋆
0 of P(λ0), we can setw⋆

0 = 0 and λ0 = λmax :=
‖XTy‖∞. In this case, the inequality test λ > max(P (xk, θ0

⋆, γ), P (x, θ0
⋆, γ) reduces to

the form in Theorem 3.2.1, i.e. λ > ρkλ0, with

ρk =
‖y‖2 ‖xk‖2 + |yTxk|
‖y‖2 ‖xk‖2 + λ0

.

3.3.3 SAFE for LASSO with intercept problem

The SAFE-LASSO theorem can be applied to the LASSO with intercept problem

Pint(λ) : φ(λ) := min
w,ν

1

2
‖Xw + 1ν − y‖22 + λ ‖w‖1 ,

with ν ∈ R
m the intercept term, by using a simple transformation. We solve for the optimal

ν by taking the gradient of the objective function with respect to ν and set it to zero,

(Xw + 1ν − y)T 1 = 0.

We obtain ν = ȳ − X̄w with ȳ = (1/m)1Ty, X̄ = (1/m)1TX and 1 ∈ R
m the vector of

ones . Using the expression of ν, Pint(λ) can be expressed as

Pint(λ) : φ(λ) := min
w

1

2
‖Xcentw − ycent‖22 + λ ‖w‖1 ,

with Xcent :=X−1X̄ and ycent = y−1ȳ. Thus the SAFE-LASSO theorem can be applied
to Pint and eliminate features (columns) from Xcent .
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3.3.4 SAFE for elastic net

The elastic net problem

Pelastic(λ) : φ(λ) := min
w

1

2
‖Xw − y‖22 + λ ‖w‖1 +

1

2
ǫ ‖w‖22 ,

can be expressed in the form of P(λ) by replacing X and y with Xelastic =
(

XT ,
√
ǫI
)T

and

yelastic =
(

yT , 0T
)T

. This transformation allows us to apply the SAFE-LASSO theorem on
Pelastic(λ) and eliminate features from Xelastic.

3.4 Using SAFE

In this section, we illustrate the use of SAFE and detail the relevant algorithms.

3.4.1 SAFE for reducing memory limit problems

SAFE can extend the reach of LASSO solvers to larger size problems than what they could
originally handle. In this section, we are interested in solving for w⋆

d the solution of P(λd)
under a memory constraint of loading only M features. We can compute w⋆

d by solving a
sequence of problems, where each problem has a number of features less than our memory
limitM . We start by finding an appropriate λ where our SAFE method can eliminate at least
n−M features, we then solve a reduced size problem with LF ≤ M features, where LF = |E c|
is the number of features left after SAFE and E c = {1, . . . , n} \E is the complement of the
set E in the SAFE-LASSO theorem. We proceed to the next stage as outlined in Algorithm
2.

We use a bisection method to find an appropriate value of λ for which SAFE leaves
LF ∈ [M − ǫF , M ] features, where ǫF is a number of feature tolerance. The bisection
method on λ is outlined in Algorithm 3.

3.4.2 SAFE for LASSO run-time reduction

In some applications like [22], it is of interest to solve a sequence of problems P(λ1), . . .P(λs)
for decreasing values of the penalty parameters, i.e. λ1 ≥ . . . ≥ λs. The computational
complexities of LASSO solvers depend on the number of features and using SAFE might
result in run-time improvements. For each problem in the sequence, we can use SAFE to
reduce the number of features a priori to using our LASSO solver as shown in Algorithm 4.
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Algorithm 2 SAFE for reducing memory limit problems

given a feature matrix X ∈ R
m×n, response y ∈ R

m, penalty parameter λd , memory limit
M and LASSO solver: LASSO, i.e. w⋆ = LASSO(X,y, λ).
initialize λ0 = ‖XTy‖∞, w⋆

0 = 0 ∈ R
n,

repeat

1. Use SAFE to search for a λ with LF ≤ M . Obtain λ and E . % LF is the number of
features left after SAFE and E is the set defined in the SAFE-LASSO theorem.

2. if λ < λd then λ = λd, apply SAFE to obtain E end if.

3. Compute the solution w⋆. w⋆(E c) = LASSO(X :,Ec,y, λ), w⋆(E) = 0; % w⋆(E c) and
X :,Ec are the elements and columns of w⋆ and X defined by the set E c, respectively.
E c = {1, . . . , n} \E is the complement of the set E .

4. λ0 := λ, w⋆
0 = w

⋆.

until λ0 = λd

3.5 Numerical results

In this section, we explore the benefits of SAFE by running numerical experiments1 with
different LASSO solvers. We present two kinds of experiments to highlight the two main
benefits of SAFE. One kind, in our opinion the most important, shows how memory limita-
tions can be reduced, by allowing to treat larger data sets. The other focuses on measuring
computational time reduction when using SAFE a priori to the LASSO solver.

We have used a variety of available algorithms for solving the LASSO problem. We use
acronyms to refer to the following methods: IPM stands for the Interior-Point Method for
LASSO described in [27]; GLMNET corresponds to the Generalized Linear Model algorithm
described in [20]; TFOCS corresponds to Templates for First-Order Conic Solvers described
in [4]; FISTA and Homotopy stand for the Fast Iterative Shrinkage-Thresholding Algorithm
and homotopy algorithm, described and implemented in [56], respectively. Some methods
(like IPM, TFOCS) do not return exact zeros in the final solution of the LASSO problem and
the issue arises in evaluating the cardinality. In appendix A, we discuss some issue related
to the thresholding of the LASSO solution.

In our experiments, we use data sets derived from text classification sources in [19]. We
use medical journal abstracts from PubMed represented in a bag-of-words format, where
stop words have been eliminated and capitalization removed. The dimensions of the feature
matrix X we use from PubMed is m = 1, 000, 000 abstracts and n = 127, 025 features

1In our experiments, we have used an Apple Mac Pro 64-bit workstation, with two 2.26 GHz Quad-Core
Intel Xeon processors, 8 MB on-chip shared L3 cache per processor, with 6 GB SDRAM, operating at 1066
MHz.
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Algorithm 3 Bisection method on λ.

given a feature matrix X ∈ R
m×n, response y ∈ R

m, penalty parameter λ0 with LASSO
solution w⋆

0, tolerance ǫF > 0, memory limit M , and maximum iterations kmax.
initialize l = 0, u = λ0, k = 0.
repeat

1. Set λ := (l + u) /2.

2. Use the SAFE-LASSO theorem to obtain E .

3. Set LF = |E c|.

4. if LF > M then set l := λ else set u := λ end if

5. k = k + 1.

until (M − LF ≤ ǫF and LF ≤M ) or k > kmax.

(words). There is a total of 82, 209, 586 non-zeros in the feature matrix, with an average of
about 645 non-zeros per feature (word). We also use data-sets derived from the headlines
of The New York Times, (NYT) spanning a period of about 20 years (from 1985 to 2007).
The number of headlines in the entire NYT data-set is m = 3, 241, 260 and the number of
features (words) is n = 159, 943. There is a total of 14, 083, 676 non-zeros in the feature
matrix, with an average of about 90 non-zeros per feature.

In some applications such as [22], the goal is to learn a short list of words that are
predictive of the appearance of a given query term (say, “lung” or “china”) in the abstracts of
medical journals or NYT news. The LASSO problem can be used to produce a summarization
of the query term across the many abstracts or headlines considered. To be manageable by a
human reader, the list of predictive terms should be very short (say at most 100 terms) with
respect to the size of the dictionary n. To produce such a short list, we solve the LASSO
problem P(λ) with different penalty parameters λ, and choose the appropriate penalty λ
that would generate enough non-zeros in the LASSO solution (around 100 non-zeros in our
case).

3.5.1 SAFE for reducing memory limit problems

We experiment with PubMed data-set which is too large to be loaded into memory, and thus
not amenable to current LASSO solvers. As described before, we are interested in solving
the LASSO problem for a regularization parameter that would result in about 100 non-zeros
in the solution. We implement Algorithm 2 with a memory limit M = 1, 000 features, where
we have observed that for the PubMed data loading more than 1, 000 features causes memory
problems in the machine and platform we are using. The memory limit is approximately
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Algorithm 4 Recursive SAFE for the Lasso

given a feature matrix X ∈ R
m×n, response y ∈ R

m, a sequence of penalty parameters
λs ≤ . . . ≤ λ1 ≤ ‖XTy‖∞, and LASSO solver: LASSO.
initialize λ0 = ‖XTy‖∞, w⋆

0 = 0 ∈ R
n.

for i = 1 until i = s do

1. Set λ0 = λi−1, and λ = λi.

2. Use the SAFE-LASSO theorem to obtain E .

3. Compute the solution w⋆. w⋆(E c) = LASSO(X(E c, :), y, λ), w⋆(E) = 0. % w⋆(E c) and
X :,EC are the elements and columns of w⋆ and X defined by the set E c, respectively.
E c = {1, . . . , n} \E is the complement of the set E .

4. Set w⋆
0 = w

∗.

end for

two orders of magnitudes less than the original number of features n, i.e. M ≈ 0.01n. Using
Algorithm 2, we were able to solved the LASSO problem for λ = 0.04λmax using a sequence
of 25 LASSO problem with each problem having a number of features less than M = 1, 000.
Figure 3.4 shows the simulation result for the PubMed data-set.

3.5.2 SAFE for LASSO run-time reduction

We have used a portion of the NYT data-set corresponding to all headlines in year 1985,
the corresponding feature matrix has dimensions n = 38, 377 features and m = 192, 182
headlines, with an average of 21 non-zero per feature. We solved the plain LASSO prob-
lem and the LASSO problem with SAFE as outlined in Algorithm 4 for a sequence of λ
logarithmically distributed between 0.03λmax and λmax. We have used four LASSO solvers,
IPM, TFOCS, FISTA and Homotopy to solve the LASSO problem. Figure 3.5(a)shows the
computational time saving when using SAFE. Figure 3.5(b) shows the number of features
we used to solve the LASSO problem when using SAFE, and the number of non-zeros in
the solution. We realize that when using Algorithm 4, we solve problems with a number of
features at most 10, 000 instead of n = 38, 377 features, this reduction has a direct impact
on the solving time of the LASSO problem as demonstrated in Figure 3.5(a).

3.5.3 SAFE for LASSO with intercept problem

We return to the LASSO with intercept problem discussed in Section 3.3.3. We generate a
feature matrix X ∈ R

m×n with m = 500, n = 106. The entries of X has a N (0, 1) normal
distributed and sparsity density d = 0.1. We also generate a vector of coefficients ω ∈ R

n
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Figure 3.4: A LASSO problem solved for the PubMed data-set and λ = 0.04λmax using a
sequence of 25 smaller size problems. Each LASSO problem in the sequence has a number
of features LF that satisfies the memory limit M = 1, 000, i.e LF ≤ 1, 000.

with 50 non-zero entries. The response y is generated by setting y = Xω + 0.01η, where
η is a vector in R

m with N (0, 1) distribution. We use GLMNET implemented in R to solve
the LASSO problem with intercept. The generated data, X and y can be loaded into R ,
yet memory problems occur when we try to solve the LASSO problem. We use Algorithm
2 with memory limit M = 10, 000 features and λ = 0.33λmax. Figure 3.6 shows the number
of non-zeros in the solution of the 352 sequence of problems used to obtain the solution at
λ = 0.33λmax.

3.6 Conclusion

In this chapter, we presented the basic idea behind the SAFE method. We derived two simple
theorems to discard features safely and cheaply. The numerical results showed that the SAFE
method is aggressive at eliminating features for large values of the penalty parameter and can
reduce the computational cost of obtaining LASSO solutions for large-scale sparse problems.
This property of SAFE can also extend the reach of LASSO solvers to problems previously
out of there reach.
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Figure 3.5: (a) Computational time savings. (b) Lasso solution for the sequence of problem
between 0.03λmax and λmax. The green line shows the number of features we used to solve
the LASSO problem after using Algorithm 4.
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Figure 3.6: A LASSO problem with intercept solved for randomly generated data-set and
λ = 0.33λmax using a sequence of 352 smaller size problems. Each LASSO problem in the
sequence has a number of features LF that satisfies the memory limit M = 10, 000, i.e
LF ≤ 1000.
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Chapter 4

SAFE in the LOOP

4.1 Introduction

Recall, it is possible to eliminate a feature xk from a feature matrixX in the LASSO problem

P(λ) : φ(λ) := min
w

1

2
‖Xw − y‖22 + λ ‖w‖1 , (4.1)

by checking the SAFE test

λ > max(P (xk,Θ), P (−xk,Θ)),

where P (xk,Θ) is a convex optimization problem of the form

P (x,Θ) := max
θ
xTθ : θ ∈ Θ,

and Θ is a set that contains the dual optimal point of the LASSO dual problem

D(λ) : φ′(λ) := max
θ

G(θ) :
∣

∣θTxk
∣

∣ ≤ λ, k = 1, . . . , n, (4.2)

with G(θ) = 1
2
‖y‖22 − 1

2
‖θ + y‖22. In this chapter, we solve the SAFE test problem for a

non-empty set of the form

Θ (η, θs, γ) =
{

θ
∣

∣G(θ) ≥ γ, ηT (θ − θs) ≥ 0
}

,

where η, θs, and γ are general, i.e. not constrained as in Section 3.3.1. We then define the
parameters of Θ (η, θs, γ) so that it contains the dual optimal point. Finally, we derive a
SAFE theorem for the LASSO, more aggressive at eliminating features than the preceeding
SAFE theorems (Theorem 3.2.1 and Theorem 3.3.1).

The SAFE theorem we derive in this chapter has a similar closed-form inequality test to
Theorem 3.2.1, i.e. if λ > ρkλ0 then eliminate feautre xk. The closed-form solution allows
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us to integrate SAFE into LASSO solvers in a more effecient way than Chapter 3, without
the need of implementing iterative algorithms like Algorithm 3. In addition, mathematical
terms that ρk depends on are usually precomputed by many LASSO algorithms.

In this chapter, we derive a SAFE-LASSO theorem with a closed-form sufficient condi-
tion in section 4.2. We then implement a Coordinate-Descent (CD) method and integrate
our SAFE method in it in section 4.3. Finally, in section 4.4, we show using numerical
experiments how SAFE can improve computational complexity and extend the reach of the
CD method to larger size problems.

4.2 A better SAFE method for the LASSO

In this section, we present the steps necessary to derive the SAFE-LASSO Theorem.

4.2.1 Solving the SAFE test problem

The SAFE test problem
P (x,Θ) := max

θ
xTθ : θ ∈ Θ,

with
Θ (η, θs, γ) =

{

θ
∣

∣G(θ) ≥ γ, ηT (θ − θs) ≥ 0
}

,

admits a closed form solution as shown in the following propostion.

Proposition 4.2.1 (SAFE-LASSO test Problem) Consider the problem

P (x,η, θs, γ) := max
θ
xTθ : G(θ) ≥ γ, ηT (θ − θs) ≥ 0, (4.3)

with G(θ) = −1
2
‖θ‖22 − yTθ. Assume that strong duality holds and a solution of the

problem is attained. Let gs = θs + y , then P (x,η, θs, γ) takes the value

P (x,η, θs, γ) =

{

−yTx+ ‖x‖2D ‖x‖2
(

ηTgs
)

≤ D
(

ηTx
)

,
1

‖η‖22

(

ηTx
)

ηTgs − xTy + ψD̃ otherwise,
(4.4)

with
D =

(

‖y‖22 − 2γ
)1/2

,

D̃ =

(

−2γ −
(

ηTgs
)2

‖η‖22
+ ‖y‖22

)1/2

,

and

ψ =

(

‖x‖22 −
1

‖η‖22
(

ηTx
)2

)1/2

.
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Proof: See Appendix B for proof.

4.2.2 Definning Θ

Similar to Section 3.3, we assume that we are interested in solving the LASSO at some λ
and we have knoweldge of a LASSO solution w0 at a regularization parameter λ0. We find
γ in the inequality G(θ) ≥ γ by dual scaling. Assuming θs is a feasible point for the LASSO
dual problem at λ, then the dual optimal point θ⋆ is in the set

{θ |G(θ) ≥ γ := G(θs)} .

We set η and θs for the halfspace inequality η
T (θ − θs) ≥ 0 using the following proposition.

Proposition 4.2.2 Consider the LASSO problem with regularization parameter λ and as-
sume we know a LASSO solution w0 at λ0. Define θ0 = Xw0 − y, θs = θ0

λ
λ0
, and

η =Xw0/ ‖w0‖1. Then, any feasible point θ for the dual problem D(λ) is in the half-space

ηT (θ − θs) ≥ 0.

Proof: See Appendix B for proof.
Since the half-space contains all feasible points of the dual problem at λ and G(θ) ≥ γ

contains the dual optimal point, we conclude that the set

Θ (η, θs, γ) =
{

θ
∣

∣G(θ) ≥ γ, ηT (θ − θs) ≥ 0
}

,

with θ0 = Xw0 − y, θs = θ0
λ
λ0
, η = Xw0/ ‖w0‖1, γ = G(θs), and G(θ) = 1

2
‖y‖22 −

1
2
‖θ + y‖22 contains the dual optimal point θ⋆.

4.2.3 Evaluating the SAFE test

For the η and θs, we used to define our set Θ, the SAFE test problem can be further
simplified.

Proposition 4.2.3 Consider the SAFE test problem P (x,η, θs, γ) in (4.3), and assume we
know a LASSO solution w0 at a regularization parameter λ0. Defining η = Xw0/ ‖w0‖1,
θ0 =Xw0 − y, θs = θ0 λ

λ0
, and γ = G(θs), the SAFE test problem reduces to

P (xk,η, θs, γ) =

{

−δ0(k) + 1
λ0

‖y‖2 ‖xk‖2 |λ− λ0| σ1(k)λ ≤ σ2(k)λ0,
α0−λβ0
α0−λ0β0δ1(k)− δ0(k) +ψ(k)M |λ− λ0| otherwise,

with τ =Xw0, δ0 =X
Ty, δ1 =X

Tτ , β0 = ‖w0‖1, α0 := w
T
0 δ0 = y

Tτ ,

σ1(k) = ‖y‖2 δ1(k)− λ0 ‖xk‖2 β0,
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σ2(k) = ‖y‖2 − α0 ‖xk‖2 ,

M =
−β0λ0 + ‖y‖22 − α0

λ20
− β2

0

α0 − β0λ0
,

and

ψ(k) =

(

‖xk‖22 −
1

α0 − β0λ0
δ21(k)

)1/2

, k = 1, ...n.

Proof: See Appendix B for proof.
Thus, in order to evaluate the solution of the SAFE test problem, we need our feature

matrix X in computing only three terms, τ = Xw0, δ0 = XTy, and δ1 = XTτ . The
term δ0 = XTy can be evaluated offline, the term τ = Xw0 is usually computed by all
LASSO algorithms as it is necessary to evaluate the cost function, or the gradient of the cost
function when optimizing (2.1), and the term δ1 = XTτ is evaluated most of the time by
LASSO algorithms. Coordinate-Descent, and interior point methods are examples of such
algorithms. Thus, the worst-case computational complexity is O(mn) operations, which is
the cost of a few vector-matrix multiplications in case we were to evaluate all the terms,
τ , δ0, and δ1. Sparse matrices have a better count (less) of operations.

We note that the second case of P (xk,η, θs, γ) is active when λ is close enough to λ0,
independent of the feature xk. More specifically when

(λ0 − λ) < λ0
‖τ‖2
‖y‖2

.

We derive this result by evaluating σ1(k)λ > σ2(k)λ0 for some feature xk, and then simpli-
fying it to

λ0 ‖xk‖2 (−λβ0 + α0) > ‖y‖2 (λ0 − λ) δ1(k). (4.5)

A sufficient condition for (4.5) to hold true is

λ0 ‖xk‖2 (−λ0β0 + α0) > ‖y‖2 (λ0 − λ) δ1(k),

since λ0 ≥ λ. We recall that ‖τ‖22 = −λ0β0 +α0, and the inequality holds true if δ1(k) < 0.
When δ1(k) is positive, we have

(λ0 − λ) < ‖xk‖2
λ0
δ1(k)

‖τ‖22
‖y‖2

.

A sufficient condition for the above inequality to hold true is

(λ0 − λ) < λ0
‖τ‖2
‖y‖2

,
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since 1
‖xk‖2‖τ‖

2
2

≤ 1
δ1(k)

.

Using the expression of P (xk,η, θs, γ), we evaluate the inequality test

λ < max(P (xk,η, θs, γ), P (−xk,η, θs, γ)),

using the following proposition.

Proposition 4.2.4 Consider the LASSO (2.1) with feature matrix X and response y. Also
assume we know an optimal solution w0 at some regularization parameter λ0, then for λ ≤ λ0
the test

λ < max(P (xk,η, θs, γ), P (−xk,η, θs, γ)),
with P (xk,η, θs, γ) the safe test problem in (4.3), η = Xw0/ ‖w0‖1, θ0 = Xw0 − y,
θs = θ0

λ
λ0
, γ = G(θs) and G(θ) =

1
2
‖y‖22 − 1

2
‖θ + y‖22 is equivalent to

λ > ρkλ0,

with τ =Xw0, δ0 =X
Ty, δ1 =X

Tτ , β0 = ‖w0‖1, α0 := w
T
0 δ0 = y

Tτ ,

σ+
1 (k) = ‖y‖2 δ1(k)− λ0 ‖xk‖2 β0,

σ−
1 (k) = −‖y‖2 δ1(k)− λ0 ‖xk‖2 β0,

σ2(k) = ‖y‖2 − α0 ‖xk‖2 ,

M =
−β0λ0 + ‖y‖22 − α0

λ20
− β2

0

α0 − β0λ0
,

ψ(k) =

(

‖xk‖22 −
1

α0 − β0λ0
δ21(k)

)1/2

, k = 1, ...n.,

ρk = max(ρ−k , ρ
+
k ),

ρ+k =











−δ0(k)+‖y‖2‖xk‖2
λ0+‖y‖2‖xk‖2

σ+
1 (k)λ ≤ σ2(k)λ0,

(

−δ0(k)+ α0
α0−λ0β0

δ1(k)
)

+ψ(k)Mλ0
(

−δ1(k)+ α0
α0−λ0β0

δ1(k)
)

+λ0+ψ(k)Mλ0
otherwise,

and

ρ−k =











+δ0(k)+‖y‖2‖xk‖2
λ0+‖y‖2‖xk‖2

σ−
1 (k)λ ≤ σ2(k)λ0,

−
(

−δ0(k)+ α0
α0−λ0β0

δ1(k)
)

+ψ(k)Mλ0

−
(

−δ1(k)+ α0
α0−λ0β0

δ1(k)
)

+λ0+ψ(k)Mλ0
otherwise.

Proof: See Appendix B for proof.
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4.2.4 SAFE-LASSO theorem

We summarize the SAFE result in the following theorem:

Theorem 4.2.1 (SAFE-LASSO) Consider the LASSO problem

min
w

1

2
‖Xw − y‖22 + λ ‖w‖1 ,

with X the feature matrix, y the response, w the optimization variable, λ > 0 the regular-
ization parameter and let λ0 ≥ λ be a value for which an optimal solution w0 ∈ R

n is known.
Denoting by xk the k-th feature (column) of the feature matrix X, the condition

λ > ρkλ0,

with ρk defined in 4.2.4, allows to safely remove the k-th feature from feature matrix X.

4.3 SAFE in a Coordinate-Descent (CD) algorithm

In this section, we derive the Coordinate-Descent (CD) algorithm for solving the LASSO
Problem. In addition, we present an algorithm that integrates SAFE with Coordinate-
Descent.

4.3.1 Coordinate-Descent for the LASSO

The Coordinate-Descent (CD) method loops over each entry wj of w, and updates its value
based on the optimization problem

wj = argmin
wj

1

2

∥

∥X :,I\jwI\j + xjwj − y
∥

∥

2

2
+ λ

∥

∥wI\j + wj
∥

∥

1
, (4.6)

with I = {1, ...n} the set of all indices, and I\j the set of all indicies excluding the index
j. For notational convinience, we drop the I set notation and write X\j instead of X :,I\j,
to donate a matrix composed by all the features of X except for the j-th feature (column).
Similarly, we refer to w\j as the vector of all entries of w except for entry j. We find wj in
(4.6) by writing the subgradient optimality condition,

xTj
(

X\jw\j + xjwj − y
)

+ λ∂wj = 0,

or

wj =
1

‖xj‖22
(

xTj
(

y −X\jw\j
)

− λ∂wj
)

, (4.7)

with ∂wj = sign(wj) and sign(0) ∈ [−1, 1]. We recognize that wj can take values based on
three cases.
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First Case: If λ ≥
∣

∣xTj
(

y −X\jw\j
)∣

∣, then wj = 0.

Second Case: Assuming λ <
∣

∣xTj
(

y −X\jw\j
)∣

∣, if xTj
(

y −X\jw\j
)

> 0, then xTj
(

y −X\jw\j
)

±
λ > 0 and the right-hand side of (4.7) is non-negative. Thus, wj =

1
‖xj‖22

(

xTj
(

y −X\jw\j
)

− λ
)

.

Third Case: Assuming λ <
∣

∣xTj
(

y −X\jw\j
)∣

∣, if xTj
(

y −X\jw\j
)

< 0, then xTj
(

y −X\jw\j
)

±
λ < 0 and the right-hand side of (4.7) is non-positive. Thus, wj =

1
‖xj‖22

(

xTj
(

y −X\jw\j
)

+ λ
)

.

We summarize the Coordinate-Descent method in Algorithm 5.

Algorithm 5 Coordinate Descent method for the LASSO.

given a feature matrixX ∈ R
m×n, response y ∈ R

m, a penalty parameter λ, an initial guess
w, number of maximum iterations imax, and tolerance ǫ.
initialize τ = Xw, δ0 = XTy, δ1 = XTτ , α(j) = ‖xj‖2 , j = 1, ...n, and set S =
{1, ..., n}.
for i = 1 until i = imax do
Set wp = w.
for j in S do

1. Set w− = wj, δ̃1 = δ1(j)− α2
jwj .

2. if λ ≥
∣

∣

∣
δ0(j)− δ̃1

∣

∣

∣
, then update wj := 0.

3. if λ <
∣

∣

∣
δ0(j)− δ̃1

∣

∣

∣
and δ0(j)− δ̃1 > 0, then update wj :=

1
α2
j

(

δ0(j)− δ̃1 − λ
)

.

4. else update wj :=
1
α2
j

(

δ0(j)− δ̃1 + λ
)

.

5. Update τ := τ + xj (wj − w−) and δ1 := δ1 + (wj − w−)XTxj.

end for
if ‖wp −w‖2 < ǫ ‖w‖2, then terminate.
end for

4.3.2 SAFE in the Coordinate-Descent loop

We integrate SAFE in the CD method by using an algorithm similar to Algorithm 2. Recall
that Algorithm 2 defines a sequence of decreasing regularization parameters λmax > λ1 >
... > λd, based on the features that SAFE can eliminate at each stage. It starts with λmax

and then uses SAFE to find a λ1 < λmax for which at most M feature are not eliminated,
where M ∈ N

+ is some memory limit. The step is repeated until we reach our desired
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regularization parameter λd. Since the CD method provides us with the terms, τ = Xw,
δ0 = XTy, δ1 = XTτ , then we can apply SAFE with less computational effort. More
specifically, we have only to sort the values of ρk, k = 1, ..., n, provided by Theorem 4.2.1
and use this ordering to find λ1 instead of using a bisection method like Algorithm 3. The
following algorithm presents the steps necessary to integrate SAFE into the Coordinate-
Descent algorithm for solving the LASSO.

Algorithm 6 CD-SAFE. A Coordinate-Descent algorithm with SAFE integrated in the loop
of its iterations.
given a feature matrix X ∈ R

m×n, response y ∈ R
m, penalty parameter λd , memory limit

M .
initialize w0 = 0 ∈ R

n, τ = 0 ∈ R
m, δ0 =X

Ty, δ1 = 0 ∈ R
n and λ0 = ‖δ0‖∞.

repeat

1. Use SAFE-LASSO (4.2.1) with w0, λ0, τ , δ0, and δ1. Obtain ρ.

2. Sort ρ, ρi1 < ... < ρin , with ij the index of the j-th largest element in ρ.

3. Set l = inf
{

j
∣

∣ρij = ρ(iM)
}

− 1 and λ = ρilλ0.

4. if λ < λd then set λ = λd.

5. Construct the set S = {il, ..., i1}.

6. Use 5 to solve the LASSO at λ. Initialize with S, w0, τ , δ0, and δ1.

7. Obtain from 5 the updated w0, τ , and δ1.

8. Set λ0 := λ.

until λ0 = λd

4.4 Numerical results

In this section, we explore the benefits of integrating SAFE with the Coordinate-Descent
method by running numerical experiments1 on different datasets. We present two kinds of
experiments, to illustrate the two main benifites of SAFE. In the first experiment, we run
CD-SAFE (Algorithm 6) and CD (Algorithm 5) on synthetic data of different sizes and in
the second experiment we run CD-SAFE on three large-scale problems.

1In our experiments, we have used an Apple Mac Pro 64-bit workstation, with two 2.26 GHz Quad-Core
Intel Xeon processors, 8 MB on-chip shared L3 cache per processor, with 6 GB SDRAM, operating at 1066
MHz.
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The synthetic data sets are generated using a dense feature matrix X ∈ R
m×n with

m = 100, and n = 103, 5×103, 10×103. The entries ofX has a N (0, 1) normal distribution.
We also generate a vector of coefficients ω ∈ R

n with 100 non-zero entries. The response y is
generated by setting y =Xω + 0.01η, where η is a vector in R

m with N (0, 1) distribution.
We also use publicly available2 datasets presented in [26]. The TFIDF-2006, and LOG1P-2006

datasets are compiled from financial data, and KDD2010b is a dataset compiled from an online
tutoring system, where features are built based on the answers of students to some questions.
The statistics of these datatsets is summarized in Table 4.1.

Data set m n nnz range of y

TFIDF-2006 16, 087 150, 360 19, 971, 015 [−7.90,−0.52]
LOG1P-2006 16, 087 4, 272, 227 96, 731, 839 [−7.90,−0.52]
KDD2010b 19, 264, 097 29, 890, 095 566, 345, 888 {0, 1}

Table 4.1: Feature matrix X statistics for different datasets. The number of observations
is m , the number of features or variables is n, and the number of non-zero entries in the
feature matrix X is nnz.

4.4.1 CD-SAFE and computational complexity

In our first experiment, the synthetic data we use is small enough for us to solve the LASSO
problem using both algorithms, CD and CD-SAFE. We measure the number of iterations
needed in order for each algorithm to reach a tolerance ǫ = 10−2. In each iteration we solve
the problem (4.6) for some index j, j = 1, ..., n of w.

The LASSO problem is solved for a range of regularizatoin parameters [λmin, λmax], where
at λmin we have at least 50 non-zeros in the solution. In Figure 4.1, we show the simulation
results when the memory limit M in Algorithm 6 is set to 100, i.e. M = 100. The results
show for the different dimensions of feature matrix X, that the number of iterations is
improved by 10 to 100 folds. With CD-SAFE it takes less iterations to reach the same
tolerance for a given problem.

4.4.2 CD-SAFE for reducing memory limit problems

We have used the largest datasets publicly available we could find to carry out the numer-
ical experiements. Loading the datasets (Table 4.1) alone causes memory problems for the
machine we are using. While the CD method can be run in parallel and their in no need to
load the entire dataset at once, it is still required to scan all the features. In the case of the
KDD2010b dataset, for example, there are about 30× 106 features and we know apriori that
almost all of these features are going to be inactive at the optimal solution. With CD-SAFE

2Data sets can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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most of these inactive feature are discarded and thus we can handle large datasets and find
solutions of interest very cheaply.

In Figure 4.2, we solve the LASSO problem using the datasets in Table 4.1, for a range
of regularization parameters [λmin, λmax], where at λmin we have at least 50 non-zeros in
the solution. We set the memory limit M in Algorithm 6 to 100 and the tolerance to
ǫ = 10−2. In all simulations, it took less than 30, 000 iterations to reach the tolerance ǫ when
solving the LASSO at regularization parameter λmin. This is a considerable improvement
in computational complexity. Although we didn’t solve the LASSO problems using the CD
algorithm, but assuming that we need to scan the features only once to acheive the tolerance
ǫ, then CD-SAFE still introduces at least 103 orders of magnitudes less compuations, i.e
instead of 30 × 106 iterations, we need only 30 × 103 iterations to reach a tolerance ǫ. In
addition to the improvements in computation complexity, CD-SAFE also resolved memoy
problems since we are solving instances of the LASSO problem with a small feature matrix
Xreduced ∈ R

m×100.

4.5 Conclusion

We have adapted the SAFE test problem from chapter 3 and derived an aggressive test
for removing features for the LASSO problem. The closed-form solution of the sufficient
condition for removing features allowed us to integrate SAFE efficiently with LASSO solvers.
In this chapter, we integrated SAFE with the Coordinate-Descent algorithm and we called
our algorithm CD-SAFE. SAFE allowed us to extend the reach of the CD algorithm to
larger-size problems and allowed to reduce the compuational complexity by allowing us to
reach a specific tollerance with fewer iterations.
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Figure 4.1: Number of iterations needed to reach a stationary tolerance of ǫ = 10−2 for the
CD and CD-SAFE algorithms solved using synthetic data. The simulation results show that
CD-SAFE provides at least 10 or 100 folds of less iterations to reach the same tolerance as
the CD algorithm. The feature matrix used has the dimenstion m = 1000 observations and
(a) n = 1000 features, (b) n = 5000 features and (c) n = 10, 000.
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Figure 4.2: The LASSO (4.1) solved over a range of regularization parameters λ ∈
[λmin, λmax], using the CD-SAFE Algorithm (Algorithm 6). The plot shows the iterations
needed to solve the LASSO problem at a particular λ. Each iteration is an instant of
the problem (4.6) solved for some index of the solution wi. (a) LOG1P-2006 dataset. (b)
TFIDF-2006 dataset. (c) KDD2010b dataset.
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Chapter 5

SAFE Applied to General
ℓ1-Regularized Convex Problems

5.1 Introduction

The SAFE-LASSO result presented in chapter 3 for the LASSO problem (2.1) can be adapted
to a more general class of l1− regularized convex problems. We consider the family of
problems

P(λ) : φ(λ) := min
w, ν

m
∑

i=1

f(aTi w + biv + ci) + λ ‖w‖1 , (5.1)

where f is a closed convex function, and non-negative everywhere, ai ∈ R
n, i = 1, . . . , m,

b, c ∈ R
m are given. The LASSO problem is a special case of (5.1) with f(ζ) = (1/2)ζ2,

ai ∈ R
n, i = 1, . . . , m the observations, c = −y is the (negative) response vector, and

b = 0. Hereafter, we refer to the LASSO problem as PLASSO(λ) and to the general class of
l1-regularized problems as P(λ).

In this chapter, we outline the steps necessary to derive a SAFE method for the general
problem P(λ) in section 5.2. We show some preliminary results for deriving SAFE methods
when f(ζ) is the hing loss function, fhi(ζ) = (1− ζ)+ in section 5.3, and the logistic loss
function flog(ξ) = log(1 + e−ξ) in section 5.4.

5.2 General SAFE

In this section, we derive a Safe Feature Elimination method for eliminating features in an
l1− regularized convex problem.
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5.2.1 Dual Problem

The first step is to devise the dual of problem (5.1), which is

D(λ) : φ(λ) = max
θ

G(θ) : θTb = 0, |θTxk| ≤ λ, k = 1, . . . , n, (5.2)

where

G(θ) := cTθ −
m
∑

i=1

f ∗(θi) (5.3)

with f ∗(ϑ) = maxξ ξϑ−f(ξ) the conjugate of the loss function f(ζ), and xk the k-th column

or feature of the feature matrix X = (a1, . . . ,am)
T ∈ R

m×n. G(θ) is the dual function,
which is, by construction, concave. We assume that strong duality holds and primal and
dual optimal points are attained. Due to the optimality conditions for the problem (see [5]),
constraints for which |θTxk| < λ at optimum correspond to a zero element in the primal
variable: w⋆(k) = 0, i.e.

∣

∣θ⋆Txk
∣

∣ < λ⇒ w⋆(k) = 0. (5.4)

5.2.2 Optimality set Θ

For simplicity, we consider only the set Θ := {θ |G(θ) ≥ γ} which contains θ⋆ the dual
optimal point of D(λ). One way to get a lower bound γ is to find a dual point θs that is
feasible for the dual problem D(λ), and then set γ = G(θs).

To obtain a dual feasible point, we can solve the problem for a higher value λ0 ≥ λ of the
penalty parameter. (In the specific case examined below, we will see how to set λ0 so that
the vector w⋆

0 = 0 at optimum.) This provides a dual point θ⋆0 that is feasible for D(λ0),
which satisfies λ0 = ‖Xθ0‖∞. In turn, θ⋆0 can be scaled so as to become feasible for D(λ).
Precisely, we set θs = sθ0, with ‖Xθs‖∞ ≤ λ equivalent to |s| ≤ λ/λ0. In order to find the
best possible scaling factor s, we solve the one-dimensional, convex problem

γ(λ) := max
s

G(sθ0) : |s| ≤ λ

λ0
. (5.5)

Under mild conditions on the loss function f , the above problem can be solved by bisection
in O(m) time. By construction, γ(λ) is a lower bound on φ(λ). We can generate an initial
point θ⋆0 by solving P(λ0) with w0 = 0. We get

min
v0

m
∑

i=1

f(biv0 + ci) = min
v0

max
θ0

θT0 (bv0 + c)−
m
∑

i=1

f ∗ (θ0(i)) = max
θ0 : bTθ0=0

G(θ0).

Solving the one-dimensional problem above can be often done in closed-form, or by bisection,
in O(m). Choosing θ⋆0 to be any optimal for the corresponding dual problem (the one on
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the right-hand side) generates a point that is dual feasible for it, that is, G(θ⋆0) is finite, and
bTθ0 = 0.

The point θ⋆0 satisfies all the constraints of problem D(λ), except perhaps for the con-
straint ‖Xθ‖∞ ≤ λ, i.e. ‖Xθ⋆0‖∞ > λ. Hence, if λ ≥ λ0 := ‖Xθ⋆0‖∞, then θ⋆0 is dual
optimal for D(λ) and by the optimality condition (5.4) we have w⋆ = 0 . Note that, since θ⋆0
may not be uniquely defined, λ0 may not necessarily be the smallest value for which w⋆ = 0
is optimal for the primal problem.

5.2.3 SAFE method

Assume that a lower bound γ on the optimal value of the learning problem φ(λ) is known:
γ ≤ φ(λ). (Without loss of generality, we can assume that 0 ≤ γ ≤∑m

i=1 f(ci)). The test

λ > max(P (γ,xk), P (γ,−xk)),

allows to eliminate the k-th feature from the feature matrixX, where P (γ,x) is the optimal
value of a convex optimization problem with two constraints:

P (γ,x) := max
θ
θTx : G(θ) ≥ γ, θTb = 0. (5.6)

Since P (γx) decreases when γ increases, the closer φ(λ) is to its lower bound γ, the more
aggressive (accurate) our test is.

By construction, the dual function G is decomposable as a sum of functions of one
variable only. This particular structure allows to solve problem (5.6) very efficiently, using
for example interior-point methods, for a large class of loss functions f . Alternatively, we
can express the problem in dual form as a convex optimization problem with two scalar
variables:

P (γ,x) = min
µ>0, ν

−γµ + µ
m
∑

i=1

f

(

x(i) + µci + νbi
µ

)

. (5.7)

Note that the expression above involves the perspective of the function f , which is convex
(see [5]). For many loss functions f , the above problem can be efficiently solved using a
variety of methods for convex optimization, in (close to) O(m) time. We can also set the
variable ν = 0, leading to a simple bisection problem over µ. This amounts to ignore the
constraint θTb = 0 in the definition of P (γ,x), resulting in a more conservative test. More
generally, any pair (µ, ν) with µ > 0 generates an upper bound on P (γ,x), which in turn
corresponds to a valid, perhaps conservative, test.
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5.3 SAFE for Sparse Support Vector Machine

We turn to the sparse support vector machine classification problem:

Phi(λ) : φ(λ) := min
w,v

m
∑

i=1

(1− yi(z
T
i w + v))+ + λ‖w‖1, (5.8)

where zi ∈ R
n, i = 1, . . . , m are the data points, and y ∈ {−1, 1}m is the label vector. The

above is a special case of the generic problem (5.1), where f(ζ) := (1 − ξ)+ is the hinge
loss, b = y, c = 0, and the feature matrix X is given by X = [y1z1, . . . , ymzm]

T , so that
xk = [y1z1(k), . . . , ymzm(k)]

T .
We denote by I+, I− the set of indicies corresponding to the positive and negative

classes, respectively, and denote by m± = |I±| the associated cardinalities. We define
m := min(m+, m−). Finally, for a generic data vector x, we set x± = xI± ∈ R

m± ,
k = 1, . . . , n, the vectors corresponding to each one of the classes.

The dual problem takes the form

Dhi(λ) : φ(λ) := max
θ

Ghi(θ) : −1 ≤ θ ≤ 0, θTy = 0, |θTxk| ≤ λ, k = 1, . . . , n. (5.9)

with Ghi(θ) = 1Tθ.

5.3.1 Test, γ given

Let γ be a lower bound on φ(λ). The optimal value obtained upon setting w = 0 in (5.8) is
given by

min
v

m
∑

i=1

(1− yiv)+ = 2min(m+, m−) := γmax. (5.10)

Hence, without loss of generality, we may assume 0 ≤ γ ≤ γmax.
The feature elimination test hinges on the quantity

Phi(γ,x) = maxθ θ
Tx : 1Tθ ≥ γ, θTy = 0, −1 ≤ θ ≤ 0

= minµ>0, ν −γµ+ µ
∑m

i=1 fhi

(

xi−νyi
µ

)

= minµ>0, ν −γµ+
∑m

i=1(µ+ νyi − xi)+.

(5.11)

In appendix D.1, we show that for any x, the quantity P (γ,x) is finite if and only if
0 ≤ γ ≤ γmax, and can be computed in O(m logm) computations, or less with sparse data,
via a closed-form expression. That expression is simpler to state for Phi(γ,−x):

Phi(γ,−x) =
∑⌊γ/2⌋

j=1 x̄j − (γ
2
− ⌊γ

2
⌋)(x̄⌊γ/2⌋+1)+

+
∑m

j=⌊γ/2⌋+1(x̄j)+, 0 ≤ γ ≤ γmax = 2m,

x̄j := x
+
[j] + x

−
[j], j = 1, . . . , m,
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with x[j] the j-th largest element in a vector x, and with the convention that a sum over an
empty index set is zero. Note that in particular, since γmax = 2m:

Phi(γmax,−x) =
m
∑

i=1

(x+
[j] + x

−
[j]).

5.3.2 SAFE-SVM theorem

Following the construction proposed in section 5.2.2 for the generic case, we select γ = Ghi(θ),
where the point θ is feasible for (5.9), and can found by the scaling method outlined in
section 5.2.2, as follows. The method starts with the assumption that there is a value λ0 ≥ λ
for which we know the optimal value γ0 of Phi(λ0).

Specific choices for λ0, γ0. Let us first detail how we can find such values λ0, γ0.
We can set a value λ0 such that λ > λ0 ensures that w = 0 is optimal for the primal

problem (5.8). The value that results in the least conservative test is λ0 = λmax, where λmax

is the smallest value of λ above which w = 0 is optimal:

λmax := min
θ

‖Xθ‖∞ : − θT1 ≥ γmax, θ
Ty = 0, −1 ≤ θ ≤ 0. (5.12)

Since λmax may be relatively expensive to compute, we can settle for an upper bound λmax

on λmax. One choice for λmax is based on the test derived in the previous section: we ask
that it passes for all the features when λ = λmax and γ = γmax. That is, we set

λmax = max1≤k≤n max (Phi(γmax,xk), Phi(γmax,−xk))
= max1≤k≤n max

(
∑m

i=1(x
+
k )[j] + (x−

k )[j],
∑m

i=1(−x+
k )[j] + (−x−

k )[j]
)

.
(5.13)

By construction, we have λmax ≥ λmax, in fact:

λmax = max1≤k≤n maxθ |xTk θ| : − 1Tθ ≥ γmax, θ
Ty = 0, −1 ≤ θ ≤ 0

= maxθ ‖Xθ‖∞ : − 1Tθ ≥ γmax, θ
Ty = 0, −1 ≤ θ ≤ 0,

The two values λmax, λmax coincide if the feasible set is a singleton, that is, when m+ = m−.
On the whole interval λ0 ∈ [λmax, λmax], the optimal value of problem Phi(λ0) is γmax.

Dual scaling. The remainder of our analysis applies to any value λ0 for which we know
the optimal value γ0 ∈ [0, γmax] of the problem Phi(λ0).

Let θ0 be a corresponding optimal dual point (as seen shortly, the value of θ0 is irrelevant,
as we will only need to know γ0 = 1Tθ0). We now scale the point θ0 to make it feasible for
Phi(λ), where λ (0 ≤ λ ≤ λ0) is given. The scaled dual point is obtained as θ = sθ0, with
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s solution to (5.5). We obtain the optimal scaling s = λ/λ0, and since γ0 = −1Tθ0, the
corresponding bound is

γ(λ) = 1T (sθ0) = sγ0 = γ0
λ

λ0
.

Our test takes the form

λ > max (Phi(γ(λ),x), Phi(γ(λ),−x)) .

Let us look at the condition λ > Phi(γ(λ),−x):

∃ µ ≥ 0, ν : λ > −γ(λ)µ+
m
∑

i=1

(µ+ νyi + xi)+,

which is equivalent to:

λ > min
µ≥0,ν

∑m
i=1(µ+ νyi + xi)+
1 + (γ0/λ0)µ

.

The problem of minimizing the above objective function over variable ν has a closed-form
solution. In appendix D.2, we show that for any vectors x± ∈ R

m± , we have

Φ(x+,x−) := min
ν

m+
∑

i=1

(x+i + ν)+ +

m−
∑

i=1

(x−i − ν)+ =

m
∑

i=1

(x+[i] + x−[i])+,

with x[j] the j-th largest element in a vector x. Thus, the test becomes

λ > min
µ≥0

∑m
i=1(2µ+ x+

[i] + x
−
[i])+

1 + (γ0/λ0)µ
.

Setting κ = λ0/(λ0 + γ0µ), we obtain the following formulation for our test:

λ > min
0≤κ≤1

m
∑

i=1

((1− κ)
2λ0
γ0

+ κ(x+
[i] + x

−
[i]))+ =

2λ0
γ0

G(
γ0
2λ0

x), (5.14)

where xi := x
+
[i] + x

−
[i], i = 1, . . . , m, and for z ∈ R

m, we define

G(z) := min
0≤κ≤1

m
∑

i=1

(1− κ+ κzi)+.

We show in appendix D.3 that G(z) admits a closed-form expression, which can be computed
in O(d log d), where d is the number of non-zero elements in vector z. By construction, the
test removes all the features if we set λ0 = λmax, γ0 = γmax, and when λ > λmax.
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Theorem 5.3.1 (SAFE-SVM) Consider the SVM problem Phi(λ) in (5.8). Denote by xk
the k-th row of the matrix [y1z1, . . . , ymzm], and let I± := {i : yi = ±1}, m± := |I±|,
m := min(m+, m−), and γmax := 2m. Let λ0 ≥ λ be a value for which the optimal value
γ0 ∈ [0, γmax] of Psq(λ0) is known. The following condition allows to remove the k-th feature
vector xk:

λ >
2λ0
γ0

max

(

G(
γ0
2λ0

xk), G(
γ0
2λ0

xk)

)

, (5.15)

where (xk)i := (xk)
+
[i] + (xk)

−
[i], (xk)i := (−xk)+[i] + (−xk)−[i], i = 1, . . . , m, and for z ∈ R

m:

G(z) = min
z

1

1− z

p
∑

i=1

(zi − z)+ : z ∈ {−∞, 0, (zj)j : zj<0}

A specific choice for λ0 is λmax given by (5.13), with corresponding optimal value γ0 = γmax.

5.4 SAFE for Sparse Logistic Regression

We now consider the sparse logistic regression problem:

Plo(λ) : φ(λ) := min
w,v

m
∑

i=1

log
(

1 + exp(−yi(zTi w + v))
)

+ λ‖w‖1, (5.16)

with the same notation as in section 5.3. The dual problem takes the form

Dlo(λ) : φ(λ) :max
θ

m
∑

i=1

(

θi log(−θi)− (1 + θi)
T log(1 + θi)

)

:

− 1 ≤ θ ≤ 0, θTy = 0,

|θTxk| ≤ λ, k = 1, . . . , n.

(5.17)

5.4.1 Test, γ given

Assume that we know a lower bound on the problem, γ ≤ φ(λ). Since 0 ≤ φ(λ) ≤ m log 2,
we may assume that γ ∈ [0, m log 2] without loss of generality. We proceed to formulate
problem (5.7). For given x ∈ R

m, and γ ∈ R, we have

Plog(γ,x) = minµ>0, ν −γµ+ µ
∑m

i=1 flog

(

xi+yiν
µ

)

, (5.18)

which can be computed in O(m) by two-dimensional search, or by the dual interior-point
method described in appendix. (As mentioned before, an alternative, resulting in a more
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conservative test, is to fix ν, for example ν = 0.) Our test to eliminate the k-th feature takes
the form

λ > Tlog(γ,xk) := max(Plog(γ,xk), Plog(γ,−xk)).
If γ is known, the complexity of running this test through all the features is O(nm). (In
fact, the terms in the objective function that correspond to zero elements of x are of two
types, involving flog(±ν/µ). This means that the effective dimension of problem (5.18) is
the cardinality d of vector x, which in many applications is much smaller than m.)

5.4.2 Obtaining a dual feasible point

We can construct dual feasible points based on scaling one obtained by choice of a primal
point (classifier weight) w0. This in turn leads to other possible choices for the bound γ.

For w0 ∈ R
n given, we solve the one-dimensional, convex problem

v0 := argmin
b

m
∑

i=1

flog(yix
T
i w0 + yib).

This problem can be solved by bisection in O(m) time [27]. At optimum, the derivative of
the objective is zero, hence yTθ0 = 0, where

θ0(i) := − 1

1 + exp(yixTi w0 + yiv0)
, i = 1, . . . , m.

Now apply the scaling method seen before, and set γ by solving problem (5.5).

5.4.3 A specific example of a dual point

A convenient, specific choice in the above construction is to set w0 = 0. Then, the intercept
v0 can be explicitly computed, as v0 = log(m+/m−), where m± = |{i : yi = ±1}| are the
class cardinalities. The corresponding dual point θ0 is

θ0(i) =

{

−m−

m
(yi = +1)

−m+

m
(yi = −1),

i = 1, . . . , m. (5.19)

The corresponding value of λ0 is (see [27]):

λ0 := ‖XTθ0‖∞ = max
1≤k≤n

|θT0 xk|.

We now compute γ(λ) by solving problem (5.5), which expresses as

γ(λ) = max
|s|≤λ/λ0

Glog(sθ0) = max
|s|≤λ/λ0

−m+f
∗
log(−s

m−
m

)−m−f
∗
log(−s

m+

m
). (5.20)

The above can be solved analytically: it can be shown that s = λ/λ0 is optimal.
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5.4.4 Solving the bisection problem

In this section, we are given c ∈ R
m, γ ∈ (0, m log 2), and we consider the problem

F ∗ := minµ>0 F (µ) := −γµ + µ
∑m

i=1 flog(c(i)/µ). (5.21)

Problem (5.21) corresponds to the problem (5.18), with ν set to a fixed value, and c(i) = yixi,
i = 1, . . . , m. We assume that c(i) 6= 0 for every i, and that κ := m log 2− γ > 0. Observe
that F ∗ ≤ F0 := limµ→0+ F (µ) = 1Tc+, where c+ is the positive part of vector c.

To solve this problem via bisection, we initialize the interval of confidence to be [0, µu],
with µu set as follows. Using the inequality log(1 + e−x) ≥ log 2 − (1/2)x+, which is valid
for every x, we obtain that for every µ > 0:

F (µ) ≥ −γµ+ µ
m
∑

i=1

(

log 2− (c(i))+
2µ

)

= κµ− 1

2
1Tc+.

We can now identify a value µu such that for every µ ≥ µu, we have F (µ) ≥ F0: it suffices
to ensure κµ− (1/2)1Tc+ ≥ F0, that is,

µ ≥ µu :=
(1/2)1Tc+ + F0

κ
=

3

2

1Tc+
m log 2− γ

.

5.4.5 Algorithm summary

An algorithm to check if a given feature can be removed from a sparse logistic regression
problem works as follows.

Given: λ, k (1 ≤ k ≤ n), flog(x) = log(1+e−x), f ∗
log(ϑ) = (−ϑ) log(−ϑ)+(ϑ+1) log(ϑ+1).

1. Set λ0 = max1≤k≤n |θT0 xk|, where θ0(i) = −m−/m (yi = +1), θ0(i) = −m+/m (yi =
−1), i = 1, . . . , m.

2. Set

γ(λ) := −m+f
∗
log(−

λ

λ0

m−
m

)−m−f
∗
log(−

λ

λ0

m+

m
).

3. Solve via bisection a pair of one-dimensional convex optimization problems

Pǫ = min
µ>0

−γ(λ)µ+ µ
m
∑

i=1

flog(ǫyi(xk)i/µ) (ǫ = ±1),

each with initial interval [0, µu], with

µu =
3

2

∑m
i=1(ǫyi(xk)i)+
m log 2− γ

.

4. If λ > max(P+, P−), the k-th feature can be safely removed.
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5.5 Conclusion

In this chapter, we have generalized the Safe Feature Elimination method to a class of ℓ1-
Regularized Convex Problems. The steps and concepts used in deriving SAFE-LASSO are
adapted in deriving SAFE for the general convex loss function. We have studied the specific
case of the hing loss function, and the logistic loss function by using a bound on the optimal
solution of the dual problem of the form G(θ) ≥ γ. We also presented a closed-form solution
for the SAFE test in the case of hing loss function and a numerical algorithm for the logistic
regression loss function case.
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Part II

Application in the Control of
Large-Scale Open-Channel Flow

Systems
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Chapter 6

Control of an Irrigation Canal

6.1 Introduction

With a population of more than six billion people, food production from agriculture must
be raised to meet increasing demand. While irrigated agriculture provides 40% of the total
food production, it represents 80% of the freshwater consumption worldwide. In summer
and drought conditions, efficient management of scarce water resources becomes crucial. The
majority of irrigation canals are managed manually, however, with large water losses leading
to low water efficiency.

Irrigation canals can be viewed and modeled as delay systems since it takes time for the
water released at the upstream end to reach the user located downstream. We thus present
an open-loop controller that can deliver water at a given location at a specified time. The
development of this controller requires a method for inverting the equations that describe
the dynamics of the canal in order to parameterize the controlled input as a function of the
desired output. The Saint-Venant equations [51] are widely used to describe water discharge
in a canal. Since these equations are not easy to invert, we use a simplified model, called
the Hayami model. We use differential flatness to invert the dynamics of the system and to
design an open-loop controller.

We experiment with our controller on the Gignac Canal, located northwest of Montpellier,
in southern France. Our comprehensive simulations, and real experiments show that it is
possible to achieve a desired water flow at the downstream of a canal using the Hayami
model as an approximation of the real-system. However, our observations of the measured
water flow at the upstream controlled gate made us realize some actuator limitations. For
example, deadband in the gate opening and unmodeled disturbances such as friction in the
gate-opening mechanism, only allow us to deliver piece-wise constant control inputs. This
fact made us investigate a way to compute a controller that respects the actuator limitations.
We use the CD-SAFE algorithm presented in chapter 4, to compute such open-loop control
for the upstream water flow.
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In this chapter, we model the open channel flow system in section 6.2. We present the
Saint-Venant equation, a non-linear model for capturing the dynamics of an open channel
flow, and the Hayami model, a simplified linear model. In section 6.3, we invert the hayami
model to obtain an open loop controller for controlling the downstream water flow by manip-
ulating the upstream water flow. In section 6.4, we present some simulation results using the
the software simulation of irrigation canals (SIC), which implements a semi-implicit Preiss-
mann scheme to solve the nonlinear Saint-Venant equations for open-channel one-dimensional
flow. In section 6.5, we describe the implementation of our open-loop controller for real-time
irrigation operations using a supervision, control, and data acquisition (SCADA) system with
automatic centralized controller. In section 6.6, we model the open channel flow of water
by a first order differential equation with delay model, we derive a controller by solving a
LASSO problem with the CD-SAFE algorithm.

6.2 Modeling Open Channel Flow

6.2.1 Saint-Venant Equations

The Saint-Venant equations for water discharge in a canal are named after Adhmar Jean-
Claude Barr de Saint-Venant, who derived these equations in 1871 in a note to the Comptes-
Rendus de l’Acadmie des Sciences de Paris [51]. This model assumes one-dimensional flow,
with uniform velocity over the cross section of the canal. The effect of boundary friction
is accounted for through an empirical law such as the Manning-Strickler friction law [53].
The average canal bed slope is assumed to be small, and the pressure is assumed to be
hydrostatic. Under these assumptions, the Saint-Venant equations are given by

∂A

∂t
+
∂Q

∂x
= 0, (6.1)

∂Q

∂t
+
∂ (Q2/A)

∂x
+ gA

∂H

∂x
= gA(Sb − Sf ), (6.2)

where A(x, t) is the wetted cross-sectional area, Q(x, t) is the water discharge (m3/s) through

the cross section A(x, t), H(x, t) is the water depth, Sf (x, t) =
Q2n2

A2R4/3 is the friction slope,

R(x, t) = A
P

is the hydraulic radius, P (x, t) is the wetted perimeter, n is the Manning
coefficient (s-m−1/3), Sb is the bed slope, and g is the gravitational acceleration. Equation
(6.1) expresses conservation of mass, while (6.2) expresses conservation of momentum.

Equations (6.1), (6.2) are completed by boundary conditions at cross structures, such as
gates or weirs, where the Saint-Venant equations are not valid. Figure 6.1 illustrates some of
the Saint-Venant equations parameters and shows a gate cross structure. The cross structure
at the downstream end of the canal can be modeled by a static relation between the water
discharge Q(L, t) and the water depth H(L, t) at x = L given by

Q(L, t) = W (H(L, t)), , (6.3)
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where W (·) is derived from hydrostatic laws. For a weir overflow structure, this relation is
given by

Q(L, t) = Cw
√

2gLw (H(L, t)−Hw)
3/2 ,

where g is the gravitational acceleration, Lw is the weir length, Hw is the weir elevation, and
Cw is the weir discharge coefficient.

(a) (b)

Figure 6.1: Irrigation canal. (a) shows the flow Q, water depth H , and wetted perimeter
P . Lateral withdrawals are taken from offtakes. We assume that offtakes are located at the
downstream of the canal, and no variables associated with lateral withdrawals are shown in
the Saint-Venant equations (6.1) and (6.2). (b) shows a gate cross structure, which can be
used to control the water discharge in the canal.

6.2.2 A Simplified Linear Model

A simplified version of the Saint-Venant equations is obtained by neglecting the inertia terms
∂Q
∂t

+
∂(Q2/A)

∂x
in the momentum equation (6.2), which leads to the diffusive wave equation

[48]. Linearizing the Saint-Venant equations about a nominal water discharge Q0 and water
depth H0 yields the Hayami equations

D0
∂2q
∂x2

− C0
∂q
∂x

=
∂q

∂t
, (6.4)

B0
∂h
∂t

+ ∂q
∂x

= 0, (6.5)

where C0 = C0(Q0), D0 = D0(Q0) are the nominal wave celerity and diffusivity, which
depend on Q0, and B0 is the average bed width. The quantities q(x, t) and h(x, t) are
the deviations from the nominal water discharge and water depth, respectively. Figure 6.2
illustrates the relevant notation.

The linearized boundary condition at the downstream end x = L is given by

q(L, t) = bh(L, t), (6.6)
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Figure 6.2: Longitudinal schematic profile of a hydraulic canal. A canal is a structure that
directs water flow from an upstream location to a downstream location. Water offtakes are
assumed to be located at the downstream of the canal. The variables q(x, t), h(x, t), qd(t),
and ql(t) are the deviations from the nominal values of water discharge, water depth, desired
downstream water discharge, and lateral withdrawal, respectively.

where b is the linearization constant equal to ∂W
∂H

(H0). The value of b depends on the
hydraulic structure geometry, including its length, height, and discharge coefficient of the
weir. The initial conditions are defined by the deviations from their nominal values, which
are assumed to be zero initially, that is,

q(x, 0) = 0, (6.7)

h(x, 0) = 0. (6.8)

6.3 Flatness-based Open-loop Control

6.3.1 Open-loop Control of a Canal Pool

We develop a feedforward controller for water discharge in an open-channel hydraulic system.
The system of interest is a hydraulic canal with a cross structure at the downstream end
as shown in Figure 6.2. We assume that the desired downstream water discharge qd(t) is
specified in advance, based on scheduled user demands. The control problem consists of
determining the upstream water discharge q(0, t) that has to be delivered in order to meet
the desired downstream water discharge qd(t). This inverse problem is an open-loop control
problem. Note that by linearization, computing q(0, t) as a function of qd(t) is equivalent to
determining Q(0, t) as a function of Qd(t) = Q0 + qd(t).

The upstream water discharge q(0, t) is the solution of the open-loop control problem de-
fined by the Hayami model equations (6.4), (6.5), initial conditions (6.7), (6.8), and bound-
ary condition (6.6). Differential flatness, as described in appendix F “What is Differential
Flatness?”, provides a way to solve this open loop control problem in the form of a pa-
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rameterization of the input u(t) = q(0, t) as a function of the desired output y(t) = qd(t).
Specifically the controller can be expressed in closed form

u(t) = e

(

−α2

β2 t−αL)
)

(

T1(t)− κT2(t) +
B0

b
T3(t)

)

, (6.9)

where the algebraic equations of T1, T2, and T3 are

T1(t) ,
∞
∑

i=0

di(e
α2

β2 ty(t))

dti
β2iL2i

(2i)!
, (6.10)

T2(t) ,

∞
∑

i=0

di(e
α2

β2 ty(t))

dti
β2iL2i+1

(2i+ 1)!
, (6.11)

T3(t) ,
∞
∑

i=0

di+1(e
α2

β2 ty(t))

dti+1

β2iL2i+1

(2i+ 1)!
, (6.12)

α , C0

2D0
, β , 1√

D0
, and κ , B0

b
α2

β2 − α.

The convergence of the infinite series (6.10)-(6.12) can be guaranteed when the desired
output function y(t) and its derivatives are bounded in a specific sense. More specifically,
the sum of the infinite series (6.9) converges when the desired output y(t) = qd(t) is a Gevrey
function of order r lower than 2. A Gevrey function y(t) is defined by the following property.
For all non negative n, the nth derivative y(n)(t) of a Gevrey function y(t) of order r has
bounded derivatives which satisfy the inequality

sup
t∈[0,T ]

∣

∣y(n)(t)
∣

∣ < m
(n!)r

ln
,

where m and l are constant positive scalars. See appendix H for more details on deriving
the open-loop control expression, proof of convergence, and the numerical assessment of the
feed-forward controller.

6.4 Assessment of the Performance of the Method in

Simulation

Before field implementation, it is necessary to test the method in simulation. We simulate
the controller defined by (6.9), called hereafter the Hayami controller, on the nonlinear
Saint-Venant model.
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6.4.1 Simulation of Irrigation Canals

The simulations are carried out using the software simulation of irrigation canals (SIC) [1],
which implements a semi-implicit Preissmann scheme to solve the nonlinear Saint-Venant
equations (6.1), (6.2) for open-channel one-dimensional flow [1, 40]. Instead of defining a
fictitious canal, we use a realistic geometry corresponding to a stretch of the Gignac canal
(see section 6.5 for more details on the Gignac canal) to evaluate the open-loop control
in simulation. The considered stretch is 4940 m long, with an average bed slope Sb =
3.8×10−4 m/m, an average bed width B0 = 2 m, and Manning coefficient n = 0.024 s-m−1/3.

6.4.2 Parameter Identification

The simulations are performed on a realistic canal geometry, which is neither prismatic nor
uniform. Consequently, it is not possible to express C0, D0, and b analytically in terms of
the physical parameters such as the canal geometry and water discharge. For this reason,
it is necessary to empirically estimate the parameters C0, D0, and b of the Hayami model
that would best approximate the water discharge governed by the Saint-Venant equations
(6.1), (6.2). The identification is done with an upstream water discharge in the form of a
step input. The water discharges are monitored at the upstream and downstream positions.
The identification is performed by finding the parameter values that minimize the least-
squares error between the downstream water discharge computed by the Hayami model and
the downstream water discharge simulated by SIC. The identification is performed using
data generated by simulating the Saint-Venant equations around a nominal water discharge
Q0 = 0.400 m3/s. The identification leads to the parameters C0 = 0.84m/s, D0 = 634m2/s,
and b = 0.61 m2/s.

6.4.3 Desired Water Demand

The water demand curve is approximated from predicted consumption or by information from
farmers about their consumption intentions. User consumption requirements at offtakes are
usually modeled by a demand curve in the form of a step function. However, depending on
the canal model used, this demand may require high values of upstream water discharge.
We define the demand curve to be a linear transformation of a Gevrey function of the
form y(t) = q1φσ(t/T ), where q1 and T are constants, and φσ(t) is a Gevrey function of
order 1 + 1/σ called the dimensionless bump function. The chosen Gevrey function allows
a transition from zero water discharge for t ≤ 0 to a water discharge equal to q1 for t ≥ T .
The function φσ(t) is illustrated in Figure 6.3 for various values of σ.
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Figure 6.3: Dimensionless bump function. The bump function φσ(t) is a Gevrey function of
order 1 + 1/σ.

6.4.4 Simulation Results

The Hayami control (6.9) is computed using the estimated parameters C0, D0, and b. The
downstream water discharge is defined by y(t) = q1φσ(t/T ), where q1 = 0.1 m3/s, σ = 1.4,
and T = 3 h. Figure 6.4 shows the control u(t) and the desired output y(t).

The upstream water discharge (6.9) is simulated with SIC to compute the corresponding
downstream water discharge. Figure 6.5 shows the downstream water discharge and the
desired downstream water discharge.

Although the open-loop control is based on the linear Hayami model, the relative er-
ror between the downstream water discharge and the desired downstream water discharge,

defined by erel(t) =
∣

∣

∣

q(L,t)−y(t)
Q0

∣

∣

∣
, is less than 0.3%.
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Figure 6.4: Hayami control input signal. The control input u(t) = q(0, t) is computed using
the differential flatness method applied to the Hayami model and a desired downstream
water discharge y(t).

6.5 Implementation on the Gignac Canal in Southern

France

Experiments are performed on the Gignac Canal, located northwest of Montpellier, in south-
ern France. The main canal is 50 km long, with a feeder canal, 8 km long, and two branches
on the left and right banks of Hrault river, 27 km and 15 km long, respectively. Figure 6.6
shows a map of the feeder canal with its left and right branches.

As shown in Figure 6.7(a), the canal separates at Partiteur station into two branches,
namely, the right branch and the left branch. The canal is equipped at each branch with an
automatic regulation gate with position sensors as shown in Figure 6.7(b). Piezo resistive
sensors are used to measure the water level by measuring the resistance in the sensor wires.
An ultrasonic velocity sensor measures the average water velocity, see Figure 6.7(c). The
velocity measurement, water-level measurement, and the geometric properties of the canal
at the gate determine the water discharge.

We are interested in controlling the water discharge into the right branch of the canal. The
cross section of the right branch is trapezoidal with average bed slope of Sb = 0.00035 m/m.
The Gignac canal is equipped with a SCADA system, which enables the implementation of
controllers. Data from sensors and actuators of the four gates at Partiteur are collected by a
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Figure 6.5: Hayami model based control applied to the Saint-Venant model. The downstream
water discharge is computed using SIC software. The downstream water discharge Qd(t) is
the output obtained by applying the Hayami control on the full nonlinear model (Saint-
Venant model). Although the open-loop control is based on the Hayami model, the relative
error between the downstream water discharge and the desired downstream water discharge
is less than 0.3%.

control station at the left branch as shown in Figure 6.8. The information is communicated
by radio frequency signals every five minutes to a receiving antenna, located in the main
control center, a few kilometers away. The data are displayed and saved in a database,
while commands to the actuators are sent back to the local controllers at the gates. We use
the SCADA system to perform open-loop control in real time. In this experiment, we are
interested in controlling the gate at the right branch of the Partiteur station to achieve a
desired water discharge five kilometers downstream at Avencq station. The gate opening at
Partiteur is computed to deliver the upstream water discharge; for details, see appendix G,
“How to Impose a Discharge at a Gate?”.

6.5.1 Results Obtained Assuming Constant Lateral Withdrawals

We now estimate the canal parameters for the canal between Partiteur and Avencq. The
nominal water discharge is Q0 = 0.640 m3/s. The identification is done using real sensor
data, and leads to the estimates C0 = 1.35 m/s, D0 = 893 m2/s, and b = 0.17 m2/s. We
define a downstream water discharge by y(t) = q1φσ(t/T ), where q1 = −0.1 m3/s, σ = 1.4,
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Figure 6.6: Location of Gignac canal in southern France. The canal takes water from the
Hrault river, to feed two branches that irrigate a total area of 3000 hectare, where vineyards
are located.

and T = 3.2 h. The upstream water discharge is computed using (6.9). Figure 6.9 shows
the desired downstream water discharge and the upstream water discharge, to be applied at
the upstream with the measured discharges at each location, respectively.

The actuator limitations include a deadband in the gate opening of 2.5 cm and unmod-
eled disturbances such as friction in the gate-opening mechanism. Although the downstream
water discharge is tracked well until t ≈ 3.4 h, a steady-state error of 0.03 m3/s is evident.
This error does not seem to be due to the actuator limitations, but rather to simplifications
in the model assumptions, not necessarily satisfied in practice. In particular, we assume
constant lateral withdrawals, whereas in reality the lateral withdrawals are driven by grav-
ity. Such gravitational lateral withdrawals vary with the water level, as opposed to lateral
withdrawals by pumps, which can be assumed constant.

6.5.2 Modeling the Effects of Gravitational Lateral Withdrawals

The gravitational lateral withdrawals in an offtake is a function of the water level in the canal
just upstream of the offtake. Typically, the flow through an underflow offtake is proportional
to the square root of the upstream water level. As a first approximation, we linearize this
relation, and assume that the offtakes are located at the downstream end of the canal. Then,
instead of being constant, the lateral flow is proportional to the downstream water level. The
downstream gravitational lateral withdrawals can be seen as a local feedback between the
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level and the water discharge. The dynamical model of the canal is then modified as

qlateral(t) = b1h(L, t), (6.13)

where b1 is the linearization constant of gravitational lateral withdrawals. We combine the
output equation y(t) = qd(t) = bh(L, t) with the conservation of water discharge at x = L,
q(L, T ) = qlateral(t) + qd(t) = (b+ b1)h(L, t), to obtain

y(t) = Gq(L, t),

where G = b
b+b1

. The effect of gravitational lateral withdrawals is thus expressed by a gain
factor G, which is less than 1. This gain factor G explains why the released upstream water
discharge must be larger than the desired downstream water discharge to account for the
gravitational lateral withdrawals. The control (6.9) does not account for the gain factor G,
which leads to a steady-state error in the downstream water discharge. Feedback control
can provide a solution for this steady-state error by including an integral control component.
However, since we are using open-loop control, we need to include the gain-factor effect in
this controller to reduce the steady-state error.

The open-loop control is deduced by replacing b with beq = b + b1 in (6.9) and the
expression of κ , and replacing y(t) by q(L, t) = G−1y(t). The open-loop control for the
gravitational lateral withdrawals case is

ugravitational(t) =
1

G
e

(

−α2

β2 t−αL)
)

(

T1(t)− κT2(t) +
B0

beq
T3(t)

)

. (6.14)

In the case of gravitational lateral withdrawals, the open-loop control depends on the
parameters G, C0, D0, and beq. These parameters need to be estimated using the same
method outlined for the constant lateral withdrawals.

6.5.3 Results Obtained Accounting for Gravitational Lateral With-

drawals

The Saint-Venant equations with the open-loop control input are simulated using SIC soft-
ware, in order to evaluate the impact of gravitational lateral withdrawals on the output.

Simulation Results

The simulations are carried out on a test canal of length L = 4940 m, average bed slope
Sb = 3.8 × 10−4, average bed width B0 = 2 m, Manning coefficient n = 0.024 s-m−1/3, and
gravitational lateral withdrawals distributed along its length. Identification is performed
about a nominal water discharge Q0 = 0.400 m3/s. The identification leads to the parameter
estimates G = 0.90, C0 = 0.87 m/s, D0 = 692.34 m2/s, and beq = 0.62 m2/s for the
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gravitational lateral withdrawals, and to C0 = 0.84 m/s, D0 = 1100.72 m2/s, and b =
0.75 m2/s for the constant lateral withdrawals. The downstream water discharge is defined
by y(t) = q1φσ(t/T ), where q1 = 0.1 m3/s, σ = 1.4, and T = 8 h. Figure 6.10 shows
the upstream water discharge u(t) and ugravitational(t) for constant and gravitational lateral
withdrawals, respectively.

We notice that the open-loop control that accounts for gravitational lateral withdrawals
has a steady-state above the desired output to compensate for the variable withdrawal of wa-
ter. The upstream water discharge u(t) is simulated with SIC to compute the corresponding
downstream water discharge. Figure 6.11 shows the SIC simulation results.

Experimental Results

Estimation of the canal parameters between Partiteur and Avencq is performed as described
above for the Hayami model that accounts for gravitational lateral withdrawals. The nominal
water discharge is Q0 = 0.480 m3/s. The identified parameters of the Hayami model are
G = 0.70, C0 = 1.08 m/s, D0 = 444 m2/s, and b = 0.27 m2/s. The downstream water
discharge is defined by y(t) = q1φ(t/T ), where q1 = 0.1 m3/s, σ = 1.4, and T = 5 h.
The upstream water discharge ugravitational(t) is computed using (6.14). Figure 6.12 shows
the desired downstream water discharge, the numerical control computed by (6.14), the
experimental control achieved by the physical system, and the measured downstream water
discharge. The relative error between the measured downstream water discharge and the
desired downstream water discharge is less than 9%, despite the fact that the delivered
upstream water discharge is perturbed due to actuator limitations.

6.6 Deriving a More Realistic Controller using LASSO

Our experimental results performed on the Gignac canal and shown in Figure 6.12, suggest
that the system can be modeled using a simpler model, like a first-order differential equation
with delay. Deadband in the gate opening and unmodeled disturbances such as friction in
the gate-opening mechanism, limit our control of the water flow at the control gate. Thus,
it is of interest to compute a control input u(t), which has few changes in its values. We
first examine the performance of a model consisting of a first-order differential equation with
delay,

K ∂q(L,t)
∂t

+ q(L, t) = u(t− τ), (6.15)

q(0, t) = 0, (6.16)

where u(t) = q(0, t) is the open-loop control representing the upstream discharge at the
controller gate and K is a constant. We then experiment using different inputs derived from
the model in (6.15).
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6.6.1 Capturing the system dynamics

We estimate the parameters K and τ of (6.15) to best approximate the water discharge
monitored at the upstream and downstream positions of the canal between Partiteur and
Avencq. The identification is performed by finding the parameter values that minimize the
least-squares error between the downstream water discharge computed by (6.15) and the
downstream water discharge measured at Avencq. We also estimate the parameters C0, D0,
and b of the Hayami model as described in section 6.4.2. In Figure 6.13, we show the upstream
and downstream discharge and the simulated downstream discharge for each model. The
identified parameters we used in the simulation are K = 3138.15 s, and τ = 1198.75 s for
(6.15), and C0 = 1.10 m/s, D0 = 1539.09 m2/s, and b = 6.18 m2/s for the Hayami model.
We compute the fitting error

ef =
‖Q(L, t)−Qm(L, t)‖2

‖Qm(L, t)‖2
,

where Qm(L, t) is the water discharge measured at the downstream of the canal, and Q(L, t)
is the simulated downstream discharge, for each model. We obtain a fitting error ef = 1.87%
for the Hayami model and a fitting error ef = 1.88% for the first-order with delay model.
We conclude that the first-order with delay model can approximate the real-system with the
same accuracy as the Hayami model. This conclusion agrees with our observation of the
behavior of the canal system in the experiment shown in Figure 6.12.

6.6.2 Controller Design

We identify the parameters τ , andK for a realistic canal geometry, which is neither prismatic
nor uniform. The identification is done with an upstream water discharge in the form of a
step input. The identification is performed using data generated by simulating the Saint-
Venant equations around a nominal water discharge Q0 = 0.677 m3/s. The identification
leads to the parameters τ = 1203 s, and K = 3133.79 s.

We assume a sampling time Ts = 30 s and we design our control input based on the
solution of the following optimization problem:

u = argmin
u

‖u− ỹ‖22 + λ ‖Du‖1 , (6.17)

with u ∈ R
n the control vector, ỹ(i) = ∂q(L,t)

∂t

∣

∣

∣

t=t(i)+τ
+ q(L, t(i)+ τ) ∈ R

n andD ∈ R
(n−1)×n

the first-order difference matrix

D =















1 −1
1 −1

. . .
. . .

1 −1
1 −1















.



CHAPTER 6. 77

When the regularization parameter λ is zero, i.e. λ = 0, the control input u is simply the
solution of the inverse problem of (6.15). The inverse problem computes a discharge q(0, t)
such that the downstream discharge is exactly equal to q(L, t). When λ is non-negative, the
entries of (Du)i are biased toward the value zero, i.e. ui = ui+1 and thus the control input
will have fewer changes in its value as desired.

The downstream water discharge is defined by y(t) = q1φσ(t/T ), where q1 = −0.1 m3/s,
σ = 1.4, and T = 2.5 h. The upstream water discharge (6.17) is simulated with different
values of the regularization parameter λ. Figure 6.14 shows the control input or the up-
stream water discharge, the downstream water discharge and the desired downstream water
discharge for λ = 0.001λmax, 0.01λmax, 0.03λmax, λmax with λmax = 6.3 × 104. We notice
that there is a trade-off between large regularization parameters and the error between the
desired and simulated downstream discharge. Large values of the regularization parameters
bias the control input u(t) to remain constant. Thus, it is possible to choose a more realistic
control input u(t) from (6.17) with a value of λ that satisfies some design parameters. In our
case, it is important to achieve the desired-steady state and the controller shown in Figure
6.14 (c) for λ = 0.03λmax would be a strong candidate.

6.6.3 Computing the Control Input

Problem (6.17) can be transformed to the LASSO problem,

min
θ

‖Aθ − ỹ‖22 + λ ‖θ‖1 , (6.18)

with

A =











1
1 −1
...

. . .

1 −1 · · · −1











.

The control input u can be recovered from θ using the relation u = Aθ. In our case, we have
used a sampling time Ts = 30 s, and a total simulation time Tt = 10 h. The problem has
1, 201 features, more than 80% of which are discarded at the optimal solution, i.e. θi = 0 for
more than 80% of its 1, 201 entries. The CD-SAFE algorithm we developed in chapter 4, is
suited for such kind of problems. Were we to use a sampling time Ts = 3 s instead, we would
have a LASSO problem with 12, 010 features and memory problems will prevail if we don’t
save the matrix A in the appropriate format, or if we don’t use a special solver. However,
with Safe Feature Elimination, many of these unimportant features can be discarded at the
outset, before solving or forming the matrix A. Thus SAFE allows us to obtain a solution of
(6.18) without the need of any special treatment for the particular problem we are solving.
We use CD-SAFE and the plain CD algorithm to compare the number of iterations needed
to obtain a solution with 130 non-zeros. Figure 6.15 shows that with CD-SAFE we need
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100 folds of iteration less than the CD algorithm to solve the LASSO problem in (6.18). We
also report in Figure 6.16 the number of iterations needed for each algorithm to compute a
control input u(t) as a function of the changes in u(t).

6.7 Conclusion

This chapter applied a flatness-based controller for an open channel hydraulic canal. The
controller was tested by computer simulation using Saint-Venant equations and real experi-
mentation on the Gignac canal, in southern France. The initial model that assumes constant
lateral withdrawals is improved to take into account gravitational lateral withdrawals, which
vary with the water level. Accounting for gravitational lateral withdrawals decreased the
steady state error from 6.2% (constant lateral withdrawals assumption) to 1% (gravitational
lateral withdrawals assumption). The flatness based open-loop controller is thus able to com-
pute the upstream water discharge corresponding to a desired downstream water discharge,
taking into account the gravitational withdrawals along the canal reach.

The actuator limitations were addressed by deriving a simpler model, a first order dif-
ferential equation with delay. The simpler model was used to compute a more realistic
open-loop controller. The CD-SAFE algorithm was compared to the CD algorithm in com-
puting such control signal , and it was shown that SAFE enables the computations of the
control input with less memory requirement and reduced computational effort.
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(a)

(b) (c)

Figure 6.7: Gignac canal. The main canal is 50 km long, with a feeder canal of 8 km,
and two branches on both the left and right banks of Hrault river. The left branch, which is
27 km long, and the right branch, which is 15 km long, originate at the Partiteur station.
(a) shows the left and right branches of Partiteur station. (b) shows an automatic regulation
gate at the right branch used to control the water discharge. (c) shows the ultrasonic velocity
sensor that measures the average water velocity.
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Figure 6.8: SCADA (supervision, control, and data acquisition) system. The SCADA sys-
tem manages the canal by enabling the monitoring of the water discharge and by controlling
the actuators at the gates. Data from sensors and actuators on the four gates at Partiteur
are collected by a control station equipped with an antenna (a). The information is com-
municated by radio frequency signals every five minutes to a receiving antenna (b), located
in the main control center, a few kilometers away (c). The data are displayed and saved in
a database, while commands to the actuators are sent back to the local controllers at the
gates (d)-(e). The SCADA performs open-loop control in real time.
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Figure 6.9: Implementation results of the Hayami controller on the Gignac canal. The
Hayami open-loop control u(t) is applied to right branch of Partiteur using the SCADA
system. The measured output (downstream water discharge) follows the desired curve,
except at the end of the experiment. This discrepancy cannot be explained solely by the
actuator limitations, but rather is due to simplifications in the model assumptions.
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Figure 6.10: Hayami control taking into account the effect of gravitational lateral with-
drawals. The control input is computed with the Hayami model (with constant and gravi-
tational lateral withdrawals). As expected, to account for gravitational lateral withdrawals,
the open-loop control ugravitational(t) needs to release more water than is required at the
downstream end.
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Figure 6.11: Comparison of the desired and simulated downstream water discharges. The
downstream water discharge, Qd(t) and Qd(t) gravitational, is computed by solving the
Saint-Venant equations with upstream water discharges u(t) and ugravitational(t), respectively.
Accounting for gravitational lateral withdrawals enables the controller to follow the desired
output. This result is obtained on a realistic model of SIC, which is different from the
simplified Hayami model used for control design.
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Figure 6.12: Implementation results of the Hayami controller on the Gignac canal. The
Hayami controller assumes gravitational lateral withdrawals. The relative error between the
measured downstream water discharge and the desired downstream water discharge is less
than 9%, despite the fact that the delivered upstream water discharge is perturbed due to
actuator limitations.
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Figure 6.13: System identification using (a) Hayami model and (b) First order with delay
model.
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Figure 6.14: First order with delay model based control applied to the Saint-Venant model.
The downstream water discharge Qd(t) is the output obtained by applying the control input
u(t) of (6.17). We present four cases of the control input u(t) corresponding to the four
regularization parameters, (a) λ = 0.001λmax, (b) λ = 0.01λmax, (c) λ = 0.03λmax, and
(d) λ = λmax, with λmax = 6.3 × 104. We notice that there is a trade-off between large
regularization parameters and the error between the desired and simulated downstream
discharge. Large values of the regularization parameters bias the control input u(t) to be
constant.
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Figure 6.15: Number of iterations needed to reach a stationary tolerance of ǫ = 10−2 for the
CD and CD-SAFE algorithms solved using feature matrixA and response ỹ. The simulation
results show that CD-SAFE provides at least 10 or 100 folds of less iterations to reach the
same tolerance as the CD algorithm.
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Figure 6.16: Number of iterations needed for the CD and CD-SAFE algorithms as a function
of the number of changes in u(t).
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Appendix A

On Thresholding Methods for the
LASSO

A.1 Introduction

ℓ1− regularized convex optimization problems or sparse classification algorithms may return
an optimal solution vector with many small, but not exactly zero, elements. This implies
that we need to choose a thresholding rule to decide which elements can be set to zero.
In this appendix, we discuss an issue related to the thresholding rule originally proposed
for the interior point method for Logistic Regression algorithm in [28], and propose a new
thresholding rule.

A.2 The KKT thresholding rule

Recall that the primal problem for the LASSO is

φ(λ) = min
w

1

2
‖Xw − y‖22 + λ‖w‖1, (A.1)

with X ∈ R
m×n, y ∈ R

m, λ > 0 and that the strong duality optimality conditions imply
that, at optimum, xTk (Xw

⋆ − y) = λsign(w⋆k), with xk the k−th column ofX, w⋆k the k−th
entry of w⋆ and sign(0) ∈ [−1, 1]. The ideas of [28] suggests that the following thresholding
rule can be proposed: at optimum, set component wk to 0 whenever

|xTk (Xw⋆ − y) | ≤ 0.9999λ. (A.2)

We refer to this rule as the “KKT” rule.
The interior point algorithm or IPM-LASSO algorithm in [27] takes as input a “duality

gap” parameter ǫ, which controls the relative accuracy on duality gap. When comparing
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the IPM code results with other algorithms such as Generalized Linear Model algorithm
(GLMNET) described in [20], we observed chaotic behaviors when applying the KKT rule,
especially when the duality gap parameter ǫ is not small enough. More surprisingly, some
components wk with absolute values not close to 0 can be thresholded. This suggests that
the KKT rule should only be used for problems solved with a small enough duality gap ǫ.
However, setting the duality gap to a small value can dramatically slow down computations.
In our experiments, changing the duality gap from ǫ = 10−4 to 10−6 (resp. 10−8) increased
the computational time by 30% to 40% (resp. 50 to 100%).

A.3 An alternative method

We propose an alternative thresholding rule, which is based on controlling the perturbation
of the objective function that is induced by thresholding.

Assume that we have solved the LASSO problem above, with a given duality gap pa-
rameter ǫ. If we denote by w⋆ the optimal solution obtained by the IPM algorithm, w⋆ is
ǫ-sub-optimal, that is, achieves a value

φ∗ =
1

2
‖Xw − y‖22 + λ ‖w‖1 ,

with 0 ≤ φ∗ − φ(λ) ≤ ǫφ(λ).
For a given threshold τ > 0, consider the thresholded vector w̃(τ) defined as

w̃k(τ) =

{

0 if |w∗
k| ≤ τ,

w∗
k otherwise,

k = 1, . . . , n.

We have w̃(τ) = w∗ + δ(τ) where the vector of perturbation δ(τ) is such that

δk(τ) =

{

−w∗
k if |w∗

k| ≤ τ,
0 otherwise,

k = 1, . . . , n.

Note that, by construction, we have ‖w∗‖1 = ‖w∗ + δ‖1 + ‖δ‖1. Also note that if w∗ is
sparse, so is δ.

Let us now denote by φτ the LASSO objective that we obtain upon replacing the optimum
solution w∗ with its thresholded version w̃(τ) = w∗ + δ(τ):

φτ :=
1

2
‖X(w∗ + δ(τ))− y‖22 + λ‖w∗ + δ(τ)‖1.

Since w(τ) is (trivially) feasible for the primal problem, we have φτ ≥ φ(λ). On the
other hand,

φτ =
1

2
‖Xw∗ − y‖22 + λ‖w∗ + δ(τ)‖1 +

1

2
‖Xδ(τ)‖22 + δ(τ)TXT (Xw∗ − y)

≤ 1

2
‖Xw∗ − y‖22 + λ‖w∗‖1 +

1

2
‖Xδ(τ)‖22 + δ(τ)TXT (Xw∗ − y).



APPENDIX A. 92

For a given α > 1, the condition

C(τ) := 1

2
‖Xδ(τ)‖2 + δ(τ)TXT (Xw∗ − y) ≤ κφ∗, κ :=

1 + αǫ

1 + ǫ
− 1 ≥ 0, (A.3)

allows to write
φ(λ) ≤ φτ ≤ (1 + αǫ)φ(λ).

The condition (A.3) then implies that the thresholded solution is sub-optimal, with relative
accuracy αǫ.

Our proposed thresholding rule is based on the condition (A.3). Precisely, we choose the
parameter α > 0, then we set the threshold level τ by solving, via line search, the largest
threshold τ allowed by condition (A.3):

τα = argmax
τ≥0

{

τ : ‖Xδ(τ)‖2 ≤
(

√

1 + αǫ

1 + ǫ
− 1

)

‖Xw∗ − y‖2
}

.

The larger α is, the more elements the rule allows to set to zero; at the same time, the more
degradation in the objective we observe: precisely, the new relative accuracy is bounded by
αǫ. The rule also depends on the duality gap parameter ǫ. We refer to the thresholding rule
as TR(α) in the sequel. In practice, we observe that the value α = 2 works well, in a sense
made more precise below.

The complexity of the rule is O(mn). We have the optimal dual variable θ∗ =Xw∗ − y
is returned by IPM-LASSO and the matrix XTθ∗ is computed once for all in O(mn). We
then sort the optimal vector w∗ so that |w∗

(1)| ≤ . . . ≤ |w∗
(n)|, and set τ = τ0 = |w∗

(n)|, so
that δk(τ0) = −w∗

k and w̃k(τ0) = 0 for all k = 1, . . . , n. The product Xδ(τ0) is computed
in O(mn), while the product δ(τ0)

T (XTθ∗) is computed in O(n). If the quantity C(τ0) =
1
2
‖Xδ(τ0)‖2 + δ(τ0)T (XTθ∗) is greater than κφ⋆, then we set τ = τ1 = |w∗

(n−1)|. We have

δk(τ1) = δk(τ0) for any k 6= (n) and δ(n)(τ1) = 0. Therefore, C(τ1) can be deduced from C(τ0)
in O(n). We proceed by successively setting τk = |w∗

(n−k)| until we reach a threshold τk such

that C(τk) ≤ κφ∗.

A.4 Simulation study.

We conducted a simple simulation study to evaluate our proposed method and compared it
to the KKT thresholding rule. Both methods were further compared to the results returned
by the glmnet R package. GLMNET algorithm returns exact zeros in the optimal solution,
and we have chosen the corresponding sparsity pattern as the “ground truth”, which the
IPM should recover.

We first experimented with synthetic data. We generated samples of the pair (X,y)
for various values of (m,n). We present the results for (m,n) = (5000, 2500) and (m,n) =
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(100, 500). The number s of relevant features was set to min(m,n/2). Features were drawn
from independent N (0, 1) distributions and y was computed as y = XTw + ξ, where
ξ ∼ N (0, 0.2) and w is a vector of R

n with first s components equal to 0.1 + 1/s and
remaining n − s components set to 0. Because glmnet includes an unpenalized intercept
while IPM method does not, both y and X were centered before applying either methods
to make their results comparable.

Results are presented on Figure A.1. First, the KKT thresholding rule was observed to be
very chaotic when the duality gap was set to ǫ = 10−4 (we recall here that the default value
for the duality gap in IPM MATLAB implementation is ǫ = 10−3), while it was way better
when duality gap was set to ǫ = 10−8 (somehow justifying our choice of considering the
sparsity pattern returned by glmnet as the ground truth). Therefore, for applications where
computational time is not critical, running IPM method and applying KKT thresholding
rule should yield appropriate results. However, when computational time matters, passing
the duality gap from, say, 10−4 to 10−8, is not a viable option. Next, regarding our proposal,
we observed that it was significantly better than KKT thresholding rule when the duality
gap was set to 10−4 and equivalent to KKT thresholding rule for a duality gap of 10−8.
Interestingly, setting α = 1.5 in (A.3) generally enabled to achieved very good results for low
values of λ, but lead to irregular results for higher values of λ (in the case m = 100, results
were unstable for the whole range of λ values we considered). Overall, the choices α = 2, 3
and 4 lead to acceptable results. A little irregularity remained with α = 2 for high values of
λ, but this choice of α performed the best for lower values of λ. As for choices α = 3 and
α = 4, it is noteworthy that the results were all the better as the dimension n was low.

A.4.1 Real data examples

We also applied our proposed method and compared it to KKT rule (A.2) on real data sets
arising in text classification. More precisely, we used the New York Times headlines data
set presented in Section 3.5. We successively ran IPM-LASSO method with duality gap set
to 10−4 and 10−8 and compared the number of active features returned after applying KKT
thresholding rule (A.2) and TR (1.5), TR (2), TR (3) and TR (4). Results are presented on
Figure A.2. Because we could not applied glmnet on this data set, the ground truth was
considered as the result of KKT rule, when applied to the model returned by IPM-LASSO
when ran with duality gap set to 10−10. Applying KKT rule on the model built with a
duality gap of 10−4 lead to very misleading results again, especially for low values of λ. In
this very high-dimensional setting (n = 38377 here), our rule generally resulted in a slight
“underestimation” of the true number of active features for the lowest values of λ when the
duality gap was set to 10−4. This suggests that the “optimal” α for our rule might depend
on both n and λ when the duality gap is not small enough. However, we still observe that
our proposed method introduces significant improvments over KKT rule when the duality
gap is set to 10−4.
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Figure A.1: Comparison of several thresholding rules on synthetic data: the case m = 5000,
n = 100 (top panel) and m = 100, n = 500 (bottom panel) with duality gap in IPM method
set to (i) 10−4 (left panel) and (iii) 10−8 (right panel). The curves represent the differences
between the number of active features returned after each thresholding method and the one
returned by glmnet (this difference is further divided by the total number of features n).
The graphs present the results attached to six thresholding rules: the one proposed by [28]
and five versions of our proposal, corresponding to setting α in (A.3) to 1.5, 2, 3, 4 and 5
respectively. Overall, these results suggest that by setting α ∈ (2, 5), our rule is less sensitive
to the value of the duality gap parameter in IPM-LASSO than is the rule proposed by [28].
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Figure A.2: Comparison of several thresholding rules on the NYT headlines data set for the
topic “China” and year 1985. Duality gap in IPM-LASSO was successively set to 10−4 (left
panel) and 10−8 (right panel). The curves represent the differences between the number of
active features returned after each thresholding method and the one returned by the KKT
rule when duality gap was set to 10−10. The graphs present the results attached to five
thresholding rules: the KKT rule and four versions of our rule, corresponding to setting α
in (A.3) to 1.5, 2, 3 and 4 respectively. Results obtained following our proposal appear to
be less sensitive to the value of the duality gap used in IPM-LASSO. For instance, for the
value λ = λmax/1000, the KKT rule returns 1758 active feature when the duality gap is set
to 10−4 while it returns 2357 features for a duality gap of 10−8.
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Appendix B

SAFE Derivations

In this appendix, we present the proof of propositions related to the SAFE test problem,
which arise in Section 4.2.

Proposition B.0.1 (SAFE-LASSO test Problem) Consider the problem

P (x,η, θs, γ) := max
θ
xTθ : G(θ) ≥ γ, ηT (θ − θs) ≥ 0. (B.1)

with G(θ) = −1
2
‖θ‖22 − yTθ. Assume that strong duality holds and a solution of the

problem is attained. Let gs = θs + y , then P (x,η, θs, γ) takes the value

P (x,η, θs, γ) =

{

−yTx+ ‖x‖2D ‖x‖2
(

ηTgs
)

≤ D
(

ηTx
)

,
1

‖η‖22

(

ηTx
)

ηTgs − xTy + ψD̃ otherwise,
(B.2)

with
D =

(

‖y‖22 − 2γ
)1/2

,

D̃ =

(

−2γ −
(

ηTgs
)2

‖η‖22
+ ‖y‖22

)1/2

,

and

ψ =

(

‖x‖22 −
1

‖η‖22
(

ηTx
)2

)1/2

.
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Proof: We express problem (B.1) in dual form as a convex optimization problem with two
scalar variables, µ1 and µ2,

P (x,η, θs, γ) = min
µ1,µ2≥0

max
θ
xTθ + µ1 (G(θ)− γ) + µ2η

T (θ − θs) ,

= min
µ1,µ2≥0

−µ1γ − µ2η
Tθs +max

θ
xTθ + µ1G(θ) + µ2η

Tθ,

= min
µ1,µ2≥0

−µ1γ − µ2η
Tθs

+µ1max
θ

(

xT − µ1y
T + µ2η

T

µ1

θ − 1

2
‖θ‖22

)

. (B.3)

The maximization problem

max
θ

(

xT − µ1y
T + µ2η

T

µ1

θ − 1

2
‖θ‖22

)

,

in (B.3) admits a solution at θ = 1
µ1

(x+ µ2η) − y. We substitute the value of θ in (B.3)
and obtain

P (x,η, θs, γ) = min
µ1,µ2≥0

L(µ1, µ2), (B.4)

with

L(µ1, µ2) = −µ1γ − µ2η
Tθs +

1

2µ1

‖x− µ1y + µ2η‖22 . (B.5)

Solving the dual form. We take the partial derivative of L(µ1, µ2) with respect to
µ2, and set it to 0,

−ηTθs +
2

2µ1
ηT (x− µ1y + µ2η) = 0,

ηTx+ µ2 ‖η‖22 − µ1η
Tθs − µ1η

Ty = 0,

or

µ2 =
1

‖η‖22
(

−ηTx+ µ1η
Tgs
)

.

Since µ2 is contrained to be non-negative, we write µ2 = max (0, αµ1 − β), with α = ηT gs
‖η‖22

,

and β = ηTx

‖η‖22
. We recognize two cases: αµ1 ≤ β and αµ1 > β.
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First case: When αµ1 ≤ β, we have µ2 = 0. We find µ1 by setting µ2 = 0 in (B.5) and
by taking its partial derivative with respect to µ1,

L(µ1, 0) = −µ1γ +
1

2µ1

‖x‖22 +
1

2
µ1 ‖y‖22 − xTy,

∂L(µ1, 0)

∂µ1
= −γ − 1

2µ2
1

‖x‖22 +
1

2
‖y‖22 = 0.

We obtain

‖y‖22 − 2γ =
‖x‖22
µ2
1

,

or µ1 =
‖x‖2
D

with D =
(

‖y‖22 − 2γ
)1/2

. The condition µ1 ≤ β is equivalent to ‖x‖2
(

ηTgs
)

≤
D
(

ηTx
)

.
The corresponding dual variable θ for this (µ1, µ2) is θ = x

µ1
−y and P (x,η, θs, γ) = x

Tθ

takes the value,

P (x,η, θs, γ) = −yTx+ ‖x‖2D : ‖x‖2
(

ηTgs
)

≤ D
(

ηTx
)

.

Second case: When αµ1 ≥ β, we have µ2 = 1
‖η‖22

(

−ηTx+ µ1η
Tgs
)

. We take the

partial derivative of

L(µ1, µ2) = −µ1γ − µ2η
Tθs +

1

2µ1

‖x− µ1y + µ2η‖22 ,

with respect to µ1, using the chain-rule, and set it to zero. We obtain,

−γ −
(

ηTgs

‖η‖22

)

ηTθs −
1

2µ2
1

‖x− µ1y + µ2η‖22

+
1

µ1

(

−y +
ηTgs

‖η‖22
η

)T

(x− µ1y + µ2η) = 0. (B.6)

We simplify the expression by calling σ1 =
(

ηT gs
‖η‖22

)

, σ2 = η
Tθs, σ3 = −γ − σ1σ2. We have,

σ3 −
1

2µ2
1

‖x− µ1y + µ2η‖22 +
1

2µ1
(−y + σ1η)

T (x− µ1y + µ2η) = 0.

We expand the two terms, ‖x− µ1y + µ2η‖22 and (−y + σ1η)
T (x− µ1y + µ2η) inside the

above expression. We have

‖x− µ1y + µ2η‖22 = ‖x‖22 + µ2
1 ‖y‖22 + µ2

2 ‖η‖22
−2µ1x

Ty + 2µ2x
Tη − 2µ1µ2y

Tη,
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and

(−y + σ1η)
T (x− µ1y + µ2η) = −yTx+ µ1 ‖y‖22 − µ2y

Tη

+σ1η
Tx− µ1σ1η

Ty + µ2σ1 ‖η‖22 .

We substitute the above expressions in (B.6) and obtain

σ3 −
‖x‖22
2µ2

1

− 1

2
‖y‖22 −

µ2
2

2µ2
1

‖η‖22 +
1

µ1

xTy − µ2

µ2
1

xTη +
µ2

µ1

yTη

− 1

µ1
yTx+ ‖y‖22 −

µ2

µ1
yTη +

1

µ1
σ1η

Tx− σ1η
Ty +

µ2

µ1
σ1 ‖η‖22 = 0.

The equation above can be simplified furthermore to read,

σ3 −
‖x‖22
2µ2

1

+
1

2
‖y‖22 −

µ2
2

2µ2
1

‖η‖22 +
1

µ1
xTy − µ2

µ2
1

xTη

− 1

µ1

yTx+
1

µ1

σ1η
Tx− σ1η

Ty +
µ2

µ1

σ1 ‖η‖22 = 0,

or
(

2σ3 + ‖y‖22 − 2σ1η
Ty
)

µ2
1 − ‖x‖22 − µ2

2 ‖η‖22 − 2µ2x
Tη

+2µ1σ1η
Tx+ 2µ1µ2σ1 ‖η‖22 = 0.

We simplify the terms −µ2
2 ‖η‖22, −2µ2x

Tη and 2µ1µ2σ1 ‖η‖22 in the above equation. We
have

µ2 =

(

− 1

‖η‖22
ηTx+ µ1σ1

)

,

µ2
2 =

1

‖η‖42
(

ηTx
)2

+ µ2
1σ

2
1 − 2

1

‖η‖22
(

ηTx
)

σ1µ1,

−µ2
2 ‖η‖22 = − 1

‖η‖22
(

ηTx
)2 − µ2

1σ
2
1 ‖η‖22 + 2

(

ηTx
)

σ1µ1,

−2µ2x
Tη = +2

1

‖η‖22
(

ηTx
)2 − 2µ1σ1

(

ηTx
)

,

and
2µ2µ1σ1 ‖η‖22 = −2

(

ηTx
)

(µ1σ1) + 2µ2
1σ

2
1 ‖η‖22 .

After simplification, the partial derivative of L(µ1, µ2), with respect to µ1 reads
(

2σ3 + ‖y‖22 − 2σ1η
Ty + σ2

1 ‖η‖22
)

µ2
1

−‖x‖22 +
1

‖η‖22
(

ηTx
)2

= 0,
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or
D̃2µ2

1 = ψ2,

with

D̃2 = −2γ −
(

ηTgs
)2

‖η‖22
+ ‖y‖22 ,

and

ψ2 = ‖x‖22 −
1

‖η‖22
(

ηTx
)2
.

The corresponding dual variable θ for this (µ1, µ2) is

θ =
x

µ1
+
µ2

µ1
η − y.

We simplify µ2
µ1

to

µ2

µ1
=

1

‖η‖22

(

−η
Tx

µ1
+ ηTgs

)

,

and we obtain

θ =
x

µ1

− η

‖η‖22
ηTx

µ1

+
η

‖η‖22
ηTgs − y.

We then compute the value of P (x,η, θs, γ),

P (x,η, θs, γ) =
‖x‖22
ψ

D̃

− (ηTx)2

‖η‖22 ψ

D̃

+
1

‖η‖22
(

ηTx
)

ηTgs − xTy,

=
D̃

ψ

(

‖x‖22 −
(ηTx)2

‖η‖22

)

+
1

‖η‖22
(

ηTx
)

ηTgs − xTy,

=
D̃

ψ
ψ2 +

1

‖η‖22
(

ηTx
)

ηTgs − xTy,

=
1

‖η‖22
(

ηTx
)

ηTgs − xTy + ψD̃.

Recall that the value of P (x,η, θs, γ) above is computed under the assumption that
αµ1 ≥ β, or

ψ
(

ηTgs
)

≥ D̃
(

ηTx
)

.

Finally, to obtain the result of (B.2), we need to prove that

ψ
(

ηTgs
)

≥ D̃
(

ηTx
)

, (B.7)

and
‖x‖2

(

ηTgs
)

≥ D
(

ηTx
)

,
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with

D̃ =

(

−2γ −
(

ηTgs
)2

‖η‖22
+ ‖y‖22

)1/2

,

ψ =

(

‖x‖22 −
1

‖η‖22
(

ηTx
)2

)1/2

,

and D =
(

‖y‖22 − 2γ
)1/2

, are equivalent.
We assume ηTgs ≥ 0, and we take the square of both sides of the inequality in (B.7), we

have

ψ2
(

ηTgs
)2 ≥ D̃2

(

ηTx
)2

(

‖x‖22 −
1

‖η‖22
(

ηTx
)2

)

(

ηTgs
)2 ≥

(

D2 −
(

ηTgs
)2

‖η‖22

)

(

ηTx
)2

‖x‖22
(

ηTgs
)2 ≥ D2

(

ηTx
)2

Taking the square-root of both sides of the inequality, we obtain

‖x‖2
(

ηTgs
)

≥ D
(

ηTx
)

.

Similarly, we can prove the same result for ηTgs ≤ 0 .

Proposition B.0.2 Consider the LASSO problem with regularization parameter λ and as-
sume we know a LASSO solution w⋆

0 at λ0. Define θ0 = Xw0 − y, θs = θ0
λ
λ0
, and

η =Xw0/ ‖w0‖1. Then any feasible point θ for the dual problem D(λ) is in the half-sapce

ηT (θ − θs) ≥ 0.

Proof: A dual point θ is feasible for D(λ), if θ satisfies the following inequalities

−λ ≤ xTi θ ≤ λ, i = 1, ..., n. (B.8)

We start by computing the term ηTθ,

ηTθ =
1

‖w0‖1
wT

0X
Tθ,

=
1

‖w0‖1
∑

i∈A
w0(i)x

T
i θ,

=
1

‖w0‖1
∑

i∈A
|w0(i)| sign(w0(i))x

T
i θ.
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Using (B.8), we have
sign(w0(i))x

T
i θ ≥ −λ,

and

ηTθ ≥ 1

‖w0‖1
∑

i∈A
|w0(i)| (−λ),

= −λ.

Finally, we prove that ηTθs = −λ, we recall the optimality conditions from Theorem 2.2.1,

xTi θ0 = λ0, i ∈ A− =⇒ w0(i) ≤ 0,

and
xTi θ0 = −λ0, i ∈ A+ =⇒ w0(i) ≥ 0.

We combine both conditions into one compact form,

xTi θ0 = −sign(w0(i))λ0, i ∈ A = A− ∪ A+,

and write

ηTθs =
1

‖w0‖1
wT

0X
Tθs,

1

‖w0‖1
wT

0X
T

(

λ

λ0
θ0

)

,

=
λ

λ0 ‖w0‖1
∑

i∈A
w0(i)x

T
i θ0,

=
−λ

λ0 ‖w0‖1
∑

i∈A
w0(i)sign(w0(i))λ0,

=
−λ

‖w0‖1
∑

i∈A
|w0(i)| ,

= −λ .

Thus, if θ is feasible for D(λ), then θ is in the half-space defined by

ηT (θ − θs) ≥ 0.
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Proposition B.0.3 Consider the SAFE test problem P (x,η, θs, γ) in (B.1), and assume
we know a LASSO solution w0 at a regularization parameter λ0. Defining η =Xw0/ ‖w0‖1,
θ0 =Xw0 − y, θs = θ0 λ

λ0
, and γ = G(θs), the SAFE test problem reduces to

P (xk,η, θs, γ) =

{

−δ0(k) + 1
λ0

‖y‖2 ‖xk‖2 |λ− λ0| σ1(k)λ ≤ σ2(k)λ0,
α0−λβ0
α0−λ0β0δ1(k)− δ0(k) +ψ(k)M |λ− λ0| otherwise.

with τ =Xw0, δ0 =X
Ty, δ1 =X

Tτ , β0 = ‖w0‖1, α0 := w
T
0 δ0 = y

Tτ ,

σ1(k) = ‖y‖2 δ1(k)− λ0 ‖xk‖2 β0,

σ2(k) = ‖y‖2 − α0 ‖xk‖2 ,

M =
−β0λ0 + ‖y‖22 − α0

λ20
− β2

0

α0 − β0λ0
,

and

ψ(k) =

(

‖xk‖22 −
1

α0 − β0λ0
δ21(k)

)1/2

, k = 1, ...n.

Proof: From Proposition B.0.1, the SAFE test problem P (x,η, θs, γ), takes the closed
form solution,

P (x,η, θs, γ) =

{

−yTx+ ‖x‖2D ‖x‖2
(

ηTgs
)

≤ D
(

ηTx
)

,
1

‖η‖22

(

ηTx
)

ηTgs − xTy + ψD̃ otherwise,

with gs = θs + y,

D =
(

‖y‖22 − 2γ
)1/2

,

D̃ =

(

−2γ −
(

ηTgs
)2

‖η‖22
+ ‖y‖22

)1/2

,

and

ψ =

(

‖x‖22 −
1

‖η‖22
(

ηTx
)2

)1/2

.

Simplifying P (x,η, θs, γ). We express the different variables appearing in the closed
form solution in terms of τ , δ0, δ1, β0, and α0. We start by evaluating the second case of
P (xk,η, θs, γ), and we call

P 2(k) =
1

‖η‖22
(

ηTgs
)

xTk η − xTk y + ψD̃.
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We simplify each term appearing in the above expression,

XTη =
1

β0
δ1,

ηTgs = ηT
(

θ0
λ

λ0
+ y

)

,

= −λ+
α0

β0

,

‖τ‖22 = τ Tτ ,

= τ T (θ0 + y) ,

= −β0λ0 + τ Ty,
= −β0λ0 + α0,

and we obtain

P 2(k) =
α0 − λβ0
α0 − λ0β0

δ1(k)− δ0(k) +ψD̃.

We express the values of ψ = (ψ1, ..., ψn) as,

ψ(k) =

(

‖xk‖22 −
1

α0 − β0λ0
δ21(k)

)1/2

, k = 1, ...n.

We simplify D̃,

D̃ = −2γ − 1

‖η‖22
(

ηTgs
)2

+ ‖y‖22 ,

=
‖θ0‖22
λ20

λ2 + 2
yTθ0

λ0
λ− 1

‖η‖22
(

ηTgs
)2

+ ‖y‖22 ,

=

(

‖θ0‖22
λ20

− 1

‖η‖22

)

λ2 + 2

(

yTθ0

λ0
+

(

ηTy
)

‖η‖22

)

λ−
(

ηTy
)2

‖η‖22
+ ‖y‖22 ,

=

(

−β0λ0 + ‖y‖22 − α0

λ20
− β2

0

‖τ‖22

)

λ2 + 2

(

α0

λ0
+

β0

‖τ‖22
α0 −

‖y‖22
λ0

)

λ

−(α0)
2

‖τ‖22
+ ‖y‖22 ,

and reduce it to
D̃ =M (λ− λ0)

2 ,
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with

M =
−β0λ0 + ‖y‖22 − α0

λ20
− β2

0

α0 − β0λ0
.

The value of P 2 is

P 2 =
α0 − λβ0
α0 − λ0β0

δ1 − δ0 +ψM |λ− λ0| .

Similarly we define
P 1(k) = −yTxk + ‖xk‖2D, k = 1, ..., n,

and express it as

P 1(k) = −δ0(k) +
1

λ0
‖y‖2 ‖xk‖2 |λ− λ0| , k = 1, ..., n.

Simplifying the condition ‖xk‖2
(

ηTgs
)

≤ D
(

ηTxk
)

. The condition ‖xk‖2
(

ηTgs
)

≤
D
(

ηTxk
)

, translates to

‖xk‖2
(

−λ +
α0

β0

)

≤ ‖y‖2
(

1− λ

λ0

)

1

β0
δ1(k),

λ0 ‖xk‖2 (−λβ0 + α0) ≤ ‖y‖2 (λ0 − λ) δ1(k),

λ (‖y‖2 δ1(k)− λ0 ‖xk‖2 β0) ≤ ‖y‖2 λ0 − α0λ0 ‖xk‖2 ,
λ (‖y‖2 δ1(k)− λ0 ‖xk‖2 β0) ≤ λ0 (‖y‖2 − α0 ‖xk‖2) .

We call
σ1(k) = ‖y‖2 δ1(k)− λ0 ‖xk‖2 β0,

σ2(k) = ‖y‖2 − α0 ‖xk‖2 ,
and the final expression of P (xk,η, θs, γ), reduces to

P (xk,η, θs, γ) =

{

−δ0(k) + 1
λ0

‖y‖2 ‖xk‖2 |λ− λ0| σ1(k)λ ≤ σ2(k)λ0,
α0−λβ0
α0−λ0β0δ1(k)− δ0(k) +ψ(k)M |λ− λ0| otherwise.

Proposition B.0.4 Consider the LASSO (2.1) with feature matrix X and response y. Also
assume we know an optimal solution w0 at some regularization parameter λ0, then for λ ≤ λ0
the test

λ < max(P (xk,η, θs, γ), P (−xk,η, θs, γ)),
with P (xk,η, θs, γ) the safe test problem in (B.1),η = Xw0/ ‖w0‖1, θ0 = Xw0 − y, θs =
θ0

λ
λ0
, γ = G(θs) and G(θ) =

1
2
‖y‖22 − 1

2
‖θ + y‖22 is equivalent to

λ > ρkλ0,
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with τ =Xw0, δ0 =X
Ty, δ1 =X

Tτ , β0 = ‖w0‖1, α0 := w
T
0 δ0 = y

Tτ ,

σ+
1 (k) = ‖y‖2 δ1(k)− λ0 ‖xk‖2 β0,

σ−
1 (k) = −‖y‖2 δ1(k)− λ0 ‖xk‖2 β0,

σ2(k) = ‖y‖2 − α0 ‖xk‖2 ,

M =
−β0λ0 + ‖y‖22 − α0

λ20
− β2

0

α0 − β0λ0
,

ψ(k) =

(

‖xk‖22 −
1

α0 − β0λ0
δ21(k)

)1/2

, k = 1, ...n.,

ρk = max(ρ−k , ρ
+
k ),

ρ+k =











−δ0(k)+‖y‖2‖xk‖2
λ0+‖y‖2‖xk‖2

σ+
1 (k)λ ≤ σ2(k)λ0,

(

−δ0(k)+ α0
α0−λ0β0

δ1(k)
)

+ψ(k)Mλ0
(

−δ1(k)+ α0
α0−λ0β0

δ1(k)
)

+λ0+ψ(k)Mλ0
otherwise,

and

ρ−k =











+δ0(k)+‖y‖2‖xk‖2
λ0+‖y‖2‖xk‖2

σ−
1 (k)λ ≤ σ2(k)λ0,

−
(

−δ0(k)+ α0
α0−λ0β0

δ1(k)
)

+ψ(k)Mλ0

−
(

−δ1(k)+ α0
α0−λ0β0

δ1(k)
)

+λ0+ψ(k)Mλ0
otherwise.

Proof: We start by evaluating

λ > −δ0(k) +
1

λ0
‖y‖2 ‖xk‖2 (λ0 − λ) ,

the first case of P (xk,η, θs, γ). The above expression can be reduced to

λ

λ0
>

−δ0(k) + ‖y‖2 ‖xk‖2
λ0 + ‖y‖2 ‖xk‖2

.

The other case of P (xk,η, θs, γ) is

λ >
α0 − λβ0
α0 − λ0β0

δ1(k)− δ0(k) +ψ(k)M (λ0 − λ) .

We reduce the above expression,

λ

(

1 +
β0

α0 − λ0β0
δ1(k) +ψ(k)M

)

>
α0

α0 − λ0β0
δ1(k)− δ0(k) +ψ(k)Mλ0,
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λ

(

λ0 +
β0λ0 − α0 + α0

α0 − λ0β0
δ1(k) +ψ(k)Mλ0

)

>
α0

α0 − λ0β0
δ1(k)− δ0(k) +ψ(k)Mλ0,

λ

(

λ0 +
α0

α0 − λ0β0
δ1(k)− δ1(k) +ψ(k)Mλ0

)

>
α0

α0 − λ0β0
δ1(k)− δ0(k) +ψ(k)Mλ0,

and we obtain

λ

λ0
>

(

−δ0(k) + α0

α0−λ0β0δ1(k)
)

+ψ(k)Mλ0
(

−δ1(k) + α0

α0−λ0β0δ1(k)
)

+ λ0 +ψ(k)Mλ0
.

Similarly, we express λ < P (−xk,η, θs, γ) by flipping the signs of δ0(k) and δ1(k).
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Appendix C

Expression of P (γ, x), general case

We show that the quantity P (γ, x) defined in (5.6) can be expressed in dual form (5.7).
This is a simple consequence of duality:

P (γ, x) = maxθ θ
Tx : G(θ) ≥ γ, θT b = 0

= maxθ minµ>0, ν θ
Tx+ µ(G(θ)− γ)− νθT b

= minµ>0, ν maxθ θ
Tx+ µ(−yTθ −∑m

i=1 f
∗(θ(i))− γ)− νθT b

= minµ>0, ν −γµ+maxθ θ
T (x− µy − νz)− µ

∑m
i=1 f

∗(θ(i))

= minµ>0, ν −γµ+ µ
(

maxθ
1
µ
θT (x− µy − νz)−∑m

i=1 f
∗(θ(i))

)

= minµ>0, ν −γµ+ µ
∑m

i=1 f
(

xi−µy(i)−νbi
µ

)

.
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Appendix D

SAFE test for SVM

In this appendix, we examine various optimization problems involving polyhedral func-
tions in one or two variables, which arise in section 5.3.1 for the computation of Phi(γ, x) as
well as in the SAFE-SVM theorem of section 5.3.2.

D.1 Computing Phi(γ, x)

We first focus on the specific problem of computing the quantity defined in (5.11). To
simplify notation, we will consider the problem of computing Phi(γ,−x), that is:

Phi(γ,−x) = min
µ≥0, ν

−γµ+

m
∑

i=1

(µ+ νyi + xi)+, (D.1)

where y ∈ {−1, 1}m, x ∈ R
m and γ are given, with 0 ≤ γ ≤ γ0 := 2min(m+, m−). Here,

I± := {i : yi = ±1}, and x+ = (xi)i∈I+ , x
− = (xi)i∈I−, m± = |I±|, and m = min(m+, m−).

Without loss of generality, we assume that both x+, x− are both sorted in descending order:
x±1 ≥ . . . ≥ x±m±

.
Using α = µ+ ν, β = µ− ν, we have

Phi(γ,−x) = minα+β≥0 −γ
2
(α+ β) +

∑m+

i=1(x
+
i + α)+

+
∑m−

i=1(x
−
i + β)+,

= minα, β maxt≥0 −γ
2
(α + β) +

∑m+

i=1(x
+
i + α)+

+
∑m−

i=1(x
−
i + β)+ − t(α + β),

= maxt≥0 minα, β −(γ
2
+ t)(α + β)

+
∑m+

i=1(x
+
i + α)+ +

∑m−

i=1(x
−
i + β)+,

= maxt≥0 F (
γ
2
+ t, x+) + F (γ

2
+ t, x−),

(D.2)

where, for h ∈ R and x ∈ R
p, x1 ≥ . . . ≥ xp, we set

F (h, x) := min
z

−hz +
p
∑

i=1

(z + xi)+, (D.3)
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Expression of the function F . If h > p, then with z → +∞ we obtain F (h, x) = −∞.
Similarly, if h < 0, then z → −∞ yields F (h, x) = −∞. When 0 ≤ h ≤ p, we proceed by
expressing F in dual form:

F (h, x) = max
u

uTx : 0 ≤ u ≤ 1, uT1 = h.

If h = p, then the only feasible point is u = 1, so that F (p, x) = 1Tx. If 0 ≤ h < 1,
choosing u1 = h, u2 = . . . = up = 0, we obtain the lower bound F (h, x) ≥ hx1, which is
attained with z = −x1.

Assume now that 1 ≤ h < p. Let h = q + r, with q = ⌊h⌋ the integer part of h, and
0 ≤ r < 1. Choosing u1 = . . . = uq = 1, uq+1 = r, we obtain the lower bound

F (h, x) ≥
q
∑

j=1

xj + rxq+1,

which is attained by choosing z = −xq+1 in the expression (D.3).
To summarize:

F (h, x) =















hx1 if 0 ≤ h < 1,
∑⌊h⌋

j=1 xj + (h− ⌊h⌋)x⌊h⌋+1 if 1 ≤ h < p,
∑p

j=1 xj if h = p,

−∞ otherwise.

(D.4)

A more compact expression, valid for 0 ≤ h ≤ p if we set xp+1 = xp and assume that a sum
over an empty index sets is zero, is

F (h, x) =

⌊h⌋
∑

j=1

xj + (h− ⌊h⌋)x⌊h⌋+1, 0 ≤ h ≤ p.

Note that F (·, x) is the piece-wise linear function that interpolates the sum of the h largest
elements of x at the integer break points h = 0, . . . , p.

Expression of Phi(γ,−x). We start with the expression found in (D.2):

Phi(γ,−x) = max
t≥0

F (
γ

2
+ t, x+) + F (

γ

2
+ t, x−).

Since the domain of F (·, x+) + F (·, x−) is [0, m], and with 0 ≤ γ/2 ≤ γ0/2 = m, we get

Phi(γ,−x) = max
γ/2≤h≤m

G(h, x+, x−) := F (h, x+) + F (h, x−).
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Since F (·, x) with x ∈ R
p is a piece-wise linear function with break points at 0, . . . , p, a

maximizer of G(·, x+, x−) over [γ/2, m] lies in {γ/2, ⌊γ/2⌋+ 1, . . . , m}. Thus,

Phi(γ,−x) = max

(

G(
γ

2
, x+, x−), max

h∈{⌊γ/2⌋+1,...,m}
G(h, x+, x−)

)

.

Let us examine the second term, and introduce the notation x̄j := x+j +x
−
j , j = 1, . . . , m:

max
h∈{⌊γ/2⌋+1,...,m}

G(h, x+, x−) = max
h∈{⌊γ/2⌋+1,...,m}

h
∑

j=1

(x+j + x−j )

=

⌊γ/2⌋+1
∑

j=1

x̄j +

m
∑

j=⌊γ/2⌋+2

(x̄j)+,

with the convention that sums over empty index sets are zero. Since

G(
γ

2
, x+, x−) =

⌊γ/2⌋
∑

j=1

x̄j + (
γ

2
− ⌊γ

2
⌋)x̄⌊γ/2⌋+1,

we obtain

Phi(γ,−x) =
⌊γ/2⌋
∑

j=1

x̄j +max



(
γ

2
− ⌊γ

2
⌋)x̄⌊γ/2⌋+1, x̄⌊γ/2⌋+1 +

m
∑

j=⌊γ/2⌋+2

(x̄j)+



 .

An equivalent expression is:

Phi(γ,−x) =
∑⌊γ/2⌋

j=1 x̄j − (γ
2
− ⌊γ

2
⌋)(−x̄⌊γ/2⌋+1)+ +

∑m
j=⌊γ/2⌋+1(x̄j)+, 0 ≤ γ ≤ 2m,

x̄j := x+j + x−j , j = 1, . . . , m.

The function Phi(·,−x) linearly interpolates the values obtained for γ = 2q with q integer in
{0, . . . , m}:

Phi(2q,−x) =
q
∑

j=1

x̄j +

m
∑

j=q+1

(x̄j)+.

D.2 Computing Φ(x+, x−)

Let us consider the problem of computing

Φ(x+, x−) := min
ν

m+
∑

i=1

(x+i + ν)+ +

m−
∑

i=1

(x−i − ν)+,



APPENDIX D. 112

with x± ∈ R
m±, x±1 ≥ . . . ≥ x±m±

, given. We can express Φ(x+, x−) in terms of the function
F defined in (D.3):

Φ(x+, x−) = minν+,ν−
∑

i∈I+(x
+
i + ν+)+

+
∑

i∈I−(x
−
i − ν−)+ : ν+ = ν−,

= maxh minν+,ν− −h(ν+ − ν−)
+
∑

i∈I+(x
+
i + ν+)+ +

∑

i∈I−(x
−
i − ν−)+,

= maxh minν+,ν− −hν+ +
∑

i∈I+(x
+
i + ν+)+

+hν− +
∑

i∈I−(x
−
i − ν−)+,

= maxh

(

minν −hν +∑i∈I+(x
+
i + ν)+

)

+
(

minν −hν +∑i∈I−(x
−
i + ν)+

)

(ν+ = −ν− = ν),

= maxh F (h, x
+) + F (h, x−),

= max0≤h≤m F (h, x+) + F (h, x−),
= max(A,B,C),

where F is defined in (D.3), and

A = max
0≤h<1

F (h, x+)+F (h, x−), B := max
1≤h<m

F (h, x+)+F (h, x−)), C = F (m, x+)+F (m, x−).

We have

A := max
0≤h<1

F (h, x+) + F (h, x−) = max
0≤h<1

h(x+1 + x−1 ) = (x+1 + x−1 )+.

Next:

B = max
1≤h<m

F (h, x+) + F (h, x−)

= max
q∈{1,...,m−1},r∈[0,1[

q
∑

i=1

(x+i + x−i ) + r(x+q+1 + x−q+1)

= max
q∈{1,...,m−1}

q
∑

i=1

(x+i + x−i ) + (x+q+1 + x−q+1)+

= (x+1 + x−1 ) +

m
∑

i=2

(x+i + x−i )+.

Observe that

B ≥ C =

m
∑

i=1

(x+i + x−i ).

Moreover, if (x+1 + x−1 ) ≥ 0, then B =
∑m

i=1(x
+
i + x−i )+ ≥ A. On the other hand, if

x+1 + x−1 ≤ 0, then x+i + x−i ≤ 0 for 2 ≤ j ≤ m, and A =
∑m

i=1(x
+
i + x−i )+ ≥ x+1 + x−1 = B.
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In all cases,

Φ(x+, x−) = max(A,B,C) =

m
∑

i=1

(x+i + x−i )+.

D.3 SAFE-SVM test

Now we consider the problem that arises in the SAFE-SVM test (5.14):

G(z) := min
0≤κ≤1

p
∑

i=1

(1− κ+ κzi)+,

where z ∈ R
p is given. (The SAFE-SVM condition (5.14) involves zi = γ0/(2λ0)(x

+
[i] + x−[i]),

i = 1, . . . , p := m.) We develop an algorithm to compute the quantity G(z), the complexity
of which grows as O(d log d), where d is (less than) the number of non-zero elements in z.

Define I± = {i : ±zi > 0}, k := |I+|, h := |I−|, l = I0, l := |I0|.
If k = 0, I+ is empty, and κ = 1 achieves the lower bound of 0 for G(z). If k > 0 and

h = 0, that is, k + l = p, then I− is empty, and an optimal κ is attained in {0, 1}. In both
cases (I+ or I− empty), we can write

G(z) = min
κ∈{0,1}

p
∑

i=1

(1− κ+ κzi)+ = min (p, S+) , S+ :=
∑

i∈I+

zi,

with the convention that a sum over an empty index set is zero.
Next we proceed with the assumption that k 6= 0 and h 6= 0. Let us re-order the elements

of I− in decreasing fashion, so that zi > 0 = zk+1 = . . . = zk+l > zk+l+1 ≥ . . . ≥ zp, for every
i ∈ I+. (The case when I0 is empty is handled simply by setting l = 0 in our formula.) We
have

G(z) = k + l + min
0≤κ≤1

{

κα +

p
∑

i=k+l+1

(1− κ+ κzi)+

}

,

where, α := S+−k− l. The minimum in the above is attained at κ = 0, 1 or one of the break
points 1/(1 − zj) ∈ (0, 1), where j ∈ {k + l + 1, . . . , p}. At κ = 0, 1, the objective function
of the original problem takes the values S+, p, respectively. The value of the same objective
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function at the break point κ = 1/(1− zj), j = k + l + 1, . . . , p, is k + l +Gj(z), where

Gj(z) :=
α

1− zj
+

p
∑

i=k+l+1

(

zi − zj
1− zj

)

+

=
α

1− zj
+

1

1− zj

j−1
∑

i=k+l+1

(zi − zj)

=
1

1− zj

(

α− (j − k − l − 1)zj +

j−1
∑

i=k+l+1

zi

)

=
1

1− zj

(

S+ − (j − 1)zj − (k + l)(1− zj) +

j−1
∑

i=k+l+1

zi

)

= −(k + l) +
1

1− zj

(

j−1
∑

i=1

zi − (j − 1)zj

)

.

This allows us to write

G(z) = min

(

p,
k
∑

i=1

zi, min
j∈{k+l+1,...,p}

1

1− zj

(

j−1
∑

i=1

zi − (j − 1)zj

))

.

The expression is valid when k + l = p (h = 0, I− is empty), l = 0 (I0 is empty), or k = 0
(I+ is empty) with the convention that the sum (resp. minimum) over an empty index set
is 0 (resp. +∞).

We can summarize the result with the compact formula:

G(z) = min
z

1

1− z

p
∑

i=1

(zi − z)+ : z ∈ {−∞, 0, (zj)j : zj<0}.

Let us detail an algorithm for computing G(z). Assume h > 0. The quantity

G(z) := min
k+l+1≤j≤p

(Gj(z))

can be evaluated in less than O(h), via the following recursion:

Gj+1(z) =
1−zj

1−zj+1
Gj(z)− j

zj+1−zj
1−zj+1

Gj+1(z) = min(Gj(z), Gj+1(z))
, j = k + l + 1, . . . , p, (D.5)

with initial values

Gk+l+1(z) = Gk+l+1(z) =
1

1− zk+l+1

(

k+l
∑

i=1

zi − (k + l)zk+l+1

)

.
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On exit, G(z) = Gp.
Our algorithm is as follows.

Algorithm for the evaluation of G(z).

1. Find the index sets I+, I−, I0, and their respective cardinalities k, h, l.

2. If k = 0, set G(z) = 0 and exit.

3. Set S+ =
∑k

i=1 zi.

4. If h = 0, set G(z) = min(p, S+), and exit.

5. If h > 0, order the negative elements of z, and evaluate G(z) by the recursion (D.5).
Set G(z) = min(p, S+, G(z)) and exit.

The complexity of evaluating G(z) thus grows in O(k+h logh), which is less than O(d log d),
where d = k + h is the number of non-zero elements in z.
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Appendix E

Computing Plog(γ, x) via an
interior-point method

We consider the problem (5.18) which arises with the logistic loss. We can use a generic
interior-point method [5], and exploit the decomposable structure of the dual function Glog.
The algorithm is based on solving, via a variant of Newton’s method, a sequence of linearly
constrained problems of the form

min
θ

τxT θ + log(Glog(θ)− γ) +
m
∑

i=1

log(−θ − θ2) : zT θ = 0,

where τ > 0 is a parameter that is increased as the algorithm progresses, and the last
terms correspond to domain constraints θ ∈ [−1, 0]m. As an initial point, we can take the
point θ generated by scaling, as explained in section 5.2.2. Each iteration of the algorithm
involves solving a linear system in variable δ, of the form Hδ = h, with H is a rank-two
modification to the Hessian of the objective function in the problem above. It is easily verified
that the matrix H has a “diagonal plus rank-two” structure, that is, it can be written as
H = D− ggT − vvT , where the m×m matrix D is diagonal and g, v ∈ R

m are computed in
O(m). The matrix H can be formed, as the associated linear system solved, in O(m) time.
Since the number of iterations for this problem with two constraints grows as log(1/ǫ)O(1),
the total complexity of the algorithm is log(1/ǫ)O(m) (ǫ is the absolute accuracy at which
the interior-point method computes the objective). We note that memory requirements for
this method also grow as O(m).
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Appendix F

What is Differential Flatness?

The theory of differential flatness, consists of a parameterization of the trajectories of a
system by one of its outputs, called the flat output and its derivatives [17]. Let us consider a
system ẋ = f(x, u), where the state x is in R

n, and the control input u is in R
m. The system

is said to be flat, and admits z, where dim(z) = dim(u), for flat output, and the state x can
be parameterized by z and its derivatives. More specifically, the state x can be written as
x = h(z, ż, ..., z(n)), and the equivalent dynamics can be written as u = g(z, ż, ..., z(n+1)).

In the context of partial differential equations, the vector x can be thought of as infinite
dimensional. The notion of differential flatness extends to this case, and for a differentially
flat system of this type, the evolution of x can be parameterized using an input u, which often
is the value of x at a given point. A system with a flat output can then be parameterized as
a function of this output. This parameterization enables the solution of open loop control
problems, if this flat output is the one that needs to be controlled. The open-loop control
input can then directly be expressed as a function of the flat output. This parameterization
also enables the solution of motion planning problems, where a system is steered from one
state to another. Differential flatness is used to investigate the related problem of motion
planning for heavy chain systems [45], as well as the Burgers equation [46], the telegraph
equation [16], the Stefan equation [12], and the heat equation [32].

Parameterization can be achieved in different ways depending on the type of the problem.
Laplace transform is widely used [45], [46], [16] to invert the system. The equations can be
transformed back from the Laplace domain to the time domain, thus resulting in the flatness
parameterization. Alternative methods can be used to compute the parameterization in
the time domain directly. For example, the Cauchy-Kovalevskaya form [32, 31] consists in
parameterizing the solution of a partial differential equation in X(ζ, t), where ζ ∈ [0, 1]
and t ∈ R

+, as a power series in space multiplied by time varying coefficients, that is

X(ζ, t) =
+∞
∑

i=0

ai(t)
ζi

i!
. Here, X(ζ, t) is the state of the system and ai(t) is a time function.

The usual approach consists in substituting the Cauchy-Kovalevskaya form in the governing
partial differential equation and boundary conditions; a relation between ai(t) and the flat
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output y(t) or its derivatives can then be found, for example, ai(t) = y(i)(t), where y(i)(t) is
the ith derivative of y(t), which leads to the final parameterization, in which ai(t) is written
in terms of the desired output y(t).
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Appendix G

How to Impose a Discharge at a Gate?

Once a desired open-loop water discharge is computed, it needs to be imposed at the
upstream end of the canal. In open channel flow, it is not easy to impose a water discharge
at a gate. Indeed, once a gate is opened or closed, the upstream and downstream water
levels at the gate change quickly and modify the water discharge, which is a function of the
water levels on both sides of the gate. One possibility would be to use a local slave controller
that operates the gate in order to deliver a given water discharge. But due to operational
constraints, it is usually not possible to operate the gate at a high sampling rate. As an
example, some large gates can not be operated more than few times an hour because of
motor constraints, which directly limits the operation of the local controller.

Several methods were developed by hydraulic engineers to perform this control input
based on the gate equation G.1, which provides a good model for the flow through the gate
[38]. The problem can be described as depicted in Figure G.1. Two pools are interconnected
with a hydraulic structure, a submerged orifice (also applicable for more complex structures).
The gate opening is to be controlled to deliver a required flow from pool 1 to pool 2.

The hydraulic cross-structure is assumed to be modeled by a static relation between the
water discharge through the gate Q, the water levels upstream and downstream of the gate
Y1, Y2, respectively, and the gate opening W

Q = Cd
√

2gLgW
√

Y1 − Y2, (G.1)

where Cd is a discharge coefficient, Lg is the gate width, and g is the gravitational accel-
eration. This nonlinear model can be linearized for small deviations q, y1, y2, w from the
reference water discharge value Q, water levels Y1, Y2, and gate opening W , respectively.
This linearization leads to the equation

q = ku (y1 − y2) + kww,

where the coefficients ku and kw are obtained by differentiating G.1 with respect to Y1, Y2,
and W , respectively.
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Various inversion methods can be applied either to the nonlinear or to the linear model
to obtain a gate opening W necessary to deliver a desired water discharge through the gate,
usually during a sampling period Ts. The static approximation method assumes constant
water levels Y1 and Y2 during the gate operation period Ts. This approximation leads to an
explicit solution of the gate opening W in the linear model assumption. The characteristic
approximation method uses the characteristics for zero slope rectangular frictionless channel
to approximate the water levels. The linear version of the model also leads to an explicit
expression for the gate opening. The dynamic approximation method uses the linearized
Saint-Venant equations to predict the water levels. This method can be thought of a global
method, because it considers the global dynamics of the canal to predict the gate opening
necessary to deliver the desired flow. In [38], the three methods are compared by simulation
and tested by experimentation on the Gignac canal. The dynamic approximation methods
has shown to better predict the gate opening necessary to obtain a desired average water
discharge [38].

Figure G.1: Gate separating two pools. The gate opening W controls the water flow from
Pool 1 to Pool 2. The water discharge can be computed from the water levels Y1, Y2, and
the gate opening W [38].
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Appendix H

Feed-Forward Control of Open
Channel Flow Using Differential
Flatness

This appendix derives a method for open-loop control of open channel flow, based on
the Hayami model, a parabolic partial differential equation resulting from a simplification
of the Saint-Venant equations. The open-loop control is represented as infinite series using
differential flatness, for which convergence is assessed. A comparison is made with a similar
problem available in the literature for thermal systems. Numerical simulations show the ef-
fectiveness of the approach by applying the open-loop controller to irrigation canals modeled
by the full Saint-Venant equations.

H.1 Introduction

The water resources is a motivation for research on automation of management of water
distribution systems. Large amounts of fresh water are lost due to poor management of open-
channel systems. This appendix focuses on the management of canals used to convey water
from the resource (generally a dam located upstream) to a specific downstream location.
Due to the fluctuations of water needs, water demand changes with time. This change in
demand calls for the efficient operations of open-channel systems to avoid overflows and to
supply desired flow rates at pre-specified time instants.

Automation techniques based on optimization and control have the potential to provide
more efficient management strategies than manual techniques. They rely on flow models,
in particular the Saint-Venant equations [51] or simplified versions of these equations to
describe one-dimensional hydraulic systems. Water level regulation and control of the water
flow are among the methods used to improve the efficiency of irrigation systems. These
techniques allow engineers to regulate the flow in hydraulic canals and therefore to irrigate
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large areas according to user specified demands.
In this appendix, the specific problem of controlling the downstream flow in a one-

dimensional hydraulic canal by the upstream discharge is investigated. Several approaches to
this problem have already been described in the literature. The majority of these approaches
use linear controllers to control the (nonlinear) dynamics of the canal system. Such meth-
ods include transfer function analysis for Saint-Venant equations [34] which in turn allows
the use of classical control techniques for feedback control [7, 35]. Alternatively, Riemann
invariants for hyperbolic conservation laws as in [9, 24] can be used to construct Lyapunov
functions, used for stabilization purposes. Adjoint methods [52] have been used for estima-
tion and control, via sensitivity analysis. More closely related to the present study, open-loop
control methods have been developed either by computing the solutions of the flow equa-
tions backwards using discretization and finite difference methods [3], [2], or using a finite
dimensional approximation in the frequency domain [36], [44]. Our approach is to design an
open-loop controller which parametrizes the upstream discharge explicitly as a function of
the desired downstream discharge at a given location using differential flatness (based on
Cauchy-Kovalevskaya series). It can be shown using Lyapunov stability method that the
open-loop system is stable [30, 29], which provides another justification for the usefulness of
open-loop control of the considered system.

In the context of partial differential equations, differential flatness was used to investigate
the related problem of heavy chains motion planning [45], as well as Burgers equation in [46]
or the telegraph equation in [16]. The theory of differential flatness, which was first developed
in [17], consists in a parametrization of the trajectories of a system by one of its outputs,
called the “flat output”.

Starting from the classical Saint-Venant equations, widely used, to model unsteady flows
in rivers [51], we present a model simplification and a linearization which lead to the Hayami
partial differential equation as shown in [41]. The practicality of using the Hayami equation
lies in the fact that only two numerical parameters are needed to characterize flow conditions:
celerity and diffusivity. The original Saint-Venant equations require the knowledge of the
full geometry of the canal and of the roughness coefficient, which make it impractical for
long rivers where these parameters are more difficult to infer [33].

The problem of controlling the Hayami equation was already investigated [37] with trans-
fer function analysis, and in [33] for parameter estimation. The Hayami equation [25] is
closely linked to the diffusive wave equation with quadratic source terms, which has been
studied in [12] and [39]. The difference between our problem and the aforementioned prob-
lem is the nature of the boundary conditions: indeed, unlike for heat transfer problems, one
cannot impose a value for the downstream discharge (respectively heat flux). In river flow,
there are hydraulic structures such as weirs or gates which impose a static relation between
water elevation and the flow. In fact, we show that the solution of our problem is a composite
of the solution in [39] and an additional new term which captures the boundary condition
set by the hydraulic structure, therefore required to solve the specific problem of interest in
this study.
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The appendix is organized as follows: a description of the physical problem and the
system of equations to be solved is first introduced (section H.2). Then, in section H.3,
a solution of these equations is derived using differential flatness. The convergence of the
infinite series controller is studied and an upper bound on the truncation error is computed
as a function of the approximating terms. Moreover, a numerical assessment of the open-
loop controller is finally presented and discussed in section H.4. In particular, the difference
with controllers synthesized in the context of heat transfer is illustrated through numerical
simulation. Applications of the controller on the fully nonlinear Saint-Venant model are
presented to show the usefulness of the proposed method for a full nonlinear system.

H.2 Physical Problem

The system of interest is a hydraulic canal of length L. For simplicity, the canal is assumed
to have a uniform rectangular cross-section but more complex geometries can easily be taken
into account. In this section we present the equations that govern the system, the Saint-
Venant equations. We then derive the Hayami model which is a simplification of these
equations.

H.2.1 Saint-Venant Equations

The Saint-Venant equations [51] are generally used to describe unsteady flows in rivers
or canals [41]. These equations assume one-dimensional flow, with uniform velocity over
the cross-section. The effect of boundary friction and turbulence is accounted for through
resistance laws such as the Manning-Strickler formula [53], the average channel bed slope
is assumed to be small, and the pressure is hydrostatic. Under these assumptions, these
equations are written as follows:

At +Qx = 0 (H.1)

Qt +

(

Q2

A

)

x

+ gA(Yd)x = gA(Sb − Sf ) (H.2)

with A(x, t) the wetted cross-sectional area (m2), Q(x, t) the discharge (m3/s) across sec-
tion A(x, t), Yd(x, t) the water depth (m), Sf(x, t) the friction slope (m/m), Sb the bed
slope (m/m), and g the gravitational acceleration (m2/s). For rectangular cross sectional
geometries, these variables are linked by the following relations: A(x, t) = Yd(x, t)B0,
Z(x, t) = Yd(x, t) + Sb(L − x) and Q(x, t) = V (x, t)A(x, t) where Z(x, t) is the absolute
water elevation (m), V (x, t) is the mean water velocity (m/s) across section A(x, t), and
B0 is the bed width (m). Equation (H.1) is referred to as the mass conservation equation,
and equation (H.2) is called the momentum conservation equation. We assume that there
is a cross-structure at the downstream end of the canal, which can be modeled by a static
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relation between Q and Z at x = L, i.e:

Q(L, t) = W (Z(L, t)) (H.3)

where W (·) is an analytical function. For a weir structure, this relation can be assumed to

be Q(L, t) = Cw
√
2gLw (Z(L, t)− Zw)

3/2 where g is the gravitational acceleration, Lw is the
weir length, Zw is the weir elevation, and Cw is the weir discharge coefficient . A similar
static relation holds in the case of a gate structure.

H.2.2 Hayami Model

Depending on the characteristics of the river, some terms in the momentum equation (H.2)
can be neglected, which allows us to simplify the two equations and to assemble them into
a single partial differential equation. As shown in [37], assuming that the inertia terms

Qt +
(

Q2

A

)

x
can be neglected with respect to gA(Yd)x will lead to the diffusive wave model:

B0(Yd)t +Qx = 0 (H.4)

Zx = −Sf (H.5)

The two equations can be combined and will lead to the diffusive wave equation [33]:

Qt + CQx −DQxx = 0 (H.6)

where Q(x, t) is the flow (m3/s), C and D usually known as the celerity and the diffusivity
are non linear functions of the flow. Linearizing equation (H.4) around a reference discharge
Q0 (i.e. Q(x, t) = Q0 + q(x, t)) leads to the Hayami equation:

qt + C0qx −D0qxx = 0

where q(x, t) is the deviation from the nominal flow Q0, C0(Q0) and D0(Q0) are the nominal
celerity and diffusivity which depend on Q0. We call Z0 the reference elevation, and assume
that Z(x, t) = Z0 + z(x, t), therefore equation (H.4) can be linearized as follows:

B0zt + qx = 0

where we have substituted (Yd)t by (Z − Sb(L− x))t = Zt before linearizing. The right
boundary condition (H.3) is also linearized and becomes:

q(L, t) = bz(L, t)

where b is the linearization constant (m2/s). The value of this constant depends on the weir
geometry: length, height, and discharge coefficient.
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Figure H.1: Schematic representation of the canal with weir structure.

H.2.3 Open-Loop Control Problem

The control problem illustrated in Figure H.1, consists in determining the control u(t) =
q(0, t), i.e. the flow of the upstream discharge that yields the desired downstream discharge
y(t) = q(L, t), where y(t) is a user-defined flow profile over time at the end of the canal.

We therefore have to solve a feed-forward control problem for a system with boundary
control (in the present case upstream discharge). The dynamics are modeled by the following
partial differential equations:

∀x ∈]0, L[ ∀t ∈]0, T ] D0qxx − C0qx = qt, (H.7)

∀x ∈]0, L[ ∀t ∈]0, T ] B0zt + qx = 0. (H.8)

A boundary condition is imposed at x = L by equation (H.9):

∀t ∈]0, T ] q(L, t) = bz(L, t) = y(t), (H.9)

where y(t) is the desired output, and initial conditions defined by the deviations from the
nominal values:

∀x ∈]0, L[ q(x, 0) = 0,

∀x ∈]0, L[ z(x, 0) = 0.

We are looking for the appropriate control u(·) that will generate the y(t) defined by (H.9),
where u(·) is defined by:

∀t ∈]0, T ] u(t) = q(0, t). (H.10)

H.3 Computation of the Open Loop Control Input for

the Hayami Model

In this section we solve the control problem given by equations (H.7-H.9) and try to parametrize
the flow q(x, t) in terms of the discharge q(L, t) or y(t). We will produce a solution to this
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problem using differential flatness based on Cauchy-Kovalevskaya decomposition, and study
the convergence of the obtained infinite series.

H.3.1 Cauchy-Kovalevskaya Decomposition

Following [47], equation (H.7) can be transformed into the heat equation. Let us consider
the following transformation:

q(x, t) = h(x, t)p(x, t) (H.11)

where h(x, t) = e

(

−α2

β2 t+α(x−L)
)

, α = C0

2D0
, and β = 1√

D0
. We have:

pth(x, t) = qt +
α2

β2
q,

pxh(x, t) = qx − αq,

pxxh(x, t) = qxx − 2αqx + α2q.

Substituting in equation (H.7), p(x, t) satisfies:

pt =
1

β2
pxx. (H.12)

The problem (H.7) - (H.9) can now be reformulated as follows

∀x ∈]0, L[ ∀t ∈]0, T ] pt =
1

β2
pxx, (H.13)

∀x ∈]0, L[ ∀t ∈]0, T ] B0zt = −h(x, t) (px + αp) , (H.14)

∀t ∈]0, T ] p(L, t) = f(t)y(t), (H.15)

where f(t) = e
α2

β2 t. The system of equations (H.13)-(H.15) can be used for a Cauchy-
Kovalevskaya decomposition [6, 31] and the solution of the PDE, p(x, t) (resp. z(x, t)), can
be expressed in the Cauchy-Kovalevskaya power series decomposition, in the present case
as a function of p(L, t) (resp. z(L, t)) and all its derivatives. The Cauchy-Kovalevskaya
decomposition is a standard way of parametrizing the input as a function of the output
for parabolic and linear PDEs [31, 39, 12]. In the present case, it can be shown to be
equivalent to Laplace decomposition [10] which produces the same parametrization, using
spectral analysis. We assume the following form for p and z:

p(x, t) =

+∞
∑

i=0

pi(t)
(x− L)i

i!
, (H.16)

z(x, t) =

+∞
∑

i=0

zi(t)
(x− L)i

i!
. (H.17)
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where pi(t) and zi(t) are C
∞ functions. We have: pt =

+∞
∑

i=0

ṗi
(x−L)i
i!

, pxx =
+∞
∑

i=0

pi+2
(x−L)i
i!

where

ṗi denotes the time derivative of pi(t). After substitution in equation (H.13), we obtain:

+∞
∑

i=0

ṗi
(x− L)i

i!
=

1

β2

+∞
∑

i=0

pi+2
(x− L)i

i!
.

Equating the coefficients of (x−L)i
i!

gives for all i ∈ N:

pi+2(t) = β2ṗi(t). (H.18)

Additionally, it follows from equation (H.16) and equation (H.17) that p0 = p(L, t) and
z0 = z(L, t). We still need a condition on p1 to be able to express every pi as a function of
p0. We combine equation (H.14) and equation (H.15) to obtain a boundary condition on p
at x = L. We have:

zt =
+∞
∑

i=0

żi
(x− L)i

i!
.

So that ż0 = zt(L, t), and equation (H.14), with x = L gives:

B0ż0 + e
−α2

β2 t (p1 + αp0) = 0. (H.19)

In addition, equation (H.15) gives: p0 = bz0e
α2

β2 t. Differentiating this equation with respect
to time, we get:

ż0 =
1

b

(

ṗ0 −
α2

β2
p0

)

e
−α2

β2 t,

and eventually; plugging back into equation (H.19), we obtain: p1 = −B0

b
ṗ0 + κp0, where

κ = B0

b
α2

β2 − α. Using the induction relation (H.18) and the expression of p0 and p1, we can
compute separately the odd and even terms:

p2i = β2ip
(i)
0 ,

p2i+1 = κβ2ip
(i)
0 − B0

b
β2ip

(i+1)
0 ,

where p
(i)
0 stands for the ith time derivative of p0(t). Therefore, we can formally write p(x, t)

as follows:

p(x, t) =

+∞
∑

i=0

β2ip
(i)
0

(x− L)2i

(2i)!
,

+

+∞
∑

i=0

β2i

(

κp
(i)
0 − B0

b
p
(i+1)
0

)

(x− L)2i+1

(2i+ 1)!
.
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From equation (H.15), we deduce that p0(t) = f(t)y(t). The final parametrization of the
flow q(x, t) will have the form:

q(x, t) = h(x, t)

(

T1(x, t) + κT2(x, t)−
B0

b
T3(x, t)

)

, (H.20)

where

T1(x, t) =
+∞
∑

i=0

(fy)(i)
β2i(x− L)2i

(2i)!
, (H.21)

T2(x, t) =

+∞
∑

i=0

(fy)(i)
β2i(x− L)2i+1

(2i+ 1)!
, (H.22)

T3(x, t) =

+∞
∑

i=0

(fy)(i+1)β
2i(x− L)2i+1

(2i+ 1)!
. (H.23)

Equation (H.20) relates the discharge variation q(x, t) as a function of the desired flat output
y(t) which corresponds to the discharge q(L, t) at the downstream end of the canal. The
output y(t) is sometimes referred to as “flat”, which in the present context means that it
is possible to express the input of the system u(t) explicitly as a function of the desired
output y(t) and its derivatives (a formal definition of differential flatness is available in [17],
for general systems). This also defines the parametrization of the state q(x, t) as a function
of the same derivatives. The present decomposition, chosen for this study, is the Cauchy-
Kovalevskaya form, which is appropriate for parabolic equations such as the one presented in
this appendix. This solution is formal, until the convergence of the infinite series is assessed.
An alternate derivation of equation (H.20) was produced using Laplace techniques, and
provides the same algebraic result [10].

H.3.2 Convergence of the Infinite Series

We now give the formal proof of convergence of the series in equation (H.20). We assume
that the flat output y(t) is a Gevrey function [49] of order γ > 0 , i.e.:

∃m, l > 0 ∀n ∈ N sup
t∈R

∣

∣y(n)(t)
∣

∣ < m
(n!)γ

ln
. (H.24)

f(t) = e
α2

β2 t is Gevrey of order 0, and therefore is Gevrey of order γ. The product of two
Gevrey functions of same order is a Gevrey function of the same order, as a consequence,
f(t)y(t) is Gevrey of order γ > 0. We will use the Cauchy-Hadamard theorem [23] which

states that the radius of convergence of the Taylor series
+∞
∑

i=0

anx
n is 1

limsup
n→+∞

|an|1/n
. The radius
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of convergence for T3(x, t) is given by:

1

ρ
= lim sup

i→+∞

(

β2i
∣

∣(fy)(i+1)(t)
∣

∣

(2i+ 1)!

)
1

2i+1

,

where ρ is the radius of convergence around L. We can find an upper bound to 1
ρ
by inducing

the property of bounds on a Gevrey function of order γ > 0 from equation (H.24),

1

ρ
≤ lim sup

i→+∞

(

β2im ((i+1)!)γ

li+1

(2i+ 1)!

)
1

2i+1

,

≤ lim sup
i→+∞

β
2i

2i+1m
1

2i+1

l
i+1
2i+1

(

((i+ 1)!)γ

(2i+ 1)!

)
1

2i+1

,

∼ lim sup
i→+∞

β√
l

i+ 1

2i+ 1

(

i+ 1

e

)
(γ−2)i+(γ−1)

2i+1

, (H.25)

∼











+∞ γ > 2,
β

2
√
l

γ = 2,

0 γ < 2,

where in equation (H.25) we have used the fact that ((i+ 1)!)
1

i+1 ∼ i+1
e
, and ((2i+ 1)!)

1
2i+1 ∼

2i+1
e

as an immediate consequence of the Stirling formula. Also we have used m
1

2i+1 ∼ 1,

β
2i

2i+1 ∼ β and l
i+1
2i+1 ∼

√
l. This will ensure an infinite radius of convergence for γ < 2.

Similar calculations can be held for T1(x, t) and T2(x, t) leading to the following conclusions:

• Equation (H.20) converges with an infinite radius of convergence for the choice of a
Gevrey function y(t) of order γ < 2.

• For γ = 2, the radius of convergence is greater than 2
√
l

β
, which provides convergence

of the series for x ∈ [L− 2
√
l

β
, L], given the definition of x ∈ [0, L].

• We can draw no conclusions on the convergence of the series when γ > 2.

H.4 Numerical Assessment of the Performance of the

Feed-Forward Controller

In this section, we compute the control command u(t) by evaluating equation (H.20) at
x = 0. We subsequently simulate the controller numerically on the Hayami model equations
(H.7)-(H.9) in order to evaluate their behavior before testing them on the Saint-Venant
equations. This section successively investigates numerical simulations for the Hayami and
the Saint-Venant models and the performance of the controller on both models.
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H.4.1 Hayami Model Simulation

From section H.3.2, the infinite series convergence is ensured by choosing y(t) to be a Gevrey
function of order γ < 2. To meet this convergence condition following [31], we introduce the
bump function φσ(t) : R → R defined as

φσ(t) =



























0 t < 0,
t/T
∫

0

exp(−1/((τ(1−τ))σ )dτ
1
∫

0

exp(−1/((τ(1−τ))σ )dτ
0 ≤ t ≤ T

1 t > T,

, (H.26)

where σ > 1, T > 0. The Gevrey order of the bump function is 1 + 1/σ. The function
φσ(t) is used in [12, 17, 31, 39, 50], it is strictly increasing from 0 at t = 0 to 1 at t = T
with zero derivatives at t = 0 and t = T . The larger the σ parameter is, the faster is the
slope of transition. Figure H.2 shows a plot of the bump function for different values of σ
and T = 1. Setting y(t) = q1φσ(t) will allow us to have a transition from zero discharge
flow for t ≤ 0 to a discharge flow equal to q1 for t ≥ T , where q1 is a constant. Note that
the bump function was chosen because of its Gevrey properties, we guarantee an infinite
radius of convergence for σ > 1 (γ < 2 as described in section H.3.2). As can be inferred
from the previous proof, the proposed method only applies to functions with proper radius
of convergence, by equation (H.25). This is due to the fact that in general, the reachable set
(i.e. the set of attainable y(·) functions) from input functions u(·) is not equal to the whole
state space of output functions. In other words, not all functions y(·) can be synthesized by
a function u(·).

The upstream discharge or the control input u(t) can be computed by substituting x = 0
in equation (H.20). We obtain:

u(t) = h(0, t)

(

T1(0, t) + κT2(0, t)−
B0

b
T3(0, t)

)

. (H.27)

Evaluation of the Truncation Error

For practical implementation purposes, one needs to know how many terms should be in-
cluded in the numerical computation. This can be done by computing an upper bound on
the truncation error. When the infinite series, T1(0, t), T2(0, t), and T3(0, t), in equation
(H.27) are truncated, this generates an approximation error which needs to be evaluated.
We use the Gevrey assumption in equation (H.24) and write:

|T1(0, t)| ≤
∞
∑

i=0

bi, bi = m
(i!)γ

li
[βL]2i

(2i)!
,
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Figure H.2: Bump function described by equation (H.26) plotted for different values of σ
and T = 1.

|T2(0, t)| ≤
∞
∑

i=0

ci, ci = m
(i!)γ

li
β2iL2i+1

(2i+ 1)!
,

|T3(0, t)| ≤
∞
∑

i=0

di, di = m
((i+ 1)!)γ

li+1

β2iL2i+1

(2i+ 1)!
.

To evaluate the approximation error of T1(0, t) when truncated, we study the series bi. The

series bi satisfies the relation bi+1 = E1(i)bi where E1(i) = (i+1)γ

(2i+2)(2i+1)
β2L2

l
. The function E1(i)

is decreasing towards zero:

d(E1(i))
di

=
(1 + i)γ(γ − 3 + 2i(γ − 2))

2(1 + 3i+ 2i2)2
β2L2

l
< 0 ∀ γ < 2,

and E1(i) ∼ β2L2

4l
iγ−2 for large values of i. Thus, for γ < 2, this implies that, for any small

constant ǫ < 1, there exists a unique integer i1 such that E1(i1) ≤ ǫ and E1(i1−1) > ǫ. Since
E1(i) is strictly decreasing, we have E1(j) ≤ E1(i1) ≤ ǫ for any j ≥ i1. Thus bj+1 ≤ bjǫ and
bj+k ≤ bjǫ

k ∀j ≥ i1, ∀k ≥ 0. T2(0, t), and T3(0, t) satisfy similar properties, which can be
summarized by: for any ǫ < 1, there exist j ≥ 0, such that:

bj+k ≤ bjǫ
k, cj+k ≤ cjǫ

k, dj+k ≤ djǫ
k ∀k ≥ 0. (H.28)
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This result provides us with an upper bound on the truncation error, which is quantified by
writing equation (H.27) as a sum of the truncated series and the truncation error:

u(t) = uj(t) + ej(t),

where

uj(t) =

(

j−1
∑

i=0

(fy)(i)
β2iL2i

(2i)!
− κ

j−1
∑

i=0

(fy)(i)
β2iL2i+1

(2i+ 1)!

+
B0

b

j−1
∑

i=0

(fy)(i+1) β
2iL2i+1

(2i+ 1)!

)

,

ej(t) = h(0, t)

(

+∞
∑

i=j

(fy)(i)
β2iL2i

(2i)!
− κ

+∞
∑

i=j

(fy)(i)
β2iL2i+1

(2i+ 1)!

+
B0

b

+∞
∑

i=j

(fy)(i+1) β
2iL2i+1

(2i+ 1)!

)

. (H.29)

We now use the geometric series upper bound given by equation (H.28) to compute an upper
bound of the truncation error, for a large enough j:

|u(t)− uj(t)| = |ej(t)|

≤ h(0, t)

(

bj

∞
∑

k=0

ǫk + |κ| cj
∞
∑

k=0

ǫk

+
B0

b
dj

∞
∑

k=0

ǫk

)

,

≤ h(0, t)

1− ǫ

(

bj + |κ| cj +
B0

b
dj

)

. (H.30)

Therefore, an upper bound on the truncation error of approximating u(t) using j terms of
the infinite series can be found, and it is linear in the coefficients bj , cj, and dj .

Numerical Simulation

For the numerical simulation, we consider incrementing the flow by 1m3/s from its nominal
flow Q0 = 2.5m3/s in 1 hour (T = 3600 seconds). We take σ = 2 which implies y(t) to be a
Gevrey-function of order 1.5 thus satisfying the convergence condition in section H.3.2. The
model parameters are L = 1000m, C0 = 20m/s, D0 = 1800m2/s, B0 = 7m, and b = 1m2/s.
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The infinite series of the control input u(t) is approximated using j terms. The value of j
is determined by evaluating the L2 norm of the truncation error as a function of j which is
given by:

‖ej‖ =





Tsim
∫

0

|ej(t)|2 dτ





1
2

, (H.31)

where Tsim is the simulation time. We compute the L2 norm of the upper bound error:

‖ej‖ ≤
√
2

2(1− ǫ)

β

α
e

(

−α2

β2 Tsim−αL
)

√

e
2α2

β2 Tsim − 1

(

bj + |κ| cj +
B0

b
dj

)

. (H.32)

Figure H.3 shows a comparison between the L2 norms of the upper bound computed by
equation (H.32) and the real error computed by equation (H.29) until numerical convergence
(the residual goes to machine accuracy for 76 terms). We notice that our upper bound
is conservative, (the real error may be two orders of magnitude smaller). Nonetheless, it
gives a sufficient condition useful for computational purposes. Figure H.4 shows the effect

of adding more terms on the relative error erel(t) =
∣

∣

∣

u(t)−uj (t)
Q0+u(t)

∣

∣

∣
. We choose j = 10 which

yields an error of ‖ej‖ ∼ 10−3, and solve equations (H.7), (H.8), (H.9), and (H.10) using the
Crank-Nicholson scheme. The numerical solution at x = L or q(L, t) is compared to y(t),
the desired downstream discharge flow. The results of this simulation are shown in figure
H.5.

The discharge at the downstream follows the desired discharge accurately which validates
our control input. We can now compare our result to other problems from the literature.

Comparison with the Heat Equation

In the context of thermal systems [31], an explicit open loop controller was derived for the
heat equation with zero gradient boundary conditions. With some simple transformations
in time and space we can relate the results [31] to our problem. The transformed version of
the equations of [31] has the following form:

∀x ∈]0, L[ ∀t ∈]0, T ] D0qxx − C0qx = qt, (H.33)

∀t ∈]0, T ] qx(L, t) = 0, (H.34)

∀x ∈]0, L[ q(x, 0) = 0,

∀t ∈]0, T ] y(t) = q(L, t),

∀t ∈]0, T ] u(t) = q(0, t).

The solution of the control input for this particular problem is:

uheat(t) = h(0, t) (T1(0, t)− αT2(0, t)) . (H.35)
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Figure H.3: L2 norm of the error ej(t) defined by equation (H.31) as a function of the terms
used j. The upper bound is computed using equation (H.32) and the real error is computed
until numerical convergence.

We can vary the value of the variable b in equation (H.27), and observe its effect on u(t).
This physically corresponds to changing the height or the width of the weir located at the
downstream end of the canal. Figure H.6 shows the effect of varying b on the control input
u.

We can see that by increasing the value of b, the function of u(t) numerically converges
to uheat(t) described by equation (H.35). This can be seen directly by inspection of the limit
of equation (H.27) as b tends to +∞ which would result in equation (H.35). Substituting
κ = B0

b
α2

β2 − α into equation (H.27), we obtain:

u(t) = uheat(t) + ub(t),

where

ub(t) = h(0, t)
B0

b

(

α2

β2
T2(0, t)− T3(0, t)

)

.

As b tends to +∞, the boundary effect becomes negligible, and equation (H.27) converges
in the limit to equation (H.35), i.e. in the limit u and uheat are identical. If we were to
use the controller in equation (H.35) to control our problem with b = 1 m2/s, we would
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Figure H.4: Effect of adding more terms on the relative error erel(t) =
∣

∣

∣

u(t)−uj(t)
Q0+u(t)

∣

∣

∣
for consec-

utive values of j starting from j = 3 to j = 15.

obtain the results shown in figure H.7. The effect can be seen in the transition which takes
approximately 1.6 hours instead of one hour. This shows the considerable importance of
boundary conditions on the dynamics of the flow transfer. It is therefore very important
to take into account the appropriate physical boundary conditions in the open-loop control
design to ensure a scheduled water distribution.

H.4.2 Saint-Venant Model Simulation

In numerous cases, controlling the Saint-Venant equations directly is impractical because
of the required knowledge for the geometry of the canal and the Saint-Venant parameters
defined in section H.2.1. For this reason we have used a simplification of the model to arrive
to the Hayami equation which requires only two parameters, C0 and D0. The coefficient b,
which represents the downstream boundary condition, can easily be inferred from the weir
equation. In this section we show numerically that a calibrated Hayami model would provide
us with an open-loop control law that steers the Saint-Venant equation solution at x = L
or the flow discharge at the weir to the desired discharge accurately. For the purpose of
the simulation we use SIC, a computer program developed by Cemagref [40, 1] to simulate
the upstream discharge and the measurement discharge at the downstream. SIC solves the
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Figure H.5: Results of the numerical simulation of feed-forward control of the Hayami equa-
tion. The desired downstream discharge is y(t), the upstream discharge is u(t), and the
downstream discharge computed by solving the Hayami model with b = 1m2/s is q(L, t).

full nonlinear Saint-Venant equations using a finite difference scheme standard in hydraulics
(Preissmann scheme).We also study the effect of uncertainties of the Saint-Venant equation
parameters on the open-loop control system performance.

Hayami Model Identification

The purpose of model identification is to identify the parameters C0, D0 and b corresponding
to the Hayami model and its boundary condition parameter that would best approximate the
real flow governed by the Saint-Venant equations. This is done with an upstream discharge
in a form of a step input, the flow discharges are monitored at the upstream and downstream
positions. The hydraulic identification is done classically by finding the values of C0, D0 and
b that minimize the error between the computed downstream discharge by the solution of the
Crank-Nicholson scheme [55] and the measured one. We therefore have to solve the following



APPENDIX H. 137

Figure H.6: Effect of varying b (m2/s) on the upstream discharge or control input u(t).

optimization problem:

min
C0,D0,b>0

Tsim
∫

0

|qSIC(τ)− qCN(C0, D0, b, τ)|2 dτ,

where qSIC is the downstream flow generated by SIC, and qCN is the downstream flow gen-
erated by the Crank-Nicholson scheme, Tsim is the simulation time usually larger than the
period needed to reach steady state. The nonlinear optimization problem was solved by
the MATLAB nonlinear least-square curve fitting function (lsqnonlin). The identification
was done using Saint Venant equations generated data. In our case, the identification was
performed around a steady flow regime of 0.4 m3/s, canal of length L = 4887 m, and
bed width B0 = 2 m. The average bottom slope is 3.8 × 10−4, the Manning coefficient is
0.0213m−1/3s, and the weir discharge coefficient is 0.35. This leads to the following param-
eters: C0 = 0.88m/s, D0 = 660.19m2/s, and b = 0.16m2/s. Identification of coefficients of
the Hayami equation is standard in hydraulics, and has shown to work well in practice [33].
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Figure H.7: Consequence of neglecting the boundary conditions in calculating the upstream
discharge. The desired downstream discharge is y(t), and the downstream discharge calcu-
lated by solving the Hayami model with b = 1m2/s and control input of equation (H.35) is
q(L, t).

Saint-Venant Control

The experimental canal we would like to simulate has the same properties as the one we
have used for identification in the previous section. We are interested in raising the flow at
the downstream from 0.4m3/s to 0.5m3/s in 5 hours. Setting the variables in section H.4.1
to q1 = 0.1 m3/s, T = 5 hours, and σ = 1.1 will define the downstream profile y(t). The
control input or the discharge at the upstream can be calculated and the results are shown
in figure H.8.

We notice that the open-loop control designed with the Hayami model performs very well
on the full nonlinear Saint-Venant equations. As can be seen in Figure H.8, the reference
output and the actual output achieved by the Hayami controller on the full Saint-Venant
equations are visually almost identical, which confirms the practicality of the method for
implementation on canals. This shows that the Hayami model is practical for the design
of open-loop control when the corresponding parameters are identified. We extended our
results by evaluating the uncertainties on the system parameters, and studying their effect
on the performance of the open-loop control system.
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Figure H.8: Results of the implementation of our controller on the full nonlinear Saint-Venant
equations. The desired downstream discharge is Qdesidred(t) = Q0 + y(t), the downstream
discharge calculated by solving the Saint-Venant equations in SIC is Q(L, t) = Q0 + q(L, t),
and the control input of the canal is U(t) = Q0 + u(t) where u(t) is calculated using the
Hayami model open-loop controller. The nominal flow in the canal is Q0 = 0.4m3/s.

Sensitivity Analysis

We study the effect of parameter uncertainties in the full nonlinear Saint-Venant model on the
downstream discharge. We compute the control input using nominal values of Saint-Venant
equations parameters and simulate it with models which incorporate some uncertainties.
We specifically study the effect of the Manning and discharge coefficients uncertainties. We
experiment with +/ − 20% variations on the nominal values and compare the downstream
discharges of each scenario.

We use the experimental canal described in section H.4.2 with nominal Manning coef-
ficient n = 0.0213 m−1/3s, and weir discharge coefficient Cw = 0.35. The control input
of section H.4.2 is simulated under four different scenarios which define the +/ − 20%
variations on the nominal values: Scenario 1: n = 0.0256 m−1/3s, Cw = 0.42, Scenario 2:
n = 0.0170 m−1/3s, Cw = 0.28, Scenario 3: n = 0.0256 m−1/3s, Cw = 0.28, and Scenario 4:
n = 0.0170 m−1/3s, Cw = 0.42. Figure H.9 shows the result of the sensitivity analysis.

We observe that the dominant effect is due to uncertainties in the Manning coefficient.
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Figure H.9: Simulation results when the Manning and weir discharge coefficients are per-
turbed around their nominal values (n = 0.0213, Cw = 0.35). The downstream discharge is
computed with four different scenarios. The scenarios correspond to +/− 20% uncertainties
on the nominal Manning and weir discharge coefficients. Scenario 1: n = 0.0256 m−1/3s,
Cw = 0.42, Scenario 2: n = 0.0170 m−1/3s, Cw = 0.28, Scenario 3: n = 0.0256 m−1/3s,
Cw = 0.28, Scenario 4: n = 0.0170 m−1/3s, Cw = 0.42.

Underestimating the Manning coefficient as in scenarios 1 and 3, leads to a delay in the
downstream discharge delivery ( approximately two hours delay to reach the desired down-
stream discharge). A larger Manning coefficient means more friction and this slows down the
upstream discharges to reach the downstream location. In scenarios 2 and 4 (overestimating
the Manning coefficient), the downstream discharge reaches its desired value one hour earlier.
The peak in the upstream discharge is not fully filtered by the dynamics of the canal and
leads to an overshoot in the discharge. The overshoot stabilizes at the desired downstream
discharge (0.5 m3/s) after two hours.

Overestimating (scenarios 2 and 3), or underestimating (scenarios 1 and 4) the weir
discharge coefficient has a very minor, yet opposite effect to uncertainties in the Manning
coefficient. Downstream discharges in scenarios 1 and 4 are above the ones in scenarios 3
and 2, respectively. In all cases, the downstream discharge reaches a steady state equal to
the desired one with a delay of two hours.
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H.5 Conclusion

This appendix introduces a method to design an open-loop control based on the Hayami
model for open channel flow control using differential flatness. The controller is obtained as
an infinite series (Cauchy-Kovalevskaya decomposition) in terms of the desired downstream
discharge flow. We have given sufficient conditions on the downstream profiles to ensure
convergence. The effect of the boundary condition is also investigated and compared to
previous studies realized for thermal systems. The simulations show satisfactory results for
controlling the full Saint-Venant equations.



142

Bibliography

[1] J.-P. Baume et al. “SIC: a 1D Hydrodynamic Model for River and Irrigation Canal
Modeling and Regulation”. In: Mtodos Numricos em Recursos Hidricos 7 (2005). Ed.
by Editor Rui Carlos Vieira da Silva Coppetec Fundacao, pp. 1–81.

[2] E. Bautista and A.J. Clemmens. “Response of ASCE task committee test cases to
open-loop control measures”. In: Journal of Irrigation and Drainage Engineering 125.4
(1999), pp. 179–188.

[3] E. Bautista, A.J. Clemmens, and T. Strelkoff. “Comparison of numerical procedures
for gate stroking”. In: Journal of Irrigation and Drainage Engineering 123.2 (1997),
pp. 129–136.

[4] S.R. Becker, E.J. Candes, and M. Grant. “Templates for convex cone problems with ap-
plications to sparse signal recovery”. In: Stanford University Technical Report (2010).

[5] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004. isbn: 0521833787.

[6] A. Bressan. Hyperbolic systems of conservation laws: the one-dimensional Cauchy prob-
lem. Oxford, UK: Oxford University Press, 2000.

[7] M. Cantoni et al. “Control of Large-Scale Irrigation Networks”. In: Proceedings of the
IEEE 95.1 (2007), pp. 75–91. issn: 0018-9219.

[8] S.S. Chen, D.L. Donoho, and M.A. Saunders. “Atomic decomposition by basis pursuit”.
In: SIAM review 43 (2001), p. 129.

[9] J.M. Coron, B. D’Andrea-Novel, and G. Bastin. “A Lyapunov approach to control
irrigation canals modeled by Saint-Venant equations”. In: Proceedings of European
Control Conference, Karlsruhe, Germany (1999).

[10] F. Di Meglio et al. “Feed-forward river flow control using differential flatness”. In:
Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico 1
(December 2008), pp. 3903–3910.

[11] David L. Donoho and Yaakov Tsaig. “Fast solution of l1-norm minimization problems
when the solution may be sparse”. In: IEEE Transactions on Information Theory 54.11
(2008), pp. 4789–4812.



BIBLIOGRAPHY 143

[12] W. Dunbar et al. “Motion planning for a nonlinear Stefan problem”. In: ESAIM:
Control, Optimisation and Calculus of Variations 9 (2003), pp. 275–296.

[13] Bradley Efron et al. “Least angle regression (with discussion)”. In: Annals of Statistics
32 (2004), pp. 407–499.

[14] Jianqing Fan and Jinchi Lv. “A selective overview of variable selection in high dimen-
sional feature space”. In: Statistica Sinica 20 (2010), pp. 101–148.

[15] Jianqing Fan and Jinchi Lv. “Sure independence screening for ultrahigh dimensional
feature space”. In: Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 70.5 (2008), pp. 849–911.

[16] M. Fliess et al. “Active signal restoration for the telegraph equation”. In: Proceedings
of the 38th IEEE Conference on Decision and Control, Phoenix 2 (1999), pp. 1107–
1111.

[17] M. Fliess et al. “Flatness and defect of non-linear systems: introductory theory and
examples”. In: International Journal of Control 61(6) (1995), pp. 1327–1361.

[18] George Forman. “An extensive empirical study of feature selection metrics for text
classification”. In: Journal of Machine Learning Research 3 (2003), pp. 1289–1305.

[19] A. Frank and A. Asuncion. UCI Machine Learning Repository. 2010. url: http://
archive.ics.uci.edu/ml.

[20] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Regularization Paths for
Generalized Linear Models via Coordinate Descent”. In: Journal of Statistical Software
33.1 (2010), pp. 1–22. url: http://www.jstatsoft.org/v33/i01.

[21] Jerome Friedman et al. “Pathwise coordinate optimization”. In: The Annals of Applied
Statistics 1.2 (2007), pp. 302–332.

[22] Brian Gawalt et al. “Discovering word associations in news media via feature selection
and sparse classification”. In: MIR ’10: Proceedings of the international conference on
Multimedia information retrieval. Philadelphia, Pennsylvania, USA, 2010, pp. 211–220.

[23] J. Hadamard. Lectures on Cauchy’s problem in linear partial differential equations.
New York, NY: Courier Dover Publications, 2003.

[24] J. de Halleux et al. “Boundary feedback control in networks of open-channels”. In:
Automatica 39 (2003), pp. 1365–1376.

[25] S. Hayami. “On the propagation of flood waves”. In: Bulletin of the Disaster Prevention
Institute 1 (1951), pp. 1–16.

[26] Chia-Hua Ho and Chih-Jen Lin. “Large-scale Linear Support Vector Regression”. In:
Journal of Machine Learning Research 13 (2013), pp. 3323–3348.



BIBLIOGRAPHY 144

[27] Seung-Jean Kim et al. “An interior-point method for large-scale l 1-regularized least
squares”. In: IEEE Journal on Selected Topics in Signal Processing 1.4 (2007), pp. 606–
617.

[28] Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. “An interior-point method for
large-scale l 1-regularized logistic regression”. In: Journal of Machine Learning Re-
search 8 (2007), pp. 1519–1555.

[29] M. Kristic and A. Smyshlyaev. Boundary control of PDEs: A course on backstepping
designs. Philadelphia, PA: SIAM, 2008.

[30] M. Krstic. “Personal communication. UC Berkeley, October 2007”. In: ().

[31] B. Laroche, P. Martin, and P. Rouchon. “Motion planning for a class of partial differ-
ential equations with boundary control”. In: Proceedings of the 37th IEEE Conference
on Decision and Control, Tampa, FL 3 (1998), pp. 3494–3497.

[32] B. Laroche, P. Martin, and P. Rouchon. “Motion planning for the heat equation”. In:
International Journal of Robust and Nonlinear Control 10.8 (2000), pp. 629–643.

[33] X. Litrico. “Nonlinear diffusive wave modeling and identification for open-channels”.
In: J. Hydraul. Eng. 127.4 (2001), pp. 313–320.

[34] X. Litrico and V. Fromion. “Frequency modeling of open channel flow”. In: J. Hydraul.
Eng. 130.8 (2004), pp. 806–815.

[35] X. Litrico and V. Fromion. “H∞ control of an irrigation canal pool with a mixed control
politics”. In: IEEE Trans. Control Systems Technology 14.1 (2006), pp. 99–111.

[36] X. Litrico, V. Fromion, and G. Scorletti. “Robust feedforward boundary control of
hyperbolic conservation laws”. In: Networks and Heterogeneous Media 2.4 (2007),
pp. 715–729.

[37] X. Litrico and D. Georges. “Robust continuous-time and discrete-time flow control of
a dam-river system: (I) Modelling”. In: Applied mathematical modelling 23.11 (1999),
pp. 809–827.

[38] X. Litrico et al. “Conversion from discharge to gate opening for the control of irrigation
canals”. In: Journal of Irrigation and Drainage Engineering 134.3 (2008), pp. 305–314.

[39] A.F. Lynch and J. Rudolph. “Flatness-based boundary control of a nonlinear parabolic
equation modelling a tubular reactor”. In: Nonlinear control in the year 2000, London
Lecture Notes in Control and Information Sciences 259 (2000), pp. 45–54.

[40] P.-O. Malaterre. SIC 4.20, Simulation of Irrigation Canals. http://www.cemagref.net/sic/sicgb.htm.
2006.

[41] R. Moussa and C. Bocquillon. “Criteria for the choice of flood-routing methods in
natural channels”. In: Journal of Hydrology 186 (1996), pp. 1–30.



BIBLIOGRAPHY 145

[42] Mee Young Park and Trevor Hastie. “ℓ1-regularization path algorithm for general-
ized linear models”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 69.4 (2007), pp. 659–677.

[43] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[44] N. Petit and P. Rouchon. “Dynamics and solutions to some control problems for water-
tank systems”. In: IEEE Transactions on Automatic Control 47.4 (2002), pp. 594–609.

[45] N. Petit and P. Rouchon. “Flatness of heavy chain systems”. In: SIAM Journal on
Control and Optimization 40 (2) (2001), pp. 475–495.

[46] N. Petit et al. “Motion planning for two classes of nonlinear systems with delays
depending on the control”. In: Proceedings of the 37th IEEE Conference on Decision
and Control, Tampa, FL 1 (December 1998), pp. 1007–1011.

[47] A.D. Polyanin. Handbook of linear partial differential equations for engineers and sci-
entists. London, UK: Chapman & Hall/CRC, 2002.

[48] T. Rabbani et al. “Feed-forward control of open channel flow using differential flatness”.
In: IEEE Transactions on Control Systems Technology (to appear 2009).

[49] L. Rodino. Linear partial differential operators in Gevrey spaces. River Edge, NJ: World
Scientific, 1993.

[50] J. Rudolph. “Planning trajectories for a class of linear partial differential equations:
an introduction”. In: Sciences et Technologies de l’Automatique. Electronic Journal:
http://www. esta. see. asso. fr (2004).
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