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ABSTRACT | The problem of regulating air traffic in the en

route airspace of the National Airspace System is studied using

a Eulerian network model to describe air traffic flow. The

evolution of traffic on each edge of the network is modeled by a

modified Lighthill–Whitham–Richards partial differential equa-

tion. The equation is transformed with a variable change, which

makes it linear and enables us to use linear finite difference

schemes to discretize the problem. We pose the problem of

optimal traffic flow regulation as a continuous optimization

program in which the partial differential equation appears in

the constraints. We propose a discrete formulation of this

problem, which makes all constraints (the discretized partial

differential equations, boundary, and initial conditions) linear.

Corresponding linear programming and quadratic program-

ming based solutions to this convex optimization program yield

globally optimal solutions to various air traffic management

objectives. The proposed method is applied to the maximiza-

tion of aircraft arrivals and minimization of delays in the arrival

airspace due to exogenous capacity reductions. The cor-

responding linear and quadratic programs are solved numer-

ically using CPLEX for a benchmark scenario in the Oakland Air

Route Traffic Control Center. Several computational aspects of

the method are assessedVin particular, accuracy of the

numerical discretization, computational time, and storage

space required by the method.

KEYWORDS | Convex optimization; finite differences; partial

differential equations

I . INTRODUCTION

A. General Motivation
The number of airborne aircraft in the continental U.S.

airspace exceeds 5000 on a daily basis [7]. Over the last
40 years, air traffic has increased by 50% [27], and the total

number of passenger miles traveled on commercial airlines

is expected to grow from a record 741 million in 2006 to

more than 1 billion by 2015 [14] in the United States alone.

To help coordinate flight paths and ensure safety, a

hierarchy of control systems was developed for the National
Airspace System (NAS). Starting at the top of the hierarchy

is a single Air Traffic Control System Command Center
(ATCSCC), which supervises overall traffic and 22 air route
traffic control centers (ARTCCs). Within each ARTCC are

approximately 20 high-altitude sectors (or sectors, for

brevity), each controlled by one or multiple air traffic

controllers. Air traffic controllers communicate directly

with each aircraft in their sector to guide their flight.

Coordination between the different sectors is achieved

using Federal Aviation Administration (FAA) standards. As
the volume of traffic continues to grow, new control

strategies need to be developed that can minimize delays

and increase the overall throughput capacity of the system.

B. Aggregate Models for Air Traffic Management
Research on the steady increase in air traffic volume

has triggered the development of a new class of aggregate
flow models, which describe the evolution of flows of
aircraft rather than individual trajectories in the hope of

capturing traffic patterns in a tractable manner. By

employing such a strategy, a significant order reduction

in model complexity can be achieved. The goal of these

models is therefore to generate aggregate control strategies

that reproduce single aircraft controls as closely as possible

while maintaining tractability.
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Reference [23] was to our best knowledge the first to
define traffic flow using an Eulerian, or control volume

based, framework. This work uses a discretized version of

the Lighthill–Whitham–Richards (LWR) partial differential
equation (PDE) [19], [33] and is motivated by the Daganzo

cell transmission model [12], [13] in a particular flow

regime called Bfree flow.[ This work has since inspired

several research groups to generate similar models using a

stochastic framework [34], [36]. Two-dimensional models
[24] have also emerged, in the hope of capturing traffic

flow patterns more precisely. An important characteristic

of these approaches [23], [24], [34], [36] is the diffusion or

dispersion that they exhibit. While this is not a problem in

a stochastic framework (since the results are in the

expected sense), it is more problematic in deterministic

models such as [23] and [24], since this potentially leads to

aircraft losses or inaccurate predictions (this fact has been
reported in the literature [4]).

A first attempt to resolve these issues was proposed in the

form of a continuous time/continuous space model in earlier

work of one of the authors [4], based directly on the LWR

PDE. While this approach solves the diffusion problem, its

computational tractability could be improved (it depends on

the required space discretization), and the resulting

optimization programs require heavy computations based
on adjoint problems [39]. More recently, a two-level control

system for optimal traffic flow management was developed

[26], in which an inner-level control module takes in the

optimal inflow and outflow commands generated by an outer

control module as reference inputs and uses hybrid aircraft

models to search for optimal trajectories.

Reference [39] proposes a large-capacity cell transmis-
sion model [CTM(L)] based on a graph-theoretic network
flow model constructed from historical traffic data. The

model consists of a linear time-invariant dynamical system

used for optimization of traffic flow. In [40], the authors

compare the predictive capabilities of the CTM(L) with

three other Eulerian models, including the model used in

this paper: the PDE model [4], modified Menon model
(MMM) [23], and two-dimensional Menon model (2DMM)

[24]. The PDE model is an extension of the LWR PDE to a
network of high-altitude air traffic routes. The MMM is an

extension of [23], in which air traffic is spatially aggregated

into control volumes on one-dimensional line segments.

The 2DMM partitions the airspace into two-dimensional

control volumes, each with up to nine streams passing

through it. The streams represent directions that aircraft

may travel through the control volume, and model

parameters determine how aircraft switch from one steam
to another within the control volume.

The analysis presented in [40] is significant because each

of the four models is benchmarked on the same network for a

fair comparison between the different models. The strength

of the PDE model is its predictive performance, as it

simulates air traffic with the least error of the four models.

The accuracy of the PDE model comes at a high

computational expense when presented in an optimization
framework because it is nonlinear in its decision variables.

The discrete CTM(L) model, which has reasonable accuracy

but is nearly ten times faster than the continuous PDE model

(in terms of computational time), appears to strike a

reasonable balance between accuracy and efficiency.

The contribution of this paper is to improve the

computational cost of the optimization problem based on

the PDE model, which has previously been its biggest
weakness. We introduce a new convex formulation of the

PDE model and discretize it, resulting in a new ATM

optimization framework that can be solved efficiently using

standard linear programming (LP) or quadratic programming
(QP) techniques. This new formulation also provides a

certificate that the resulting control policy is globally

optimal, which is not true for many optimization techniques

applied to the nonconvex models such as the CTM(L) model
or the non-convex form of the PDE model used in [4].

C. Control of Partial Differential Equation
Driven Systems

Each of the Eulerian models mentioned above can be

used to develop flow control strategies at a NAS-wide level.

The specificity of the model presented in this paper is its

formulation as a PDE driven model. Control and optimiza-
tion of systems driven by PDEs is a vast field, for which

numerous solution methods have been developed. A

standard way of achieving these NAS-wide control strategies

is to pose the corresponding problems as optimization

programs with an objective of maximizing the inflow into a

destination airport, subject to bounds on the aircraft speed

and the density of aircraft in a region, and a constraint that

the flow must adhere the network model. Other techniques
have alternately been applied to the control of such systems

and models. For example, the Menon model [23] uses a

state-space representation, and methods from linear system

theory can be used for its analysis and control. In [39], the

authors show that the problem of minimizing overall aircraft

delay subject to peak aircraft count constraints can be

formulated as an integer linear program (ILP) and solved by

relaxing the integer constraint.
Within the suite of methods developed to control PDE

driven systems, one possible approach to the problem of

controlling or optimizing systems driven by PDEs is to

work on a discretization of the PDE directly. This is the

approach chosen in this paper. For example, in hydraulics,

this approach has been applied successfully to the Saint-
Venant equations (SVEs): in [1] and [22], an irrigation canal

system is controlled by discretizing the SVEs to obtain a
state-space model, which is then optimized to minimize

the system’s response to uncertain water withdraws from

the main flow in the canal.

Several additional techniques applied to PDE driven

systems need to be mentioned here for completeness. An

extensive overview of modeling and optimization of trans-

portation networks modeled by PDEs can be found in the
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recent book of Piccoli and Garavello [28] and can be used for
the study of highway traffic flow. A variety of techniques exist

for optimization of physical networks as well. Frequency-

domain approaches have been used by Litrico et al. in the

context of canal network control for the SVEs [20] and

provide useful control techniques when underlying equations

of flows are linear. Linear quadratic optimal control theory

was applied by Malaterre for the automatic control of two

different eight-pool irrigation canals [21]. Several approaches
have been developed to handle nonlinear phenomena present

in physical networks. A nonlinear output feedback method

was studied in [2] for a compartmental network flow system.

Methods based on Lyapunov analysis were presented by

Coron et al. for a hydraulic application, namely, the level and

flow regulation in a horizontal open channel [10]. A

decentralized nonlinear control approach was used in [18]

for fluid flow networks, where actuator valves and flow rate
sensors are collocated in individual branches and do not

exchange information. A similar model was used for optimal

control of supply networks in [17].

While the list above outlines a variety of possible

approaches to solve specific problems, one method stands

out because of its generality. One of the most powerful

techniques used for solving problems posed as optimiza-

tion programs in which constraints appear in the form of
PDEs is adjoint-based optimization [16]. This framework is

very general and enables systematic treatment of cost

functions and constraints. Its power is reflected by the

variety of application fields in which it has been usedVin

particular, shape optimization [16], oceanography [5],

river hydraulics [35], systems biology [29], optimal control

of hybrid systems [30], and optimal control of transpor-

tation networks [30], [40]. While this method is very
general and can be applied to almost any problem

(including the present one), it has two main drawbacks:

i) it does not provide any guarantee of global optimality

and ii) it is computationally expensive, due to the necessity

of sequentially solving a series of Bdirect[ and Badjoint[
problems and using iterative descent methods such as the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) method to

optimize the cost [41]. While the BFGS method is efficient
for small-scale problems, it becomes quite impractical

when dealing with large-scale systems for which the cost of

manipulating the Hessian approximations is too elevated.

These two drawbacks are addressed in this paper by our

proposed convex formulation of the problem.

D. Towards a Convex Optimization Framework
In this paper, we use a PDE model describing the

evolution of cumulative aircraft count and density, which

follow standard frameworks available in the transportation

engineering literature. We choose to work with the PDE

model because it has been shown to accurately predict the

aircraft count in each sector during forward simulation, and

the relevance of the model increases with the number of

aircraft [40]. These two factors provide a motivation for our

use of this model as a basis for the optimization framework
described later. When the velocity is prescribed (as is the case

of forward model simulation), this model is a linear

advection equation, which can be solved efficiently using

nonlinear discretization schemes. However, if the model is

encoded as a constraint in an optimization problem for which

both the velocity and density are unknown, the resulting

problem is nonlinear, even if linear discretization schemes

are used. This has been treated previously by applying
optimization techniques such as the adjoint method, which

can handle the nonlinearities, at the expense of computa-

tional efficiency and global optimality of the solution.

After formally stating the constraints of the optimal

control problem in the density and velocity decision

variables, we show that a change of variables to density and

flux will result in linear constraints in continuous form. If the

PDE in this alternate form is discretized using linear
discretization schemes, the resulting constraints are also

linear, which is the key step to making the formulation

convex. To complete the transformation into a convex

optimization problem, we illustrate this technique on three

different objective functions including maximizing the

airspace throughput (i.e., the number of aircraft arriving at

their destinations) and minimizing the changes to flight paths

or arrival schedules caused by reduced network capacity.
From a purely theoretical standpoint, this is a significant

step forward for determining optimal control strategies for

the NAS because the resulting control policies are globally

optimal. When earlier models [Menon, CTM(L) and even

previous forms of the PDE model] are used for computing

optimal ATM policies, the corresponding optimization

problems have mixed integer decision variables or other

nonlinearities, which destroy the problem’s convexity. The
same is true for the mixed ILP framework presented in [6].

Thus, any optimal strategy computed from these models

may only be locally optimal unless computationally costly

branching techniques are introduced. In addition to

providing a globally optimal solution, the convexity allows

us to use very efficient optimization tools such as LP or QP

to solve large-scale problems.

Even though the resulting formulation presented in
this paper is convex, a proper discretization of the

networked PDE problem is required to compute optimal

speed policies. Through extensive numerical simulation,

we have identified two problematic areas that prevent the

blind application of any linear finite difference numerical

scheme. With some care, an appropriate scheme can be

selected that is feasible and corresponds to the physics

described in the continuous convex PDE framework, with
significant reductions in computational time.

The contributions of this paper thus include the following.

• A new continuous formulation of the nonlinear

optimization program presented in [4], as a convex

optimization program.

• The instantiation of several linear finite difference

schemes on the present PDE to pose the previous
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problem as a set of (discretized) convex programs
of various forms, in the hope of finding the most

efficient of them.

• A systematic study of the respective performance of

these formulations. In particular, a choice of the

numerical scheme is made, so that the convex

optimization program provides appropriate solu-

tions. In particular, we select schemes that avoid two

major problems inherent to these types of convex
optimization program formulations. i) These prob-

lems can become infeasible because of numerical

overshoot/undershoot inherently present in finite

difference schemes. ii) They can return physically

meaningless Bsawtooth-like[ solutions due to fea-

tures of the numerical discretization schemes, which

are exploited by the optimization solver.

• A numerical study of their computational perfor-
mance. We numerically validate the fact that they

return globally optimal solutions, as predicted by

theory. We show drastic improvements in compu-

tational time with respect to our earlier formula-

tion, bringing the computational time from

minutes [4] to seconds.

• An implementation of the program for a bench-

mark air traffic control problem for the en route
arrival airspace in the Oakland center.

The remainder of this paper is organized as follows. In

Section II, we present the PDE network model used to

describe traffic flow, pose the general form of the

optimization program, and discuss its transformation

into an LP or QP form. A variety of finite difference

schemes are subsequently introduced, and their suitability

in terms of accuracy to the PDE model and computation
time is compared in Section III. Common pitfalls that can

occur when implementing these convex optimization

programs are described in Section IV, and a final selection

of a numerical scheme is made. The feasibility of the

method is demonstrated on the Oakland ARTCC in

Section V using arrival traffic benchmark scenarios.

II . PROBLEM FORMULATION

A. PDE Network Model
In this paper, we use the PDE model of air traffic flow

initiated in [4], and later extended in [40]. This approach

models jetways as paths composed of a series of line seg-

ments known as links, which range between 30 and 200 mi

in length. In previous work, 13 742 trajectories across the
NAS were reduced to build a network of 1598 links [40], a

subset of which is used in this paper.

We represent each link k on a path as a segment ½0; L�
and denote by uðx; tÞ the number of aircraft between

distances zero and x at time t. In particular, uð0; tÞ ¼ 0 and

uðL; tÞ is the total number of aircraft in the path modeled

by [0, L] at time t. In this paper, we assume a time-varying

velocity profile vðx; tÞ > 0, which represents the aggregate
velocity of aircraft flow at position x and time t. Applying

the conservation of mass to a control volume comprised

between positions x and xþ h, and letting h tend to zero,

the following relation between the spatial and temporal

derivatives of uðx; tÞ is obtained [4]

@uðx;tÞ
@t þ vðx; tÞ @uðx;tÞ

@x

¼ vð0; tÞ @uð0;tÞ
@x ðx; tÞ 2 ð0; LÞ � ð0; T�

uðx; 0Þ ¼ ut0
ðxÞ x 2 ½0; L�

uð0; tÞ ¼ 0 t 2 ½0; t�

8>><
>>: (1)

where the term vð0; tÞð@uð0; tÞ=@xÞ represents a pre-
scribed rate at which aircraft enter the link (at x ¼ 0). We

introduce the density of aircraft �ðx; tÞ as the weak

derivative of uðx; tÞ with respect to x �ðx; tÞ ¼
ð@uðx; tÞ=@xÞ, so that the evolution of aircraft density is

a solution of the partial differential equation

@�ðx;tÞ
@t þ vðx; tÞ @�ðx;tÞ@x

þ @vðx;tÞ
@x �ðx; tÞ ¼ 0 ðx; tÞ 2 ð0; LÞ � ð0; T�

�ðx; 0Þ ¼ �t0
ðxÞ x 2 ½0; L�

�ð0; tÞ ¼ �x0
ðtÞ t 2 ½0; T�

8>><
>>: (2)

with initial and boundary conditions �to
ðxÞ and �x0

ðtÞ. This

PDE is a linear advection equation with positive velocity

and a source term ð@vðx; tÞ=@xÞ�ðx; tÞ. Clearly, the two

systems (1) and (2) are equivalent and model the same

physical phenomenon. Note that while (2) is linear in the
state �ðx; tÞ, if vðx; tÞ is also introduced as an unknown

parameter to be determined by the optimization program,

(2) becomes nonlinear when considered as a constraint.

This model of air traffic flow on a link can be extended

to a network of links. We let K denote the set of all links in

the network. For each link k 2 K, we associate the set Mk

with the set of all links in the network in which flow

merges into link k. We represent the portion of flow
exiting link m 2Mk that enters link k by �m;k, where

0 � �m;k � 1. Because flow exiting m may split onto

multiple links including k, we require that for a fixed m,P
i2K �m;i ¼ 1. That is, the flow exiting from link m and

diverging to all other links i must be conserved. For the

simple network shown in Fig. 1, we have K :¼ f1; . . . ; 5g,
M4 ¼M5 ¼ f1; 2; 3g, and �m;4 þ �m;5 ¼ 1, m 2 f1; 2; 3g.
The system of partial differential equations on a general
network can be written as shown in the equation at the

bottom of the next page. The well-posedeness of (3), and

the existence and uniqueness of the solution on the network,

is proved in [40].

B. Optimal Control Problem
With the PDE model defined above, we now pose the

problems of maximizing the network throughput and
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minimizing delays in the en route and arrival airspace as

optimal control problems. In other words, we seek to find

the globally optimal velocity profiles vkðx; tÞ with respect

to some network performance metric, for all links in the

system. The novelty of this work is that unlike previous

treatments of these optimal control problems, we do not
solve for the velocity profile directly. Instead, we

introduce a new formulation in which the velocity is

computed from the optimal density and flux solutions.

The most important contribution of this paper is that with

this change of variables, the PDE network optimal control

problem can be posed as a convex optimization problem,

subsequently enabling globally optimal solutions which

can be computed using efficient and well-developed LP or
QP techniques.

1) Constraints: Following standard optimal control

terminology, we encode the dynamics of the system in the

form of constraints [8]. The key constraint in the optimiza-

tion program is thus the constitutive model equation given in

the form of PDEs of the �kðx; tÞ functions. This also includes a

prescribed initial density distribution �t0;kðxÞ, which repre-
sents the aircraft initially airborne. The conditions at the

boundaries of each link �kð0; tÞ are defined by aircraft

entering the network from international flights or lower

altitude traffic �x0;kðtÞ and aircraft entering from other links

in the network. We impose upper and lower bounds on the

velocity profile on each link vk;minðx; tÞ � vkðx; tÞ �
vk;maxðx; tÞ to keep traffic flow consistent with the physical

capabilities of the aircraft in the NAS.
An upper bound on the density on each link

�kðx; tÞ � �k;maxðx; tÞ is added for two reasons. First, the

FAA has established a minimum horizontal separation

distance between aircraft in the en route environment of

five nautical miles. By imposing an upper bound on the
density, we capture the essence of this requirement in an

aggregated form, following the work in the field of

Eulerian models [3], [4], [23], [24], [31], [32], [34], [36],

[40]. Secondly, if air traffic controllers are used to dispatch

the optimal control strategy to the pilots, the integral of

the upper bound on the density corresponds to the

maximal number of aircraft in a sector that the air traffic

controller can legally handle. We also require the density
to be nonnegative to be physically meaningful.

2) Transformation of the Problem Into a Convex Optimiza-
tion Program: If these constraints are imposed along with

the network PDE model, the optimization program for a

single junction becomes

min : J

st : 0 � �kðx; tÞ � �k;maxðx; tÞ
ðx; tÞ 2 ½0; Lk� � ½0; T�; k 2 K

vk;minðx; tÞ � vkðx; tÞ � vk;maxðx; tÞ
ðx; tÞ 2 ½0; Lk� � ½0; T�; k 2 K

ð3Þ: (4)

The goal of the optimization problem is to find the
optimal vkð�; �Þ such that the objective function J is

minimized. The output of this program is thus an optimal

speed control policy to be applied by the air traffic controller.

The principle difficulty with solving (4) is that the PDE

is a nonlinear constraint in the optimization variables, as

was mentioned earlier. Thus, even if linear discretization

schemes are used, the resulting constraints will be

nonlinear. In the past, standard PDE optimization
techniques such as adjoint methods have been used to

solve these types of problems [4], [16], [31], [32], [35]. As

explained earlier, the benefit of these methods is their

generality. The drawbacks are the difficulty to implement

them (using BFGS routines [41]), the lack of guarantees of

numerical convergence and subsequent degree of sub-

optimality, and, in practice, the high computational cost of

the resulting algorithms. In particular, recent work on
second-order methods [32] displayed improved conver-

gence to suboptimal values of first-order methods, which

also underlines the lack of global certificates of optimality

for this general class of methods (the performance of the

second order method is so superior to the performance of

Fig. 1. Simple example network composed of five links.

The flow from links 1 (dashed blue), 2 (dotted red),

and 3 (dash-dot green) each split and feed links 4 and 5.

@�kðx;tÞ
@t þ vkðx; tÞ @�kðx;tÞ

@x þ
@vkðx;tÞ
@x �kðx; tÞ ¼ 0 ðx; tÞ 2 ð0; LkÞ � ð0; T �; k 2 K

�kðx; 0Þ ¼ �t0;kðxÞ x 2 ½0; Lk�; k 2 K

�kð0; tÞ ¼ �x0;kðtÞ þ
P

m2Mk
�m;k�mðLm;tÞvðLm;tÞ
vkð0;tÞ t 2 ½0; T �; k 2 K

8>><
>>: (3)
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the first-order method that it emphasizes the suboptimality
of the latter very strikingly).

We now propose a change of decision variables that

makes the previous constraints in (4) linear

qkðx; tÞ ¼ �kðx; tÞvkðx; tÞ (5)

where qkðx; tÞ is known as the flux function and can be

interpreted as the amount of aircraft that flow through a

point x on the link per unit time at time t. The nonlinear

constraint in terms of decision variables �kðx; tÞ and vkðx; tÞ
can be transformed into a linear constraint in terms of

decision variables �kðx; tÞ and qkðx; tÞ. The control variable
vkðx; tÞ is completely absent in the resulting formulation,

and so it must be computed from the optimal solutions for

density and flux obtained by solving the following

equivalent continuous optimization problem:

min : J

st : 0 � �kðx; tÞ � �maxðx; tÞ
ðx; tÞ 2 ½0; Lk� � ½0; T�; k 2 K

vk;minðx; tÞ�kðx; tÞ � qkðx; tÞ
� vk;maxðx; tÞ�kðx; tÞ
ðx; tÞ 2 ½0; Lk� � ½0; T�; k 2 K

@�kðx; tÞ
@t

þ @qkðx; tÞ
@x

¼ 0

ðx; tÞ 2 ð0; LkÞ � ð0; T�; k 2 K

�kðx; 0Þ � �t0;kðxÞ ¼ 0

x 2 ½0; Lk�; k 2 K

qkð0; tÞ � qx0;kðtÞ
�
X

m2Mk

�m;kqmðLm; tÞ ¼ 0

t 2 ½0; T�; k 2 K: (6)

Note also that the velocity constraint changed from bounds

on vkðx; tÞ in (4) to a linear constraint on qkðx; tÞ and

�kðx; tÞ in (6). In this latter form, any linear discretization

scheme will yield a discrete convex formulation that can be
solved using either LP or QP techniques given an

appropriate choice of the objective function and its

discretization, or general convex optimization techniques

if the objective function J is a general convex function.

3) Objective Functions: In order to pose convex objective

functions, we introduce a single airport � in the set of all

airports A in the network. If we wish to denote the number
of arrivals of aircraft at airport � through time t by ��ðtÞ,
we can maximize the total number of arrivals by forming

the following objective function: max : J ¼
P

�2A ��ðTÞ.
If we let a link terminating at airport � be denoted by k�,

then k� belongs to the subset of links terminating at one of

the airports in the set of all airports defined by KA � K.
We note that the integral

R t

0
qk�ðLk� ; sÞds represents the

cumulative arrivals ��ðtÞ at airport � at time t, and so this

objective can be implemented in terms of the flux as

min : J ¼ �
X

k�2KA

ZT

0

qk� Lk� ; tð Þ dt (7)

where max : J ¼ �min : �J has been used to obtain a

convex minimization program in standard form. Note that

the throughput objective function is linear in the flux

function q. With a proper (linear) discretization in space

and time, it will lead to a linear program when subject to

linear constraints. This objective function is used in

Sections III and IV to highlight the correct numerical
implementation of the convex optimization problem.

We introduce a second control objective: to minimize

delays by matching the desired flight plans as closely as

possible. This is accomplished by first computing the

desired density and flux distributions �k;desðx; tÞ and

qk;desðx; tÞ corresponding to the desired flight plans of all

aircraft in the network. In practice, this is a useful

formulation when some unforeseen event, such as
inclement weather, reduces the capacity of the network

and forces deviations from the desired schedule

min : J ¼
X
k2K

ZT

0

ZLk

0

qkðxk; tÞ � qk;desðxk; tÞ
� �2
�

þ �kðxk; tÞ � �k;desðxk; tÞ
� �2

�
dxk dt: (8)

This objective will be implemented as a quadratic program

when subject to linear constraints and is demonstrated on

a benchmark problem implemented in Section V.

To emphasize the usefulness of the convex framework,
we note that a third control objective can also be

implemented, which is to match a desired arrival schedule

at all airports as closely as possible [31]. If we define the

desired number of aircraft that have arrived at airport �
by time t as ��;desðtÞ, the objective formulation is

min : J ¼
P

�2A
R T

0
ð��ðtÞ � ��;desðtÞÞ2dt. In terms of the

flux function, this objective can be written as

min : J ¼
X
k�2K

ZT

0

Z t

0

qk� Lk� ; sð Þ ds

0
@

�
Z t

0

qk�;des Lk� ; sð Þds

1
A

2

dt: (9)

Again, this objective can be implemented as a quadratic

program when subjected to linear constraints.
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For the objective functions involving scheduling, such
as maximizing the throughput of the network (7), a choice

of T � 24 h is natural. The optimal control strategies can be

computed as soon as the flight plans of each aircraft are

established for the day. In the event of a perturbation that

creates deviations from a prescribed flight plan (8) or

arrival schedule (9), T may range between 6 and 12 h, or a

time at which the perturbation no longer effects the flight

schedule. Although it is computationally feasible, we do not
consider T � 24 h simply because other control strategies

such as grounding flights become more appropriate. The

framework presented in this paper assumes scheduled

flights will eventually take place.

III . PRACTICAL IMPLEMENTATION

A. Description of Discretization Schemes
Even though the transformation leading to (6) results

into a convex optimization program with linear con-

straints, which is a significant theoretical improvement

with respect to an earlier formulation [4], [40], one still

needs to pose (6) in a standard form to be able to solve it

numerically. We now explain how the use of linear
discretization schemes can lead to LP and QP formulations

of (6), thus rendering numerical solutions tractable.

1) Notation: For each link in the network, we must

discretize the continuous variables into their discrete

forms. Dropping the link subscript k for brevity, the

p h y s i c a l d o m a i n f o r �ðx; tÞ a n d qðx; tÞ w i t h

ðx; tÞ 2 ½0; L� � ½0; T� is written in terms of the discrete
variables �n

i and qn
i , where i and n are integers in ½0; imax�

and ½0; nmax�, respectively, where imaxþ 1 and nmaxþ 1

correspond to the number of discretization points in space

and time. Letting b�c denote the floor operator, we define i
in terms of the continuous space x and the discrete space

step size �x as i ¼ bx=�xc, and note that imax þ 1

corresponds to the number of discretization points in the

space domain. Similarly, n is defined in terms of the
continuous time variable t and the discrete time step size

�T as n ¼ bt=�Tc, and nmax þ 1 equals the number of

discretization points in time. By applying the discretiza-

tion, the problem size is reduced from an optimization

program with two continuous variables in space and time

to a program of size ¼ 2ðnmax þ 1Þðimax þ 1Þ.

2) Explicit and Implicit Schemes: In general, finite
difference schemes can be classified as either implicit or

explicit, depending on how the solution of the discrete

variables is computed. Explicit finite difference schemes

are methods that transform the differential equation into

discrete equations in which one computes the unknowns at

the current time step using only information known at the

previous time step. Starting with a known initial condition

at all discrete points in space, the computation of the

unknowns marches forward in time until all unknowns are
computed. The advantage of this type of scheme for forward

simulation is that there is no need to solve a large system of

coupled equations, which can be computationally expen-

sive. In the optimization framework, this type of dis-

cretization scheme produces constraints with less coupling,

which in turn produces faster run times in practice. The

main drawback of using explicit schemes for hyperbolic

PDEs (such as the modified LWR PDE), is that they are
conditionally stable at best [37], as first proved in [11]. The

stability condition imposes a constraint between the size of

the discrete time step and the discrete space step. In

practice, this often leads to unnecessarily large number of

time steps (due to a required small discretization in time) to

achieve a desired level of accuracy in the space domain.

One way of overcoming this restriction is to use of

unconditionally stable implicit finite difference schemes. In
forward simulation, the discrete variables at each time step

are computed using unknown variables at both the past and

future time steps. As a result, the discrete system of equations

must be solved simultaneously. In the optimization frame-

work, this imposes no additional complexity in formulating

the problem; however, it results in more highly coupled

constraints, which may increase the computational time for a

solver to find the solution to the corresponding problem.

3) Schemes Implemented: We now describe the difference

equations obtained by applying a variety of finite difference

schemes to the modified LWR PDE constraint (6).

• The (explicit) Lax–Friedrichs (LxF) scheme is

written in terms of �ðx; tÞ and qðx; tÞ as [15]

�nþ1
i ¼ 1

2
�n

iþ1 þ �n
i�1

� �
� 1

2

�T

�x
qn

iþ1 � qn
i�1

� �
(10)

which is subject to the Courant–Friedrichs–Lewy (CFL)

condition: jð�T=�xÞvn
i j � 1 for stability [15]. Since vn

i is
an unknown optimization variable, we must ensure

stability for all possible vn
i , namely, jð�T=�xÞvmaxj � 1.

• The (implicit) first-order forward difference in time,
second-order centered difference in space (2CD)

scheme is written as

�nþ1
i ¼ �n

i �
1

2

�T

�x
qnþ1

iþ1 � qnþ1
i�1

� �
: (11)

• The (implicit) first-order forward difference in time,
fourth-order centered difference in space (4CD)

scheme is written as

�nþ1
i ¼ �n

i �
1

12

�T

�x
�qnþ1

iþ2 þ 8qnþ1
iþ1 � 8qnþ1

i�1 þ qnþ1
i�2

� �
:

(12)
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• Alternatively, if the second-order centered differ-
ence in space at the t and t þ 1 time steps are

averaged, the (implicit) Crank–Nicholson (CN)

scheme is obtained [37]

�nþ1
i ¼ �n

i �
�T

4�x
qnþ1

iþ1 � qnþ1
i�1 þ qn

iþ1 � qn
i�1

� �
: (13)

• The (implicit) first-order forward difference in
time, first-order upwind in space (1UP) is written

as [15]

�nþ1
i ¼ �n

i �
�T

�x
qnþ1

i � qnþ1
i�1

� �
: (14)

• The (implicit) first-order forward difference in time,
second-order upwind in space (2UP) is written

as [15]

�nþ1
i ¼ �n

i �
1

2

�T

�x
3qnþ1

i � 4qnþ1
i�1 þ qnþ1

i�2

� �
: (15)

Additionally, a variety of modifications can be
made to the LxF, 2CD, 4CD, and CN schemes to

introduce asymmetry in the schemes, which we

now present. This prevents undesirable

Bsawtooth-like[ oscillations in the solutions of

the optimization problems presented in the next

section.

• The (implicit) modified second-order centered
difference (M2CD) scheme is written as

�nþ1
i ¼ �n

i �
1

2

�T

�x

1

2
qnþ1

iþ2 þ qnþ1
i

� �
� qnþ1

i�1

� �
: (16)

• The (implicit) modified fourth-order centered differ-
ence (M4CD) scheme is written as

�nþ1
i ¼ �n

i �
1

12

�T

�x
�qnþ1

iþ2 þ
1

2
8qnþ1

iþ2 þ 8qnþ1
i

� ��

� 8qnþ1
i�1 þ qnþ1

i�2

�
: (17)

• The 1UP inspired (implicit) modified Crank–
Nicholson (MCN) scheme is written as

�nþ1
i ¼ �n

i �
�T

2�x
qnþ1

i � qnþ1
i�1 þ qn

i � qn
i�1

� �
: (18)

• Finally, we also test the (implicit) Crank–Nicholson
with dissipation (CND) scheme [15]

�nþ1
i ¼ �n

i �
�T

4�x
qnþ1

iþ1 � qnþ1
i�1 þ qn

iþ1 � qn
i�1

� �
� "

16
qn

iþ2 � 4qn
iþ1 þ 6qn

i � 4qn
i�1 þ qn

i�2

� �
(19)

which has a dissipative term of order 4 for small

values of " (i.e., " ¼ ð1=2Þ).

Schemes (16)–(18) are developed by introducing an

asymmetric term in q, which is simply an average of the

two neighboring points. For example, in (11), point qnþ1
iþ1 is

replaced with its approximation ð1=2Þðqnþ1
iþ2 þ qnþ1

i Þ. This

slight asymmetry can significantly reduce the likelihood of

nonphysical Bsawtooth-like[ oscillations, which are de-
scribed in detail in Section IV-A.

4) Boundary Conditions: When implementing any numer-

ical scheme, special attention must be paid to boundary

conditions. In this optimization program, we implement the

boundary conditions in the strong sense at the first grid point

in the physical domain because it is an inflow condition.

Downstream, we implement boundary conditions with ghost
points, following the procedure outlined in [38] and [40]. This

is now presented on the LxF scheme, while noting that a

similar procedure is used on the other schemes.

The initial distribution of density on each link k, given

by �t0;kðxÞ, is directly imposed in the discrete problem as

follows:

�0
i;k ¼ �t0;kði�xÞ: (20)

If the initial velocity profile v0ðxÞ at the initial time is also

known, the initial flux profile can be defined similarly as

q0
i;k ¼ �t0;kði�xÞv0ði�xÞ: (21)

At the link entrance, we impose the inflow flux on

link k on the discrete flux variable qn
0;k according to

qn
0;k ¼ qx0;kðn�TÞ þ

X
m2Mk

�m;kqmðimax�x; n�TÞ: (22)

This expression can be interpreted as follows. The

discrete flux variables qn
0;k on each link k, at the boundary

i ¼ 0, is equal to the inflow flux function qx0;kðtÞ
representing all aircraft entering the network at link k,

plus the fluxes from all links that feed flow already in the

network into link k. The density along the link entrance

�n
0;k is bounded but not specified directly at this

boundary; its optimal value is computed directly from

the optimization program.
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With variables now defined along the initial time and
space boundaries, the LxF scheme (10) is encoded as a

constraint involving �n
i , �n

iþ1, �n
i�1, qn

iþ1, and qn
i�1 for all

i 2 ½1; imax� and n 2 ½1; nmax�. Because �n
iþ1 and qn

iþ1 are

undefined in the PDE evaluation at imax, we introduce a

ghost point at imax þ 1 that is not in the physical domain.

Instead, it is used for the sole purpose of computing the

flux and density variables at the link exit according to the

discretized PDE constraint. These variables are con-
strained to the physical system by invoking the constraints

�n
imaxþ1 ¼ �n

imax
; qn

imaxþ1 ¼ qn
imax
: (23)

Note that for higher order schemes, such as 4CD, it is

necessary to add an additional ghost point at the

downstream point i ¼ imax þ 2 as well as at the upstream

point i ¼ �1.

B. Computational Results
We now discuss the accuracy and computation time

of the numerical schemes. We solve the following

maximization of throughput validation problem on a

single link

min : �
ZT

0

qðL; tÞ dt

st :
@�ðx; tÞ
@t

þ @qðx; tÞ
@x

¼ 0

qð0; tÞ ¼ qx0
ðtÞ

�ðx; 0Þ ¼ �t0
ðxÞ

� 1

5
� �ðx; tÞ � 3

�ðx; tÞvminðx; tÞ � qðx; tÞ
� �ðx; tÞvmaxðx; tÞ (24)

where qx0
ðtÞ is a bump inflow condition

qx0
ðtÞ ¼

0 for t � 1
4

sin 2�ð1� 2tÞð Þ for t 2 1
4
; 1

2

� 	
0 for t � 1

2

8><
>: (25)

�t0
ðxÞ is the initial density distribution

�t0
ðxÞ ¼

sinð2�xÞ for x 2 0; 1
2

� 	
0 for x 2 1

2
; 2

� 	
(

(26)

and the velocity bounds vmaxðx; tÞ and vminðx; tÞ are equal

vmaxðx; tÞ ¼ vminðx; tÞ

¼
2 for x 2 ½0; 1�; 8t

3� x for x 2 ½1; 2�; 8t.



(27)

As can be seen by inspection, the feasible set of

program (24) is reduced to a single point in the (�ð�; �Þ,
qð�; �Þ) space, defined by the constraint qðx; tÞ ¼
vminðx; tÞ�ðx; tÞ ¼ vmaxðx; tÞ�ðx; tÞ and the initial and
boundary conditions, which make the problem well posed,

and the solution subsequently unique.

Solving (24) as an optimization program (rather than as

a forward simulation of the numerical scheme) provides

experimental evidence that the numerical solver used

works properly, when checked against the easily computed

analytical solution of the problem.

For this problem, the upper bound constraint on the
density equal to three is not an active constraint. The lower

bound has been relaxed to �(1/5) to allow for overshoot

errors introduced by the discretization. Note that the upper

and lower bounds for the velocity are a function of time and

space and are equal and piecewise continuous. This same

velocity profile can be used to compute the exact solution to

the PDE according to the solution obtained by the method

of characteristics [4]. Thus, we can compare the accuracy of
the optimal solution of the finite difference equation with

the exact analytic solution.

Next, we relax the constraint that vminðx; tÞ ¼ vmaxðx; tÞ
and examine the solve time for the control problem. The

velocity profile for the control problem is given as

vmaxðx; tÞ ¼ 2

vminðx; tÞ ¼
2 for x 2 ½0; 1�; 8t

3� x for x 2 ½1; 2�; 8t



(28)

where the lower bound on the velocity has been

relaxed. Note that the space vminðx; tÞ�ðx; tÞ � qðx; tÞ �
vmaxðx; tÞ�ðx; tÞ is not reduced to a single point, leaving

room for control, as solved by substituting (28) into (24).

In order to compare the various discretization schemes
(10)–(19), the error �e of the discrete density field is

computed using the Frobenius norm [25]

�e :¼ 1

nmaximax

Xnmax

n¼0

Ximax

i¼0

�n
i � �ði�x; n�TÞ

�� ��2

where the additional 1=nmaximax term is added to

standardize the error computation across different levels

of discretization. The error computed here is the error
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introduced by the discretization of the continuous form of

the PDE model. The error between the PDE model and the

individual aircraft trajectories is addressed in [40], where

it is found to be the most accurate of the four aggregate

models compared in that work. The results displayed in

Fig. 2 indicate that the LxF and the CND scheme have the
highest accuracy, with an absolute density error on the

order of 0.001 per discrete point �n
i .

We compare the computation time of the respective

schemes in Fig. 3. The cost of the explicit schemes

prevents them from being practical for large networks,

with the exception of 1UP and the MCN scheme inspired

by the 1UP scheme. Additionally, the 2UP and CND

schemes cannot be used to solve the control problem, since

they result in infeasible programs, described subsequently.

In terms of speed, the LxF scheme outperforms the

implicit schemes, due to its explicit structure.

The results from this benchmark scenario demonstrate
results typical of this type of optimization.

IV. IMPLEMENTATION ISSUES

One of the contributions of this paper is the proper

selection and use of appropriate numerical schemes to

Fig. 2. Comparison of errors (vertical axis) between the optimal solution for density to validation problem (24) computed by each scheme

(horizontal axis) and the exact solution. The computations are performed with 60 points in space x 2 [0, 2], 120 points in time t 2 [0, 2], 7200

discrete density optimization variables.

Fig. 3. Comparison of the computational time (vertical axis) required by each of the different schemes (horizontal axis) to solve the

validation problem (24) (blue) and the its corresponding control problem (28) (red). The computation is realized with 60 points

in space x 2 [0, 2], 120 points in time t 2 [0, 2], 14 400 optimization variables.
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pose the continuous convex optimization problem in a
discrete form. As revealed by the work described in this

paper, while (6) or its discrete counterpart is convex in

theory, a simple implementation of these programs that

does not take into account specific features of the

numerical schemes often results in (numerical) infeasi-

bility or meaningless solutions. This occurs even when

physically meaningful solutions exist for the continuous

programs.
To illustrate the implementation challenges, the

optimization program (24) is discretized for one link.

We show the full problem discretization with the LxF

scheme and note that a similar procedure is followed for

other schemes. The discretization results in the following

problem:

min : �
Xnmax

n¼0

qn
imax

�T

st : �nþ1
i ¼ 1

2
�n

iþ1 þ �n
i�1

� �
� 1

2

�T

�x
qn

iþ1 � qn
i�1

� �
;

i 2 ½1; imax�; n 2 ½1; nmax�

�nþ1
imax
¼ 1

2
�n

imax
þ �n

imax�1

� �
� 1

2

�T

�x
qn

imax
� qn

imax�1

� �
; n2½1; nmax�

qn
0 ¼ qx0

ðn�TÞ; n 2 ½1; nmax�
�0

i ¼ �t0
ði�xÞ i 2 ½1; nmax�

� 1

5
� �n

i � 3; i 2 ½1; imax�; n 2 ½1; nmax�

�n
i vn

i;min � qn
i � �n

i vn
i;max

i 2 ½1; imax�; n 2 ½1; nmax� (29)

where the second constraint represents the discretized

PDE with the ghost points correctly implemented at the

link exit boundary. The inflow constraint qx0
ðtÞ is given by

(25), �t0
ðxÞ is given by (26), and the velocity bounds are

given by

vn
i;max ¼ vn

i;min

¼
2 for i�x 2 ½0; 1�
3� x for i�x 2 ½1; 2�.



(30)

A. Infeasibility
One ironic feature of the numerical implementation

is the fact that a problem can become infeasible by

relaxing the velocity constraint from vminðx; tÞ ¼
vmaxðx; tÞ to vminðx; tÞ G vmaxðx; tÞ: apparently increasing

the feasible set results in infeasibility. This is the case

for the 2UP and CND schemes. To see why this occurs,

w e e x am i n e th e s e c o n d c o n s t r a i n t i n ( 6 ) :
vminðx; tÞ�ðx; tÞ � qðx; tÞ � vmaxðx; tÞ�ðx; tÞ. In the frame-

work of air traffic control, the density and flux should

remain nonnegative to be physically meaningful. How-

ever, the discrete formulations of the LWR PDE can

introduce an overshoot, which causes the density to

become slightly negative (see Fig. 4). In the problem

formulation, we can relax the explicit constraint that

�ðx; tÞ � �min ¼ 0 to accommodate this numerical error.
In the validation problem, this causes a proportional

negative flux, but the problem remains feasible (assum-

ing it does not violate the relaxed �min constraint). The

same cannot be said for the control problem. Even when

the �min constraint is relaxed to allow for overshoot, the

problem formulation has an implicit constraint that

�ðx; tÞ � 0. To see why, we assume �ðx; tÞ � 0 and note

that the constraint on q would become

vminðx; tÞ � ð�1Þ �ðx; tÞj j � qðx; tÞ
� vmaxðx; tÞ � ð�1Þ �ðx; tÞj j (31)

Fig. 4. Comparison of the computed density LxF (dash-dot red) and CND (dashed green) schemes and the exact solution (solid blue) to (24) at time

t ¼ 0.67 s. Vertical axis: density (�). Horizontal axis: position (x). The LxF scheme is feasible for the control problem, while the CND scheme is

infeasible because of the undershoot clearly visible, which violates �(x, t) � 0 locally due to numerical inaccuracy.
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which leads to the following contradiction:

vminðx; tÞ � vmaxðx; tÞ: (32)

Thus, schemes such as CND, which are very accurate

overall for the validation problem, cannot be used for

the control problem because of a slight negative

overshoot (see Fig. 4), making the optimization program

infeasible.

B. Physically Meaningless Solutions
Another implementation challenge occurs when

implicit schemes such as 2CD, 4CD, and CN are used

in the optimization framework of (6). Although these

schemes are unconditionally stable, they may still suffer

from significant oscillations, as shown in Fig. 5. This

figure shows the result of solving a control problem with

constant initial and boundary conditions. The observed
oscillations are a direct consequence of the symmetric

centered spatial difference of @qðx; tÞ=@x that appears

each of these schemes [(11)–(13)]. This symmetry opens

the potential for solutions to the discretized PDE that are

not solutions to its continuous counterpart. For example,

consider the original PDE constraint ð@�ðx; tÞ=@tÞþ
ð@qðx; tÞ=@xÞ ¼ 0 and impose an additional constraint

that ð@�ðx; tÞ=@tÞ ¼ 0 for all x and all t. In the
continuous framework, any solution to the optimization

problem with this constraint must necessarily satisfy

ð@qðx; tÞ=@xÞ ¼ 0. Taking the discrete version of this

condition by applying a centered difference operator

on the spatial derivative of q, we find there are

multiple solutions to the discretized constraint ðqn
iþ1�

qn
i�1=2�xÞ ¼ 0. One such solution, corresponding to

the analytic solution of the continuous constraint, is

qn
0 ¼ qn

1 ¼ � � � ¼ qn
imax
¼ C (33)

where C is a constant. A more pathological solution

to the difference equation can be expressed as

qn
1 ¼ qn

3 ¼ qn
5 ¼ � � � ¼ C1

qn
0 ¼ qn

2 ¼ qn
4 ¼ � � � ¼ C2 (34)

where C1 and C2 are constants. Here, the spatial

profile of the flux oscillates between the values of C1

and C2, and therefore would not satisfy the contin-
uous constraint in the limit: @q=@x ¼ 0. On the other

hand, it does satisfy the discrete constraints

@q

@x

� �
i¼2

¼ q3 � q1

2�x
¼ C1 � C1

2�x
¼ 0

@q

@x

� �
i¼3

¼ q4 � q2

2�x
¼ C2 � C2

2�x
¼ 0: (35)

Thus, this solution exists only in the discrete representation

of the problem and does not correspond to the physics of air

traffic flows on the network.

Clearly, discrete models using the central difference

operator have a potential for solutions with large
deviations from the continuous model because they allow

Fig. 5. Density (left column) and flux (right column) solutions to a control problem with constant boundary and initial conditions:

q(0, t) ¼ 2, �(x, 0) ¼ 1, with vmin ¼ 0.5 and vmax ¼ 2, at time t ¼ 0.67 (top row). Surface plots of the density and flux (bottom row)

show the solution exhibits oscillatory behavior.
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too much freedom for the solution to oscillate. One way to
prevent this phenomenon is to use an asymmetric scheme

to compute the space derivatives, similar to those used for

the temporal derivatives. For example, if we examine the

first-order upwind scheme approximation for the spatial

derivatives on q

@q

@x

� �
¼

qn
iþ1 � qn

i

�x
(36)

we see that no oscillations are possible. If @q=@x ¼ 0, the

unique solution, its discrete representation is qiþ1 ¼ qi ¼ C
for all i. Thus, the potential for oscillatory solutions for

stable discretization step-sizes can be greatly reduced by

adding an asymmetric term in the finite difference scheme,
as was done in (16)–(18). The pathological cases presented

in this section unfortunately happen frequently in practice

due to the nature of algorithms running in optimization

software such as CPLEX.

The proper selection of a good numerical scheme, as

presented earlier, avoids the two pitfalls presented in

Section IV-A and B, which are not obvious when Bblindly[
implementing the convex program (24).

V. APPLICATION TO THE OAKLAND AIR
ROUTE TRAFFIC CONTROL CENTER

A. Model Construction
Using previous modeling work (see [39] and [40]), we

now apply the proposed algorithm to the en route and

arrival airspace in the Oakland Center, which we have

studied in the past and for which we have a database of data

from the Enhanced Traffic Management System (ETMS) and

Aircraft Situation Display to Industry (ASDI). In [40], we
have validated a model of en route traffic flow against this

data and assessed its accuracy. We use a subset of links from

this model, which is relevant for our application. The

selected network, depicted in Fig. 6, consists of 14 links

merging into the Oakland Terminal Radar Approach Control
(TRACON), in which traffic follows a fifteenth link. Fol-

lowing the procedure outlined in [39], the link network is

generated by aggregating all air traffic data from October 1,
2004, to September 30, 2005. Corresponding historical

velocity profiles vðxÞ can be identified from the database. In

the case presented in the earlier section, the profiles result

from the optimization algorithm and depend on time

(speed control policies). However, as was presented in

Section III, by nature of the optimization, a range of

feasible velocity profiles is prescribed to the algorithm

(from which a globally optimal profile is captured). We
construct this range from the historical mean, from which

we allow speed amendments of 	15%.

B. Flow Simulation
In the simulation presented next, aircraft enter the

network at the boundaries of 9 different links shown in

Fig. 6 (right). During the first four hours of the six-hour

simulation, 117 aircraft enter the network. We convert
each entering aircraft into a flux q used in the LWR PDE.

Assuming the ith aircraft enters link k at time tk
i , it

generates a flux qx0;k;iðtÞ on the link over a time window z,

according to the following:

qx0;k;iðtÞ ¼ sin
t� tk

i�z
2ð Þ

z �

� �
t 2 tk

i � z
2
; tk

i þ z
2

� 	
0 otherwise.

(
(37)

Fig. 6. (Left) Aggregate velocity profiles for each of the 15 links generated from actual flights on January 1, 2005, with increasing height

corresponding to increasing velocity. The leftmost link corresponds to the Oakland TRACON entrance. (Right) Links with incoming inflows

are denoted with arrows.
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The link flux boundary condition qx0;kðtÞ is then

obtained by summing the flux contributions over all

aircraft entering the link qx0;kðtÞ ¼
P

i qx0;k;iðtÞ. This form

of aggregation is easy to implement and can be tracked

easily in the forward simulation. With velocity profiles

obtained from the flights on January 1, 2005 [Fig. 6 (left)]

Fig. 7. Results showing the evolution of density on the network operating at (left) full capacity and (right) 66% full capacity from

(top) time 45 minutes, increasing in 15 minute increments to (bottom) time 90 minutes. Increasing height and darkening color

indicates the increasing density on the links.
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and the inflow boundary conditions given by (6), we run
the forward simulation to check the validity of the model.

The computations are performed with the LxF scheme,

assuming a discrete spatial step of 4 nautical miles and a

discrete time step of 31 s, corresponding to a maximum

CFL condition number of 0.7801. This optimization

program has 357 072 variables, and the solution is

computed in 4 s on a standard laptop running CPLEX

(which uses an interior point algorithm). Note that a
feasible solution to this program is equivalent to a forward

simulation of the problem. The corresponding results are

illustrated in Fig. 7. These figures show a sharp density

increase at the edges of the links nearest to the Oakland

TRACON, which is a direct result of the bottleneck

geometry of the network and merging traffic. The density

of aircraft peaks at seven aircraft on the last link, which is

33 nautical miles long.

C. Network Optimization Under Reduced Capacity
We now consider a scenario in which the capacity of

each link in the network reduced to 66% of the capacity

under the nominal conditions. This decrease in capacity

may have several causesVfor example, outgoing traffic,

special use airspace, and weather disturbances. Although

the capacity on a given portion of the network may be
reduced, our objective is to minimize the effect of this

capacity decrease on traffic through the network. In other

words, we wish to find the optimal velocity control

strategies for each link in the network that satisfies the

reduced capacity constraint, using the smallest speed

amendments possible. This objective is formally stated as

(8), where qn
k;des and �n

k;des are the flux and density

obtained from the unconstrained forward simulation.
In order to meet the reduced capacity constraint, we

allow the velocity profiles to increase or decrease by at

most 15% from the historical average on each link. We use

the same discretization scheme as the forward simulation

and verify that the CFL condition still holds for a 15%

increase in the maximum velocity. The quadratic optimi-

zation problem runs in 45 s on average, outperforming

adjoint-based methods [40] by at least one order of
magnitude for speed of computation, with the added

benefit of providing a globally optimal solution to the

problem. Thus, for a given set of inflows into the network,

a forward simulation and optimization to find a solution

meeting a reduced capacity constraint can be completed in

less than a minute on a standard laptop for the entire

arrival airspace shown in the right column of Fig. 6. The

globally optimal changes to the density evolution caused by
a 33% reduction in the capacity are displayed in the right

column of Fig. 7, in which the height on each link

corresponds to the magnitude of the density. In the left

column, the aircraft flow evolves according to the mean

historic velocity computed for each link. As the aircraft

converge towards the Oakland TRACON, the density of

aircraft increases significantly relative to other parts of the

network. In the right column, the aircraft evolve according

to the globally optimal velocity control. We observe that

the reduced capacity density constraint is active on the link

into Oakland for time t ¼ 75 min and at t ¼ 90 min,

which means the link is operating at 100% of the reduced
capacity. Because of the certificate of global optimality,

and because the resulting objective is positive definite [9],

this is the unique globally optimal solution that minimizes

changes to the flight schedule.

The striking feature of the reduced capacity simula-

tions is that minimal changes to the aircraft density

upstream can lead to significant changes in the link

downstream. Furthermore, we can examine the schedule
of aircraft exiting the network under full and reduced

capacity in Fig. 8. The peaks in the full capacity

simulation correspond to times when a large number of

aircraft is arriving simultaneously into the Oakland

TRACON. The valleys show periods when fewer aircraft

are arriving into the TRACON. As a result of the

reduced capacity, the desired arrival schedules of all

aircraft cannot be met at the peak time. Instead, the
aircraft arrival times must be more evenly distributed in

time, as shown in Fig. 8. The benefit of the optimization

framework developed in this paper is that the changes to

the flight plans are the global minimum that satisfy the

reduced capacity constraints.

VI. CONCLUSION

This paper follows a series of papers on aggregate flow

models of air traffic that have been used by NASA as

frameworks to study the imbalance between demand and

capacity in the National Airspace System. The fundamen-

tal contribution of this paper is the formulation of a

classical partial differential equation-based optimal control

problem (maximization of throughput in a network or

Fig. 8. Comparison of the flux profile (vertical axis) at the last

point in the network, for the unconstrained (dotted) network

and the network with 66% reduced capacity (solid).
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minimization of delays) as a convex program (either
quadratic or linear in the present case). This is a significant

improvement over previous techniques based on adjoint

optimization, which are computationally more demanding

and do not provide guarantees of optimality. The

formulation proposed here relies on a reformulation of

the partial differential equation (nonlinear in the decision

variables) as a partial differential equation, which linearly

relates derivatives of decision variables after a variable
change. The subsequent contribution of this paper is the

development of several linear discretization schemes that

transform the constraints of the problem into linear

constraints, essential to the success of the method. The

computational efficiency of the method is studied and

shows a decrease if computational time compared to the

previous methods by at least one order of magnitude (the

solution is computed in seconds on a standard laptop).
While convex optimization (and corresponding solvers

such as CPLEX) enabled a significant improvement in

computational time, this paper also displayed two

nontrivial pitfalls underlining the fact that Bposing a

problem as a convex optimization program[ does not

provide a systematic solution to engineering problems. In

particular, the extensive numerical tests we have made on

the nine numerical schemes presented here show that
without an appropriate choice of numerical scheme for the

problem formulation, the problem may become infeasible

or result in physically meaningless solutions. Even if the
schemes are very accurate, overshoots or undershoots can

systematically make optimization programs infeasible if

some of the constraints are active where the overshoot

occurs. Other schemes result in optimal Bsawtooth-like[
solutions that satisfy all of the constraints yet are physically

meaningless. On a practical side, the implementation of

the methods proposed in this paper greatly improves upon

previous computational results on a benchmark problem
presented in the previous section of this paper for the

specific case of the Oakland en route airspace. Recent

studies in automation of highway transport systems have

shown that these techniques (for almost identical partial

differential equations) make our results directly applicable

to highway traffic flow optimization, which constitutes an

interesting outgrowth of this paper that we intend to

pursue in the future. h

Acknowledgment

The authors are grateful to Dr. R. Raffard for sharing

with us his assessment of the feasibility of posing the first

problem outlined in this article as a convex program,

based on an earlier conversation with Prof. C. Tomlin,

A. Jameson, and S. Boyd. They want to thank D. Sun
for his help with ETMS/ASDI data and for sharing his

numerical database for this project.

RE FERENCES

[1] S. Amin, A. Bayen, L. El Ghaoui, and S. Sastry,
BRobust feasibility for control of water flow in
a reservoir-canal system,[ in Proc. 46th IEEE
Conf. Decision Contr. Conf., New Orleans, LA,
Dec. 2007, pp. 1571–1577.

[2] G. Bastin and V. Guffen, BCongestion control
in compartmental network systems,[ Syst.
Contr. Lett., vol. 55, no. 8, pp. 689–696, 2006.

[3] A. Bayen, P. Grieder, G. Meyer, and
C. Tomlin, BLagrangian delay predictive
model for sector-based air traffic flow,[
AIAA J. Guidance, Contr., Dyn., vol. 28, no. 5,
pp. 1015–1026, 2005.

[4] A. Bayen, R. Raffard, and C. Tomlin,
BAdjoint-based control of a new Eulerian
network model of air traffic flow,[ IEEE
Trans. Contr. Syst. Technol., vol. 14, no. 5,
pp. 804–818, 2006.

[5] A. Bennett, Inverse Methods in Physical
Oceanography. Cambridge, U.K.: Cambridge
Univ. Press, 1992.

[6] D. Bertsimas and S. S. Patterson, BThe air
traffic flow management problem with
enroute capacities,[ Oper. Res., vol. 46, no. 3,
pp. 406–422, 1998.

[7] K. Bilimoria, B. Sridhar, G. Chatterji,
K. Sheth, and S. Grabbe, BFACET: Future
ATM concepts evaluation tool,[ in Proc. 3rd
USA/Eur. ATM 2001 R&D Seminar, Naples,
Italy, Jun. 2001.

[8] F. Borrelli, Constrained Optimal Control of
Linear & Hybrid Systems, vol. 290, Lecture
Notes in Control and Information Sciences.
Berlin, Germany: Springer-Verlag, 2003.

[9] S. Boyd and L. Vandenberghe, Convex
Optimization. Cambridge, U.K.: Cambridge
Univ. Press, 2004.

[10] J. Coron, B. d’Andréa-Novel, and G. Bastin,
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