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Abstract— This article presents a method for deriving
the probability distribution of the solution to a Hamilton-
Jacobi partial differential equation for which the value con-
ditions are random. The derivations lead to analytical or
semi-analytical expressions of the probability distribution
function at any point in the domain in which the solution
is defined. The characterization of the distribution of the
solution at any point is a first step towards the estimation
of the parameters defining the random value conditions.

This work has important applications for estimation
in flow networks in which value conditions are noisy. In
particular, we illustrate our derivations on a road segment
with random capacity reductions.

I. INTRODUCTION

The computation of numerical solutions to the
Hamilton-Jacobi (HJ) partial differential equation
(PDE) subject to boundary conditions, initial conditions
or sometimes terminal conditions is a topic which has
generated significant interest in the control and numeri-
cal analysis community [19], [17], [14]. More recently,
researchers have studied how to impose internal value
conditions to the HJ-PDE [13], [6], [7].

For numerous applications, initial, boundary and in-
ternal value conditions shall be regarded as random
processes, rather than deterministic functions. Stochastic
formulations of the HJ-PDE have been studied, in partic-
ular in the financial mathematics community [18], [11].
This research uses diffusion theory and in particular Itô’s
formula to show existence and uniqueness of the solution
under certain conditions [11]. The research focuses on
specific classes of stochastic HJ-PDE, such as backward
differential equations, which is a different problem than
what we are interested in solving in the present article.

The contributions of this article are as follows. We
derive the probability distribution of the solution of a
class of HJ-PDEs subject to random value conditions.
These derivations allow for the statistical estimation of
parameters characterizing the distribution of value con-
ditions based on (noisy) measurements of the solution.
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An application of interest is the design of reliable real-
time traffic monitoring systems [4], [20]. Arterial traffic
is inherently probabilistic and it is natural to consider
the internal, boundary and value conditions as random
processes and estimate the probability distribution of the
macroscopic state variables (flow, density and velocity)
at any location x and time t.

The article is organized as follows. In Section II, we
introduce the mathematical background related to solv-
ing a HJ-PDE subject to initial and boundary conditions.
In Section III, we derive the probability distribution
of the solution to the HJ-PDE when the boundary
conditions are random processes. We indicate how these
derivations can be used to estimate value conditions
parameters statistically. We illustrate the importance of
the approach for applications through an example in
traffic flow networks in Section IV. We analyze the
effects of random capacity reductions on the dynamics
of congestion.

II. DETERMINISTIC SOLUTION

We first introduce the solution to the following deter-
ministic HJ–PDE on the domain (t,x)∈ [0, tmax]× [ξ ,χ],
sometimes known as the Moskowitz HJ-PDE [16], [10].

∂M(t,x)
∂ t −ψ

(
− ∂M(t,x)

∂x

)
= 0 (1)

A. Mathematical background

The Hamiltonian, ψ , is assumed to be concave on
its domain of definition Dψ = [0,ρmax] and to satisfy
ψ(0) = ψ(ρmax) = 0. We call qmax the maximum value
of ψ on Dψ and define ν[ = ψ ′(0) and ν] =−ψ ′(ρmax).

The solution to (1) with initial and boundary condition
has been well studied in the literature [9]. The mathe-
matical properties of the solution of (1) require specific
treatments to introduce internal boundary conditions,
which we solve within a specific control framework
based on Lax-Hopf’s formula and viability theory [3],
[6]. We define the convex transform ϕ∗ of the Hamilto-
nian as follows.

Definition 1 (Convex transform): Let ψ be a concave
function defined in Dψ , its convex transform ϕ∗ takes
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finite values on Dϕ∗ = [−ν[,ν]]:

ϕ∗(u) =

 sup
p∈Dψ

[pu+ψ(p)] if u ∈ [−ν[,ν]]

+∞ otherwise
(2)

Let c be a lower semi-continuous function defined
in a subset of [0, tmax]× [ξ ,χ]. It represents a value
condition, i.e. a value that we want to impose on the
solution of (1). The viability epi-solution [2], [6], [7]
Mc associated with c is explicitly given by a Lax-Hopf
formula and is the unique generalized solution of (1)
in the Barron-Jensen/Frankowska (B-J/F) sense [2]. The
formula implies an inf-morphism property [2], [6], [7],
which is a key property used in this article.

Proposition 1 (Inf-morphism): Let c be the minimum
of a finite number of functions ci, i ∈ I. The Lax-Hopf
formula implies that:

∀(t,x) ∈ [0, tmax]× [ξ ,χ] Mc(t,x) = infi∈I Mci(t,x)

The inf-morphism property is a practical tool to integrate
new value conditions and separate a complex problem
involving multiple value conditions into a set of more
tractable subproblems [6], [7].

B. State estimation with affine initial, boundary and
internal value conditions

The solution associated with an affine initial, bound-
ary or internal value condition has an analytical ex-
pression [7]. We introduce the following notation and
definitions, used in the analytical derivations of the
solution, referring to [7] for the proof of their existence.

Definition 2 (Upper and lower critical densities [7]):
We define the upper (resp. lower) critical density ρc
(resp. ρ

c
) as the maximum (resp. minimum) ρ ∈ [0,ρmax]

such that ψ(ρ) = qmax.
Definition 3 (Densities associated with q [12]):

For q ∈ [0,qmax] we define ρ(q) (resp. ρ(q)) as the
unique solution of ψ(ρ) = q for ρ ∈ [ρc,ρmax] (resp.
for ρ ∈ [0,ρ

c
]).

Following [5], we define the sub- and super-derivative
(∂− and ∂+) as follows:

v ∈ ∂− f (x0)⇔∀x ∈ D f , f (x)≥ f (x0)+ v(x− x0)

v ∈ ∂+ f (x0)⇔∀x ∈ D f , f (x)≤ f (x0)+ v(x− x0)

Definition 4: For ρ ∈ [0,ρmax], we define u+0 (ρ)
(resp. u−0 (ρ)) as an element of −∂+ψ(ρ)∩R+ (resp.
−∂+ψ(ρ)∩R−). Note that u+0 (ρ) (resp. u−0 (ρ)) is not
uniquely defined if ψ is not differentiable in ρ . It was
shown [7] that any choice of u+0 (ρ) (resp. u−0 (ρ)) in
−∂+ψ(ρ) provides the expression of the solution of the
HJ-PDE.

Definition 5 (Capture times [7]): The capture times
T 0 and T 0 are defined as follows:

T 0(ρ,x) =

{
χ−x

u+0 (ρ)
if u+0 (ρ) 6= 0

+∞ otherwise
∀(ρ,x) ∈ [ρc,ρmax]× [ξ ,χ],

T 0(ρ,x) =

{
ξ−x

u−0 (ρ)
if u−0 (ρ) 6= 0

+∞ otherwise
∀(ρ,x) ∈ [0,ρ

c
]× [ξ ,χ],

Proposition 2 (Explicit component solutions):
The analytical solutions of the viability episolution
associated with affine value conditions are as follows:
• The solution associated with an upstream condition

γ j, defined on [γ̄ j, γ̄ j+1]× {ξ} by γ j(t,x) = d j + (t −
γ̄ j)ψ(ρ j), ρ j ∈ [0,ρc] takes finite values for (t,x) ∈
[0, tmax]× [ξ ,χ] such that t ≥ γ̄ j +

x−ξ

ν[ . On this domain,
the solution is defined as follows:

Mγ j (t,x) =



(i) (t− γ̄ j)ψ(ρ j)+ρ j(ξ − x)+d j if T 0(ρ j ,x) ∈ [t− γ j+1, t− γ j ]

(ii) d j +(t− γ j)ϕ
∗
(

ξ−x
t−γ j

)
if T 0(ρ j ,x)≥ t− γ j

(iii) (γ j+1− γ j)ψ(ρ j)+d j +(t− γ j+1)ϕ
∗
(

ξ−x
t−γ j+1

)
if T 0(ρ j ,x)≤ t− γ j+1

(3)

• The solution associated with a downstream condi-
tion βk defined on [β̄k, β̄k+1]×{χ} by βk(t,x) = fk +
(t − β̄k)ψ(ρk), ρk ∈ [ρ

c
,ρmax] takes finite values for

(t,x) ∈ [0, tmax]× [ξ ,χ] such that t ≥ β̄k +
χ−x
ν] . On this

domain, the solution is defined as follows:

Mβk
(t,x) =



(i) (t− β̄k)ψ(ρk)−ρk(χ− x)+ fk if T 0(ρk ,x) ∈ [t− β̄k+1, t− β̄k ]

(ii) fk +(t− β̄k)ϕ
∗
(

χ−x
t−β̄k

)
if T 0(ρk ,x)≥ t− β̄k

(iii) (β̄k+1− β̄k)ψ(ρk)+ fk +(t− β̄k+1)ϕ
∗
(

χ−x
t−β̄k+1

)
if T 0(ρk ,x)≤ t− β̄k+1

(4)

The inf-morphism property implies that the solution
of (1) subject to piecewise affine value conditions is the
minimum of the viability episolutions computed for each
of the affine conditions.

III. PROBABILITY DISTRIBUTION OF A COMPONENT

We are now interested in generalizing the computation
framework to take into account the randomness of the
value conditions. We detail the derivations in the case
of an upstream or a downstream boundary condition.
We indicate how the reasoning is extended to initial
and internal value conditions (corresponding results are
omitted for brevity). We present the way to use the
derivations on each affine value conditions to compute
the probability distribution of the solution subject to
piecewise affine value conditions.

A. Random upstream boundary condition

We consider an upstream boundary condition γ j,
defined as before, i.e. defined on [γ̄ j, γ̄ j+1]× {ξ} by
γ j(t,x) = d j +(t − γ̄ j)ψ(ρ j). The main contribution of
this article is to consider ρ j as a random variable,
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with given distribution pρ j(ρ j) and support included in
[0,ρc]. For any location (t,x), Mγ j(t,x) is a random
variable, the realization of which is conditioned on the
realization of ρ j. We define φ

t,x
on [0,ρc] by φ

t,x
: ρ j 7→

Mγ j(t,x)(ρ j).
Proposition 3 (Injectivity): There exists a unique

ρ∗(t,x)≤ ρ
c

and a unique ρ♦(t,x)≤ ρ∗(t,x) such that
(a) the restriction of φ

t,x
to [ρ∗(t,x),ρc] is constant and

derived from Equation (3-ii), (b) the restriction of φ
t,x

to
[0,ρ∗(t,x)] is injective and is derived from (3-i) for ρ ∈
[0,ρ♦(t,x)] and from (3-iii) for ρ ∈ [ρ♦(t,x),ρ∗(t,x)].
Moreover, we have x−ξ

t−γ̄ j
∈ ∂+ψ(ρ∗(t,x)). We also have

x−ξ

t−γ̄ j+1
∈ ∂+ψ(ρ♦(t,x)) if t ≥ γ̄ j+1 +

x−ξ

ν[ and ρ♦(t,x) =
0 otherwise.

Proof: In domain (ii), φ
t,x

is constant. The expres-

sion (ii) is valid for t− γ̄ j ≤ x−ξ

−u−0 (ρ j)
, which restricts ρ j

algebraically. The concavity of ψ implies that −u−0 is
non-increasing1 on [0,ρ

c
], with −u−0 (0) = ν[ and 0 ∈

−u−0 (ρc
). There exists a unique ρ∗(t,x) ∈ [0,ρ

c
] such

that x−ξ

t−γ̄ j
∈ ∂+ψ(ρ∗(t,x)). In particular, ρ > ρ∗(t,x)⇒

−u−0 (ρ)<
x−ξ

t−γ̄ j
and ρ < ρ∗(t,x)⇒−u−0 (ρ)>

x−ξ

t−γ̄ j
.

The concavity of φ
t,x

[8] and the definition of ρ∗(t,x)
imply that φ

t,x
is strictly increasing on [0,ρ∗(t,x)].

• If t ≥ γ̄ j+1 +
x−ξ

ν[ , there exists a unique ρ♦(t,x) ∈
[0,ρ∗(t,x)] such that x−ξ

t−γ̄ j+1
∈ ∂+ψ(ρ♦(t,x)). In par-

ticular, ρ > ρ♦(t,x) ⇒ −u−0 (ρ) < x−ξ

t−γ̄ j+1
and ρ <

ρ♦(t,x)⇒ −u−0 (ρ) >
x−ξ

t−γ̄ j+1
. Expression (iii) is valid

for ρ j ∈ [0,ρ♦(t,x)] and expression (i) is valid for
ρ j ∈ [ρ♦(t,x),ρ∗(t,x)].
• If t ≤ γ̄ j+1 +

x−ξ

ν[ , expression (i) is valid for ρ j ∈
[0,ρ∗(t,x)] and we have ρ♦(t,x) = 0.

Proposition 4 (Bijection): The restriction of φ
t,x

to
[0,ρ∗(t,x)] defines a bijection from [0,ρ∗(t,x)] to
[φ

t,x
(0),φ

t,x
(ρ∗(t,x))]. The expressions of φ

t,x
(0),

φ
t,x
(ρ∗(t,x)) and φ

t,x
(ρ♦(t,x)) are computed analyti-

cally as follows:

φ
t,x
(0) =


d j if t ≤ γ̄ j+1 +

x−ξ

ν[

d j +(t− γ̄ j+1)ϕ
∗
(

ξ−x
t−γ j+1

)
if t ≥ γ̄ j+1 +

x−ξ

ν[

φ
t,x
(ρ∗(t,x)) = d j +(t− γ j)ϕ

∗
(

ξ−x
t−γ j

)
φ

t,x
(ρ♦(t,x)) = d j +(γ̄ j+1− γ̄ j)ψ(ρ♦(t,x))+(t− γ̄ j+1)ϕ

∗
(

ξ−x
t−γ j+1

)

1Since u−0 may not be uniquely defined, non-increasing is under-
stood in the following sense: ∀(ρ,ρ ′) ∈ [0,ρc]

2 s.t. ρ < ρ ′, ∀u−0 (ρ) ∈
−∂+ψ(ρ), ∀u−0 (ρ ′) ∈ −∂+ψ(ρ ′), then −u−0 (ρ)≥−u−0 (ρ

′).

Proof: The proof is derived from Proposition 3
(injectivity of φ

t,x
on [0,ρ∗(t,x)]) and Equation (3).

Proposition 5 (Differentiability): If ψ is differen-
tiable on [0,ρ∗(t,x)], the restriction of φ

t,x
to [0,ρ∗(t,x)]

is differentiable.
Proof: The expression of φ

t,x
imply that φ

t,x
is

continuously differentiable on the intervals [0,ρ♦(t,x))
and (ρ♦(t,x),ρ∗(t,x)]. If t ≤ γ̄ j+1+

x−ξ

ν[ , this terminates
the proof as ρ♦(t,x) = 0. We consider the case where
t ≥ γ̄ j+1 +

x−ξ

ν[

The differentiability of ψ at ρ♦(t,x) and the definition
of ρ♦(t,x) imply that ψ ′(ρ♦(t,x)) = x−ξ

t−γ̄ j+1
. We first

compute the left derivative of φ
t,x

at ρ♦(t,x) using
expression (3-i). The left derivative is given by (t −
γ̄ j)

x−ξ

t−γ̄ j+1
+ξ−x, which can be written as (x−ξ )

γ̄ j+1−γ̄ j
t−γ̄ j+1

.
Using expression (3-iii), we show that the right deriva-
tive is equal to the left derivative and thus φ

t,x
is

continuously differentiable on [0,ρ∗(t,x)].
Proposition 6 (Diffeomorphism): If ψ is differen-

tiable on [0,ρ∗(t,x)], the restriction of φ
t,x

to
(0,ρ∗(t,x)) defines a diffeomorphism from (0,ρ∗(t,x))

to
(

φ
t,x
(0),φ

t,x
(ρ∗(t,x))

)
.

Proof: The proof relies on the global inversion
theorem (see for example [1]). We proved that φ

t,x
is

injective and continuously differentiable on the open
interval (0,ρ∗(t,x)). We show that the differential func-
tion is invertible on this interval. Since φ

t,x
is concave

and strictly increasing on (0,ρ∗(t,x)), the derivative is
strictly positive on this interval, thus invertible and φ

t,x
defines a diffeomorphism on (0,ρ∗(t,x)).

To derive the expression φ
−1
t,x

, we use the following
definition, first introduced and proved in [7].

Definition 6 (Densities associated with v j and g j [7]):
Let v j in [0,ν[] and g j be in [0,ϕ∗(−v j)]. Let
ρ ∈ [0,ρmax] be such that2 ψ(ρ)−ρv j =ϕ∗(−v j). There
exists two solutions to the equation ψ(ρ j)− v jρ j = g j
on [0,ρmax], denoted ρ1(v j,g j) and ρ2(v j,g j) with
ρ1(v j,g j)≤ ρ ≤ ρ2(v j,g j).

Proposition 7 (Expression of φ
−1
t,x

): The inverse of
the diffeomorphism induced by the restriction of φ

t,x
to (0,ρ∗(t,x)) onto its image is denoted φ

−1
t,x

and can be
computed analytically as:

φ
−1
t,x

(m) = ρ1

(
x−ξ

t− γ̄ j
,

m−d j

t− γ̄ j

)
(5)

Proof: For ρ j ∈ [0,ρ♦(t,x)], the expression of
φ

t,x
(ρ j) is given by (iii). Let m be in the image

2The existence of such a ρ comes from the definition of ϕ∗.
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of [0,ρ♦(t,x)] under φ
t,x

, there exists a unique ρ j ∈
[0,ρ♦(t,x)] such that:

ψ(ρ j) =

m−d j− (t− γ j+1)ϕ
∗
(

ξ−x
t−γ j+1

)
γ̄ j+1− γ̄ j

. (6)

This implies that the right hand side of (6) is in [0,qmax]
and that the unique solution is given by

φ
−1
t,x

(m) = ρ


m−d j− (t− γ j+1)ϕ

∗
(

ξ−x
t−γ j+1

)
γ̄ j+1− γ̄ j

 ,

where ρ is defined in Definition 3.
For ρ j ∈ [ρ♦(t,x),ρ∗(t,x)], the expression of φ

t,x
(ρ j)

is given by (i). Let m be in φ
t,x
([ρ♦(t,x),ρ∗(t,x)]).

There exists a unique ρ j ∈ [ρ♦(t,x),ρ∗(t,x)] such that

m−d j

t− γ̄ j
= ψ(ρ j)−ρ j

x−ξ

t− γ̄ j
.

We know that x−ξ

t−γ̄ j
∈ [0,−u−0 (ρ j)] and in particular,

x−ξ

t−γ̄ j
∈ [0,ν[). The existence of ρ j and the definition

of ϕ∗ also imply that m−d j
t−γ̄ j

≤ ϕ∗(− x−ξ

t−γ̄ j
). We de-

fine v j =
x−ξ

t−γ̄ j
and g j =

m−d j
t−γ̄ j

. Let ρ be such that
ψ(ρ)− ρv j = ϕ∗(−v j), then v j ∈ ∂+ψ(ρ). We know
that −u−0 (ρ

∗(t,x)) > v j. The concavity of ψ implies
that ρ > ρ∗(t,x). According to Definition 6, there exists
two solutions ρ1(v j,g j) and ρ2(v j,g j) to the equation
ψ(ρ j)−ρ jv j = g j, satisfying ρ1(v j,g j)≤ ρ ≤ ρ2(v j,g j).
Since ρ > ρ∗(t,x), only the first solution is possible
which yields (5).

We use the previous results to derive the probability
distribution of Mγ j(t,x). We define

and
w(t,x) =

ρc∫
ρ∗(t,x)

pρ j(ρ j)dρ j

Minit
γ j

= d j +(t− γ j)ϕ
∗
(

ξ−x
t−γ j

) .

Proposition 8 (Probability distribution of Mγ j(t,x)):
If ψ is continuously differentiable on [0,ρ∗(t,x)], the
probability distribution of Mγ j(t,x) is given by

pMγ j (t,x)
(m) = w(t,x)δ (m−Minit

γ j
)

+(1−w(t,x))
∣∣∣ d

dm

(
φ
−1
t,x

(m)
)∣∣∣ pρ j(φ

−1
t,x

(m)).

Proof: Using the law of total probability, we have

pMγ j (t,x)
(m) = w(t,x)pMγ j (t,x)|ρ j(m|ρ j ∈ [ρ∗(t,x),ρ

c
])

+(1−w(t,x))pMγ j (t,x)|ρ j(m|ρ j ∈ [0,ρ∗(t,x)]) .

Given the event “ρ j ∈ [ρ∗(t,x),ρ
c
]”, the value of

Mγ j(t,x) is deterministic, and equal to Minit
γ j

. The prob-
ability distribution of Mγ j(t,x) conditioned on the event
“ρ j ∈ [ρ∗(t,x),ρ

c
]” is a Dirac Delta distribution (mass

probability) at Minit
γ j

, which we write pMγ j (t,x)|ρ j(m|ρ j ∈
[ρ∗(t,x),ρ

c
]) = δ (m−Minit

γ j
).

Given the event “ρ j is in [0,ρ∗(t,x)]” and given
that the restriction of φ

t,x
on this interval induces a

diffeomorphism, the probability distribution of Mγ j(t,x)
is derived from the probability distribution of ρ j using
the change of variable ρ j = φ

−1
t,x

(m).

B. Random downstream boundary condition

We derive the probability distribution of a component
associated with a random downstream boundary condi-
tion. For the sake of brevity, we do not detail the proofs
which are similar to the proofs from Section III-A.

We consider a downstream boundary condition βk,
defined on [β̄k, β̄k+1] × {χ} by βk(t,x) = fk + (t −
β̄k)ψ(ρk), for which the parameter ρk is a random
variable, with given distribution pρk(ρk). For any loca-
tion (t,x), we define φ t,x on the interval [ρ

c
,ρmax] by

φ t,x : ρk 7→Mβk
(t,x)(ρk).

Proposition 9 (Injectivity): There exists a unique
ρ
∗(t,x)≥ ρ

c
and a unique ρ

♦(t,x)≥ ρ
∗(t,x) such that

(a) the restriction of φ t,x to [ρc,ρ
∗(t,x)] is constant

and derived from Equation (4-ii), (b) the restriction
of φ t,x to [ρ∗(t,x),ρmax] is injective and is derived
from (4-i) for ρ ∈ [ρ∗(t,x),ρ♦(t,x)] and from (4-iii)
for ρ ∈ [ρ♦(t,x),ρ −max]. Moreover, we have χ−x

t−β̄k
∈

−∂+ψ(ρ∗(t,x)). We also have χ−x
t−β̄k+1

∈−∂+ψ(ρ♦(t,x))

if t ≥ β̄k+1 +
χ−x
ν] and ρ

♦(t,x) = ρmax otherwise.
Proof: The proof is similar to the proof of Propo-

sition 3 and omitted for brevity.
Proposition 10 (Bijection): The restriction of φ t,x to

[ρ∗(t,x),ρmax] defines a bijection from [ρ∗(t,x),ρmax]
to [φ t,x(ρmax),φ t,x(ρ

∗(t,x))]. The expressions of
φ t,x(ρmax), φ t,x(ρ

♦(t,x)) and φ t,x(ρ
∗(t,x)) are computed

analytically as follows:

φ t,x(ρmax) =


fk if t ≤ β̄k+1 +

χ−x
ν]

fk +(t− β̄k+1)ϕ
∗
(

ξ−x
t−βk+1

)
if t ≥ β̄k+1 +

χ−x
ν]

φ t,x(ρ
∗(t,x)) = fk +(t−β k)ϕ

∗
(

ξ−x
t−βk

)
φ t,x(ρ

♦(t,x)) = fk +(β̄k+1− β̄k)ψ(ρ♦(t,x))+(t− β̄k+1)ϕ
∗
(

ξ−x
t−βk+1

)
Proof: The proof is derived from Proposition 9

(injectivity of φ t,x) and Equation (3).
Proposition 11 (Differentiability): If ψ is differen-

tiable on (ρ∗(t,x),ρmax], the restriction of φ t,x to
(ρ∗(t,x),ρmax] is differentiable.
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Proof: The proof is readily adapted from the proof
of Proposition 5. We use the expression of φ t,x for ρk ∈
[ρ∗,ρ♦(t,x)) and for ρk ∈ (ρ♦(t,x),ρmax] given in (4)
to show the differentiability on each of the two intervals
and the continuity of the differential at ρ = ρ

♦(t,x).
Proposition 12 (Diffeomorphism): If ψ is differ-

entiable on (ρ∗(t,x),ρmax], the restriction of φ t,x
to (ρ∗(t,x),ρmax) defines a diffeomorphism from
(ρ∗(t,x),ρmax) to

(
φ t,x(ρmax),φ t,x(ρ

∗(t,x))
)

.
Proof: As for the proof of Proposition 6, the

proof relies on the global inversion theorem and uses
the injectivity and differentiability of φ t,x on the open
interval (ρ∗(t,x),ρmax), as well as the invertibility of the
differential on this interval.

Proposition 13 (Expression of φ
−1
t,x ): The inverse of

the diffeomorphism induced by the restriction of φ t,x to
(ρ∗(t,x),ρmax) onto its image is denoted φ

−1
t,x and can

be computed analytically as

φ
−1
t,x (m) = ρ2

(
χ− x
t− β̄k

,
m− fk

t− β̄k

)
(7)

Proof: The proof is similar to the proof of Propo-
sition 7 and omitted for brevity.

We use the previous results to derive the probability
distribution of Mβk

(t,x). We define

and
w(t,x) =

ρ
∗(t,x)∫
ρc

pρk(ρk)dρk

Minit
βk

= fk +(t−β k)ϕ
∗
(

ξ−x
t−β k

) .

Proposition 14 (Probability distribution of Mβk
(t,x)):

If ψ is continuously differentiable on [ρ∗(t,x),ρmax],
the probability distribution of Mβk

(t,x) is given by

pMβk
(t,x)(m) = w(t,x)δ (m−Minit

βk
)

+(1−w(t,x))
∣∣∣ d

dm

(
φ
−1
t,x (m)

)∣∣∣ pρk(φ
−1
t,x (m)).

Proof: The proof is similar to the proof of
Proposition 8 and uses the law of total probability
and the change of variable ρk = φ

−1
t,x (m) for m ∈

[φ t,x(ρmax),φ t,x(ρ
∗(t,x))].

C. Probability distribution of the solution

In Sections III-A and III-B, we computed the proba-
bility distribution of a solution associated with an affine
upstream or downstream boundary condition. Similar
derivations are performed to compute the probability
distribution of the solution associated with an affine ini-
tial or internal value condition: we use the deterministic
solution derived in [7] and define appropriate condition-
ing and change of variables to derive the probability

distribution of the solution. To compute the probability
distribution of the solution associated with piecewise
affine initial, upstream, downstream and internal value
conditions we use the inf-morphism property (Proposi-
tion 1). We consider I random value conditions ci and
denote by pMci (t,x)

the probability distribution of the
corresponding component i at each location x and time t.
We assume that the value conditions are independent,
and thus the random variables Mci(t,x) are independent.
Let c be the minimum of the value conditions ci, i ∈ I,
the probability distribution of the solution at time t and
location x associated with the random value condition c
is denoted Mc(t,x). For any realization of the random
value condition, the solution satisfies the inf-morphism
property. The random variable Mc(t,x) is the minimum
of the random variables Mci(t,x):

Mc(t,x) = min
i∈I

Mci(t,x)

We denote by PMci (t,x)
the cumulative probability

distribution of the random variable Mci(t,x) associated
with the random value condition ci. It is defined by:
PMci (t,x)

=
∫ m
−∞

pMci (t,x)
(m̃)dm̃.

Proposition 15 (Probability distribution of Mc(t,x)):
The probability distribution of the solution Mc(t,x),
corresponding to the random value condition c is
computed from the probability distribution of the
components Mci(t,x) associated with the affine value
conditions ci as follows:

pMc(t,x)(m) = ∑
i∈I

pMci (t,x)
(m)∏

j 6=i
(1−PMc j (t,x)

(m))

Remark 1 (Parameter estimation): The probability
distribution of the solution of the HJ-PDE at time t and
location x is parametric. The parameters characterize
the probability distribution of the initial, upstream,
downstream and internal value conditions. They can be
estimated from (noisy) measurements of the solution,
using likelihood maximization for example.

IV. NUMERICAL ILLUSTRATION

We illustrate the derivations through a simulation
of probabilistic traffic flows. The Moskowitz HJ-PDE
was first introduced in [15], and was further studied
in the literature [16], [10]. The Moskowitz function is
a possible macroscopic description of traffic flow, in
which the traffic is described by a surface represent-
ing the so-called cumulative number of vehicles [16].
Under this model, isolines of the Moskowitz function
represent trajectories of the vehicles. The Hamiltonian
ψ is referred to as flux function or fundamental diagram,
usually assumed to be concave.
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Fig. 1. Deterministic solution of the Moskowitz HJ-PDE under given initial and upstream boundary conditions and with three different values
for the capacity reduction (from left to right, the outflow is limited to 832, 468 and 0 vehicles per hour respectively). The color scale represents
the spatial derivative of the solution (density). Black lines represent the isolines of the solution (vehicle trajectories). The different values of the
maximum outflow influence the formation of a queue upstream of the capacity reduction.

We are given a concave Hamiltonian ψ , initial and
upstream boundary conditions, specified in the form of
two piecewise affine functions taking finite values on
the domains {0}× [ξ ,χ] and [0,T ]×{ξ} respectively.
During time interval [β̄0, β̄1], we simulate a reduction
of the output capacity at x = χ , leading to the po-
tential formation of a queue. The reduction of the
output capacity is represented by a random variable ρ0
with support in [ρ

c
,ρmax], corresponding to the output

density. The randomness of the downstream boundary
condition leads to randomness in the queue formation,
which we illustrate numerically.

We consider a Greenshields Hamiltonian, parameter-
ized by the maximum density ρmax = 0.1 veh/m and
the maximum flow qmax = 1300 veh/h. It is defined on
[0,ρmax] by ψ(ρ) = 4 qmax

ρ2
max

ρ(ρmax−ρ). We compute the
solution of the HJ-PDE on the domain [0,T ]× [ξ ,χ] with
T = 80 s, ξ = 0 m and χ = 100 m. We choose β̄0 = 20 s
and β̄1 = 50 s and impose a random capacity reduction
during the time interval [β̄0, β̄1] at x = ξ . During this
time interval, the output density is a random variable,
ρ0 unifomly distributed on [0.08,0.1].

Figure 1 represents the deterministic solution of the
Moskowitz HJ-PDE for output densities ρ0 equal to
0.08, 0.09 and 0.1 veh/m, corresponding to maximum
output flows ψ(ρ0) equal to 832, 468 and 0 veh/h respec-
tively. We display isolines of the Moskowitz function
and a colormap of the spatial partial derivative, which is
a common two dimensional representation of the solu-
tion. The figure illustrates the differences in the solution
of the HJ-PDE, under different downstream boundary
conditions and underlines the importance to study the
probability distribution of the solution when the con-
ditions are noisy or cannot be estimated accurately.
Depending on the importance of the capacity reduction,
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−5

0

5

10

15

time (s)

M
(t
,
x
)

 

 

10
30
50
70
90

Percentiles

Fig. 2. Distribution of the solution of the Moskowitz HJ-PDE at
a fixed location x = 98 meters (2 meters upstream of the capacity
reduction). The value at t = 0 represents the label of the vehicle at
x = 98 at the initial time, which is determined up to a constant chosen
by the initialization of the Moskowitz function at (ξ ,0).

the solution may exhibit shock-waves, corresponding
to discontinuities in the density ρ (and in the flow
ψ(ρ)). In the context of transportation, it is common
to refer to these shock-waves as queue formations or
queue dissipations. Note that a flow of 832 veh/h does
not create any queue formation because the capacity at
time t and location χ is greater than the flow imposed
by the initial and upstream boundary conditions at time
t and location χ . As the maximum flow decreases, a
queue forms with a speed of formation depending on
the importance of the capacity reduction. At the end of
the capacity reduction, the queue dissipates.

We compute the probability distribution of the solu-
tion according to the derivations of Section III, which
we illustrate on Figures 2 and 3 using percentiles. For
the random variable M(t,x), the nth-percentile, denoted
Mn(t,x) for n∈ [0,100], satisfies pM(t,x)(m≤Mn(t,x))=
n/100. Percentiles are commonly used to represent prob-
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Fig. 3. Distribution of the solution of the Moskowitz HJ-PDE at
a fixed time. Left: Solution at t = 48 seconds, 28 seconds after the
beginning of the capacity reduction. Right: Solution at t = 55 seconds,
5 seconds after the end of the capacity reduction.

ability distributions. Figure 2 illustrates the probability
distribution at a fixed location x= 98 m (upstream of the
end of the segment), as it evolves over time. The location
is indicated on Figure 1, with a dashed line labeled
x = 98 m. The slope of each curve represents the flow
at the corresponding time and location. Points where the
curve is not differentiable correspond to the presence of
a shock-wave at the corresponding time and location.
At the beginning of the capacity reduction, the flow de-
creases when the capacity reduction is sufficient to cause
the formation of a queue. This creates a shock-wave, i.e.
a non-differentiability of the solution. At the end of the
capacity reduction, the queue dissipates (second shock-
wave), corresponding to another non-differentiability
of the solution. The duration of the congestion varies
depending on the importance of the capacity reduction.
In Figure 3, we represent the probability distribution of
the solution at two time instances, t = 48 s and t = 55
s. The time instances are indicated in Figure 1, with
dashed lines labeled t = 48 s and t = 55 s respectively.
The figure illustrates the distribution of the queue at the
specified times. The slope of each curve corresponds
to the density of the solution at the specified time and
location.

V. CONCLUSION AND DISCUSSION

The present article derives the probability distribu-
tion of the solution to a Hamilton-Jacobi partial dif-
ferential for which the prescribed value conditions are
probabilistic. The derivations allow for the analysis of
the effects of the randomness of the value conditions
on the solution, as illustrated in Section IV. Another
application of this approach is the estimation of the
parameters characterizing the probability distribution
of the value conditions, through maximum-likelihood
estimation for example. The article also introduces the
necessary derivations to statistically estimate the param-
eters characterizing the distribution of value conditions.
The derivations lead to an instantaneous computation
of the distribution given the distribution of the value

condition without the need for sampling or simulation.
This work has important applications for systems

described by a Hamilton-Jacobi equation for which
the value conditions are noisy or cannot be measured
accurately. We illustrate the applicability in the context
of traffic flows with random capacity reduction, leading
to probabilistic congestion and queue formations.
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