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Abstract— This article presents a dual splitting technique
for a class of strongly convex optimization problems whose
constraints are block-wise independent. The average-based
input in the objective is the only binding element. A dual
splitting strategy enables the design of distributed and privacy
preserving algorithms. Theoretical convergence bounds and
numerical experiments show this method successfully applies to
the problem of charging electric devices so as to even out the
daily energy demand in California. The solution we provide is a
privacy enforced algorithm readily implementable in a network
of smart electric vehicle chargers. It can reach any arbitrary
precision for the common optimization goal while relying on
randomly perturbed information at the agent level. We show
that, provided the community is large enough, an averaging
effect enables the group to learn its global optimum faster
than individual information is leaked. A limited number of
messages are sent out in the distributed implementation which
prevents adversary statisticians from having low theoretical
Mean Square Errors for their estimates.

I. INTRODUCTION

The approach developed in this article is tailored to
strongly convex block constrained optimization in which
the objective is the sum of two terms. The first one is the
compound of an averaging function and a strongly convex
cost. The second one is a fully decoupled regularization
factor. Although constraints are block-wise independent, the
averaging term is binding which leads to the use of a dual
splitting method in order to solve the problem on a swarm
of distributed computing devices.

Many techniques have been developed to parallelize con-
vex optimization in the case of separable objectives and
binding constraints. The ADMM [1], [2] and graph pro-
jection [3] algorithms are two instances of the Douglas-
Rachford algorithm [4] which belongs to the larger family
of proximal point methods [5]. Other approaches have been
developed for splitting similar problems such as Springarn’s
partial inverse algorithm [6], distributed subgradient descents
[7] and the proximal center technique [8]. Closer to the
setting under consideration here, the primal-dual approaches
developed in [9] and [10] respectively deal with block
constrained problems where the objective is known partially
to the computation nodes and with optimization over a
common constraint set that consists of the intersection of
local constraint sets.
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However efficient and provably fast, these techniques do
not leverage the particular structure of the problem under
study here. Therefore, we designed a novel dual splitting
strategy tailored to the average-based input in the objective.
Gradient methods are used to find the optimum of the dual
problem. We consider agents should not give out their own
information to the rest of the community in order to preserve
their privacy. Convergence rates are calculated for stochastic
algorithms that enforce privacy by signal obfuscation. In
particular, the proofs below extend previous work on privacy-
aware optimization [11], [12], [13]. In this competition to
derive estimates of the optimal programs the agents will
undertake, we prove that introducing random perturbations
in the dual gradient method is much more detrimental to
an eavesdropping statistician adversary than it is for the
community.

The algorithms designed here straightforwardly apply to
evening out electrical power imbalances thanks to a smart
grid [14]. In contrast to [15] where no convergence rates
were given for the proximal method that had been developed,
we show that the precision of our privacy aware procedure
increases. Preserving secrecy is indeed crucial in the context
of smart metering as pointed out in [16].

The general class of problems under consideration will
be presented in Section II. Section III will derive a dual
splitting reformulation paving the way to a holistic dual
gradient method and an incremental counterpart. The number
of iterations preserving secrecy in these algorithms is derived
from the attacker model in Section IV. Finally, Section
V presents numerical experiments with actual data for re-
balancing power consumption in California thanks to electric
vehicles.

II. GENERAL PROBLEM FORMULATION

We consider a group of N agents in a collaborative
setting. Each agent, indexed by n, decides on d actions
characterized by a vector un ∈ Rd = (uk,n)k∈{1...d}. For
each agent, these actions belong to a convex closed set
Cn ⊂ Rd corresponding to strictly feasible constraints. Let
u ∈ RN×d be the concatenated vector of all individual
actions (un)n∈{1...N} ,and (ok)k∈{1...d} the common effort
the agents attempt to replicate. The aim for the community
is to optimize the collaborative objective below.

Main problem:

min
u

[
d∑
k=1

`k

(
ok −

1

N

N∑
n=1

uk,n

)
+

1

N

N∑
n=1

rn (un)

]
(1)

st ∀n ∈ {1 . . . N} , un ∈ Cn
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Costs are represented by the family of strongly convex
functions (`k(·))k∈{1...d} from R onto R. All the elements
of the family of regularizing functions (r(·)n)n∈{1...N} from
Rd onto R are strongly convex.

Such a problem, with strongly convex objectives and
strictly feasible convex constraints can be solved in a generic
but non-scalable manner by standard optimization solvers.
The present article develops specific algorithms which effi-
ciently leverage the structure of problem (1).

We also consider that the constraints un ∈ Cn of each
agent cannot be broadcast as they are privacy sensitive. This
does not have implications on the formulation (1) of the
problem but will be essential in the algorithms to solve it.
Let u∗ be the solution of the minimization problem (1).
The optimal program u∗n ∈ Rd of each agent also contains
sensitive information and has to be difficult for an adversary
to estimate (the meaning of this statement will be explicitly
defined later in the article).

III. DISTRIBUTED OPTIMIZATION

This section introduces additional variables before using
a dual reformulation that manages to split the problem with
respect to the number of agents.

A. Dual splitting for independent constraints

As N is the largest scale factor in the problem, it is
the most suitable axis for parallelization. We leverage
independence between blocks of constraints to render a
low-memory and privacy preserving algorithm.

1) Introducing additional variables: For each k ∈
{1 . . . d}, consider zk ∈ Rd. We form the Lagrangian with d
real dual variables (λk)t∈{1...d} corresponding to constraints
∀k ∈ {1 . . . d} , zk = ok− 1

N

∑N
n=1 uk,n. Slater’s conditions

hold with the assumptions above (see [17] for details).
Minimization and maximization can therefore be swapped in
the Lagrangian. This proves that problem (1) is equivalent
to

max
λ

min
u,z

[ d∑
k=1

`k (zk) + λkzk

+

d∑
k=1

λk

(
−ok +

1

N

N∑
n=1

uk,n

)

+
1

N

N∑
n=1

rn (un)

]
st λ ∈ Rd, z ∈ Rd, ∀n ∈ {1 . . . N} , un ∈ Cn

2) Block constraints and distribution of min operators:
The key step now is that we can distribute the operator min
with respect to each zk and each un. Indeed, z and u are
decoupled and the constraints un ∈ Cn are independent by
assumption.

Furthermore, considering the Fenchel-Legendre trans-
form `∗k (λk) = supzk∈R lk (zk) + λkzk of `k (·), one
has minz∈Rd

∑d
k=1 `k (zk) + λkzk = −

∑d
k=1 `

∗ (−λk).

Also, denoting ΠN
n=1Cn the Cartesian product of the

constraint sets, minu∈ΠNn=1Cn
1
N

∑N
n=1 λ

Tun + r (un) =
1
N

∑N
n=1 minun∈Cn λ

Tun+r (un). This proves that problem
(1) is equivalent to

max
λ

[
−

d∑
k=1

`∗k (−λk)− λT o (2)

+
1

N

N∑
n=1

min
un∈Cn

λTun + rn (un)

]
3) Extended value regularization functions: For each

n ∈ {1 . . . N}, let rn (·) be the extended value function
that equals rn (un) whenever un ∈ Cn and +∞ otherwise.
With the assumptions above, rn(·) is proper, closed and
lower semi continuous. It is not differentiable in general
but is strongly convex by assumption. Let σn be its strong
convexity constant. Generic convex analysis (see [18]
for details) allows us to show that the Fenchel-Legendre
transform of rn(·), denoted rn(·)

∗
, is differentiable and

has a Lipschitz gradient with constant 1
σn

. It is also
trivially convex. For any n ∈ {1 . . . N}, the strong
convexity assumption on rn also guarantees uniqueness of
u∗n (λ) = argminun∈Cn (λ∗)

T
un + rn (un) where λ∗ is the

unique solution of problem (2) (see [17] for details).

4) Formulating an optimal price: The problem is now
equivalent to the unconstrained minimization below.

Dual split reformulation:

min
λ∈Rd

f (λ) = min
λ∈Rd

[
d∑
k=1

`∗k (−λk) + λT o+
1

N

N∑
n=1

rn∗ (−λ)

]
(3)

For each k ∈ {1 . . . d} we denote Lk the Lipschitz
constant of the gradient of `k(·) and mk the strong
concavity constant of the function. As in [18], `∗k (·) has a
Lipschitz gradient with constant 1

mk
and is strongly convex

with constant 1
Lk

. Therefore, f is strongly convex with
constant m =

∑d
k=1

1
Lk

and has a Lipschitz continuous
gradient with constant L =

∑d
k=1

1
mk

+ 1
N

∑N
n=1

1
σn

. The
strong convexity property shows in particular that there is
a unique price vector λ∗ that synthesizes the information
contained in the common objective and the constraints.
Indeed, if agent n is given λ∗ it is sufficient for it to
individually solve minun∈Cn (λ∗)

T
un + rn (un) in order to

retrieve the optimal action u∗n that contributes to the overall
objective best. In particular, this shows privacy sensitive
constraints do not have to be shared with other participants
in the system.

5) Holistic deterministic gradient descent: Gradient de-
scent and momentum methods are both straightforward
ways to minimize f in practice. We have ∇f (λ) =
−
∑d
k=1∇`∗k (−λk) + o− 1

N

∑N
n=1∇rn∗ (−λ).

Usual theorems for differentiating maxima of functions
(see [19] for details) give, ∀n ∈ {1 . . . N}, ∇rn∗ (λ) =
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u∗n (−λ), therefore

∇f (λ) = −
d∑
k=1

∇`∗k (−λk) + o− 1

N

N∑
n=1

u∗n (λ) (4)

.
From [18], we know O

(
log
(
L
m

1
ε

))
iterations are suffi-

cient for the distributed gradient descent algorithm below
(Algorithm 1) to achieve an ε precision in the value of the
function we are trying to minimize.

Data: Constraints (Cn)n∈{1...N}, target o ∈ Rd
Result: Optimal dual price (argminλ∈Rdf (λ))
decide on initial value λ(0) ∈ Rd.
for i← 2 to maximum number of steps do

broadcast λ(i)

compute optimal response u∗n
(
λ(i)
)

broadcast u∗n
(
λ(i)
)

gather and compute concatenated u∗
(
λ(i)
)

compute λ(i+1) = λ(i) − s(i)∇f
(
λ(i)
)

end
Algorithm 1: Holistic distributed gradient descent

It is worth mentioning here that the computation of the
gradient is based on independent calculations by the agents.
Indeed, calculating ∇rn∗ (−λ) = u∗n (λ) is the only point
where agents’ constraints are to be taken into account and
they are completely decoupled here. In particular, if each
agent computes this step locally, it does not have to give
any information about its individual constraints to others.
This means that the reformulation above yields intrinsically
privacy preserving gradient descents.

6) Incremental stochastic gradient method: A standard
way of dealing with the optimization of the sum of dif-
ferentiable functions is the incremental stochastic gradient
method. Each holistic computation of the gradient is replaced
by a small stochastic correction that on average descends
towards the optimum. One can write f (λ) = 1

N

∑N
1 fn (λ)

with

fn (λ) =

d∑
k=1

`∗k (−λk) + λT o+ rn∗ (−λ) (5)

For any n ∈ {1 . . . N}, let L∗n be the Lipschitz constant
of the gradient of fn, L∗n ≤

∑d
k=1

1
mk

+ 1
σn

, let λn,∗ be the
minimum of fn over Rd.

The full gradient update step is replaced by a partial
increment that only requires the computation of

∇un0 f (λ) = −
d∑
k=1

∇`∗k (−λk) + o−∇rn0

∗ (−λ) (6)

where n0 is chosen uniformly at random in {1 . . . N} . Let us
recall that ∇rn0

∗ (−λ) = u∗n0
(−λ) therefore the constraints

of un0
do not need to be broadcast.

One can show, as in [20], that E
[
‖∇un0 f (λ) ‖22

]
≤

A2
inc‖λ − λ∗‖22 + B2

inc where A2
inc = 2

N

∑N
n=1 L

∗
n

2 and

B2
inc = max

(
2
N

∑N
n=1 L

∗
n

2‖λn,∗ − λ∗‖22,
A2

incD0

2

)
with

D0 = E
[
‖λ(0) − λ∗‖22

]
Data: Constraints (Cn)n∈{1...N}, target o ∈ Rd
Result: Optimal dual price (argminλ∈Rdf (λ))
decide on initial value λ(0) ∈ Rd.
for i← 2 to maximum number of steps do

select n0 at random in {1 . . . N}
send λ(i) to node n0

compute optimal response u∗n0

(
λ(i)
)

compute λ(i+1) = λ(i) − s(i)∇un0 f
(
λ(i)
)

end
Algorithm 2: Incremental stochastic gradient method

From [20], we deduce the lemma below.

Lemma 1: If one uses decreasing step size s(i) =

2
(
m
(

2
A2

inc
m2 + i

))−1

after i iterations of the incremental
stochastic gradient method

E
[
f(λ(i))− f (λ∗)

]
≤

( ∑N
n=1 L

∗
n∑N

n=1 L
∗
n

2

)(
2 +

i

Tinc

)−1

(7)

where Tinc = 2
N

∑N
n=1 L

∗
n
2

m2 .
Here the convergence rate of the algorithm presented

below, Algorithm 2, is much slower than before. However,
the computation burden for each step is considerably lower
as compared to the holistic case as only one optimal program
needs to be computed and broadcast at each iteration.

IV. PRIVACY PRESERVATION

In the procedures above, the aim of enforcing the con-
fidentiality of individual’s constraints has been successfully
achieved. This section will focus on obfuscating information
that would help infer those indirectly.

A. Privacy model

Algorithm 1 is interpreted as a survey in which, at each
iteration i, all agents are queried for their optimal action
u∗n
(
λ(i)
)
. Agents do not have to send out their personal

sets of constraints, Cn, for the dual optimum λ∗ to be
estimated. However, they send out vectors u∗n (λ) which
correspond to the optimal series of actions to undertake
with respect to a given signal vector λ. This information is
considered privacy sensitive as it can help infer the agents’
constraints. In the context of smart metering for instance,
u∗n (λ) will correspond to the power consumption profile
of a given household. Burglars trying to infer when the
house is unoccupied will most likely want to identify low
consumption periods of the day. Therefore, one considers a
framework close to that of [21], in which participants in a
survey are reluctant to give out personal data. It is possible
here to leverage the averaging behavior of the dual gradient
in order to compute the common optimum of the whole
community without jeopardizing individual’s privacy.
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1) Adding noise to broadcast: Adding noise to data
has successfully enabled differential privacy in databases
in [22] and in filtering [23] for example. Inspired by this
work, we design an algorithm where, instead of sending
u∗n

(i) = u∗n
(
λ(i)
)
, agent n broadcasts ũ∗n

(i)
= u∗n

(i) + ν
(i)
n

in which the d-dimensional white noise sequences (ν
(i)
n )i∈N

are all mutually independent and have variance η2 for each
of their d components. This framework where only blurry
observations of the gradient are available has also been
studied in [11]. The approach presented here diverges in
that it intrinsically leverages the effect of having many
distributed processors taking part in the computation of the
gradient. In particular a high value of N is core to obtaining
good precision and at the same time privacy enforcement.

2) Learning rate on personal information: In this setting,
the system itself cannot be trusted and there is competition
between the speed at which the community discovers λ∗ and
the rate at which a spying statistician can learn individual
information. This attacker is trying to estimate û∗

(i)

n based
on a series of i observations

(
û∗

(j)

n

)
j∈{1...i}

for a given

agent n that is targeted as an individual. Classically, when
trying to estimate a vector from a series of linearly per-
turbed measurements, empirical mean estimators or Kalman
filters yield a Mean Squared Error (MSE) that will scale
proportionally to the variance dη2. Therefore we assume the
attacker’s estimator for u∗n

(i) is unbiased and has variance

E
[∥∥∥û∗n(i)

− u∗n
(i)
∥∥∥2

2

]
= dη2κ

iγ where κ is a constant that de-

pends on the estimation technique adopted by the adversary.
The privacy enforcement criterion here is that the MSE of

the estimator of the attacker remains above a certain lower
bound κmin. This implies the optimization program has an

iteration budget imax =
(
dκη2

κmin

) 1
γ

.

The most favorable case for the attacker occurs when
the sequence

(
u∗n

(j)
)
j=1...i

remains constant. The law of

large numbers guarantees a convergence rate γ = 1 for
the empirical mean estimator. Thus, from hereon, we will
assume γ ≤ 1.

B. Noisy descents

The privacy enforcing strategies below aim at converging
towards an optimal scheduling price λ∗ faster than the
attacker increases its precision in the estimation of u∗n.

1) Noisy holistic descent strategy: A first strategy to
preserve privacy in the distributed gradient computation is
to run the deterministic holistic descent above with noisy
broadcasts from the agents. The update of λ in the descent
becomes λ(i+1) = λ(i) − s(i)∇̃f

(
λ(i)
)

where

∇̃f
(
λ(i)
)

= −
d∑
k=1

∇`∗k
(
−λ(i)

k

)
+ o− 1

N

N∑
n=1

ũ∗
(i)

n

(
−λ(i)

)
.

Recalling that ũ∗n
(i)

= u∗n
(i) +ν

(i)
n , as ν(i)

n is a white noise
whose variance trace is dη2, E

[
∇̃f

(
λ(i)
)]

= ∇f
(
λ(i)
)

and

E
[∥∥∥∇̃f (λ(i)

)∥∥∥2

2

]
≤ A2

hol

∥∥∥λ(i) − λ∗
∥∥∥2

2
+B2

hol. (8)

where Ahol = L =
∑d
k=1

1
mk

+ 1
N

∑N
n=1

1
σn

and
B2

hol = d
N η

2.

Lemma 2: If one uses step size s(i) =(
m
(

2
A2

hol
m2 + i

))−1

, after i iterations of the noisy holistic
descent,

E
[
f(λ(i))− f (λ∗)

]
≤ 2B2

hol

L
(

2 + im2

A2
hol

) ≤ 2
d
N η

2L

im2
. (9)

2) Noisy incremental stochastic descent strategy: In such
a case we get a similar bound for the expected value error
with constants Ainc noisy = Ainc and B2

inc noisy = B2
inc + η2.

The convergence rate is unsurprisingly slower. However
participating agents send out sensitive data less often as only
one individual selected uniformly at random broadcasts its
response vector u∗n

(i) = u∗n
(
λ(i)
)

at each iteration. Let ξ(i)

be the number of times the agent selected at the first iteration
has sent out its optimal response (including that of the first
step). The random variable ξ(i) − 1 is the sum of i − 1
Bernoulli trials with parameter 1

N . Therefore ξ(i) − 1 has
a binomial distribution with parameters 1

N and i− 1. Jensen
inequality yields

E
[∥∥∥û∗(i)n − u∗n(i)

∥∥∥2

2

]
= E

[
dκη2(
ξ(i)
)γ
]
≥ dκη2(

1 + i−1
N

)γ .
Proposition 1: After N

((
dκη2

κmin

) 1
γ − 1

)
iterations of the

incremental noisy stochastic descent method the MSE of the

adversary, E
[∥∥∥û∗(i)n − u∗n(i)

∥∥∥2

2

]
, is bounded by below by

κmin and the privacy preservation constraint is respected.

V. APPLICATION TO LOAD FLATTENING IN CALIFORNIA

A. Problem formulation

Let (ok)k=1...T be the normalized hourly excess of elec-
trical production in California (T = 24). The objective here
is to use the electric consumption of N electrical vehicles so
as to alleviate the “valley” effect [24]. For a given device n,
the daily utilization vector, un = (uk,n)k=1...T is constrained
and belongs to a convex closed set Cn ⊂ RT representing the
periods of the day during which the owner is driving the car.
The convex program that should be solved collaboratively
by the swarm of smart chargers for electric vehicles is

min
c

T∑
k=1

1

2

(
ok −

1

N

N∑
n=1

uk,n

)2

+
1

N

1

2
σ

N∑
n=1

‖un‖22

st ∀n ∈ {1 . . . N} , un ∈ Cn
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This formulation takes into account both evening out the
electrical excess in its primary objective and regularizing the
devices’ utilization vectors so as to preserve their life span
[25]. It is similar to (1) with `k (x) = 1

2x
2 for any k ∈

{1 . . . T}, rn (un) = ‖un‖22. Therefore, m = 1 is a strong
convexity constant of the dual split objective. Similarly an
admissible Lipschitz continuity constant for its gradient is
L = 1 + 1

σ .
1) Iteration budget for the noisy holistic descent: From

the derivations above, with the assumptions formulated
on the attacker’s learning rate, the iteration budget is

imax =
(
Tκη2

κmin

) 1
γ

. In this setting, one has Ahol = L = 1 + 1
σ

and B2
hol = Tη2. From (9), one deduces the following

theorem.

Theorem 1: The privacy safe precision of the noisy holis-
tic descent is bounded by

E
[
f
(
λ(imax)

)
− f (λ∗)

]
≤ 2

(κmin

Tκ

) 1
γ T

N

(
1 +

1

σ

)
η2(1− 1

γ )

(10)
If γ < 1, increasing the magnitude of the noise, η,

increases the precision that can be attained with a privacy
safe iteration budget. A particular case occurs when the
attacker has an optimal learning rate γ = 1. In such a
setting we leverage the fact that the reachable precision is
proportional to 1

N . An attacker targets individuals whereas
the gradient descent computes the average optimal response
at each measurements. Therefore, as more computation nodes
are involved in the scheme, noise is more problematic to the
attacker than it is to the collaborating swarm.

2) Numerical experiments with noisy holistic method: In
the following, actual data of utilization pattern of electric
vehicles in California gives a set of 3T affine convex
constraints for each of the N agents. The prescribed step size
is s(i) = 2

2(1+ 1
σ )

2
+i

. The noise magnitude η is multiplied

by the standard deviation of the primal optimum u∗ in order
to be of the same scale as the signal it perturbs. On the
figures below, the value of η before scaling is denominated
“normalized η”. We run 100 instances of the gradient descent
for different values of N , with different magnitudes of η
for σ = 1. Noise has a Laplace distribution here as in
[22]. Only problems with relatively small crowds of agents
are considered as the primal solution is also computed to
provide a comparison baseline. Satisfying regularization is a
second order problem here. While respecting the constraints,
the effort vector

(
1
N

∑N
n=1 uk,n

)
k∈{1...T}

needs to replicate

(ok)k∈{1...T} which is displayed in Figure 1. The effort vec-
tor resulting from the dual distributed algorithm is compared
to that of the primal solution (calculated by CVX). Filled
areas represent the bands between percentiles of empirical
distributions. Figure 2 highlights that, with the same iteration
budget (20), having more agents involved in the optimization
yields a better replication precision. We show that the effect
of averaging has an impact on the gradient based search as
well. Figure 3 indicates that the empirical MSE is inversely

Fig. 1. Objective to collectively replicate.

Fig. 2. Errors in aggregated effort.

proportional to N for both the objective and the normalized
distance to the optimum E

[
1
N ‖u− u

∗‖22
]

(normalizing by
N takes into account that u has N × T elements). Lower
value for the latter shows that the averaging gradient helps
reach a better precision in both the objective value and the
action vector.

3) Iteration budget for the noisy incremental descent:

The iteration budget here is imax = N

((
Tκη2

κmin

) 1
γ − 1

)
.

With the derivations above, A2
inc noisy = 2

(
1 + 1

σ

)2
and B2

inc noisy = 2β2
(
1 + 1

σ

)2
+ Tη2 where

β2 = max
(

1
N

∑N
n=1 ‖λn,∗ − λ∗‖

2
2 ,

D0

2

)
.

Theorem 2: The privacy safe expected precision of the
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Fig. 3. Errors in response and objective.
noisy incremental descent is bounded by

E
[
f
(
λ(i)
)
− f (λ∗)

]
≤ 2

(
1 + 1

σ

) (
Tη2 + 2β2

(
1 + 1

σ

)2)
N

((
Tκη2

κmin

) 1
γ − 1

)
(11)

If γ < 1, any precision can be reached while guaranteeing
secrecy enforcement. If γ = 1 the average privacy secure
precision increases linearly with N . This corresponds to the
intuition that, in the incremental descent case, it becomes
more unlikely for the attacker to intercept repeated occur-
rences of the optimal program of a given agent if N is large.

4) Numerical experiments with noisy incremental method:
The same numerical experiments are conducted as for the
holistic method. However, the new increased iteration budget
is taken into account. Figure 2 shows how the incremental is
slightly more sensitive to noise than its holistic counterpart.
Figure 3 shows that, as in the holistic case, the MSE for
the objective value and the agents’ actions is inversely
proportional to N . The higher number of steps in the descent
helps reach a value of u closer to the global optimum u∗.

VI. CONCLUSION

For the class of problems considered above, splitting the
binding objective thanks to a dual reformulation enabled the
full separation of independent block constraints. This result
has strong implications in terms of enforcing privacy. The
individual constraints of the agents remain local and noise
can be added to communications that hinders information
leakage. Convergence rates indicate that this approach be-
comes more efficient as more agents are involved. This has
been confirmed by numerical experiments conducted with
actual data on electricity production and consumption in
California. This new scheme is readily applicable to smart
electric vehicle chargers whose information are highly pri-
vacy sensitive. Further work should focus on asynchronous
implementations.
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