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This article starts from the classical Aw–Rascle–Zhang (ARZ) model for freeway traffic and develops a 
spectral analysis of its linearized version. A counterpart to the Froude number in hydrodynamics is 
defined that enables a classification of the nature of vehicle traffic flow using the explicit solution 
resulting from the analysis. We prove that our linearization about an equilibrium is stable for congested 
regimes and unstable otherwise. NGSIM data for congested traffic trajectories is used so as to confront the 
linearized model’s predictions to actual macroscopic behavior of traffic. The model is shown to achieve 
good accuracy for speed and flow. In particular, it accounts for the advection of oscillations on boundaries 
into the interior domain where the PDE under study is solved.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The goal of this research on physics of traffic is to gain a better 
understanding of the dynamics core to the system so as to design 
new coordination strategies for ramp metering and varying speed 
limits.

1.1. Traffic macroscopic models

First-order traffic macroscopic models such as Lighthill–Whit-
ham–Richards (LWR) model [1,2] are a reference since the 1950s
and became more elaborate thanks to diversified and more realis-
tic fundamental diagrams [3–10] and specific numerical methods 
such as the Godunov scheme [11,12,5,13]. However, they have in-
herent shortcomings most of which are discussed at length in 
[14] such as failure to capture accurately shock structure, light 
traffic dynamics, and stop-and-go behavior, otherwise known as 
traffic oscillations. Oscillations have attracted increasing attention 
in transportation research [15]. For example jamitons, traffic jams 
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that appear without the presence of a bottleneck, have been re-
produced in contained experiments [16,17] and explained theoret-
ically as the result of both particular configurations of the traffic 
system [8] and fuzzy fundamental diagrams [18].

Non-linear second order models such as Payne–Whitham (PW) 
[19,20] were first presented as a compelling alternative to first or-
der models that accounted for many of these empirical features. 
As pointed out in [14,21] the PW approach has issues in both the 
derivation of its equations, and its predictions. The model relies 
on the assumption that spacing and speed vary slowly, yielding 
negligible second and third derivatives for these quantities. This 
is contradictory with the observations of Newell [22] given that 
the car-following model predicts sharp changes in these quantities. 
Moreover, [23] proved that, with a non-zero viscosity coefficient, 
the PW model violates the anisotropy of traffic flow and can pre-
dict negative speeds.

Criticism towards that first generation of second order models 
led to a more realistic second generation. In [24], Zhang proposed 
a modification of the momentum equation of the PW model to 
handle the issue of backward-propagating traffic. Soon after, Aw 
and Rascle [25] presented a model with the following momentum 
equation:

(v + p(ρ))t + v(v + p(ρ))x = V (ρ) − v
. (1)
τ
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Including the pressure term, p(ρ), in a convective derivative guar-
antees that no information travels faster than the speed of the cars. 
Aw and Rascle demonstrated in [25] that “with a suitable choice 
of function p,” the above class of models avoids inconsistencies 
of earlier second-order models. Zhang proposed in [23] the same 
model with p(ρ) = −V (ρ). With this choice of p(ρ), the model 
is referred to as the Aw–Rascle–Zhang (ARZ) model, which is the 
model used in the present article.

This model has since been thoroughly studied. Rascle later 
proved in [26] that the relaxed model converges towards the LWR 
model as τ → 0. Conditions for solution to the Reimann problem 
to exist in all conditions were studied in [27]. The derivations in 
[28] and [29] showed how to embed this model in a network of 
junctions. Godunov discretization scheme and numerical compari-
son showed in [30] that ARZ model fits real data better than the 
LWR model. Relaxed approximations with constant wave have also 
been used to provide numerical solutions in [31].

More recent models such as Gupta–Katiyar (GK) (see [32]) 
have introduced an approximate expression of headway as a per-
turbation series in car following models and do not feature the 
shortcomings of information traveling faster than traffic does or 
negative speeds. This asymptotically anisotropic model presents 
realistic shock wave structures as studied in [33] and allows prac-
titioners to predict reaction of traffic to varied on-ramp flow struc-
tures on freeways [34] or bottlenecks [35]. This new model also 
interestingly extends to the case of multiple lanes [36] and more 
importantly to entire traffic networks consisting of several sec-
tions [37].

New models are also developed now as in [38] that take into 
account reduced reaction times and radio communication in pla-
toons of computer assisted vehicles and interestingly describe how 
smart cars can change traffic behavior. An acceleration term ap-
pears here, akin to that added to the AR model in [39] which 
gave more realism to the model. The idea of modeling traffic as 
a set of agents interacting as a stochastic game and the resulting 
kinetic theoretic model developed in [40] contributed to bridging 
the gap between microscopic and macroscopic models. However, 
we choose to study and linearized ARZ model here as it offers a 
good compromise between simplicity and realism.

1.2. Models appropriate for control

Instead of trying to generate a switching model as in phase 
transition models [41–43], our aim is to design a single represen-
tation that paves the way to designing generic control strategies 
readily usable in all traffic conditions. Therefore we use the ARZ 
model linearized around arbitrary nominal conditions.

Laplace transform and spectral analysis are powerful tools for 
analyzing linear systems and take into account oscillations. In that 
regards, other oscillation generating models could have been lin-
earized such as [44]. Behavioral models such as in [22,45], and 
more recently [46,47], depict the effects of car-following and lane-
changing on freeway dynamics, effects often cited as the cause 
of oscillations [48–50]. However, second-order macroscopic models 
are most suited for our method. Other approaches have used spec-
tral transforms such as wavelets as in [51] or the Fourier–Galerkin 
transform as in [52]. Our Laplace transform based study is differ-
ent in that it is fundamentally physics driven and does not rely on 
a finite difference scheme.

Our analysis of the ARZ equations is strongly inspired by the 
pioneering analysis of Litrico and Fromion for the Saint-Venant 
equations [53]. Linearizing the corresponding two equation PDE 
system around an equilibrium point enables the use of spectral 
methods to design efficient control strategies for canals [54].
1.3. Approach and contributions

The present article extends the corresponding spectral frame-
work of [53] to the case of the ARZ equations so as to achieve a 
two-fold objective.

We aim to develop strategies that enforce ease of use of the 
ARZ model for stability analysis and control. Analytical solutions to 
these non-linear equations are difficult to derive but linearization 
facilitates design of efficient control schemes with multiple inputs 
and outputs. Such schemes have for example been set up in this 
framework in [55] assuming Riemann invariants are proportional 
on the left boundary. We do not make such an assumption but 
pay particular attention to the formulation of boundary conditions 
to guarantee the well-posedness of the problem.

We assess the quality of the model by comparing its output 
with actual data collected in the field (using the NGSIM dataset).

The contributions of this article are as follows.
Modeling: We derive the characteristic form by linearization and 

diagonalization of the ARZ model. This lead to the definition of a 
counterpart to the Froude number in hydrodynamics [53], which 
separates free-flow and congested regimes.

Spectral analysis: From the characteristic form we derive the 
spectral form: a distributed transfer function [53]. Time domain re-
sponses derived from the spectral transfer matrices show that the 
linearized system is unstable in the free-flow regime. These waves 
lead the linearized system away from its equilibrium point in the 
free-flow regime. This complements the empirical and theoretical 
findings presented in [56,57] about convective instability propagat-
ing upstream in congested regime as well as theory and numerical 
experiments conducted in [58,59] about on the GK model.

Numerical validation: A numerical experiment using NGSIM data 
is conducted to validate the overall procedure. Previous studies 
focused on averaged errors and only displayed predictions at a 
couple of points along the freeway [30,60]. Here, we present an 
entire map of the states and conduct model assessment in a holis-
tic manner. This procedure demonstrates that the linearized model 
successfully accounts for traffic oscillations and also provides sim-
ple and consistent methods to calibrate the relaxation time, τ .

1.4. Organization of the article

The rest of this article is organized as follows. In Section 2
we present the characteristic form of the ARZ model in several 
state variables, leading to the derivation of the spectral form of 
the flux and velocity system in Section 3. We focus on these states 
in particular as they are the most easily observed and controlled 
in traffic. Properties of the spectral form in the two flow regimes 
are also analyzed. Section 4 focuses on numerical analysis. We 
present estimation procedures for (v, q, ρ) and the model parame-
ters, comparing empirical estimates with numerical predictions of 
the linearized model.

2. The ARZ model

We consider the ARZ model with relaxation term. The model is 
shown here:

ρt + (ρv)x = 0, (2)

(v − V (ρ))t + v(v − V (ρ))x = V (ρ) − v

τ
, (3)

where ρ is the density, v is the velocity, τ is the relaxation time, 
and V (ρ) = Q (ρ)/ρ is the equilibrium velocity profile, where 
Q (ρ) is the density–flow relation given by the fundamental dia-
gram. We assume that V is C1 derivable over its domain. With-
out the relaxation term cars never reach the maximum allow-
able speed [26] and the steady-state relation between density and 
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speed is broken in the presence of road junctions [61]. Note that 
at the equilibrium velocity this term is zero.

In vector form the ARZ model is(
ρ
v

)
t
+

(
v ρ
0 v + ρV ′(ρ)

)(
ρ
v

)
x
=

(
0

V (ρ)−v
τ

)
. (4)

With the appropriate variable change, we can rewrite the model 
in the density–flow and velocity-flow forms, the latter of which is 
most useful to us for practical control purposes. Using the flow 
relation q = ρv and (4), the density–flow form is(

ρ
q

)
t
+

(
0 1

− q
ρ

(
q
ρ + ρV ′(ρ)

)
2 q

ρ + ρV ′(ρ)

)(
ρ
q

)
x

=
(

0 0
V (ρ)

τ − 1
τ

)(
ρ
q

)
(5)

In the same manner we arrive at the velocity-flow form,(
v
q

)
t
+

(
v + q

v V ′ ( q
v

)
0

q
v

(
v + q

v V ′ ( q
v

))
v

)(
v
q

)
x
= 1

τ

(
V

( q
v

) − v

Q
( q

v

) − q

)
. (6)

Although the (ρ,q) and (v,q) forms are less common in 
transportation engineering, they bear interesting similarities to 
hydrodynamical systems. Moreover, they are promising for sens-
ing problems as loop detectors typically sense (ρ,q) while GPS 
measurement generally yield estimates for v .

2.1. Linearization

We are interested in small deviations, (ρ̃(x, t), ̃v(x, t)), from 
a given nominal profile. Consider the nominal solution (ρ∗(x),
v∗(x))(V (ρ∗) = v∗) satisfying vt = ρt = 0. Then (4) becomes

v∗ρ∗
x + v∗

xρ
∗ = 0, (7)

(v∗ + ρ∗V ′(ρ∗))v∗
x = V (ρ∗) − v∗

τ
= 0. (8)

Then we must have v∗
x = ρ∗

x = 0, so the solution is uniform along 
the road.

Linearizing the ARZ model (4) around the nominal solution de-
scribed above, we obtain(

ρ̃
ṽ

)
t
+

(
v∗ ρ∗
0 v∗ + ρ∗V ′(ρ∗)

)(
ρ̃
ṽ

)
x

=
(

0 0
V ′(ρ∗)

τ − 1
τ

)(
ρ̃
ṽ

)
. (9)

Similarly for the density–flow system (5), we linearize around 
the equilibrium (ρ∗, q∗)(ρ∗V (ρ∗) = q∗) with deviations (ρ̃(x, t),
q̃(x, t)). The linearized system is as follows:(

ρ̃
q̃

)
t
+

( 0 1

−
(

q∗
ρ∗

)2 − q∗V ′(ρ∗) 2 q∗
ρ∗ + ρ∗V ′(ρ∗)

)(
ρ̃
q̃

)
x

=
(

0 0
V (ρ∗)+ρ∗V ′(ρ∗)

τ − 1
τ

)(
ρ̃
q̃

)
. (10)

Finally, for the velocity-flow system, we have(
ṽ
q̃

)
t
+ A

(
ṽ
q̃

)
x
= B

(
ṽ
q̃

)
, (11)

where

A =
⎛⎝ v∗ + q∗

v∗ V ′
(

q∗
v∗

)
0

q∗
v∗

(
v∗ + q∗

v∗ V ′
(

q∗
v∗

))
v∗

⎞⎠ (12)

B =
⎛⎜⎝ − (v∗)2+q∗V ′

(
q∗
v∗

)
(v∗)2τ

V ′
(

q∗
v∗

)
v∗τ

− q∗
(
(v∗)2+q∗V ′

(
q∗
v∗

))
(v∗)3τ

q∗V ′
(

q∗
v∗

)
(v∗)2τ

⎞⎟⎠ (13)
2.2. Characteristic form

We diagonalize the linearized equations to obtain a more useful 
form of the model, which will then be treated in the spectral do-
main. For all systems of coordinates (density–speed, density–flow 
and speed–flow), the eigenvalues of the linearized PDE are λ1 = v∗
and λ2 = v∗ + ρ∗V ′(ρ∗). Note that V ′(ρ∗) ≤ 0 so λ2 ≤ λ1 = v∗ . 
Therefore this is consistent with the physical dynamics of the sys-
tem as no waves travel faster than the equilibrium vehicle speed.

We have proceeded with the diagonalization of the three sys-
tems of equations. For the sake of concision we only write below 
the derivations corresponding to the most interesting system of 
coordinates to us: (v,q). Computing the eigenvalues of A and a 
diagonalization vector basis yields(

ξ1
ξ2

)
t
+

(
λ1 0
0 λ2

)
︸ ︷︷ ︸

Ã

(
ξ1
ξ2

)
x
=

(− 1
τ 0

− 1
τ 0

)
︸ ︷︷ ︸

B̃

(
ξ1
ξ2

)
, (14)

where the characteristic coordinates are(
ξ1
ξ2

)
=

( ρ∗λ2
λ1−λ2

ṽ + q̃
q∗

λ1−λ2
ṽ

)
=

( ρ∗λ2
λ1−λ2

1
ρ∗λ1
λ1−λ2

0

)
︸ ︷︷ ︸

R

(
ṽ
q̃

)
(15)

2.3. The traffic Froude number

In fluid mechanics, the Froude number is a dimensionless num-
ber which delineates the boundary between flow regimes [62,53]. 
Using the eigenvalues of the system in the characteristic form, 
we are able to define a useful counterpart to this number. Since 
V (ρ) is non-increasing function, we have V ′(ρ∗) ≤ 0. Assuming 
V ′(ρ∗) �= 0 there are two flow regimes: one in which λ1λ2 < 0 and 
one characteristic line travels downstream whereas the other char-
acteristic line travels upstream, and one in which λ1λ2 > 0 and 
both characteristic lines travel downstream. We define the Traffic 
Froude Number (TFN) as

F =
∣∣∣∣ρ∗V ′(ρ∗)

v∗

∣∣∣∣ . (16)

Then we have{
F > 1 ⇒ |ρ∗V ′(ρ∗)| > v∗ ⇒ λ2 < 0
F < 1 ⇒ |ρ∗V ′(ρ∗)| < v∗ ⇒ λ2 > 0

.

Note also that

λ2 = v∗ + ρ∗V ′(ρ∗) = Q (ρ∗)
ρ∗ + ρ∗ Q ′(ρ∗) − Q (ρ∗)

ρ∗ = Q ′(ρ∗).

Hence the system is in free-flow when F < 1 and congestion when 
F > 1. In hydrodynamics these regimes are referred to as the sub-
critical and supercritical regimes, respectively [53]. The direction of 
characteristic lines is illustrated in Fig. 1.

For traffic, the interpretation of the different regimes is some-
what different. Free flow regime corresponds to these situations 
where drivers are not slowed down by heavy traffic and go as fast 
as the desired speed. The congested regime arises when traffic is 
denser and, because too many cars are present on the same free-
way section, drivers slow down and eventually form traffic jam. 
This number is therefore a dimensionless quantity that clearly de-
lineates different physical regime of vehicular traffic.

3. Spectral analysis of the linearized ARZ model

We now consider the (v, q) system for the frequency domain 
analysis for practical control purposes.
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Fig. 1. Illustration of characteristic lines in congested (supercritical) and free-flow 
regime (subcritical) ξ1 and ξ2 propagate along.

3.1. State-transition matrix

Taking the Laplace transform of the diagonalized form (14) we 
obtain

∂ξ̂ (x, s)

∂x
= A (s)ξ̂ (x, s) + Bξ(x, t = 0−), (17)

where A (s) = Ã−1(B̃ − sI) and B = − Ã−1. The general solution 
to this ordinary differential equation is

ξ̂ (x, s) = �(x, s)ξ̂ (0, s) + �(x, s)

x∫
0

�(ν, s)−1Bξ(ν,0−)dν, (18)

where �(x, s) = eA (s)x is the state-transition matrix. Assuming 
zero initial conditions we have

ξ̂ (x, s) = �(x, s)ξ̂ (0, s). (19)

To compute the exponential we diagonalize the matrix as

A (s) = X (s)D(s)X −1(s) (20)

where

X (s) =
(

0 λ2−(λ1−λ2)τ s
λ1

1 1

)
, D(s) =

(− s
λ2

0

0 − 1+τ s
τλ1

)
. (21)

Hence

�(x, s) = X −1(s)eD(s)xX (s) =
(

φ11(x, s) φ12(x, s)
φ21(x, s) φ22(x, s)

)
, (22)

with

φ11(x, s) = e
− x

τλ1 e
− x

λ1
s
, (23a)

φ12(x, s) = 0, (23b)

φ21(x, s) =
λ1

(
e
− x

τλ1 e
− x

λ1
s − e

− x
λ2

s
)

λ2 − τ (λ1 − λ2)s
, (23c)

φ22(x, s) = e
− x

λ2
s
. (23d)

Let α = − λ2
τ (λ1−λ2)

. It is clear that φ11 (x, s) is composed of 
the product of a distributed delay corresponding to information 
propagating at speed λ1 and an exponential attenuation where 
τλ1 plays the role of a characteristic spatial length. Similarly φ22
is a delay corresponding to information propagating at speed λ2. 
The interpretation of φ21 is more difficult. In low frequencies 
(|s| � |α|), this transfer function takes a much more transpar-

ent form. Indeed, in the expression φ21(x, s) = − λ1
λ2

α
s+α e

− x
λ2

s(
1 −

e
− x

λ1τα (s+α)) 	 − λ1
λ2

e
− x

λ2
s(

1 − e
− x

λ1τ
)

the transfer function appears 
as the combination of a distributed delay where λ2 is the propa-
gation speed and a distributed gain where λ1τ is a characteristic 
distance.
3.2. Free-flow case (F < 1)

Consider the system in the free-flow regime. With ξ1(0, t) and 
ξ2(0, t) as the inputs and ξ1(L, t) and ξ2(L, t) as the outputs, the 
distributed transfer matrix is exactly the state-transition matrix 
�(x, s). Using (15), we can write(

ṽ(x, s)
q̃(x, s)

)
=

(
ρ∗λ2

λ1−λ2
1

ρ∗λ1
λ1−λ2

0

)−1

�(x, s)

(
ρ∗λ2
λ1−λ2

1
ρ∗λ1
λ1−λ2

0

)
︸ ︷︷ ︸

�(x,s)

(
ṽ(0, s)
q̃(0, s)

)

(24)

with

ψ11(x, s) = αe
− x

λ1

(
s+ 1

τ

)
+ se

− sx
λ2

s + α
, (25a)

ψ12(x, s) = 1

ρ∗τ
e
− sx

λ2 − e
− x

λ1

(
s+ 1

τ

)
s + α

, (25b)

ψ21(x, s) = −sρ∗τα
e
− sx

λ2 − e
− x

λ1

(
s+ 1

τ

)
s + α

, (25c)

ψ22(x, s) = se
− x

λ1

(
s+ 1

τ

)
+ αe

− sx
λ2

s + α
. (25d)

It could appear at first sight that −α (here a positive real) 
is a singularity of the transfer functions and the system is 
not bounded-input/bounded-output stable. However, we have 
1
λ1

(
−α + 1

τ

)
= 1

τ (λ1−λ2)
= −α

λ2
, thus a Taylor expansion about −α

shows that numerators and denominators cancel each other out 
for s → −α. It follows that −α is not a pole of any transfer func-
tion. The spectrum of �(x, s) is identical to that of �(x, s) which is 
lower triangular and has eigenvalues e− x

τλ1 e
− x

λ1
s

and e− x
λ2

s
whose 

module is trivially bounded by 1. This proves the H∞ norm of �
is 1 and therefore the system is Bounded-Input/Bounded-Output 
(BIBO) stable. This proves that the output remains bounded for a 
given value of x.

We will show below that a conic region of the [0, T ]× [0, L] do-
main features exponential growth in free-flow regime. This arises 
when changing t and x simultaneously and complements the con-
clusion formulated above (in which t varies and x remains con-
stant).

3.2.1. Low frequency approximation for physical variables in free-flow 
regime

Analyzing the expressions above becomes easier when approxi-
mating them for |s| � |α|. This corresponds to traffic flow varying 
slowly and smoothly. We find the following approximate expres-
sions for the transfer functions:

ψ11(x, s) 	 e
− sx

λ2 e
− x

τλ1 , (26a)

ψ12(x, s) 	 1

ρ∗τα
e
− sx

λ2

(
1 − e

− x
τλ1

)
, (26b)

ψ21(x, s) 	 −sρ∗τe
− sx

λ2

(
1 − e

− x
τλ1

)
, (26c)

ψ22(x, s) 	 e
− sx

λ2 . (26d)

Interpreting the low frequency expressions is fairly straightfor-

ward. In ψ11, e
− sx

λ2 is a distributed delay with propagation speed 
λ2 and e

− x
τλ1 a distributed gain with characteristic distance τλ1. 

In ψ12 and ψ21 we can notice the combination of a distributed de-
lay whose characteristic speed is λ2 and a distributed gain whose 
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Fig. 2. Spatial magnitude Bode plots for Riemann invariants in free-flow regime 
(|α| = 0.53 Hz).

Fig. 3. Spatial magnitude Bode plots for physical variables in free-flow regime (|α| =
0.53 Hz).

characteristic distance is τλ1. It is also remarkable that ̃q(x, s) ap-
pears as the result of a derivator applied to ṽ(0, s). The approxi-
mate expression for ψ22 highlights the presence of a distributed 
delay where information propagates at speed λ2. This low fre-
quency analysis therefore highlights fundamental mechanisms core 
to the physics of traffic that can be decomposed as modular ele-
ments here.

3.2.2. Bode plots for free-flow regime
We generate Bode plots using the following parameters taken 

from [63]: qmax = 1300 veh/h, ρmax = 0.1 veh/m, and L = 100 m. 
The Greenshields fundamental diagram, where the equilibrium 
flow is Q (ρ) = 4 qmax

ρ2
max

ρ(ρmax − ρ), is used to approximate the fun-

damental diagram. For inhomogeneous second-order models, the 
relaxation time, τ , falls in the range of about 14–60 seconds [60]. 
A relaxation time of τ = 15 s is used for the following simula-
tions. We simulate for ρ∗ = 0.01 veh/m. Here the characteristic 
frequency of the system, |α|, equals 0.53 Hz which is indeed sen-
sible for traffic flow modeling.

The Bode plots for the physical variables are displayed in Fig. 3. 
For the Riemann invariants only φ21(x, s) and φ22(x, s) are repre-
sented in Fig. 2 (φ11(x, s) and φ12(x, s) are only delay functions).

For transfer functions featuring 1 − e
− x

λ1τα (s+α)
as a factor (that 

is to say φ21, ψ12, and ψ21) one can observe in the corresponding 
Bode plots that the value of the log-gain in high frequency tends 
to vary very sharply. Indeed, with s = jw , 

∣∣∣1 − e
− x

λ1τα (s+α)
∣∣∣ =

e
− x

λ1τ

√(
e

x
λ1τ − cos

(
w

λ τα x
))2 + sin2

(
w

λ τα x
)

. Therefore, if the 

1 1
Fig. 4. Illustration of the exponential growth cone appearing in the free-flowing 
regime for the time domain expressions of v and q.

spatial pseudo-period L̃ = 2π
w λ1τ |α| is low enough, near zero 

values appear when x is a multiple of L̃. This explains the ir-
regular shape of the distributed Bode plots of φ21, ψ12, and ψ21
for frequencies w � 2π λ1τ |α|

L = 6.53 Hz. This does not impact the 
stability of the system. Bode plots only look irregular about such 
points because of the logarithmic scale.

3.2.3. Step responses
We analyze the behavior of the system given step inputs 

ṽ(0, t) = vstep H(t) and q̃(0, t) = qstep H(t), where H(·) is the Heav-
iside function. The step responses can be explicitly computed 
from the spectral responses. Letting H1(t, x) = H

(
t − x

λ1

)
and 

H2(t, x) = H
(

t − x
λ2

)
:

ṽ(x, t) = v̄e
− x

λ1τ H1(t, x) + v̄e
−α

(
t− x

λ2

)
(H2 − H1)(t, x)

− q̄

ρ∗τ

(
e
− x

λ1τ H1 (t, x) − H2(t, x)
)

− q̄

ρ∗τ
e
−α

(
t− x

λ2

)
(H2 − H1)(t, x) (27)

q̃(x, t) = v̄ρ∗ταe
−α

(
t− x

λ2

)
(H1 − H2)(t, x) + q̄H2(t, x)

+ q̄e
−α

(
t− x

λ2

)
(H1 − H2)(t, x) (28)

With this set of time domain expressions, we can see that a 
cone of exponentially growing speed (Fig. 4) and flow lineariza-
tion errors generally appears between the characteristic lines cor-
responding to λ1 and λ2. This is caused by α being negative in 
the free flow regime and means that, in this region of the domain 
[0, T ] × [0, L], the (v,q) state of the linearized system can diverge 
exponentially fast from the linearization point. This is consistent 
with the observations in [64] where small local perturbations oc-
curring in free-flow regime can cause traffic to transition durably 
to the congested regime.

3.3. Congested regime (F > 1)

We now consider the system in the congested regime.
Using (19) we can write(

ξ̂1(x, s)
ξ̂2(x, s)

)
= �(x, s)

(
1 0

−φ21(L,s)
φ22(L,s)

1
φ22(L,s)

)
︸ ︷︷ ︸

�(x,s)

(
ξ̂1 (0, s)
ξ̂2 (L, s)

)
, (29)

with

γ11 (x, s) = e
− x

λ1

(
s+ 1

τ

)
, (30a)

γ12 (x, s) = 0, (30b)

γ21 (x, s) = λ1 α
e
− x

λ1

(
s+ 1

τ

) (
1 − e

− (L−x)
λ1τα (s+α)

)
, (30c)
λ2 s + α
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Fig. 5. Spatial magnitude Bode plots for Riemann invariants in congested regime 
(|α| = 0.05 Hz).

γ22 (x, s) = e
s(L−x)

λ2 . (30d)

Note that equation (29) corresponds to a closed form solution 
of our initial system, written in spectral form.

For low frequencies (|s| � |α|), γ21 (x, s) 	 λ1
λ2

e
− x

λ1

(
s+ 1

τ

)
×(

1 − e
− L−x

λ1τ
)

is the combination of a gain, a distributed delay with 
propagation speed λ1, and two distributed gains with characteris-
tic distance λ1τ that cancel out for x = L. The resulting bode plot 
is presented below in Fig. 5.

3.3.1. Transfer functions for physical variables in congested regime
In congested regime, the boundary conditions used to control 

the system are ξ̂1 (0, ·) and ξ̂2 (L, ·). By linearity of the Laplace 
transform ξ̂1 (0, s) = ρ∗λ2

λ1−λ2
v̂ (0, s)+ q̂ (0, s). Therefore, as ξ̂2 (0, s) =

γ21 (0, s) ξ̂1 (0, s) + γ22 (0, s) ξ̂2 (L, s), we get ξ̂1 (0, s) = 1
d(s) q̂ (0, s) +

n(s)
d(s) v̂ (L, s) where d (s) = 1 − λ2

λ1
γ21 (0, s) and n (s) = ρ∗λ2

λ1−λ2
γ22 (0, s). 

The (v,q) system has only two degrees of freedom. Therefore we 
consider that the only inputs to the system are q (0, ·) and v (L, ·). 
v (0, ·) is then completely determined and can be interpreted as an 
output of the system. The corresponding transfer equation is(

v̂ (x, s)
q̂ (x, s)

)
= R−1� (x, s)

( n(s)
d(s)

1
d(s)

ρ∗λ1
λ1−λ2

0

)
︸ ︷︷ ︸

�(x,s)

(
v̂ (L, s)
q̂ (0, s)

)
(31)

where

θ11 (x, s) = αe
− x

τλ1 e
− s

λ1

(
x−L

λ1
λ2

)
+ se

− s
λ2

(x−L)

s + αe
− L

τλ1 e
− sL

λ1

(
1− λ1

λ2

) , (32a)

θ12 (x, s) = e
− L

τλ1 e
− s

λ2

(
x−L

(
1− λ2

λ1

))
− e

− x
τλ1 e

− sx
λ1

ρ∗τ
(

s + αe
− L

τλ1 e
− sL

λ1

(
1− λ1

λ2

)) , (32b)

θ21 (x, s) = ρ∗ταs
e
− s(x−L)

λ2 − e
− x

τλ1 e
− s

λ1

(
x−L

λ1
λ2

)

s + αe
− L

τλ1 e
− sL

λ1

(
1− λ1

λ2

) , (32c)

θ22 (x, s) = αe
− L

τλ1 e
− s

λ2

(
x−L

(
1− λ2

λ1

))
+ se

− x
τλ1 e

− sx
λ1

s + αe
− L

τλ1 e
− sL

λ1

(
1− λ1

λ2

) . (32d)

3.3.2. Low frequency approximation for physical variables in
congested regime

We derive approximate expressions in the frequency domain for 
the transfer functions above when |s| � |α|:

θ11 (x, s) 	 e
s(L−x)

λ2 e
L−x
τλ1 , (33a)

θ12 (x, s) 	 1
∗ e

− sx
λ1

(
1 − e

L−x
τλ1

)
, (33b)
ρ τα
Fig. 6. Spatial magnitude Bode plots for physical variables in congested regime 
(|α| = 0.05 Hz).

θ21 (x, s) 	 sρ∗τe
s(L−x)

λ2 e
L

τλ1

(
1 − e

− x
τλ1

)
, (33c)

θ22 (x, s) 	 e
− sx

λ1 . (33d)

With such expressions, interpreting the approximate transfer 
functions in low frequencies becomes fairly easy. The transfer func-
tion θ11 (resp. θ12) appears as the combination of a distributed 
delay with propagation speed −λ2 (resp. λ1) and a distributed 
gain (resp. attenuation) with characteristic distance λ1τ . The struc-
ture of θ21 is similar to that of θ11 although it features a derivator 
component. Once simplified, θ22 corresponds to a distributed de-
lay with propagation speed λ1. Hypothetical poles are not active 
in the range of low frequencies that will be considered in our traf-
fic flow modeling applications. Once more we can appreciate how 
these approximate expression help better understand the simple 
elements that account for the physical dynamics of the ARZ model.

3.3.3. Bode plots for congested regime
We use the same fundamental diagram as in the free-flow case. 

However the linearization point, ρ∗ = 0.08 veh/m, corresponds to 
the congested region of the Greenshields diagram. We show the 
distributed Bode plots for the Riemann invariants in Fig. 5 and for 
the physical variables in Fig. 6. In that case, α = 0.05 Hz, which 
does correspond to a reasonable characteristic frequency for traffic 
modeling applications.

Similarly to the free-flow case, for high frequencies (w �
2π λ1τα

L = 0.13 Hz) near zero values appearing with spatial peri-
odicity 2π

w λ1τα almost cancel out γ21, θ12, and θ21. Such points 
only appear as irregularities in the Bode plots because the gain is 
computed on a logarithmic scale.

3.3.4. Poles and BIBO stability of the system
In order to practically assess the presence of poles, numerical 

search for roots of the denominator of the transfer functions has 
been conducted thanks to standard equation solvers. Once more 
−α is a solution and another one was found at s = −0.0018. They 
are both negative reals and therefore cannot make the system un-
stable. Although the solvers could have detected poles with a non 
zero imaginary part, none has been found. Holistic search for other 
poles should be conducted but is out of the scope of this article.

The eigenvalues of matrix �(x, s) are identical to that of �(x, s). 
The latter is lower triangular and its eigenvalues also have a mod-
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Fig. 7. NGSIM trajectories. Color represents the measured speed of each car in m/s.
ule bounded by 1. The congested regime system is therefore also 
BIBO stable as the H∞ norm of matrix �(x, s) is bounded by 1.

3.4. Findings and conclusion from the theoretical study

The numerical experiments above have validated the accuracy 
of the linearized model and highlighted several of its core proper-
ties.

The TFN delineates two regimes: congested for F > 1 and free-
flowing for F < 1. This classification, and the resulting stability 
result legitimize the use of linearization about a nominal point in 
the stable region.

The assessment of convective instability in the free flow regime 
is of course applicable to this specific model (other models such as 
[18] might lead to other conclusions, and all need to be checked 
against experimental data). Here, exponential growth of the lin-
earization error only occurs in a conic region of the [0, T ] × [0, L]
domain where convective instability travels along the characteris-
tics.

The absolute value of the term α = − λ2
τ (λ1−λ2)

is a characteristic 
frequency of the system. It delineates the low frequency domain in 
which approximate expressions help decompose the transfer func-
tions in simple gain and delay components. In the spectral domain, 
λ1 and λ2 appear as information propagation speeds in distributed 
delay elements while τλ1 acts as the characteristic distance of dis-
tributed gain components.

4. Numerical validation

In this section we demonstrate the ability of the linearized 
ARZ equations to model the various nonlinear dynamics around a 
nominal operation point and compare the prediction of the model 
with actual flow and velocity data gathered from the well-known 
NGSIM data set.

4.1. Data source: NGSIM trajectories

We use the NSGIM trajectory data set for a section of the 
US-101 highway. The set gathers trajectories of vehicles sampled 
with a 10 Hz frequency thanks to high precision cameras. The data 
is pre-processed so as to take only cars into account; 45 minutes 
are recorded on a 650-meter long section with five lanes. The lanes 
are taken into account when computing the linear density of ve-
hicles ρ . A map of the time evolution of speed along the section 
is given in Fig. 7. Only a subset of the spatial domain is used due 
to the presence of ramps, which breaks the homogeneity of the 
freeway. The viable domain is 200 meters long.
4.2. Reconstructing (v, q) maps from NGSIM trajectories

The NGSIM data set does not directly provide the values v(t, x)
and q(t, x) in the resolution domain [0, T ] × [0, L]. To obtain 
macroscopic quantities out of the microscopic measurements, we 
follow the approach devised in [65] and divide the space-time grid 
into cells ([i�t, (i + 1)�t] × [ j�x, ( j + 1)�x])i∈{1...nt }, j∈{1...nx} ,
where nt and nx are the number of cells in time and space, re-
spectively. We denote each cell as bini, j . This operation consists of 
gathering corresponding data points into cells, then estimating the 
quantities of interest in each cell, it was for example used in [66].

Within each cell, a specific number of traces, or footprints of 
a vehicle along its trajectory, are available, and ρ , v , and q are 
assumed to be constant. We present several formulae to map a set 
of traces to speed, flow, and density over the space-time grid.

Binning formula for v . Since the speed is assumed to be constant 
in each cell, a straightforward estimate for the speed is the empir-
ical average. The estimator for v in bini, j is

v̂ i, j = meantrace∈bini, j (v(trace)). (34)

Binning formula for ρ . By definition, the density of bini, j is

ρi, j =
�

(t,x)∈[i�t, (i+1)�t]×[ j�x, ( j+1)�x] ρ(x, t)dxdt

nlanes�x�t
. (35)

The position of each vehicle is recorded every 0.1 second. For 
each cell we count the number of traces and normalize it by the 
sampling rate. The contribution of a given vehicle to the density of 
a cell is proportional to the number of traces it has left in the cell. 
If the speed is assumed to be locally constant, this contribution 
is proportional to the time this vehicle spends in the cell and is 
consistent with the conservation of the total number of vehicles 
across all cells. Then we have the density estimator

ρ̂i, j = card({trace | trace ∈ bin})
nlanes�x�t sampling rate

, (36)

where card(·) gives the number of elements in a set, i.e., its cardi-
nal.

Binning formula for q. By definition, q = ρv , so a logical first es-
timate for q in bini, j is

q̂i, j = v̂ i, jρ̂i, j. (37)

We can also approximate the flux through bini, j with a simple 
counting method. If a vehicle crosses spatial coordinate ( j + 1)�x
between times i�t and (i + 1)�t , then it leaves a trace in both 
bini, j and bini, j+1. Counting these vehicles and normalizing by the 
duration �t gives the estimator
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Fig. 8. Experimental justification for a 80 × 80 cell based discretization grid for the 
NGSIM data.

q̂ count
i, j = card

({
id (trace) | trace ∈ bini, j

} ∩ {
id (trace) | trace ∈ bini, j+1

})
nlanes�t

,

(38)

where id(·) gives the identification number of a vehicle.

4.2.1. Choosing the number of bins
As the estimation formulae above rely on averaging, having a 

comfortable number of points in each bin provides more stable es-
timates. It is worth mentioning that usual central limit theorem 
based reasoning for convergence of such estimates is flawed as 
several samples may correspond to the same vehicle or interacting 
vehicles, violating the independence assumption of the theorem. 
Proving the convergence of the estimates above lies beyond the 
scope of this article. As a rule of thumb we choose a discretization 
that guarantees that most bins will host more than 100 traces. This 
is achieved with a 80 × 80 grid where the 10th percentile of the 
number of traces in a given bin is 170. Such a grid also yields a 
10th percentile of 56 distinct vehicles per bin. The histograms of 
number of traces and vehicle per cell are given in Fig. 8.

While our goal here is not to present theoretical proofs of the 
convergence of the binned estimators for (v,ρ,q), it is nonetheless 
possible to check that the procedure is coherent. Two estimators 
are provided for q that use radically different techniques: the first 
relies on the average measured speed and the number of traces in 
a bin, while the other relies on counting vehicles transiting from 
a cell to another. Fig. 9 shows that the scatter plot of ̂q count plot-
i, j
Fig. 9. Sanity check for the estimation procedure. ̂q count
i, j is plotted against ̂qi, j across 

the grid of bins.

ted against ̂qi, j coincides nicely with the line y = x, validating the 
overall binning and estimation procedure above.

4.3. Estimated values for (v,q)

To check how well the linearized ARZ model fits an actual 
dataset, we chose a bounded domain and compare the theoret-
ical solution given by the second-order model and the observed 
data. Again we focus on the variables v and q. Using the esti-
mation procedure above, we compute fundamental diagrams from 
which we estimate the eigenvalues λ1 and λ2. To calibrate the re-
laxation time τ , we analyze the errors of predicted values of v and 
q for various τ . The resulting maps of both the predicted and ob-
served values highlight phenomena that the linearized model can 
and cannot account for.

Maps. The estimates v̂ i, j , ρ̂i, j , q̂i, j , and q̂ count
i, j are plotted on 

the discretized grid in Fig. 12. Note that q̂ and q̂ count give ex-
tremely similar results, so we may use q̂ count from this point on. 
Damped oscillations and smoothly decaying values along character-
istic lines are the main characteristic the practical implementation 
of the model should feature.

Fundamental diagrams. From the estimated values we can easily 
compute the fundamental diagram. We use the fundamental dia-
grams to calibrate the model parameters. Though the dataset used 
is dense, it covers only a small region of time and space. Thus, its 
small size is a potential flaw in our model parameter calibration 
as it is certain that our measurements are highly correlated. This 
seems to be confirmed by the fact that the fundamental diagrams 
below correspond only to the congested regime.

Calibration of λ1 and λ2 , linearization point. In Section 2, we found 
that λ1 is exactly v∗ and λ2 is the slope of the fundamental 
diagram at v∗ . Thus to calibrate the eigenvalues we must find 
the linearization point. We estimate the linearization point using 
the Ordinary Least Squares method. Note the dataset used cor-
responds only to the congested regime and the fundamental di-
agram is almost affine. The estimator, λ̂1 = v̂ ∗ is chosen as the 
empirical mean of v̂ i, j . To estimate λ2, we fit a linear model 
q̂ count = b1ρ̂ + b0 + ε, where ε represents the noise in the model 
that would ideally be centered, homoschedastic, and uncorrelated 
but is not practically. Then ̂λ2 = b̂1 and we take ̂q ∗ as the empiri-
cal average of ̂q count. The ratio of ̂q ∗ and ̂v ∗ gives the estimate ρ̂ ∗ . 
Provided each estimator is convergent, the continuity of the func-
tional (x, y) → x

y on its domain guarantees the convergence of ρ̂ ∗ . 
The empirical results are presented in Fig. 10. The determination 
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Fig. 10. Calibration of λ1 and λ2. The circle denotes the linearization point. The 
affine model used to estimate λ2 and the linearization point is also plotted. The 
estimates are: ̂λ1 = 8.96 m/s, ̂λ2 = −4.37 m/s, ρ̂ ∗ = 0.049 veh/m, ̂v ∗ = 8.96 m/s, 
q̂ ∗ = 0.44 veh/s, with r2 = 0.48. The characteristic frequency of the system is α̂ =
8.37 × 10−3 Hz. Its order of magnitude does correspond to practical traffic flow 
modeling.

coefficient is poor but can be improved by filtering out outliers 
and gathering more data. Future work should include improving 
the quality of the estimation. Significance tests for the coefficients 
of the linear model are not presented. The assumptions they rely 
on about the linear dependency between q̂ and v̂ are clearly not 
respected here as the noise is auto-correlated. Further work should 
also turn this rather heuristic method for estimating parameters 
into a fully justified statistical procedure. Note that the goal of the 
present article is to provide a new model and corresponding spec-
tral analysis, which we want to illustrate with state of the art data. 
Thus, development of statistical methods to handle this data is out 
of the scope of the present investigation.

4.4. Verification of the spectral form

In this section we demonstrate the performance of the spectral 
form as a prediction tool using the time domain responses derived 
from the transfer functions and FFT. Since we are working with 
a linearized system, we can decompose boundary conditions then 
add predicted values inside the domain [0, T ] × [0, L]. Fourier de-
composition of boundary conditions is here extremely accurate as 
the median relative errors for the interpolation of the values of 
ξ1 (x = 0, ·) and ξ2 (x = L, ·) are respectively 2% and 3%.

Simulated maps. Since the spectral form presents information 
in the diagonalized basis, we need a conversion before we can 
compare the simulated results to the values estimated from the 
dataset. To make a comparison in the diagonalized basis, we first 
compute the estimated deviations from the equilibrium ̂̃vi, j =
v̂ i, j − v̂ ∗ and ̂̃qi, j = q̂i, j − q̂ ∗ . Then the estimates for ξ1 and ξ2 are 
given by ξ̂1i, j = ρ̂ ∗λ̂2

λ̂1−̂λ2
̂̃vi, j + ̂̃qi, j and ξ̂2i, j = ρ̂ ∗λ̂1

λ̂1−̂λ2
̂̃vi, j . To compare 

the physical variables, we compute the velocity and flow predic-
tions by inverting (15): ̃q = ξ1 − λ1

λ2
ξ2, ṽ = λ1−λ2

ρ ∗λ1
ξ2.

Fig. 12 shows important qualitative properties of the model. As 
expected, the model generally predicts with very good accuracy 
the decay of all quantities along their characteristic lines, a realistic 
feature that cannot be paralleled by first-order models. The general 
quality of the fit is rather good with most of the error on v and 
q in a 20% range of the data’s amplitude between minimum and 
maximum values. Furthermore the linearized second-order model 
Fig. 11. Distribution of prediction errors (each sample is the error corresponding to 
a single discretization cell).

manages to capture oscillations observed on the boundary and ac-
count for their decay accurately.

Error analysis. Examining the empirical distributions of errors 
and relative errors for speed and flow in Fig. 11 reveals important 
facts about the accuracy of our procedure. In particular, although 
most of the flow and speed finally predicted in each bin is closed 
to the data (the relative error is mostly below 20%, the proportion 
is 97.0% for q and 77.6% for v), the errors distributions are skewed 
negatively and have a negative median (in particular those of v). 
Predictions therefore have negative bias. Improving the calibration 
of eigenvalues could help reduce it.

Calibration of τ . For each τ we compute the mean absolute error
(MAE), or the average difference in absolute value between sim-
ulated and predicted values for each discretization cell (Fig. 13). 
Since the quantities v and q are not physically homogeneous, it 
is not sensible to aggregate the errors over these quantities. How-
ever, ξ1 and ξ2 are both expressed in veh/s. Summing their MAE 
gives a reliable uni-dimensional index of the quality of the fit with 
respect to τ . This quantity is computed for different values of τ
ranging from 5 to 80 seconds. The value offering the best fit is 
τ ∗ = 39.18 s.

4.5. Findings and conclusion from the numerical experiments

The numerical experiments above have validated the accuracy 
of the linearized model and highlighted several of its core proper-
ties.
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Fig. 12. Data versus predicted. Top figure: (v,q) domain, top row is v , bottom row is q. Bottom: (ξ1, ξ2) domain, top row is ξ1, bottom row is ξ2. First column: data. Middle 
column: predictions. Third column: error (difference between prediction and data).
The numerical experiments above show that the linearized ARZ 
model is capable of reproducing NGSIM data accurately for a ho-
mogeneous segment of the US-101 freeway. Oscillations are ac-
counted for as well as their damping delay.

The spectral approach provided here supports a solution to the 
underlying traffic flow model. In other words, the contribution of 
the work is to show that the model can support oscillatory behav-
ior (through periodic solutions). This is the main difference with 
purely data driven approaches such as [51] for example.
5. Conclusion

As the full nonlinear ARZ equations have no known closed form 
solutions in the general case, they are difficult to analyze. The lin-
earized equations enable the use of spectral methods presented 
here, allowing for elegantly simple yet powerful analysis tools re-
lying on explicit solutions. These equations are diagonalized, and 
solved explicitly using a spectral representation (distributed trans-
fer function). Using this approximation, we are able to analyze 
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Fig. 13. Calibration of τ , one minimizes the sum of MAE over ξ1 and ξ2.

them around a nominal flow and characterize the oscillatory be-
havior of the solution. The linearized model is able to capture 
important features of the flow which first order models cannot.

With the linearized ARZ model, we were also able to define 
the Traffic Froude Number F . This quantity is computed using the 
eigenvalues of the system and characterizes the flow regime of the 
road section under consideration.

Considering the transfer function of the linearized system of 
equations delineates the conditions for stability of the approxima-
tion about the equilibrium. The time domain responses we derive 
show that the system is unstable when one of the eigenvalues is 
negative. In the free-flow regime, F < 1, values of flow and speed 
increase exponentially in a conic region of space and time and the 
system leaves the linear regime, while in the congested regime, 
F > 1, oscillations decrease. In the latter case, the system remains 
in the linear regime and oscillations on boundary conditions are 
damped with an exponential rate along the characteristic lines. 
Thus, the TFN is also an indicator of convective stability.

The behavior predicted in congested regime for traffic does 
not present shocks and Fourier spectral analysis cannot account 
for more nonlinear and non-smooth behavior as well as wavelet 
transforms. However, our spectral domain study paves the way to 
applying standard linear system control theory to traffic, with a 
linearized second model that is empirically reliable in terms of 
reproducing actual data. Future work will therefore focus on con-
troller design based on the spectral framework presented here.
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