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ABSTRACT
In this article, the problem of estimating the state of a
discretized hyperbolic scalar partial differential equation is
studied. The discretization of the Lighthill-Whitham-Richards
equation with a triangular flux function using the Godunov
scheme is shown to lead to a hybrid linear system or Switched
Linear Systems (SLS) with a number of modes exponential
in the size of the discretized model. Some geometric prop-
erties of the partition of the space into polyhedra (in which
a mode is active) are exploited to find heuristics to reduce
the number of modes to a representative set. This motivates
a new approach inspired from a well established technique
for hybrid system estimation, namely the interactive multi-
ple model (IMM). qThe performance of this new variant of
the IMM is compared to the extended Kalman filter and the
ensemble Kalman filter using the Mobile Millennium data
set.

Categories and Subject Descriptors
G.1.8 [Numerical Analysis]: Partial Differential Equa-
tions

Keywords
Godunov Scheme, Hybrid Systems, Interactive Multiple Model

1. INTRODUCTION
Partial Differential Equations (PDEs) have been exten-

sively used in the scientific literature because they provide
a concise mathematical model to capture essential prop-
erties of a wide variety of phenomena such as fluid flow,
heat, and electrodynamics. They are often used in traf-
fic as density based traffic models. The Lighthill-Whitham-
Richards (LWR) PDE [20, 23] and its discretization using
the Godunov scheme [14, 17, 25] is a well established model
for traffic dynamics, also known as the Cell Transmission
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Model (CTM) [6, 7] in the transportation literature. State
of the art traffic estimation techniques for this model in-
clude the application of the extended Kalman filter (EKF)
to the LWR PDE by Schreiter et al. [24], and to non-scalar
traffic model by Papageorgiou [22]. The application of the
EKF to the LWR PDE model is problematic due to the
non-differentiability of its discretization, a problem which
has been partially adressed in [3] and [27]. The ensemble
Kalman filter (EnKF) has also been applied to a velocity-
based model in [29], in order to circumvent the difficulties
of non-differentiability of numerical solutions to these PDEs
such as the one presented in this article.

For a triangular flux function, the Godunov scheme ap-
plied to the LWR model can be proven to lead to a piece-
wise affine (PWA) hybrid system. The resulting switching-
mode dynamical system combines continuous dynamics in
the form of linear discretized dynamical systems, and dis-
crete dynamics modeled by a finite automaton for the tran-
sitions between the modes. The problem of estimation of
hybrid systems has been widely studied in past work [15, 28,
16, 1]. In particular, such techniques have been successfully
used for aircraft tracking in [13] in which Bar-Shalom’s inter-
acting multiple model (IMM) algorithm was used [2]. Similar
hybrid estimation algorithms and their applications are de-
scribed in [21, 26, 12]. In the context of traffic estimation,
computational difficulties arise when the IMM algorithm is
applied to the highway model due to the exponential num-
ber of modes. A priori, each cell of the discretized model
can be in seven different modes, which lead to 7n modes,
where n is the dimension of the state thus creating serious
computational challenges in the estimation problem. One
possible way to address this is with the mixture Kalman fil-
ter algorithm [5] which handles this complexity by randomly
sampling in the space of modes.

In the present work, we approach this difficulty differently,
leading to the following contributions:

• The article uses an explicit formulation of the Godunov
scheme to express the evolution of the discretized LWR
PDE as a PWA hybrid system

• It develops methods for reducing the number of modes
to a tractable number using geometric results derived
from the PWA representation of the system, and using
k-means clustering.

• It demonstrates the performance of the method on
field experiment data, and compares it to a traditional
EnKF approach on the discretized LWR PDE.
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Thus, the contribution of the article can be viewed as the
construction of a method in which the estimation of the state
of a discretized LWR PDE can be done in two steps; (1) us-
ing Kalman filtering on each of the modes written explicitly
in a linear manner (which does not constitute a linearization
of the dynamics like the EKF), (2) using a new framework
for the mode estimation step, so it becomes tractable, which
enables the use of various techniques, in particular the IMM.

The rest of the article is organized as follow: Section 2
presents the mathematical model used in the rest of the ar-
ticle. Section 3 unravels the PWA expression of the Godunov
scheme. Section 4 presents feasible heuristics inspired from
IMM using the PWA character of the Godunov scheme, and
Section 4.5 presents some numerical results.

2. A HYBRID MODEL FOR THE GODUNOV
SCHEME

This section briefly summarizes results derived earlier on
hybrid formulations of the Godunov scheme [27]. We use
the first order Godunov scheme for the discretization of the
Lighthill-Whitham-Richards equation with a triangular flux
function, and proves that the resulting nonlinear dynamical
system can be decomposed in a piecewise affine manner. Us-
ing this explicit representation, the resulting hybrid system
is shown to have an exponential number of modes.

2.1 Discretization of the LWR equation
We consider the Lighthill-Whitham-Richards hydrodynamic

model used earlier in [27] as the distributed parameter sys-
tem model of interest:

∂ρ(x, t)

∂t
+
∂Q(ρ(x, t))

∂x
= 0 (2.1)

where Q(ρ(x, t)) is the flux function historically introduced
by Greenshields [10]. For the rest of the work, we will in-
stantiate the results on a triangular flux function introduced
by Daganzo [7]:

QT (ρ) =

{
vfρ if ρ ≤ ρc
−ωf (ρ− ρjam) if ρ > ρc

(2.2)

where ωf = vfρc/(ρjam − ρc) is the backwards propagation
wave speed.

A seminal numerical method to solve the above equations
is given by the Godunov scheme, which is based on exact
solutions to Riemann problems [8, 9]. This leads to the
construction of a nonlinear discrete time dynamical system.
The Godunov discretization scheme is applied on the LWR
PDE, where the discrete time step ∆t is indexed by t, and
the discrete space step ∆x is indexed by i:

ρt+1
i = ρti −

∆t

∆x

(
G(ρti, ρ

t
i+1)−G(ρti−1, ρ

t
i)
)

(2.3)

In order to ensure numerical stability, the time and space
steps are coupled by the CFL condition [17]: cmax

∆t
∆x
≤ 1

where cmax denotes the maximal characteristic speed.
For a triangular flux function, the Godunov flux can be

expressed as the minimum of the sending flow S(ρ) from the
upstream cell and the receiving flow R(ρ) from the down-
stream cell (2.4,2.5,2.6) through a boundary connecting two

cells of a homogeneous road (i.e. the upstream and down-
stream cells have the same characteristics). For the trian-
gular flux function:

G(ρ1, ρ2) = min(S(ρ1), R(ρ2)) (2.4)

S(ρ) =

{
Q(ρ) = vfρ if ρ ≤ ρc
qc if ρ > ρc

(2.5)

R(ρ) =

{
qc if ρ ≤ ρc
Q(ρ) = −ωf (ρ− ρjam) if ρ > ρc

(2.6)

where ρ1 is the density of the cell upstream and ρ2 is the
density of the cell downstream.

The explicit values taken by G(ρ1, ρ2) for a partition of
the space in different regions of the space (ρ1, ρ2) W, L, and
D are shown in Figure 2.1 and defined by equations 2.8. In
the triangular case:

GT (ρ1, ρ2)

=


R(ρ2) = −ωf (ρ2 − ρjam) if (ρ1, ρ2) ∈W

qc if (ρ1, ρ2) ∈ L

S(ρ1) = vfρ1 if (ρ1, ρ2) ∈ D

(2.7)

W = {(ρ1, ρ2) | ρ2 > h(ρ1) , ρ2 > ρc}
L = {(ρ1, ρ2) | ρ1 > ρc , ρ2 ≤ ρc}
D = {(ρ1, ρ2) | ρ2 ≤ h(ρ1) , ρ1 ≤ ρc}

(2.8)

The boundary between the W and D regions follows the
(ρ1, ρ2) = (ρ1, h(ρ1)) trajectory for ρ1 ≤ ρc, with:1

h(ρ1) = R̄−1(S̄(ρ1)) = − vf
ωf
ρ1 + ρjam (2.9)

where S̄ and R̄ respectively denote the restrictions of the
sending and receiving flows S and R to the sub-regions [0, ρc)
and (ρc, ρjam] respectively, which also correspond to the left
and right parts of the flux function (w.r.t. ρc), as shown in
Figure 2.1.

ρ1

ρ2

ρc density

ρc

ρc

ρ

R̄−1(S̄(ρ))

S̄(ρ)

ρ R̄−1(S̄(ρ))

flow

R̄S̄

ρ1 = ρ2

qc

R(ρ2)

S(ρ1)

ρjam

ρjam

ρjam

qc

W

LD

Figure 2.1: Values of G(ρ1, ρ2) in the space (ρ1, ρ2).

2.2 Piecewise affine model
In the Godunov scheme (2.3), the update of the density

ρt+1
i at cell i depends on the triplet (ρti−1, ρ

t
i, ρ

t
i+1). With

∆t
∆x

= α, the Godunov scheme reads:
1Here, we suppose that R̄ is a strictly monotonic function on
(ρc, ρj ], hence invertible, and R̄−1 denotes its inverse, which
is the case for the triangular flux function.
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ρt+1
i = ρti − α

(
G(ρti, ρ

t
i+1)−G(ρti−1, ρ

t
i)
)

(2.10)

The expression (2.10) is non-linear but can be formulated
as a piecewise affine hybrid system. Depending on whether
(ρti−1, ρ

t
i) and (ρti, ρ

t
i+1) are in W, L, or D, there are nine

possible combinations at cell i, which can be reduced to
seven “modes” since the pairs (ρti−1, ρ

t
i) and (ρti, ρ

t
i+1) have

ρti in common. Let us denote by f(ρti−1, ρ
t
i, ρ

t
i+1) the vector

function for the possible values of ρt+1
i . Table 2.1 lists these

seven possibilities, which can be derived from Figure 2.1.

Mode (ρti−1, ρ
t
i) (ρti, ρ

t
i+1) f(ρti−1, ρ

t
i, ρ

t
i+1)

1 W W (1− αωf )ρti + αωfρ
t
i+1

2 W L (1− αωf )ρti + αωfρc

3 L W ρti + αωfρ
t
i+1 − αωfρc

4 L D (1− αvf )ρti + αvfρc

5 D W αvfρ
t
i−1 + ρti + αωfρ

t
i+1 − αωfρjam

6 D L αvfρ
t
i−1 + ρti − αvfρc

7 D D αvfρ
t
i−1 + (1− αvf )ρti

Table 2.1: 7 × 1-dimensional column vector
f(ρti−1, ρ

t
i, ρ

t
i+1) of the different values of ρt+1

i depend-
ing on the mode.

For example, for the first mode, (ρti−1, ρ
t
i) and (ρti, ρ

t
i+1)

are both in W (see Figure 2.1), thus G(ρti−1, ρ
t
i) = R(ρti) and

G(ρti, ρ
t
i+1) = R(ρti+1), and then ρt+1

i = ρti − α(R(ρti+1) −
R(ρti)). By extending this result to an entire link with dis-
crete state space indexed by i = 1, · · · , n, where n is the
number of space steps, we have an exhaustive description of
the space of “modes” along the link.

We define J , the Jacobian matrix of f with respect to
(ρti−1, ρ

t
i, ρ

t
i+1) in each of the seven modes above (which are

all linear):

J =

(
∂fj
∂ρk

)
j=1,··· ,7,k=i−1,i,i+1

(2.11)

Where fj is the j-th entry of the vector function f defined in
Table 2.1. It is useful to make the Jacobian matrix J explicit
with respect to (ρti−1, ρ

t
i, ρ

t
i+1), and the constant term w:

J =



0 1− αωf αωf
0 1− αωf 0
0 1 αωf
0 1− αvf 0
αvf 1 αωf
αvf 1 0
αvf 1− αvf 0


, w =



0
αωfρc
−αωfρc
αvfρc
−αωfρjam

−αvfρc
0


(2.12)

Since f is a linear function of (ρti−1, ρ
t
i, ρ

t
i+1) as shown in

Table 2.1, we note that J is constant. More notably, the
seven possible values of ρt+1

i in Table 2.1 can be rewritten
in vector form as follows:

f(ρti−1, ρ
t
i, ρ

t
i+1) = J

 ρti−1

ρti
ρti+1

+ w (2.13)

In the next section, we will show that the decomposition
in “modes” as shown in Table 2.1 leads to a piecewise affine

formulation of the Godunov scheme in the case of the trian-
gular flux function.

Let us consider a link with discrete time step indexed by
t ≥ 0 and discrete space step indexed by i = 1, · · · , n, and
let us denote ρt = (ρt0, ρ

t
1, · · · , ρtn, ρtn+1) an n+2 dimensional

vector which describes the state of the link at time t in the
space S = [0, ρjam]n+2, where ρti is the density at time t and
cell i. Note that the ghost cells 0 and n+ 1 are included in
the state of the link.2

Definition of the space of modes: Let us denote by
Mn the space of modes of the system (Mn ⊂ {1, · · · , 7}n,
see Table 2.1). For m ∈ Mn, m is a vector of dimension
n for which the i-th entry mi ∈ {1, · · · , 7} is the mode at
cell i. Equivalently, each element of Mn can be described
as a sequence of regions in which the pair (ρi, ρi+1) is, for
i = 0, · · · , n. Hence, we define the equivalent space of modes
M̃n ⊂ {w, l, d}n+1, and for s ∈ M̃n, s is a vector of di-
mension n + 1 for which the i-th entry si is equal to l if
(ρi, ρi+1) ∈ L, for i = 0, · · · , n, and similar definitions for
w and d. As will be seen later, this second definition gives
a description of the partition of the space S into different
polyhedra Pm in which the mode is m. See Figure 2.2 for
an illustration.

s ∈ M̃n

1 4 m ∈Mn2

ρ0 ρ1 ρ2 ρ3 · · · ρn ρn+1

w l d l

ρ ∈ [0, ρjam]
n+2

· · ·
· · ·

Figure 2.2: Illustration of the vectors ρ ∈ [0, ρjam]n+2,

s ∈ M̃n ⊂ {w, l, d}n+1, and m ∈ Mn ⊂ {1, · · · , 7}n for n
cells.

The n-dimensional vector m ∈Mn describes the mode of
the link at any time, as defined in the previous section. At
each time step, the state of the link is updated through the
following nonlinear dynamical system:

ρt+1 = Fm[ρt] if ρt ∈ Pm (2.14)

with Fm[·] an n+ 2 dimensional function vector, and m the
mode at time t. With ut and dt the boundary conditions
upstream and downstream at time step t, the i-th entry
ρt+1
i = Fm,i[ρ

t] is:

ρt+1
i =


fmi(ρ

t
i−1, ρ

t
i, ρ

t
i+1) for i = 1, · · · , n

ut for i = 0

dt for i = n+ 1

(2.15)

wheremi denotes the i-th entry ofm ∈Mn, i.e. the mode of
cell i at time step t, and fmi(ρ

t
i−1, ρ

t
i, ρ

t
i+1) is the mi-th entry

of the vector-valued function f evaluated at (ρti−1, ρ
t
i, ρ

t
i+1).

We note that ρt+1
0 = ut and ρt+1

n+1 = dt, which means that
the ghost cells are the boundary conditions of the Godunov

2The values of ρt0 and ρtn+1 are given by the prescibed
boundary conditions to be imposed on the in left and right
side of the domain respectively. Note that these bound-
ary values do not always affect the physical domain because
of the nonlinear operator (2.7), which causes the boundary
conditions to be implemented in the weak sense. For more
details, see [29] and [25].
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scheme. For a triangular flux function, with Lmi the mi-th
line of JT and wmi the mi-th entry of w, the update operator
of the dynamical system is:

ρt+1
i

=


Lmi ·

 ρti−1

ρti
ρti+1

+ wmi for i = 1, · · · , n

ut for i = 0

dt for i = n+ 1

(2.16)

When ρt ∈ Pm, the (n + 2) × (n + 2)-dimensional state-
transition matrix Am is obtained by concatenating the 3×1
row vectors Lmi along the diagonal. It is tridiagonal with di-
agonal elements {0, Jm1,2, · · · , Jmn,2, 0}, lower diagonal ele-
ments {Jm1,1, Jm2,1, · · · , Jmn,1, 0}, and upper diagonal el-
ements {0, Jm1,3, Jm2,3, · · · , Jmn,3} where J is defined in
equation (2.12). Equivalently:

Am =


0 · · · 0

Lm1

. . .

Lmn

0 · · · 0

 (2.17)

Let us denote bm and ct the two vectors of dimension (n+
2) with entries {0, wm1 , · · · , wmn , 0} and {ut, 0, · · · , 0, dt}
repectively, and Pm the subset of space S where the mode
is m. The update operator of the dynamical system is piece-
wise affine:

ρt+1 = Amρ
t + bm + ct if ρt ∈ Pm (2.18)

We now provide a description of the partition of the space
into the polyhedra Pm in which the mode is m. Note that
in this formula, Amρ

t represents the local (affine) discretiza-
tion of the PDE, and ct the boundary condition.

2.3 Number of modes
A priori, for n cells, the number of possible modes at any

given time is equal to 7n (cf. Table 2.1). Since two consec-
utive indices are constrained by the evolution of equation
(2.10) as derived before, the number of modes for the entire
link is less than 3 · (2.5)n.

WW L W D W L W L D L W D W L D

W L W D W L D

W L D(ρ0, ρ1)

(ρ1, ρ2)

(ρ2, ρ3)

Figure 2.3: The sixteen possible modes for the first
three pairs (ρ0, ρ1), (ρ1, ρ2), and (ρ2, ρ3).

Let nk be the number of modes for a discretized model
with k cells. Then we can recursively compute nk with re-
spect to k. Let us denote by wk, lk, and dk the number of
modes for which (ρk, ρk+1) is in W, L, and D respectively
(nk = wk + lk + dk). Then these equations can be derived:

w0 = l0 = d0 = 1
wk+1 = wk + lk + dk
lk+1 = wk + dk for k ≥ 0
dk+1 = lk + dk

(2.19)

Using matrix notations and equation (2.19):

 wk
lk
dk

 = Ak ×

 w0

l0
d0

 where A =

 1 1 1
1 0 1
0 1 1

 (2.20)

It is possible to compute Ak explicitly by diagonalizing the
matrix A, to obtain an explicit expression for wk, lk, and dk
in the form of a.βk + b.γk + c.δk. However, this analytical
expression is unwieldy, so we will just derive lower and upper
bounds to nk. It can be proved that dk ≤ nk/2 for k ≥ 0,
then we can prove recursively that 3 · 2k ≤ nk ≤ 3 · (2.5)k.

number of cells 1 2 5 10 20
number of modes 7 16 182 10426 34206521

bound without analysis 7 49 16807 282475249 8 · 1016

Table 2.2: Number of modes for a homogeneous
road.

3. HYBRID ESTIMATION ALGORITHMS
In this section, we first introduce a geometric framework

for the description of the polyhedral structure of the hy-
brid system (2.18). We then develop an interactive multiple
model Kalman filter (IMM KF) algorithm to the resulting
Polyhedral Piecewise Affine (PPWA) hybrid system.

3.1 PPWA hybrid system
We now provide a description of the partition of the space
into the polyhedra Pm in which the mode is m. Note that
in this formula, Amρ

t represents the local (affine) discretiza-
tion of the PDE, and ct the boundary condition.

For a discretization into n cells, we chose to describe the
ensemble of modes M̃n in sequences s ∈ {w, l, d}n+1 and
define Ps the corresponding polyhedron for each sequence.
Let us define 3n+1 polyhedra Wi, Li, and Di for i = 0, · · · , n
in the space S obtained by instantiating h(ρ1) with (2.9):

Wi = {(ρi, ρi+1) | ρi+1 +
vf
ωf
ρi > ρjam , ρi+1 > ρc}

Li = {(ρi, ρi+1) | ρi > ρc , ρi+1 ≤ ρc}
Di = {(ρi, ρi+1) | ρi+1 +

vf
ωf
ρi ≤ ρjam , ρi ≤ ρc}

(3.1)

The polyhedron Ps, in which the mode is s ∈ M̃n, can be
described as an intersection of n+ 1 polyhedra Qi:

Ps =

n⋂
i=0

Qi with Qi =


Wi if si = w

Li if si = l

Di if si = d

(3.2)

Moreover, for two different modes s and s′, and corre-
sponding polyhedra Ps =

⋂n
i=0 Qi and Ps′ =

⋂n
i=0 Q′i, we

can find an index i for which Qi and Q′i are disjoint. For
instance, suppose without loss of generality that Qi = Wi

and Q′i = Di, and we know that Wi and Di are disjoint.
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Then in this case, the hyperplan {ρ | ρi+1 +
vf
ωf
ρi = ρjam}

is a seperating hyperplan between Ps and Ps′ . Hence, Ps

and Ps′ are disjoint and the family {Ps}s∈Mn is a partition

of M̃n.
Each polyhedron Ps can be defined as an intersection of

a finite number of half-spaces. Such definition is called a
halfspace representation or H-representation [11]. Let us
introduce the following indicator functions:

αi(ρ) = 1{ρi+1+
vf
ωf

ρi>ρjam}
for i = 0, 1, · · · , n

βi(ρ) = 1{ρi>ρc} for i = 0, 1, · · · , n+ 1
(3.3)

We define the corresponding half-spaces Hαi and Hβi .
The complementary half-spaces S\H are denoted by Hc

αi

and Hc
βi

and the corresponding indicator functions are 1 −
αi(ρ) and 1− βi(ρ). Since we have:

Wi = Hαi ∩Hβi+1

Li = Hβi ∩Hc
βi+1

Di = Hc
αi
∩Hc

βi

(3.4)

for i = 0, 1, · · · , n the polyhedra defined in (3.1), their re-
spective indicator functions are:

wi(ρ) = αi(ρ)βi+1(ρ)
li(ρ) = βi(ρ)(1− βi+1(ρ))
di(ρ) = (1− αi(ρ))(1− βi(ρ))

for i = 0, 1, · · · , n (3.5)

Hence, evaluating the indicator functions αi(ρ) for i =
0, · · · , n, and βi(ρ) for i = 0, · · · , n + 1 gives the mode m
of state ρ. Equations (3.2, 3.4) give an H-representation of
Ps. With Hs the set of half-spaces in this representation:

Ps =
⋂

H∈Hs

H (3.6)

3.2 Kalman filter algorithm
In order to use the Kalman filter to estimate the state of

the link given a sequence of noisy observations, we model the
process by adding a white noise to the underlying dynamical
system model. The “true” state at time t+ 1, namely ρt+1,
is then given by the update equation:

ρt+1 = Amρ
t + bm + ct + ηt if ρt ∈ Pm (3.7)

where ηt ∼ N(0, Qt) is the Gaussian zero-mean, white state
noise with covariance Qt. To apply the control update of the
Kalman filter, it is then necessary to know the mode m of
the state ρt (i.e. m such that ρt ∈ Pm) by evaluating the
indicator functions (3.5).

Additionally, the observation model for the link is given
by:

zt = Htρt + χt (3.8)

where Ht is the pt × n-dimensional linear observation ma-
trix which encodes the pt observations (each one of them
being at a discrete cell on the discretization domain) for
which the density is observed during discrete time step t,
and n is the number of cells along the link. The last term
in equation (3.8) is the white, zero mean observation noise
χt ∼ N(0, Rt) with covariance matrix Rt.

Let ρ̂t:t and P t:t be the a posteriori state estimate and
error covariance matrix at time t. The predicted state esti-
mate ρ̂t+1:t

j and covariance estimate P t+1:t
j of the prediction

step in mode mj are:3

ρ̂t+1:t
j = Amj ρ̂

t:t + bmj + ct

P t+1:t
j = AmjP

t:t(Amj )T +Qt
(3.9)

The measurement residual rt+1
j , residual covariance St+1

j ,

Kalman gain Kt+1
j , updated state estimate ρ̂t+1:t+1

j , and

updated estimate covariance P t+1:t+1
j of the update step in

mode j are:

rt+1
j = zt+1 −Ht+1ρ̂t+1:t

j

St+1
j = Ht+1P t+1:t

j (Ht+1)T +Rt+1

Kt+1
j = P t+1:t

j (Ht+1)T (St+1
j )−1

ρ̂t+1:t+1
j = ρ̂t+1:t

j +Kt+1
j rt+1

j

P t+1:t+1
j = (I −Kt+1

j Ht+1)P t+1:t
j

(3.10)

In [18], a measure of the likelihood of the Kalman filter in
mode j is given by the mode likelihood function Λt+1

j , where
N (x; a, b) is the probability density function of the normal
distribution with mean a and variance b:

Λt+1
j = N (rt+1

j ; 0, St+1
j ) (3.11)

3.3 Interactive multiple model KF
Let us denote by mt

j the event that the system is in the
mode j at time t. We then assume that the model is a
discrete-time stochastic linear hybrid system in which the
mode evolution is governed by the finite state Markov chain

µt+1 = Πµt (3.12)

where Π = {πij} = P (mt+1
j |m

t
i) is the mode transition

matrix and µt = {µtj} = P (mt
j) is the mode probability at

time t.

Effective estimation techniques for stochastic hybrid sys-
tems are based in multiple models since it is natural to apply
a statistical filter for each of the modes. The Interactive Mul-
tiple Model (IMM) algorithm [2, 4, 19] is a cost-effective (in
terms of performance versus complexity) estimation scheme
in which there is a mixing/interacting step at the beginning
of the estimation process, which computes new initial condi-
tions for the Kalman filters matched to the individual modes
at each time step as illustrated in Figure 3.1.

LetMt be the set of modes for which the Kalman filter is
applied at time step t. For the IMM algorithm, Mt =Mn

for all t ≥ 0 since we apply the filter to every mode. The
components of the mixing step are the mixing probability

µ
t|t+1
ij of being in mode i at time t given that the mode at

time t + 1 is j, the mixed condition ρ̂t:t0j and P t:t0j for the
state estimate and covariance of mode j at time t, and the
“spread-of-the-means” Xj in the expression of P t:t0j . They

are computed for j ∈ Mt+1 w.r.t. ρ̂t:ti and P t:ti , the state
estimate and its covariance of Kalman filter i at time t:

3Unlike in Section 2 where ρi and mi denote the i-th entry
of the state vector ρ and the mode m respectively, ρ̂j is the
state estimate in mode mj .
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ρ̂t:t1 , P
t:t
1 ρ̂t:t2 , P

t:t
2

ρ̂t:t01, P
t:t
01 ρ̂t:t02, P

t:t
02

KF1 KF2

ρ̂t+1:t+1
1 , P t+1:t+1

1 ρ̂t+1:t+1
2 , P t+1:t+1

2

mode
probability
update

combination

Λt+1
1

Λt+1
2

ρ̂t+1:t+1
1 , P t+1:t+1

1

ρ̂t+1:t+1
2 , P t+1:t+1

2

Λt+1
1 Λt+1

2zt+1zt+1

µ
t+1|t+2
1

µt+1
2

µt+1
1

µt+1
1 , µt+1

2

ρ̂t+1:t+1

P t+1:t+1

m̂t+1

µ
t|t+1
1

µ
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Figure 3.1: Illustration of the structure of IMM al-
gorithm for a two-mode system from [18].

µ
t|t+1
ij = 1

Zj
πijµ

t
i for i ∈Mt

Zj =
∑
i∈Mt πijµ

t
i

ρ̂t:t0j =
∑
i∈Mt ρ̂

t:t
i µ

t|t+1
ij

P t:t0j =
∑
i∈Mt P

t:t
i µ

t|t+1
ij +Xj

Xj :=
∑
i∈Mt (ρ̂t:ti − ρ̂

t:t
0j )(ρ̂t:ti − ρ̂

t:t
0j )Tµ

t|t+1
ij

(3.13)

We apply the Kalman filter in each mode j ∈ Mt+1

(KFj) as described with equations (3.9,3.10) and the re-
sulting mode likelihood functions Λt+1

j are obtained from

ρ̂t+1:t+1
j and P t+1:t+1

j with equation (3.11). The mode prob-

ability µt = {µtj} is then updated through:

µt+1
j =

1

Z
Λt+1
j

∑
i∈Mt

πijµ
t
i for j ∈Mt+1 (3.14)

where Z is a normalization constant. The output of the IMM
algorithm are the state estimate ρ̂t+1:t+1 which is a weighted
sum of the estimates from the Kalman filters in each mode
and its covariance P t+1:t+1, and the mode estimate m̂t+1 is
the mode which has the highest mode probability. They are
given by the combination step:

ρ̂t+1:t+1 =
∑
j∈Mt+1 ρ̂

t+1:t+1
j µt+1

j

P t+1:t+1 =
∑
j∈Mt+1 P

t+1:t+1
j µt+1

j +X

X :=
∑
j∈Mt+1 (ρ̂t+1:t+1

j − ρ̂t+1:t+1)(ρ̂t+1:t+1
j − ρ̂t+1:t+1)Tµt+1

j

m̃t+1 := argmaxj∈Mt+1 µt+1
j

(3.15)
In [18, 13], the IMM algorithm is used as a hybrid esti-

mator for Air Traffic Control (ATC) tracking. The models
used include one for the uniform motion and one (or more)

for the maneuver. However, the discretized PDE model de-
scribed in section 2 has an exponential number of modes,
as shown in Section 2.3, which induces an exponential time
complexity of the IMM algorithm. Thus, the straight ap-
plication of the IMM algorithm [18] as presented earlier is
not tractable. The next section provides a reduced version
of the algorithm, which is tractable.

4. REDUCED IMM
A solution to the tractability problem presented in the

previous section consists in selecting a “representative” sam-
ple of modes following an algorithm based on the polyhedral
structure of the model. Specifically, we only consider the
mode in which the state estimate is and its adjacent modes.

4.1 Geometric properties
We extend the geometric setting presented in section 3

with definitions and the concept of adjacent polyhedra. We
do not make any distinction between an open and closed
half-space which are both denoted by H, and the associated
hyperplane is ∂H.

Faces of a polyhedron: A supportive hyperplane of a
closed convex set C is a hyperplane ∂H such as C∩∂H 6= ∅
and C ⊆ H, where H is one of the two half-spaces (as-
sociated to the hyperplane). Given a polyhedron P, the
inersection with any supportive hyperplane is a face of P.
Moreover, a vertex is a zero-dimension face, an edge a one-
dimension face, and a facet is a face of dimension d− 1 if P
is of dimension d. For a full-dimensional polyhedron, a facet
is of dimension n+ 1 (recall that the space S = [0, ρj ]

n+2 is
of dimension n+ 2).

ρi

ρi+1

ρc

ρc

ρjam

ρjam

0

2 1
3

4
5

6

βi+1 βi+1

βi

βi
αi

αi

Figure 4.1: Projection of the half-spaces Hαi , Hβi ,
Hβi+1 , Hc

αi
, Hc

βi
, Hc

βi+1
on the plan (ρi, ρi+1).

Minimal H-representation: There exist infinitely many
H-descriptions of a convex polytope. However, for a full-
dimensional convex polytope, the minimal H-description is
in fact unique and is given by the set of the facet-defining
halfspaces [11]. The following procedure gives the minimal
H-representation of a polyhedron of the partition of S in our
highway model.

Proposition 1: Let Hmin
s be the set of half-spaces in the

minimal H-representation of Ps. We have:

Hmin
s ⊂

(
∪ni=0{Hαi ,H

c
αi
}
)
∪
(
∪n+1
i=0 {Hβi ,H

c
βi}
)

(4.1)
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where the previous formula means family of mathematical
objects as opposed to union of half-spaces. With W :=
{k|sk = w, 0 ≤ k ≤ n − 1}, L := {k|sk = l, 0 ≤ k ≤ n − 1},
D := {k|sk = d, 0 ≤ k ≤ n− 1}, and | · | the cardinality:

|Hmin
s | ≤ 2+ |W|+ |L|+2×|D| = n+2+ |D| ≤ 2n+2 (4.2)

Proof of proposition 1: The following proof gives an al-
gorithm to find the minimal H-representation of Ps. We
have seen in section 3 that equations (3.2, 3.4) give an H-
representation of Ps as an intersection of 2 × (n + 1) half-
spaces, equivalently a set of 2×(n+1) inequalities. However,
some of them do not define a facet of the polytope, equiv-
alently the associated linear inequality is redundant. We
want to remove such half-spaces from the H-representation
Hs and get the set Hmin

s of half-spaces in the minimal H-
representation of Ps:

Ps =
⋂

H∈Hmin
s

H (4.3)

For this purpose, we list all the scenarios in which a half-
space is redundant. They exactly happen when the inter-
section of two half-spaces is included in another half-space
in the H-representation. There are 6 × (n + 1) of them as
illustrated in Figure 4.1:

1 Hβi ∩Hβi+1 ⊂ Hαi

2 Hαi ∩Hc
βi

⊂ Hβi+1

3 Hc
αi
∩Hβi+1 ⊂ Hc

βi
4 Hc

βi
∩Hc

βi+1
⊂ Hc

αi

5 Hc
αi
∩Hβi ⊂ Hc

βi+1

6 Hαi ∩Hc
βi+1

⊂ Hβi

for i = 0, · · · , n (4.4)

Each triangular domain indexed from 1 to 6 in Figure 4.1
represents the intersection of the two half-spaces in each line
of (4.4) respectively.projected on the plan (ρi, ρi+1). Then
the six inclusions in (4.4) projected on (ρi, ρi+1) become
clear and they hold in the entire space since the constraints
only span on the variables ρi and ρi+1.

Starting from k = 0, we construct the sequence of sets
{Hk}k=0,...,n such that Hk is the set of half-spaces in the

minimal H-representation of the polyhedron Ps,k =
⋂k
i=0 Qi

for k = 0, ..., n. We have H0 = {H0,H
′
0} where H0 and H′0

are the two half-spaces in the minimal H-reprentation of Q0

given by equations (3.4). Suppose we know Hk and we con-
structHk+1 by adding only the non-redundant constraints in
Qk+1. There are seven cases depending on s(k) and s(k+1):

Case s(k) s(k + 1) Hk+1 |Hk+1|
1 w w Hk ∪ {Hβk+2

} = |Hk|+ 1

2 w l Hk ∪ {Hc
βk+2

} = |Hk|+ 1

3 l w Hk ∪ {Hαk+1} = |Hk|+ 1

4 l d Hk ∪ {Hc
αk+1

} = |Hk|+ 1

5 d w Hk ∪ {Hαk+1 ,Hβk+2
} = |Hk|+ 2

6 d l Hk\{Hc
βk
} ∪ {Hβk+1

,Hc
βk+2

} ≤ |Hk|+ 2

7 d d Hk\{Hc
αk
} ∪ {Hc

αk+1
,Hc

βk+1
} ≤ |Hk|+ 2

Table 4.1: Construction of Hk+1 given Hk, and car-
dinality of Hk+1.

For case 1 (repectively 3), the non-redundant constraint
when adding Wk+1 is Hβk+2 (respectively Hαk+1) from sce-
nario 1 (respectively 2) in (4.4). In case 2 (respectively 4),
the constraint Hβk+1 (respectively Hc

βk+1
) in Lk+1 (respec-

tively Dk+1) is already implied by s(k) = w (respectively
s(k) = l). For case 6 (repectively 7), the constraint Hc

βk
(respectively Hc

αk
) in Dk becomes redundant from scenario

3 (respectively 4) in (4.4).
We have sequentially constructed Hk for k = 0, · · · , n

and Hn = Hmin
s is the sef of half-spaces in the minimal H-

representation of Ps. Since the minimal H-representation
is unique, this completes the proof of (4.1) and (4.2). And
Table 4.1 also shows that |Hk+1| ≤ |Hk+1|+1 if s(k) ∈ {w, l}
and |Hk+1| ≤ |Hk+1| + 2 if s(k) = d, which gives (4.2) by
induction. �

The polyhedra are assumed to be closed in the following
definitions.

Adjacent polyhedra: Two polyhedra P and P′ in a poly-
hedral partition of the space S are said to be k-adjacent if
they have a face of dimension k in common. Formally, this
is when there exists a supportive hyperplane ∂H for both P
and P′ and the intersection P ∩P′ ∩ ∂H is of dimension k.

Qk Transformation 1 Transformation 2

Wk Hc
αk
∩Hβk+1

⊂ Dk Hαk ∩Hc
βk+1

⊂ Lk

Lk Hc
βk
∩Hc

βk+1
⊂ Dk Hβk ∩Hβk+1

⊂Wk

Dk Hαk ∩Hc
βk
⊂Wk Hc

αk
∩Hβk ⊂ Lk

Table 4.2: Transformation of the polyhedra Qk =
H ∩ H′ into Hc ∩ H′ for transformation 1, and into
H ∩ (H′)c for transformation 2.

Proposition 2: Recall that the space S = [0, ρj ]
n+2 is of

dimension n + 2. Given a polyhedron Ps0 of the partition
of S, let us define the function Fs0 from Hmin

s0 the set of
half-spaces in its minimal H-representation to As0 the set of
polyhedra of the partition (n+ 1)-adjacent to Ps0 :

Fs0 : Hmin
s0 → As0

H 7→ Ps
(4.5)

where s in Fs0 [H] = Ps is the unique mode s′ such that(
∩H′∈Hs0\HH′

)
∩Hc ⊂ Ps′ (4.6)

Then Fs0 is a bijection.

Proof of proposition 2: Let us show that Fs0 is well-defined.
Without loss of generality, let us assume that si0−1 = w,
si0 = l, and H = Hβi0

, since all the other cases can be
treated in a similar manner. Hence, Wi0−1 = Hαi0

−1∩Hβi0
and Li0 = Hβi0

∩Hc
βi0+1 are the only two polyhedra of the

H-representation of Ps which have Hβi0
as a facet-defining

half-space. Therefore:

(
∩H′∈Hs0\HH′

)
∩Hc

= (∩i6=i0−1,i0Qi) ∩ (Hαi0−1 ∩Hc
βi0

) ∩ (Hc
βi0
∩Hc

βi0+1
)

⊂ (∩i6=i0−1,i0Qi) ∩ Li0−1 ∩Di0

(4.7)
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The inclusion is obtained from Table 4.2. Hence the sub-
set
(
∩H′∈Hs0\HH′

)
∩Hc is included in a polyhedron of the

partition Ps. Since the subset is non empty, Ps is the only
polyhedron containing it, and Fs0(H) = (∩i6=i0−1,i0Qi) ∩
Li0−1 ∩ Di0 is uniquely defined. This is the only polyhe-
dron of the partition (n + 1)-adjacent to Ps with common
supportive hyperplane ∂H = ∂Hβi0

.
Let us show that Fs0 is bijective. The function Fs0 is

surjective since it maps each of the facet-defining half-space
H of Ps to the (n+ 1)-adjacent polyhedron of the partition
sharing the supportive hyperplane ∂H. And Fs0 is injective
since for a given i and a given polyhedron Qi of the H-
representation, the two possible transformations of Qi yield
a different inclusion as shown in Table 4.2, and therefore a
different adjacent polyhedron. �

4.2 Reduction to adjacent modes
We have presented in the previous section an algorithm to

construct the minimal H-representation of ŝ, which enables
us to find the adjacent modes of ŝ. We note that it follows
from Equation (4.2) and Proposition 2 that there are less
than 2n+ 2 modes adjacent to a given mode m, where n is
the number of cells of the discretized model. Moreover, two
adjacent modes only differ by at most two entries. Hence,
when the discretized model is in quasi-steady state (with
only small variations between consecutive time steps), every
pair of most likely active modes at time t must have adjacent
elements. This suggests different heuristics for reducing the
number of modes at each time step t of the IMM algorithm
to a set Mt of cardinality linear in the dimension. In the
update equations, one can exclusively consider the mode m̂
(or ŝ) of the state estimate ρ̂t:t and its adjacent modes.
Hence, the number of modes considered is less than 2n+ 2,
and we will call this variation of the IMM algorithm the
reduced IMM (RIMM1) algorithm.

We can further reduce the number of modes by taking into
account the covariance P of the estimate and the distance
between the state estimate and the facets of the polyhedron
Pŝ. Let

⋂
H∈Hmin

s
H be the minimal H-representation of

Ps, ∂H the associated hyperplane, and FH := ∂H∩Ps the
facet associated to H. The half-spaces in the set Hs can be
written as follows:

H = {ρ | aH .ρ− bH ≤ 0} for H ∈ Hs (4.8)

Since FH ⊂ ∂H, the distance between ρ̂ and each of the
facet FH is such that:

d(ρ̂,FH) ≥ d(ρ̂, ∂H) =
|bH − aH .ρ̂|
||aH ||

for H ∈ Hs (4.9)

With P the state covariance, let us define the ratio:

dH(ρ̂) =
d(ρ̂, ∂H)

(aH)TPaH
for H ∈ Hs (4.10)

Thus, we only look at the adjacent modes for which dH(ρ̂)
is less than a given threshold thres (RIMM2). Intuitively,
when there is a high variance (aH)TPaH along the direction
aH orthogonal to ∂H, there is a higher probability that the
state at the next time step is in the half-space Hc, which is
the complementary of H, and therefore in the adjacent mode
sH with common supportive hyperplane ∂H. We note that

this is an approximation since the projection of ρ on ∂H is
not always on a facet of the adjacent mode sj .

This variation on the IMM algorithm is closely related to
the EKF since the Kalman filter applied in the mode m̂
of the state estimate ρ̂t:t is equivalent to linearizing around
the state estimate. There is a refinement since we include
the modes adjacent to m̂. Instead of relying on one possi-
ble active mode, we represent a set of possible modes active
at time t and apply the KF to each one of them. How-
ever, the adjacent modes differ from m̂ by only one or two
entries, and so they only represent a very restricted set of
close possibilities centered around the mode estimate. As
will be seen in the next section, the reduced IMM based on
this reduction of modes is very similar to the EKF. An al-
ternative approach consists in taking the most likely mode
m̃t = argmaxj∈Mt µtj , and its adjacent modes. However,
this variation of the IMM algorithm fails to give a good rep-
resentation of the dynamics of the discretized system. Since
the mode estimate m̂t is chosen among the adjacent modes
of the mode estimate m̂t−1 at the previous time step, it dif-
fers from m̂t−1 by at most one or two entries. However, the
physical system have empirically larger variations, resulting
in relatively different active modes between consecutive time
steps.

4.3 Clustering of the space of modes

Figure 4.2: 20 clusters of the density space using
k-means (left) and their respective modes (right).

An intuitive method to solve the latter problem consists
in partitioning the space of modesMn itself into K clusters
with the widely-used k-means4algorithm, and transfer the
adjacencies between modes studied above to the adjacencies
between clusters. However, the clusters are no longer seper-
ated by hyperplanes and additional geometrical analysis is
needed to find the clusters that are close to each other. Car-
ried further, the IMM algorithm can be applied to each of
the clusters if their number K is small, and gives reasonable
results (RIMM3).

Figure 4.2 shows 20 clusters of the density space. They
are given by k-means applied to samples output by the EKF
estimator using density easurements from loop detectors on
March 1st, 2012 between 7am and 8am. Hence we used “his-
toric” data to reduce the space of modes for estimation on
March 5th as described in 4.5. The centroids of the parti-
tioning of the space of modes is then given by the mode of
the 20 clusters of the density space.

4.4 Analysis
It is possible to compute the predicted state estimate ρ̂t+1:t

and the predicted covariance estimate P t+1:t given by (3.9)
4The k-means seems more adapted since it finds clusters
with comparable spatial extent contrary to the expectation-
maximization which partitions in clusters of different shapes.
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Figure 4.3: Contour plot of the density given by (a) the EnKF with 100 ensembles, (b) the EKF, (c) the
RIMM2 with thres = 1, (d) the RIMM3 with 20 clusters using the k-means algorithm. Analysis of each time
step of the RIMM2 with thres = 1: (e) plot of the mode estimate, (f) number of modes selected via the
method of ratios, (g) computational time, (h) number of cells with density close to ρc.

in linear time and quadratic time respectively as shown in
[27]. Hence, both time and space complexities of the predic-
tion step of the Kalman filter are O(n2).

A second analysis shows that the time complexity of the
update step of the Kalman filter is O(mn2 + m3 + nm2)
with m the number of observations. As the density measure-
ments along the highway are sparse, the complexity becomse
O(n2).5Hence, the total complexity of the Kalman filter is
O(n2).

Since the number of modes is reduced to O(n), the com-
plexity of the reduced IMM is O(n3) for both reduction
heuristics presented in section 4.2. This is a significant gain
from the exponential complexity of the original IMM algo-
rithm, which considers all the modes. And if we further re-
duce the number of modes by restricting to the ones which
have a ratio less than a threshold thres small enough (see
equation (4.10)), then the number of.modes can be bounded.
This gives a complexity O(n2).

4.5 Numerical results
The previous method is implemented on an 18-mile section

of I-880 Northbound in the Bay Area, California combined
with two variants of the reduced IMM estimation algorithms
(RIMM2, RIMM3) presented above. We use density mea-
surements along the I-880 from 29 loop detectors (PeMS)
every 30s on March 5th, 2012 between 7am and 8am to com-
pute density values and integrate them in the model. Each
cell has a length of 198m and the time step is 5s.

The results are compared with the output of the EKF
which was implemented in [27], and the output of the EnKF
which is commonly used in the traffic monitoring community
with this class of discretized models [29].

Figures 4.3 (a, b, c, d) present the output of the four
estimators which consist in the density in the time-space
domain. The regions with high density, average density,

5The measurements are sparse for our experimental data
location (cf. section 4.5), but this may not be true in the
general case.

and low density are represented in red, yellow, and blue
respectively. The estimators give similar higher resolution
scalar fields of the density (1440 time steps by 141 cells) by
assimilating sparse density measurements (240 time steps
by 29 PeMS stations. The shock wave propagation is more
noticeable in the output of both RIMM estimators in the
congested regions. Hence, these estimators are more tuned
to the discretized physical system which is PWA.

Figure 4.3 (e) shows the mode estimate ŝ computed in
the combination step of the IMM algorithm and presented
by a contour plot in the time-space domain. The regions in
which ŝti = w are in congestion and they are colored in red
and the regions in which ŝti = d are in free flow and they are
represented in blue. The points of the time-space domain
where ŝti = l are colored in white and Figure 4.3 (e) shows
that they are at the boundaries between the congested and
free flow regions. They correspond to a regime of transition
from free flow to congestion and vice versa. The estimate
of the mode provided by the IMM algorithm at each point
of the discretized time-space domain is thus accessible, as
shown here.

Finally, Figures 4.3 (f, g, h) show that the number of
modes in Mt, the computational time, and the number of
cells for which the density is close to ρc are highly correlated.
These results show that the computational time is propor-
tional to the number of modes. This was predictable since
the application of the KF to each of the modes is the most
expensive step of the IMM algorithm. This underlines the
importance of reducing the number of modes to a bounded
number.

5. CONCLUSION AND FUTURE WORK
A new approach in estimation of discretized hyperbolic

PDEs is developed. It uses a Godunov scheme to discretize
the LWR PDE with a triangular flux function. The resulting
non-linear dynamical system can be decomposed in PWA
components evolving with linear constraints. They partition
the state space into an exponential number of polyhedra.
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The initially intractable IMM becomes tractable by reducing
the modes to a set of adjacent modes centered around the
mode of the state estimate.

The implementation of the reduced IMM algorithm shows
that it is tuned to the discretized model due to its PWA
structure. The RIMM also provides an estimate of the con-
gestion or free flow state in the time-space domain. More
importantly, we have constructed a framework for the esti-
mation of the discretized LWR PDE which enables: (1) the
use of Kalman filtering on each of the linear modes, (2) the
use of statistical analysis in the space of modes to make the
IMM tractable.
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