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ABSTRACT
Advanced monitoring and control of arterial road traffic network operations requires accurate
knowledge of current and predicted performance measures on the network. Recently studied signal
control algorithms, for example, use the lengths of vehicle queues for each turning movement to
determine how subsequent signal cycles should be distributed into phases. This article presents5

a queue estimation procedure that can integrate measurements from classical count or occupancy
sensors into a single physical model of general link state and queue length in particular. We show
how realistic data from an arterial link can be used to estimate the current or recent state of this link
by manipulating the initial and boundary conditions used in an explicit solution to the Moskowitz
(cumulative number of vehicles) formulation of the Lighthill-Whitham-Richards (LWR) partial10

differential equation. We demonstrate the results of this estimation procedure using various sensor
configurations extracted from data and ground-truth vehicle trajectories taken from the NGSIM
community’s Lankershim Blvd data set.
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INTRODUCTION
Numerous advanced traffic responsive arterial signalization management schemes rely on the ac-
curate estimation of vehicle queue lengths and turning ratios (1, 2, 3). Queue length estimation is
also necessary in traffic responsive on-ramp metering schemes (4). However, direct measurement
of queue lengths is difficult in practice. While the desired measurements can potentially be ob-5

tained using video feeds, this is not always feasible due to visibility constraints, image processing
accuracy, and maintenance costs. Several proposed onramp queue estimation algorithms rely on
vehicle detectors physically installed in the roadway. An analysis, experimental verification and
comparison of several on-ramp queue estimation algorithms is presented in (5).

Several queue estimation schemes rely on counting vehicles entering and leaving the queue.10

This method is known to introduce significant errors into the queue estimates due to its inability
to correct for offsets introduced by vehicle miscounts and incorrect estimates of the queue’s ini-
tial length (6, 7, 8). Work has been done to improve the performance of this queue estimation
approach by incorporating occupancy measurements (8, 9, 7), or by introducing heuristic volume
adjustment mechanisms (6, 7) or statistical analyses (10). In (5), vehicle re-identification tech-15

niques using magnetometer sensor arrays (11) are employed to match vehicles entering and exiting
the queues in order to correct for offsets in counting vehicles entering and leaving the queue. The
re-identification algorithm is subsequently modified in (12) in order to improve the re-identification
accuracy of slowly-moving vehicles, and was experimentally shown to provide adequate on-ramp
queues estimates (13). Vehicle re-identification techniques have also been used to estimate queues20

on arterials (13). Unfortunately, most successful re-identification techniques rely on the use of
license plate readers or specialized magnetometer arrays that are not yet widely available in many
arterial streets.

Statistical approaches to estimation are often used to try to overcome the lack of physical
measurements and high variability on urban roads (14, 15) Some use GPS-probe data to derive25

statistical queue estimates from individual vehicle trajectories (16, 17, 18, 19). These algorithms
are also limited by sparsely available data, unrealistic assumptions about vehicle arrival patterns,
and a lack of precision.

Here we present a new method for queue length estimation on arterial links based on a
macroscopic horizontal queuing model (20). Because it only depends on aggregate measurements30

and a macroscopic flow model to determine a “best fit” of link state given a known bound on mea-
surement error, it is less sensitive to imprecise or erroneous measurements than some other queue
estimation techniques. While our method can utilize measurements from traditional in-road sen-
sors, it can also integrate measurements from advanced sensing systems such as re-identification
or travel time monitors when they are available. In related work, the same techniques have been35

used with trajectory or position data; for example from GPS-enabled smartphones (21).
We model an arterial link using the Lighthill-Whitham-Richards (LWR) partial differen-

tial equation (PDE) (22, 23). Others have demonstrated the ability of this kinematic model to
predict and control arterial traffic (24, 25). Here we use this theory to seek an explicit expres-
sion for a function describing the density state of an arterial link. This solution is obtained using40

a Hamilton-Jacobi formulation of the LWR equation known as the Moskowitz formulation (26).
The Moskowitz model is well-studied within the freeway traffic flow community, and thus there
are many known solution methodologies. In the present work, we chose to use a class of weak
solutions known as the Barron-Jensen/Frankowska (B-J/F) solutions (27). Because we are able
to find an explicit analytical solution for traffic state, we can operate on any spatial or temporal45
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resolution of sensor data without the need for mapping measurements to a discretized grid.
Measurements are incorporated into our solutions via choice of initial and/or boundary

conditions. As previously presented in the context of freeways in (21), we choose boundary flows
that optimize some desired convex function of the unknown value conditions within constraints
imposed both by the kinematic dynamics of the LWR PDE and the available measurements. The5

objective of this algorithm is therefore to generate a realistic estimation of the aggregate traf-
fic flow behaviors over the measured time horizon which could feasibly generate the included
observations–fulfilling both an estimation and data reconciliation functionality. Yet our work varies
from classical approaches to estimation such as the Kalman filter: instead of iteratively finding the
state estimate that minimizes least square measurement error, we seek a one-shot solution which10

does satisfy all available measurements but primarily optimizes an objective function designed
to represent the most likely link dynamics that are “unknown” or left unconstrained by existing
measurements.

We would like to emphasize that our objective is to reconstruct a general “averaged” mea-
sure of queuing behaviors and demands for the purposes of immediate estimation and control15

actuation. While others have studied means of adjusting macroscopic modeling to account for be-
havioral and higher-order dynamic effects (28), we do not attempt to reconstruct microscopic or
even lane-specific behaviors.

We analyze the results of our LWR estimator given various combinations of magnetic loop
detectors and point-to-point travel time measurements. Specifically, we compare the estimated20

queue lengths generated by model outputs to ground-truth measurements from a set of vehicle
trajectory data captured from video recordings along a section of Lankershim Boulevard in Los
Angeles, California. This open-source data was made available by the Next Generation Simulation
Community (NGSIM), a project of the Federal Highway Administration.

The problem we are addressing is further detailed in Section 3, followed by a description of25

the model and procedures used for the estimation algorithm in Section 4. Section 5 describes the
raw data and processing methods we used to simulate two types of sensor data: counts of entering
vehicles, and end-to-end link travel time measurements. Numerical results are then analyzed in
Section 6. We conclude with a comparison of model results using the two previously mentioned
sources of data.30

PROBLEM FORMULATION
We consider an arterial road link defined between spatial locations ξ and χ. This link is uni-
directional, has a constant number of lanes l along its entire domain, and traffic can only enter or
exit at the upstream and downstream link boundaries (respectively).

We define the state of this link ρ(t, x) to be the evolution of spatial density of the link for
all locations x ∈ [ξ, χ] at all times t ∈ [tmin, tmax]. For known link parameters freeflow velocity
v, shockwave (or queue dissipation) speed w, and critical density ρc, the flow f(t, x) of vehicles
across a single point x is described by a function ψ(ρ(t, x)) of link state, as follows:

f(t, x) = ψ(ρ(t, x)) (1)

=

{
vρ if ρ ≤ ρc

w(ρ− ρc) otherwise
(2)

This piecewise-linear relationship between flow and density is commonly known as the flux func-35
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tion, or triangular fundamental diagram, derived through empirical observation of traffic dynamics.
It is employed in many widely accepted macroscopic traffic flow models.

The road segment is bounded downstream (at x = χ) by a traffic signal which can influence
link state by impeding link outflow for fixed time durations. The time tred at which downstream
flow is artificially restricted is known (f(χ, tred) = 0).5

ESTIMATION ALGORITHM
Incorporating multiple measurements into a single estimation of traffic state requires a fundamental
physical model of traffic dynamics. The evolution of traffic state ρ(t, x) is commonly described
using the LWR model. This is a first-order partial differential equation (PDE) which is derived
by applying the principle of mass conservation to the flow of traffic across a finite region using an
empirical flux function such as the one described in equation (1):

∂ρ(t, x)

∂t
+
∂ψ(ρ(t, x))

∂x
= 0 (3)

While the LWR model in this form presents a commonly used description of aggregate
traffic dynamics, it is difficult to assimilate measurements of internal flows or individual trajecto-
ries into such a model due to its representation of density as a continuous aggregated quantity. In
addition, the non-smoothness of its solution creates challenges for estimation (29, 30). We there-10

fore represent traffic state using a modification of this PDE known as the Moskowitz or cumulative
number of vehicles equation (31, 32).

Consider a function M(t, x) defined such that its spatial derivative is equal to the negative
of the equation defining spatial density on a road link, and its temporal derivative is equivalent to
the equation describing the resulting traffic flow:

∂M(t, x)

∂x
= −ρ(t, x) (4)

∂M(t, x)

∂t
= f(t, x) = ψ(ρ(t, x)) (5)

The Moskowitz function M(t, x) can be physically interpreted as describing the flow of vehicles
through space x ∈ [ξ, χ] by assigning consecutive integer labels to vehicles entering a link at
x = ξ and tracing the trajectory of those vehicles over time. If the vehicle labeled n is at location
x′ at time t′, bM(t′, x′)c = n. Via integration of ρ(t, x), equation (3) can be rewritten in terms of
M(t, x) as follows:

∂M(t, x)

∂t
+ ψ

(
−∂M(t, x)

∂x

)
= 0 (6)

This transformation of the LWR PDE is in the form of a Hamilton-Jacobi PDE (HJ-PDE) with the
flux function ψ(ρ) serving as the Hamiltonian. There are several known methodologies for finding
weak solutions to Hamilton-Jacobi PDEs, one of which we will utilize in this work.15

Mathematical Framework
To find the solution to any PDE, one must have defined a set of initial and/or boundary conditions
to satisfy. Here we define the concept of a value condition to encompass the common notions of
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initial, boundary, and internal conditions. A value condition c(·, ·) is defined as a lower semicon-
tinuous function defined on some subset of domain [0, tmax] × [ξ, χ]. Any solution to the PDE
being investigated must satisfy all associated value conditions on their respective domains.

In this work, the value conditions cj are not known specifically but rather must be estimated
before solving the LWR PDE. Chosen conditions must not only satisfy the physical limitations5

imposed by the model, but also permit the feasibility of any available measurements of network
state. We therefore use the following framework to develop constraints on the set of feasible value
conditions.

We employ a class of weak solutions to HJ-PDEs known as the Barron-Jensen/Frankowska
(B-J/F) solutions. These solutions are represented by the Lax-Hopf formula (32, 33): for value
condition cj(·, ·),

Mc(t, x) = inf
(u,T )∈Dom (ϕ∗)×R+

(c(t− T, x+ Tu) + Tϕ∗(u)) (7)

where ϕ∗(·) is the Legendre-Fenchel transform of Hamiltonian ψ(·), defined by

ϕ∗(u) := sup
p∈Dom(ψ)

[p · u+ ψ(p)] (8)

Note that while equation (7) implies that Mc(·, ·) exists for any c, this solution is not
guaranteed to be compatible with the corresponding value condition. In other words, it is not
necessarily true that ∀(t, x) ∈ Dom(c), Mc(t, x) = c(t, x). To account for this, note that the
structure of equation (7) implies the inf-morphism property: let c(·, ·) be a minimum of a finite
number of lower semicontinuous functions,

∀(t, x) ∈ [0, tmax]× [ξ, χ] , c(t, x) := min
j∈J

cj(t, x) (9)

Then Mc can be decomposed as

∀(t, x) ∈ [0, tmax]× [ξ, χ] , Mc(t, x) = min
j∈J

Mcj(t, x) (10)

For reference on the inf-morphism property, see (33).
To then ensure that all value conditions used to find the LWR solution will apply in the

strong sense, we must use the inf-morphism property to define “model constraints” on these condi-
tions cj(·, ·): the value condition c(·, ·) = minj∈J cj(·, ·), satisfies ∀(t, x) ∈ Dom(c), Mc(t, x) =
c(t, x) if and only if

Mcj(t, x) ≥ ci(t, x) ∀(t, x) ∈ Dom(ci), ∀(i, j) ∈ J2 (11)

The model constraints are further defined in section 4.3.10

Furthermore, we must ensure that the value conditions used to solve the LWR model can
satisfy all known measurements within their stated error bounds. This requires the introduction
of a set of “data constraints” which encode the information collected from network sensors into
convex inequality constraints. Examples of data constraints are introduced in section 4.4.
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Initial and Boundary Conditions
Assume the following affine initial and upstream/downstream boundary conditions, defined for
discrete spatial blocks k of length X and discrete time blocks n of length T :

initial condition:

Mk(t, x) =

{
−
∑k−1

i=0 ρ(i)X − ρ(k)(x− kX) if t = 0 and x ∈ [kX, (k + 1)X]

+∞ otherwise
(12)

upstream condition:

γn(t, x) =

{∑n−1
i=0 fin(i)T + fin(n)(t− nT ) if x = ξ and t ∈ [nT, (n+ 1)T ]

+∞ otherwise
(13)

downstream condition:

β(t, x) =


∑n−1

i=0 fout(i)T + fout(n)(t− nT )

−
∑kmax

k=0 ρ(k)(x− kX) if x = χ and t ∈ [nT, (n+ 1)T ]

+∞ otherwise
(14)

A direct application of equation (7) on (12)-(14) yields the following solutions (following the
approach of (33)):

MMk
=



+∞ if x ≤ kX + wt or x ≥ (k + 1)X + tv

−
∑k−1

i=0 ρ(i)X + ρc(tv + kX − x) if kX + tw ≤ x ≤ kX + tv

and ρ(k) ≤ ρc
−
∑k−1

i=0 ρ(i)X + ρ(k)(tv + kX − x) if kX + tv ≤ x ≤ (k + 1)X + tv

and ρ(k) ≤ ρc
−
∑k

i=0 ρ(i)X + ρc(tw + (k + 1)X − x)− ρmtw if (k + 1)X + tw ≤ x ≤ (k + 1)X + tv

and ρ(k) ≥ ρc
−
∑k−1

i=0 ρ(i)X + ρ(k)(tw + kX − x)− ρmtw if kX + tw ≤ x ≤ (k + 1)X + tw

and ρ(k) ≥ ρc
(15)

Mγn =


+∞ if t ≤ nT + x−ξ

v∑n−1
i=0 fin(i)T + fin(n)(t− x−ξ

v − nT ) if nT + x−ξ
v ≤ t ≤ (n+ 1)T + x−ξ

v∑n−1
i=0 fin(i)T + ρcv(t− (n+ 1)T − x−ξ

v ) otherwise
(

if t > (n+ 1)T + x−ξ
v

) (16)

Mβn =



+∞ if t ≤ nT + x−χ
w∑n−1

i=0 fout(i)T + fout(n)(t− x−χ
w − nT )

−
∑kmax

k=0 ρ(k)X − ρm(x− χ) if nT + x−χ
w ≤ t ≤ (n+ 1)T + x−χ

w∑n
i=0 fout(i)T −

∑kmax
k=0 ρ(k)X

+ρcv
(
t− (n+ 1)T − x−χ

w

)
otherwise

(
if t > (n+ 1)T + x−χ

w

)
(17)
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Model Constraints
Define the decision variable associated with the value conditions in equations (12), (13), and (14)
as

y := (ρ(1), . . . , ρ(kmax), fin(1), . . . , fin(nmax), fout(1), . . . , fout(nmax)) (18)

Also, denote by Y the vector space of these decision variables y.
With the explicit solutions in equations (15), (16), and (17), we can determine the physical

constraints on this solution space Y that are implied by the LWR PDE (equation (6)) as the set of
linear inequalities below, following the inf-morphism property (as in equation (11)):

MMk
(0, xp) ≥Mp(0, xp) ∀(k, p) ∈ K2

MMk
(pT, χ) ≥ βp(pT, χ) ∀k ∈ K,∀p ∈ N

MMk
(χ−xk+1

v
, χ) ≥ βp(

χ−xk+1

v
, χ) ∀k ∈ K,∀p ∈ N s.t χ−xk+1

v
∈ [pT, (p+ 1)T ]

MMk
(pT, ξ) ≥ γp(pT, ξ) ∀k ∈ K,∀p ∈ N

MMk
( ξ−xk

w
, ξ) ≥ γp(

ξ−xk
w
, ξ) ∀k ∈ K,∀p ∈ N s.t ξ−xk

w
∈ [pT, (p+ 1)T ]

(19)


Mγn(pT, ξ) ≥ γp(pT, ξ) ∀(n, p) ∈ N2

Mγn(pT, χ) ≥ βp(pT, χ) ∀(n, p) ∈ N2

Mγn(nT + χ−ξ
v
, χ) ≥ βp(nT + χ−ξ

v
, χ) ∀(n, p) ∈ N2 s.t nT + χ−ξ

v
∈ [pT, (p+ 1)T ]

(20)


Mβn(pT, ξ) ≥ γp(pT, ξ) ∀(n, p) ∈ N2

Mβn(nT + χ−ξ
w
, ξ) ≥ γp(nT + χ−ξ

w
, ξ) ∀(n, p) ∈ N2 s.t nT + χ−ξ

w
∈ [pT, (p+ 1)T ]

Mβn(pT, χ) ≥ βp(pT, χ) ∀(n, p) ∈ N2

(21)

For a full derivation of these inequalities, refer to (21).
Notice that because the solutions described in equations (12)-(14) associated with the given

value conditions are all linear in y, all of these constraints described by (19)-(21) are also linear in
y. We can therefore represent the model constraints in the matrix form

Amodely ≤ bmodel (22)

Data Constraints5

While the previously described “model constraints” encode the limitations due to the physics of
traffic flow, they do not add any new information about the existing state of a system. To estimate
boundary conditions such that all known measurements will be satisfied by the derived solution,
we must define a separate set of “data constraints”. This requires explicit formulation of the sensor
data in terms of decision variable y.10

To preserve convexity in the resulting optimization problem, data constraints can often
be represented as convex inequalities which account for errors inherent in practical measurement
techniques. Here we will furthermore assume that all data constraints are linear; they are therefore
represented in general as

Cdatay ≤ ddata (23)
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FIGURE 1 Sensor configurations investigated in this work. C denotes an available count
measurement; ID denotes a sensor with vehicle identification capabilities for travel time mea-
surements.

Here we investigate the following specific sensor configuration scenarios, which are illus-
trated in Figure 1:

Scenario I: Detectors providing vehicle counts are placed at the upstream boundary of the link,
providing vehicle count measurements that can be aggregated into flow estimates f̄k(T, ξ) for a5

fixed time step T . These measured flows have known error percentage ēf . Because signal timings
are known, partial information about link outflow is also available.

Relevant Data Constraints:
• fout(tred) = 010

• (1− ēf )f̄k(tk, ξ) ≤ fin(k) ≤ (1 + ēf )f̄
k(tk, ξ) ∀ tk ∈ [k · T, (k + 1) · T ]

Scenario II: Flow measurements as in Scenario I are given. Additionally, re-identification sensors
placed at the upstream and downstream ends of the link provide point-to-point travel times t̄ with
maximum error ēt, corresponding to exit time stamps t̄f for 5-15% of the vehicles traveling across15

the link.

Relevant Data Constraints:
• fout(tred) = 0
• (1− ēf )f̂k(tk, ξ) ≤ fin(k) ≤ (1 + ēf )f̄

k(tk, ξ) ∀ tk ∈ [k · T, (k + 1) · T ]20

• M(t̄f − t̄ − ēt, ξ) ≤ M(tf , χ) ≤ M(t̄f − t̄ + ēt, ξ) for t̄, t̄f sampled from 5-15% of
exiting vehicles

Estimation of Unobservable Boundary Flows
To estimate the unknown or uncertain boundary conditions, we formulate an objective problem
over space Y with the model constraints in equations (19)-(21) and data constraints corresponding
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to any available measurements:

Minimize (or Maximize): g(y) (24)

subject to:

{
Amodely ≤ bmodel

Cdatay ≤ ddata

The objective g(y) can be any convex piecewise affine function of the decision variable. However
if limited availability of data suggests a highly underdetermined problem, the objective should be
crafted to ensure realism in the resulting solution.

For example, the scenarios investigated in this work do not include full constraints on
outflows via measurements; they only assume zero outflow when impeded by a signal. Therefore
many feasible solutions y with various exiting flow profiles can satisfy the existing constraints.
But because drivers usually act to maximize their velocity whenever possible, we should prefer
solutions where rapid outflow is encouraged. This is achieved by maximizing the sum of outflows
weighted by a small, decreasing function µ(n):

max
y∈Y

∑
n

µ(n)fout(n) (25)

subject to:


Amodely ≤ bmodel

fout(tred) = 0

[other data constraints ]

Queue Calculation
Ultimately, the optimal initial/boundary conditions y∗ = arg max(g(y)) are used to determine the5

solution of the Moskowitz function explicitly via equations (15) - (17). The integer level-sets of
the resulting piecewise linear function M(t.x) represents “modeled” vehicle trajectories. Multiple
link performance metrics can be estimated from this result, including queue lengths. Two criteria
will identify queues:

• Point density is maximized: ρ(t, x) =
∣∣∣∂M(t,x)

∂x

∣∣∣ = ρj ± δ10

• Point flow is zero: f(t, x) = ∂M(t,x)
∂t

≈ 0
The first criterion (maximum density) is a more reliable indicator of queued state than zero flow,
as the latter may also occur when the link is entirely empty. We therefore define the instantaneous
queue length as the location of the boundary between areas of jam density and areas of lesser
density at each time t.15

DATA
We ran our estimation algorithm on data from NGSIM’s Lankershim dataset, available online at
http://ngsim-community.org/. The sample was collected on Lankershim Boulevard in Los Angeles,
California; the deployment site is illustrated in Figure 2.

Detailed trajectory data originates from video obtained from five high-definition cameras20

monitoring a 1,600-foot stretch of road from 0828 to 0900 on June 16, 2005. During this period,
2,442 vehicles were detected within the monitored area; their trajectories were transcribed at a
time resolution of 10 samples/second. According to NGSIM documentation, trajectory points
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FIGURE 2 High-resolution vehicle trajectories are available for 5 blocks of Lankershim
Blvd. We tested our algorithm on the highlighted links, which are representative of multiple
typical link geometries: 2 northbound, 2 southbound, 3 southbound, and 4 northbound.

are considered accurate up to a 4 ft. radius; we have no reason to believe that this amount of
error would affect our quantitative queue length comparisons–especially as it is assumed consistent
among concurrent vehicles.

We simulated count sensors at the immediate upstream end of each link by extracting all
timestamps at which a vehicle enters the link from the adjacent intersection. Flow measurements5

were then estimated by aggregating these “counts” within every five-second time period. We ex-
tracted travel time measurements from randomly sampled trajectories, where entry and exit times
correspond to the timestamps at which the sampled vehicles were first and last detected on the rel-
evant link. Note that the time a vehicle spent within the surrounding intersections is not included
in the travel time samples. Red signal times were extracted from the signal timing plans provided10

in the NGSIM database.
For demonstration of our algorithm, we chose to analyze data from the four links high-

lighted in Figure 2:
• link 2 southbound, a 3-lane link between a busy cross-street and a signalized intersection

with no possible turn movements;15

• link 2 northbound, a 3-lane link that expands to 5 lanes downstream with one designated
left-turn lane and two permissive right-turn lanes;

• link 3 southbound, a link with three through-lanes, two left-turn lanes, and a right-turn
pocket;

• link 4 northbound, a 4-lane link with an intermediate entry-exit point and a small left-turn20

pocket at the downstream end.
These links were chosen to be representative of a variety of physical features, such as both special-
ized and shared turn lanes, and intermediate entry/exit points.
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Calibration of the fundamental diagram parameters v, w, and fc was performed via visual
inspection of the trajectories. The following values were used for all links:

• free-flow velocity, v = 15.64 meters/sec (35 miles/hour)
• shockwave velocity, w = -6.70 meters/sec (-15 miles/hour)
• critical density, ρc = 0.0375 vehs/meter (60 vehs/mile)5

• jam density, ρj = ρc(1 + v
w

) = 0.125 vehs/meter (200 vehs/mile)

These parameters correspond to the dynamics of a single lane. To ensure that the “measured”
input flows are treated consistently, the calculated flows were scaled by the inverse of the number
of lanes at link entry. Results are therefore intended to represent an “average” queuing behavior
on each of the links, and not expected to exactly match the behavior observed on any one lane. We10

also chose common values for measurement error:
• Count sensors are accurate within 5%.
• Travel time estimates have a maximum error of 0.5 seconds.

In the following section, estimated queue lengths are compared to directly-measured queues
from ten signal cycles for each of four link-directions.15

NUMERICAL RESULTS
We solved the relevant linear programs using a MATLAB-based optimization software pack-
age. We then used a separate MATLAB toolbox to generate the desired B-J/F solutions to the
Moskowitz HJ-PDE (34). This LWR toolbox is available at http://traffic.berkeley.edu/project/
downloads/lwrsolver.20

We ran this code on each of the four link-directions shown in Figure 2 for all sensor config-
uration scenarios. Specifically, we compared the time-resolved queue length estimates generated
from the calculated Moskowitz solutions to those detected in the data. In the data, we define the
back of a queue as the location of the car with the highest entry index that is stopped on a link at a
given time. Because vehicles tended to “drift” slightly when in a queue, this detection method was25

not always accurate; discontinuities in detected queue lengths sometimes caused unrealistic noise
in the resulting queue length error calculations.

Scenario I: Upstream Flows and Signals
Figure 3 illustrates a sample of the results of our estimation algorithm on Link 2 SB, a 3-lane

link with simple geometry with no possible downstream turn movements.30

With this basic lane geometry and low demands, we see that the modeled trajectory be-
havior closely follows an “average” of the three exiting lanes. However it fails to replicate the
excessive queueing (and possible spillover) seen on lane 3 at 1300 seconds. Replication of such
extreme queuing occurring only in a single lane is not expected given the lane-averaged flows input
into the model. To achieve a more accurate representation of true behavior, one may need to access35

lane-specific flow sensors and run this model on each lane independently. This procedure, how-
ever, would likely be sensitive to lane-changing behaviors and inaccuracies in turn ratio estimation.

Achieving similarly accurate queue length results on links with complicated geometries
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FIGURE 3 Modeled and ground-truth trajectories for a sample time period. Inflows
and constrained (zero) outflows were imposed. For visual comparison, the queue lengths
estimated by the PDE model are shown on all data plots.

and downstream turn movements requires additional processing. Link 2 NB, for example, is a link
with two through-only lanes, one shared through-right turn lane, one right turn only lane, and one
left turn only lane, as seen in Figure 2. We used aggregate inflows from the three lanes present at
the upstream end of the link, and restricted modeled outflows according to signal timings which
restricted through movement at the downstream end. We also assumed that flows were evenly5

divided between the three through movement lanes, and therefore divided inflows by three before
modeling.

However the resulting trajectories, such as those shown in Figure 4, tended to overestimate
the queues in all of the through lanes. These results suggested that it was necessary to further
reduce the inflow measurements used in the modeling process to account for the turning flows,10

which not only entered downstream queues disproportionately but also were restricted by different
signal timings than those of the through-flows. We therefore reduced the measured inflows by the
estimated percentage of turning vehicles before processing data constraints .

For example, in the case of link 2 NB we determined that over the entire 30-minute study
period, approximately 4% of vehicles exiting the link in this direction turned left and 20% turned15

right. Hence we reduced inflows by 24%, and re-ran the optimization and PDE solution procedures.
The trajectories modeled using the lesser inflows were more representative of the average behavior
seen on all through-only lanes, as can be seen in Figure 4. Note that while we were able to “predict”
turn ratios fairly accurately in this work via analysis of our detailed data set, similar procedure can
be followed in practice using turning ratio estimates determined by previous local surveying or20

OD-estimation techniques.
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FIGURE 4 Top: Algorithm demonstrated on Link 2NB with turning lanes present and no
inflow adjustments. Bottom: Model performance on Link 2NB with inflow reduced by 24%,
to be representative of through movements only.

Figure 5 demonstrates similarly successful results on the through-only lanes of Link 3
southbound, a block with two dedicated left-turn lanes and a third dedicated right-turn lane.

The estimation error function, illustrated in Figure 6, reveals that while the accuracy of
the queue length estimate varies significantly between lanes, link-average error remains very low–
within ±16 meters, or two car lengths at maximum density ρj = 0.125 vehicles/meter. These5

results were typical of instances where there was no abnormal disturbances such as a long truck
or turn lane spillover on any lanes of the link. There is no evidence that queues are systematically
over-estimated or underestimated, or that the estimated lengths are consistently less accurate at
either the beginning or end of a queueing cycle using this technique.

In our study of Link 4 NB, we expected that the intermediate entry/exit point would cause10

error in both modeled queue lengths because this comprised an obvious violation in the mass
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FIGURE 5 Model performance on through lanes of Link 3 SB. Inflow was reduced by
36% to account for turning vehicles. Modeled queues are represented in bold lines on all
plots.
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FIGURE 6 A comparison of modeled queues to detected queues. Average queue length
error remains under 16 meters, or < 2 vehicles at jam density ρj = 0.125 vehicles/meter.
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conservation assumption of the underlying LWR model. However, the level of flows exiting and
entering the link did not constitute a significant percentage of link flows in the samples we studied,
and thus the results were not notably affected by such violation.

Scenario II: Upstream Flows, Signals, and Travel Times
The additional constraints due to travel time measurements as described in Scenario II initially5

caused the boundary condition optimization function to become over-constrained and thus infeasi-
ble. This is due to the flow and queue aggregation assumed in our implementation. For example,
Figure 3 illustrates a situation where a vehicle entering Lane 3 of Link 2 at 1300 seconds would
encounter a dramatically different queue (and thus experience a significantly different travel time)
than a vehicle concurrently entering Lane 2 of the same link. If conflicting travel times were sam-10

pled, the corresponding conflicting constraints would cause the problem to become unsolvable.
Without studying individual lane behaviors, we were therefore constrained to using very

small penetration rates which did not contain samples which conflicted outside the range of per-
missible error. We also made a further adjustment in the solution procedure: in addition to the 0.5
second error permitted in travel time measurements, we added a 0.25-vehicle error on the solu-
tion of the Moskowitz function directly. This effectively modified a travel time constraint to the
following:

M(t̄f − t̄− ēt, ξ)− 0.25 ≤M(t̄f , χ) ≤M(t̄f − t̄+ ēt, ξ) + 0.25 (26)

x 
(m

)

Vehicle Trajectory Model, Link 3 Southbound: Inflows, Signals, 15 Percent Travel Times
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FIGURE 7 The trajectories from which travel times were sampled are highlighted with
an arrow at time of entry. Several “outlier” trajectories from the end of the queues on Lanes
2 and 3 caused an adjustment in the modeled queue for the first, second, and fourth light
cycles.
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FIGURE 8 Travel time samples decreased the error for some lanes as they “tuned” the
output to those lanes for specific queue cycles. However, the estimates were often made worse
for the other lanes, causing increased error in the average length estimates for the affected
cycles.

While these adjustments to the boundary condition algorithm allowed for the identification
of feasible solutions, they also minimized the impact of travel time measurements on the resulting
trajectories and queue lengths. We found that with realistic penetration rates of 5-15%, the addition
of travel time estimates did little to improve the accuracy of modeled queue lengths. In most
common congestion patterns with well-distributed flow, the additional constraints were already5

satisfied by the solution found in Scenario I and thus did not have any impact on the resulting
trajectories. When additional active constraints were imposed by travel time samples, they did
not typically improve the lane-averaged error in queue length estimates. See for example the
trajectories on Link 3SB shown in Figures 7 - 8.

From the comparison of the error resulting from estimates of the two sensor scenarios in10

Table 1 below, it is clear that travel time measurements do not consistently provide useful informa-
tion beyond that available with just inflow and signal timing information.

TABLE 1 Average Absolute Error in Queue Length Estimates

Link Scenario 1 Scenario 2 (15%)
2 SB 9.88 m 9.88 m
2 NB 14.73 m 19.30 m* (w/ 5%)

3 SB 13.69 m 15.53 m
4 NB 11.67 m 11.67 m

The best results for both scenario were observed in Link 2SB, the link with no turn move-
ments to cause differentiation in lane behaviors. In contrast, Link 2NB is a short link with both
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left and right turn movements; it is likely that the rapid lane changing and queue blocking of the
turning vehicles cause the exaggerated error seen in our model results. Note that because of this
significant variance between queues on the three through lanes of this link, we were unable to find
ten queue cycles where it was feasible to satisfy the constraints of a 15% travel time sample. Hence
the value listed in Table 1 represents results for a 5% travel time penetration rate.5

FUTURE WORK
Future work should use this method to examine the use of travel time measurements in combination
with different fixed sensor configurations and link geometries to examine where and when such
measurements would beneficially contribute to the resulting queue estimates. We hypothesize
that longer arterial links may exhibit more uniform queue lengths on all lanes with similar turn10

movements; travel time samples could therefore be more beneficial as the link length gets larger.
The authors also plan to extend this LWR-based estimation method beyond a single link to a series
of networked arterial links. This would eventually contribute to a tool that can be used to develop
and implement model-predictive control algorithms with real-time sensor feedback on an arterial
traffic network.15
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