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Battery capacity =~ 50 kWh
charge/discharge power: 1 — 100 kW
200 000 PEV in the US
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Objective

Minimize charging cost under constraint of supplying a minimum required power to the grid.
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Literature review

) QP : N—-1
min )=y c(k)P (k)
where c(k) is cost of electricity and
P(k) power supplied

|
[
| John €. Strikwerda
|
|

|

1
min J(x) = ExTHx + cTx

Aeqx = Begq I - siam
Ax < b .
_ : Finite Volume
* Hanetal DP _ Methods for
Maximize profit for a fleet of vehicles that can Hyperbolic Problems
supply power back to the grid. Vehicles always

plugged in.

« Bashash & Fathy: first-order bilinear transport
PDE, representing the charging dynamics of a
G2V fleet

Lyapunov function V (t) = %e(t)2

RANDALL J. LEVEQUE
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State of charge: x
Number of vehicles charging: w(x, t)
Number of vehicles discharging: v(x, t)
Number of idle vehicles: y(x, t)
Controllable inputs: g;_,.(x,t), g;54(x, t)
Uncontrollable inputs: g;_,,(x, t)

— Currently dertiministic

— Improved to stochastic later on

Charge

0.4 0.5 .7 0.8

Discharge E (X, t) + q. a (X, t) = O'i_>c(x; t)

A

dy dy
E (X, t) — (dq a (X, t) = Ojsd (xr t)

dy
\ Ot

(x,t) = —[0i5c + 0ing + 0is0r]
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Model presentation | Assumptions

Assumptions / Problem statement

Objective: Minimize the cost of charging the vehicles

Constraints:

» Power: supply enough power to the grid
» Demand : supply enough charged cars to customers
» Physics:
Dynamics of the charge (PDE formulation)
no overcharging / undercharging of batteries
» Initial conditions
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Model presentation | Assumptions

Assumptions / Problem statement

Objective: Minimize the cost of charging the vehicles

Assumptions:

Parameters known one day in advance:
» Price of electricity
» Arrivals and Demand of cars

Controls: flows of vehicles between different categories:

0.

» From idle to charge / idle to discharge

> Departure of vehicles: Dep(x,t)
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Formulation

Cost function:

Dynamics of the
system

Boundary conditions

Initial conditions

Grid power constraint

Demand constraint

Final condition

Trmaz Tmaz
min C=f Cegm(t)/ w(z,t)qdzdt
Dep t=0 0

Tisd T iy

subject to

w;,(:f:, t) = —qews (*T#t) m‘

(2, t) = qa(x, 1) w

vz, t) = — +] + Arr(z,t) —
w(z,t) =0z > Zomas

Y(z,t) = 0 Yz < Zpmin

v(z,t) = 0 Ve < Zpmin

w(z,0) = wo(z), 7(z,0) = 10(z), v(z,0) = vo(z)

Pyyppiy(t) = f v(z,t)gdz = Pesy(t)

0



Solving the

Model presentation | optimization problem

Solving the optimization problem

1. Discretization:
» Numerical schemes and stability

2. LP formulation
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[Lax Wendroff discretization

Define:

wi' = w(xj, ty)

Where
2
Taylor series: w(x,t + k) = w(x,t) + kw,(x,t) + k?wtt (x,t) + 0(k3)

Since wi(x,t) + qewy(x, t) = 0j(x, t) Peter Lax
q2 q. k2 k2
w(x, t +k) =w —qckw, + 2 — Wy + ko (x,t) — 2 —— 05, ), + 2 — 0isc(x, 0 + 0(k3)

w(x+dx)-w(x) W?H—W?

Replacing derivatives: w, =

dx Ax
We obtain W]- = M.g(w/, it W 1) Burton
9 Wendroff
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BC, IC, accuracy and stability

 Initial-boundary value problem. »
For problem to be well posed, initial and boundary conditions are needed.

« Lax Wendroff second-order accuracy in both space and time

* Courant—Friedrichs—Lewy necessary condition for stability:
Ax
—| <1
|q At| =

AV
* In our case we choose |q A—t| = 1 because of phase problems
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Initial conditions (w0,5)
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Solving the

Model presentation | optimization problem

min AtAzx

T4.0:,Dep

fq E Z pgiecw?

Toaz Imar
mn C= Ceiec(?) / w(z,t)gdzdt
0

TisdiTiae :Deﬂ =0 Sllb_] ect to

subject to 'w"""*l = Maw™ + ﬂ.f.é:.+1

wy(z,t) = —qews(z,t) + oisc(z, t)

1(2,t) = 947:(2, t) + insa(, 1)
vy(z,t) = —[oic(z, t) + 054(z, t)] + Arr(z,t) — Dep(z,t)
w(z,t) =0 V2 > 2omaes
y(z,t) = 0 Yz < Tpmin
) =0VYz > 2pmin

ATTH—:—I Depn+1
,Un+1 — " — n+l1 + Jn—-—l + -
(03 )+ (5, g )

wi =0Vj > Je
v = 0Vj < Jd
vi = 0Vj < Jd
w’ = w-im'h':f'D = Timh’”ﬂ = Vinit

w, v,7, Dep > 0

w(z, 0) = wo(z), ¥(z,0) = 10(z), v(z,0) = vo(z)

I?HGE
Pauy(®) = [ 2(z )ade = Pl (t) Ary ) > P

J
Xﬂlﬂ-z
Dep(z,t)dz = Deml(t) ¥t iy
.~ Devlart)iz = Dem() §% Dept = Demr
Xmaz j='fdcp
w(quma:r) + T(Eaﬂnum) + U(maTmam) > Nin iy
dz Z wJ -]-'bj +"}*:, N}fﬁlﬁ;
i=Jdep
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. Solving the
Model presentation | optimization problem

[LP formulation

min AtAzg Y Y plew)

w7y, Dep

Discretization in SOC space:

K steps subject to
- - - . . . D: '”-+1 - - )
Discretization in time: Wt gyttt D
N steps o Az
wy =0vj > Je
v = 0¥ < Jd
. . vi = 0Vj < Jd
Variable size : 4KN o o 0
W = Winits T = Tinits U = UVinit

w,v,y,Dep >0

0z Y} > P
J

Jmax
Z Dep;} = Dem™
J=Jddep

IIH!‘JI T T T .
Az 3. wi +v) +9) = Niny

J=Jgep
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Result| Parameters

Value of parameters

Initial fleet of 250 vehicles

 Maximum capacity of battery: 34kWh
* |Instantaneous charging power 1kW

« Tmax: 24h

e dt: 30min

« dx: 0.5 kWh
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Result| Results

15
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Result| Results

Result

Charge —
Discharge
Idle —

Charges at low
prices of electricity
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Result| Results

Result

Powersuppliedtothe grid

o Powertobesupplied duringthe day
= = Powersupplied by ¥2G cars

V2G cars follow
grid electricity
demand
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FURTHER WORK  Batte degradation and

smoothing

Tmax . Trmax . X Trmaz Tmazr
min C= / Cliee(t) A w(z,t)gdzdt + A |0 + |Oise|dzdt

‘T-ied.:ﬂ-ie-:?uﬂﬂp Ji=Il] =0 J0

n;{i_nC.-' =c' X + M|AX||;

Penalization L1:
Penalizes large controls
Adapt value of A to have a ‘smoother policy’

Cost function is still convex
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FURTHER WORK  Batter degradation and

smoothing

Tmax Tmam Tmaz Tmamr
min C= f Cﬂfec(t}/ w(z,t)qdzdt + )u/ f |0 + |Oise|dzdt
Dep t=0 0 =0 0

TisdyTi—say =

minC' = TX + M|AX||

Distribition of cars and price of electricity
T T
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Conclusion:

* Continuous representation of the system
* Optimizes G2V and V2G over both time and SOC space
* Very scalable method: can be applied for any size of fleets

Work not presented:

* Numerical schemes and stabilization
* Validation : Monte-Carlo simulator

* Smoothing of control policies

Further work:
e Validation on different simulators
* Include stochasticity

Thank you
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Questions?
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Result| Validation

Monte Carlo
simulator:
Cars simulated one
by one, application
of control

Discrete, rounded parameters to

controls regulate flows

Continuous Value of control
model parameters
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Result| Validation

Monte Carlo
simulator:
Cars simulated one
by one, application
of control

Discrete, rounded parameters to

controls regulate flows

Continuous Value of control
model parameters

Powersupplied by ¥2G senice

— V¥ 2G power
Desired power
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Result| Parameters

Flow: total arrivals and departure Power to be supplied

Flow of vehicles Powerto be supplied duringthe day
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w(x,t)

Vehicles charging Idle vehicles Vehicles discharging
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