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Abstract. We study the repeated, nonatomic congestion game, in which multiple populations
of players share resources and make, at each iteration, a decentralized decision on which resources
to utilize. We investigate the following question: given a model of how individual players update
their strategies, does the resulting dynamics of strategy profiles converge to the set of Nash equilibria
of the one-shot game? We consider in particular a model in which players update their strategies
using algorithms with sublinear discounted regret. We show that the resulting sequence of strategy
profiles converges to the set of Nash equilibria in the sense of Cesàro means. However, convergence
of the actual sequence is not guaranteed in general. We show that it can be guaranteed for a class of
algorithms with a sublinear discounted regret and which satisfy an additional condition. We call such
algorithms AREP (approximate replicator) algorithms, as they can be interpreted as a discrete-time
approximation of the replicator equation, which models the continuous-time evolution of population
strategies, and which is known to converge for the class of congestion games.
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1. Introduction. Congestion games are noncooperative games that model the
interaction of players who share resources. Each player makes a decision on which
resources to utilize. The individual decisions of players result in a resource allocation
at the population scale. Resources which are highly utilized become congested, and
the corresponding players incur higher losses. For example, in routing games—a sub-
class of congestion games—the resources are edges in a network, and each player needs
to travel from a given source vertex to a given destination vertex on the graph. Each
player chooses a path, and the joint decision of all players determines the congestion
on each edge. The more a given edge is utilized, the more congested it is, creating
delays for those players using that edge.

The one-shot congestion game has been studied extensively, and a comprehensive
introduction is given, for example, in [25]. In particular, congestion games are shown to
be convex potential games, thus their Nash equilibria can be expressed as the solution
to a convex optimization problem. Characterizing the Nash equilibria of the congestion
game gives useful insights, such as the loss of efficiency due to the selfishness of players.
One popular measure of inefficiency is the price of anarchy, introduced by Koutsoupias
and Papadimitriou in [20] and studied in the case of routing games by Roughgarden
and Tardos in [26]. While characterizing Nash equilibria of the one-shot game gives
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many insights, it does not model how players arrive to the equilibrium. Studying the
game in a repeated setting can help answer this question. Additionally, most realistic
scenarios do not correspond to a one-shot setting but rather to a repeated setting in
which players make decisions in an online fashion, observe outcomes, and may update
their strategies given the previous outcomes. This motivates the study of the game and
the population dynamics in an online learning framework.

Arguably, a good model for learning should be distributed and should not have
extensive information requirements. In particular, one should not expect the players
to have an accurate model of congestion of the different resources. Players should
be able to learn simply by observing the outcomes of their previous actions and
those of other players. No-regret learning is of particular interest here, as many
regret-minimizing algorithms are easy to implement by individual players and only
require the player losses to be revealed; see, for example, [10] and the references
therein. The Hedge algorithm (also known as the multiplicative weights algorithm [1],
or the exponentiated gradient method [18]) is a famous example of regret-minimizing
algorithms. It was introduced to the machine learning community by Freund and
Schapire in [14], a generalization of the weighted majority algorithm of Littlestone
and Warmuth [21]. The Hedge algorithm will be central in our discussion, as it will
motivate the study of the continuous-time replicator equation, and will eventually be
shown to converge for congestion games.

No-regret learning and its resulting population dynamics have been studied in
the context of routing games, a special case of congestion games [6, 5, 19]. For ex-
ample, in [5], Blum, Even-Dar, and Ligett show that the sequence of strategy profiles
converges to the set of ε-approximate Nash equilibria on a (1 − ε)-fraction of days.
They also give explicit convergence rates which depend on the maximum slopes of the
congestion functions. In [19], Kleinberg, Piliouras, and Tardos study the problem of
online learning in atomic congestion games with finitely many players. Although the
setting is different (we study nonatomic congestion games, which involve populations
of infinitely many players), the problems are closely related. In particular, the au-
thors in [19] make a connection between the discrete-time Hedge algorithm and the
continuous-time replicator dynamics. We build on this connection, and previous re-
sults by Fischer and Vöcking [11] on convergence of the replicator dynamics, to prove
stronger convergence results for a class of discrete-time dynamics, which includes, in
particular, the Hedge algorithm.

Continuous-time dynamics have also been studied for several classes of population
games and for congestion games in particular; see, for example, [29]. In [27], Sand-
holm studies convergence for the class of potential games. He shows that dynamics
which satisfy a positive correlation condition with respect to the potential function
of the game converge to the set of stationary points of the vector field (usually, a
superset of Nash equilibria). In [16], Hofbauer and Sandholm study the convergence
of EPT dynamics for the class of stable games. In [12], Fox and Shamma extend these
convergence results to passive evolutionary dynamics and give a dynamical systems
interpretation. While our discussion is mainly concerned with discrete-time dynamics,
properties of continuous-time evolutionary dynamics will be used in our analysis, in
particular convergence of solutions of the replicator ODE.

We will consider a model in which the losses are discounted over time, using a
vanishing sequence of discount factors (γτ )τ∈N. This defines a discounted regret, and
we will focus our attention on online learning algorithms with sublinear discounted
regret. The sequence of discount factors will have several interpretations beyond its
economic motivation. For example, we will observe that the Hedge algorithm has
sublinear discounted regret if we use the sequence (γτ )τ as learning rates.
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After defining the model and giving preliminary results in sections 2 and 3, we
show in section 4 that when players use online learning algorithms with sublinear
discounted regret, the sequence of strategy profiles converges to the set of Nash equi-
libria in the Cesàro sense. In order to obtain strong convergence, we first motivate
the study of the replicator dynamics. Indeed, it can be viewed as a continuous-time
limit of the Hedge algorithm with decreasing learning rates. In section 5, we recall the
convergence result of the replicator dynamics. By discretizing the replicator equation
(using the same discount sequence (γτ )τ∈N as discretization time steps) we obtain a
multiplicative-weights update rule with sublinear discounted regret, which we call the
REP (replicator) algorithm. Finally, in section 6, we define a class of online learning
algorithms we call the AREP (approximate replicator) algorithms, which can be ex-
pressed as a discrete REP algorithm with perturbations that satisfy a condition given
in Definition 6.8. Using results from the theory of stochastic approximation, we show
that strong convergence is guaranteed for AREP algorithms with sublinear discounted
regret. We finally observe that both the REP algorithm and the Hedge algorithm be-
long to this class, which proves convergence for these two algorithms in particular.

2. The congestion game model. In the congestion game, a finite set R of
resources is shared by a set X of players. The set of players is endowed with a structure
of measure space, (X ,M,m), where M is a σ-algebra of measurable subsets, and m
is a finite Lebesgue measure. The measure is nonatomic in the sense that single-
player sets are null-sets for m. The player set is partitioned into K populations,
X = X1 ∪ · · · ∪ XK . For all k, the total mass of population Xk is assumed to be finite
and nonzero. Each player x ∈ Xk has a task to perform, characterized by a collection
of bundles Pk ⊂ P , where P is the power set of R. The task can be accomplished by
choosing any bundle of resources p ∈ Pk. The action set of any player in Xk is then
simply Pk.

The joint actions of all players can be represented by an action profile a : X → P
such that for all x ∈ Xk, a(x) ∈ Pk is the bundle of resources chosen by player x.
The function x �→ a(x) is assumed to be M-measurable (P is equipped with the
counting measure). The action profile a determines the bundle loads and resource
loads, defined as follows: for all k ∈ {1, . . . ,K} and p ∈ Pk, the load of bundle p
under population Xk is the total mass of players in Xk who chose that bundle

(2.1) fk
p (a) =

∫
x∈Xk

1(a(x)=p)dm(x).

For any r ∈ R, the resource load is defined to be the total mass of players utilizing r

(2.2) φr(a) =
K∑

k=1

∑
p∈Pk:r∈p

fk
p (a).

The resource loads determine the losses of all players: the loss associated to a resource
r is given by cr(φr(a)), where the congestion functions cr are assumed to satisfy the
following.

Assumption 2.1. The congestion functions cr are nonnegative, nondecreasing,
Lipschitz-continuous functions.

The total loss of a player x such that a(x) = p is
∑

r∈p cr(φr(a)). The congestion
model is given by the tuple (K, (Xk)1≤k≤K ,R, (Pk)1≤k≤K , (cr)r∈R). The congestion
game is determined by the action set and the loss function for every player: for all
x ∈ Xk, the action set of x is Pk, and the loss function of x, given the action profile a,
is
∑

r∈a(x) cr(φr(a)).
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2.1. A macroscopic view. The action profile a specifies the bundle of each
player x. A more concise description of the joint action of players is given by the
bundle distribution: the proportion of players choosing bundle p in population Xk is
denoted by μk

p(a) = fk
p (a)/m(Xk), which defines a bundle distribution for population

Xk, μ
k(a) = (μk

p(a))p∈Pk
∈ ΔPk , and a bundle distribution across populations, given

by the product distribution μ(a) = (μ1(a), . . . , μK(a)) ∈ ΔP1 × · · · × ΔPK . We say
that the action profile a induces the distribution μ(a). Here ΔPk denotes the simplex
of distributions over Pk, that is, Δ

Pk = {μ ∈ R
Pk
+ :

∑
p∈Pk

μp = 1}.
The product of simplexes ΔP1×· · ·×ΔPK will be denoted by Δ. This macroscopic

representation of the joint actions of players will be useful in our analysis. We will also
view the resource loads as linear functions of the product distribution μ(a). Indeed,
we have from (2.2) and the definition of μk

p(a)

φr(a) =

K∑
k=1

m(Xk)
∑

p∈Pk:r∈p

μk
p(a) =

K∑
k=1

m(Xk)(M
kμk(a))r ,

where for all k, Mk ∈ R
R×Pk is an incidence matrix defined as follows: for all r ∈ R

and all p ∈ Pk,

Mk
r,p =

{
1 if r ∈ p,

0 otherwise.

We write in vector form φ(a) =
∑K

k=1 m(Xk)M
kμk(a), and by defining the scaled

incidence matrix M̄ =
(
m(X1)M

1| . . . |m(XK)MK
)
, we have φ(a) = M̄μ(a)

By abuse of notation, the dependence on the action profile a will be omitted,
so we will write μ instead of μ(a) and φ instead of φ(a). Finally, we define the loss
function of a bundle p ∈ Pk to be

(2.3) �kp(μ) =
∑
r∈p

cr(φr) =
∑
r∈p

cr((M̄μ)r) = M�c(M̄μ),

where M is the incidence matrix M =
(
M1| . . . |MK

)
and c(φ) is the vector

(cr(φr))r∈R. We denote by �k(μ) the vector of losses (�kp(μ))p∈Pk
and by �(μ) the

K-tuple �(μ) = (�1(μ), . . . , �K(μ)).

2.2. Nash equilibria of the congestion game. We can now define and char-
acterize the Nash equilibria of the congestion game, also called Wardrop equilibria,
in reference to [28].

Definition 2.2 (Nash equilibrium). A product distribution μ is a Nash equi-
librium of the congestion game if for all k, and all p ∈ Pk such that μk

p > 0,

�kp′(μ) ≥ �kp(μ) for all p′ ∈ Pk. The set of Nash equilibria will be denoted by N .
In finite player games, a Nash equilibrium is defined to be an action profile a

such that no player has an incentive to unilaterally deviate [23], that is, no player
can strictly decrease her loss by unilaterally changing her action. We show that this
condition (referred to as the Nash condition) holds for almost all players whenever μ
is a Nash equilibrium in the sense of Definition 2.2.

Proposition 2.3. A distribution μ is a Nash equilibrium if and only if for any
joint action a which induces the distribution μ, almost all players have no incentive
to unilaterally deviate from a.
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Proof. First, we observe that, given an action profile a, when a single player x
changes her strategy, this does not affect the distribution μ. This follows from the
definition of the distribution, μk

p = 1
m(Xk)

∫
Xk

1(a(x)=p)dm(x). Changing the action

profile a on a null-set {x} does not affect the integral.
Now, assume that almost all players have no incentive to unilaterally deviate.

That is, for all k, for almost all x ∈ Xk,

(2.4) ∀p′ ∈ Pk, �kp′(μ′) ≥ �ka(x)(μ),

where μ′ is the distribution obtained when x unilaterally changes her bundle from
a(x) to p′. By the previous observation, μ′ = μ. As a consequence, condition (2.4)
becomes for almost all x, and for all p′, �kp′(μ) ≥ �ka(x)(μ). Therefore, integrating over

the set {x ∈ Xk : a(x) = p}, we have for all k, �kp′(μ)μk
p ≥ �kp(μ)μ

k
p for all p′, which

implies that μ is a Nash equilibrium in the sense of Definition 2.2. Conversely, if a is
an action profile, inducing distribution μ, such that the Nash condition does not hold
for a set of players with positive measure, then there exists k0 and a subset X ⊂ Xk0

with m(X) > 0, such that every player in X can strictly decrease her loss by changing
her action. Let Xp = {x ∈ X : a(x) = p}; then X is the disjoint union X = ∪p∈Pk

Xp,
and there exists p0 such that m(Xp0) > 0. Therefore

μk0
p0

=
m ({x ∈ Xk0 : a(x) = p0})

m(Xk0)
≥ m(Xp0)

m(Xk0)
> 0.

Let x ∈ Xp0 . Since x can strictly decrease her loss by unilaterally changing her action,

there exists p1 such that �k0
p1
(μ) < �k0

a(x)(μ) = �k0
p0
(μ). But since μk0

p0
> 0, μ is not a

Nash equilibrium.
Definition 2.2 also implies that, for a population Xk, all bundles with nonzero

mass have equal losses, and bundles with zero mass have greater losses. Therefore
almost all players incur the same loss.

2.3. Mixed strategies. The Nash equilibria we have described so far are pure
strategy equilibria, since each player x deterministically plays a single action a(x). We
now extend the model to allow mixed strategies. That is, the action of a player x is
a random variable A(x) with distribution π(x) and with realization a(x).

We show that when players use mixed strategies, provided they randomize in-
dependently, the resulting Nash equilibria are, in fact, the same as those given in
Definition 2.2. The key observation is that under independent randomization, the
resulting bundle distributions μk are random variables with zero variance, and thus
they are essentially deterministic.

To formalize the probabilistic setting, let (Ω,F ,P) be a probability space. A
mixed strategy profile is a function A : X → Ω → P , such that for all k and all
x ∈ Xk, A(x) is a Pk-valued random variable, such that the mapping (x, ω) �→ A(x)(ω)
is M × F -measurable. For all x ∈ Xk and p ∈ Pk, let πk

p (x) = P[A(x) = p]. Sim-
ilarly to the deterministic case, the mixed strategy profile A determines the bun-
dle distributions μk, which are, in this case, random variables, as we recall that
μk
p = 1

m(Xk)

∫
Xk

1(A(x)=p)dm(x).

Nevertheless, assuming players randomize independently, the bundle distribution
is almost surely equal to its expectation, as stated in the following proposition. The
assumption of independent randomization is a reasonable one, since players are non-
cooperative.
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Proposition 2.4. Under independent randomization,

∀k, almost surely, μk = E[μk] =
1

m(Xk)

∫
Xk

πk(x)dm(x).

Proof. Fix k and let p ∈ Pk. Since (x, ω) �→ 1(A(x)=p)(ω) is a nonnegative bounded
M×F -measurable function, we can apply Tonelli’s theorem and write

E
[
μk
p

]
= E

[
1

m(Xk)

∫
Xk

1(A(x)=p)dm(x)

]
=

1

m(Xk)

∫
Xk

E
[
1(A(x)=p)

]
dm(x)

=
1

m(Xk)

∫
Xk

πk
p (x)dm(x).

Similarly,

m(Xk)
2 var

[
μk
p

]
= E

(∫
Xk

1(A(x)=p)dm(x)

)2

−
(∫

Xk

πk
p (x)dm(x)

)2

=

∫
Xk

∫
Xk

E 1(A(x)=p;A(x′)=p)dm(x)dm(x′)−
∫
Xk

∫
Xk

πk
p (x)π

k
p (x

′)dm(x)dm(x′)

=

∫
Xk×Xk

(
P[A(x) = p;A(x′) = p]− πk

p (x)π
k
p (x

′)
)
d(m×m)(x, x′).

Then observing that the diagonal D = {(x, x) : x ∈ Xk} is an (m ×m)-nullset (this
follows, for example, from Proposition 251T in [13]), we can restrict the integral to the
set Xk ×Xk \D, on which P[A(x) = p;A(x′) = p] = πk

p (x)π
k
p (x

′), by the independent

randomization assumption. This proves that var
[
μk
p

]
= 0. Therefore μk

p = E[μk
p]

almost surely.

2.4. The Rosenthal potential function. We now discuss how one can for-
mulate the set of Nash equilibria as the solution of a convex optimization problem.
Consider the function

(2.5) V (μ) =
∑
r∈R

∫ (M̄μ)r

0

cr(u)du,

defined on the product of simplexes ΔP1×· · ·×ΔPK , which will be denoted by Δ. V is
called the Rosenthal potential function and was introduced in [24] for the congestion
game with finitely many players and later generalized to the infinite-players case. It

can be viewed as the composition of the function V̄ : φ ∈ R
R
+ �→

∑
r∈R

∫ φr

0 cr(u)du
and the linear function μ �→ M̄μ. Since for all r, cr is, by assumption, nonnegative,
V̄ is differentiable and nonnegative and ∇V̄ (φ) = (cr(φr))r∈R. And since cr are
nondecreasing, V̄ is convex. (One way to see this is by Taylor’s theorem: for all
φ0, φ, t such that φ0 ∈ R

R
+ and φ0+ tφ ∈ R

R
+ , there exists t′ between 0 and t such that

V̄ (φ0 + tφ) = V̄ (φ0) + t
〈
∇V̄ (φ0 + t′φ), φ

〉
≥ V̄ (φ0) + t

〈
∇V̄ (φ0), φ

〉
; thus V̄ satisfies

the first-order convexity condition. See, for example, [7, Section 3.1].) Therefore V is
convex as the composition of a convex and a linear function.

A simple application of the chain rule gives ∇V (μ) = M̄�c(M̄μ). If we denote
by ∇μkV (μ) the vector of partial derivatives with respect to μk

p, p ∈ Pk, we have

∇μkV (μ) = m(Xk)M
k�c(M̄μ) = m(Xk)�

k(μ). Thus,

(2.6) ∀k, ∀p ∈ Pk,
∂V

∂μk
p

(μ) = m(Xk)�
k
p(μ),D
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2 3

0 1

4 5

Fig. 1. Routing game with two populations of players.

and V is a potential function for the congestion game, as defined in [27], for example.
Next, we show the relationship between the set of Nash equilibria and the potential
function V .

Theorem 2.5 (Rosenthal [24]). N is the set of minimizers of V on the product
of simplexes Δ. It is a nonempty convex compact set. We will denote by VN the value
of V on N .

Since the set of Nash equilibria can be expressed as the solution to a convex opti-
mization problem, it can be computed in polynomial time in the size of the problem.
Beyond computing Nash equilibria, we seek to model how players arrive at the set
N . This is discussed in section 3. But first, we define routing games, a special case
of congestion games.

2.5. Example: Routing games. A routing game is a congestion game with
an underlying graph G = (V , E), with vertex set V and edge set E ⊂ V × V . In this
case, the resource set is equal to the edge set, R = E . Routing games are used to
model congestion on transportation or communication networks. Each population Xk

is characterized by a common source vertex sk ∈ V and a common destination vertex
tk ∈ V . In a transportation setting, players represent drivers traveling from sk to
tk; in a communication setting, players send packets from sk to tk. The action set
Pk is a set of paths connecting sk to tk. In other words, each player chooses a path
connecting his or her source and destination vertices. The bundle load fk

p is then
called the flow on path p. The resource load φr is called the total edge flow. Finally,
the congestion functions φr �→ cr(φr) determine the delay (or latency) incurred by
each player.

We will use the routing game given in Figure 1 as an example to illustrate the
convergence result of section 6. In this example, two populations of players share the
network; the first population sends packets from v0 to v1, and the second population
from v2 to v3. The paths (bundles) available to each population are given by P1 =
{(v0, v1), (v0, v4, v5, v1), (v0, v5, v1)}, P2 = {(v2, v3), (v2, v4, v5, v3), (v2, v4, v3)}.

3. Online learning in congestion games. We now describe the online learn-
ing framework for the congestion game and present the Hedge algorithm in particular.

3.1. The online learning framework. Suppose that the game is played re-
peatedly for infinitely many iterations, indexed by τ ∈ N. During iteration τ , each
player chooses a bundle simultaneously. The decision of all players can be represented,
as defined above, by an action profile a(τ) : X → P . This induces, at the level of each

population Xk, a bundle distribution μk(τ). These, in turn, determine the resource
loads and the bundle losses �kp(μ

(τ)). The losses for bundles p ∈ Pk are revealed to all
players in population Xk, which marks the end of iteration τ . Players can then use
this information to update their strategies before the start of the next iteration.
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A note on the information assumptions. Here, we assume that at the end of
the iteration, a player observes the losses of all bundles p ∈ Pk. Instead, one could
assume that a player can only observe the losses she incurs. This is often called
the multiarmed-bandit setting, in reference to armed-bandit slot machines, in which
a gambler can choose, at each iteration, one machine to play and is only revealed
the loss of that machine. Making this restriction requires players to use additional
exploration of bundles. A comprehensive presentation of online learning algorithms
in the multiarmed-bandit setting, both stochastic and deterministic, can be found,
for example, in [2]. Regret bounds are also given in [10, Section 6.7, pp. 156–159],
and [9, 8], as well as [3, 15] for the online shortest path problem. We choose to use
the full feedback assumption to simplify our discussion, leaving the multiarmed-bandit
setting as a possible extension. We believe this is a reasonable model in many games,
since bundle losses could be announced publicly. In the special case of routing games,
this can be achieved by having a central authority measure and announce the delays.
This is particularly true in transportation networks, in which many agencies and online
services measure delays and make this information publicly available. Assuming the
full vector of bundle losses is revealed does not mean, however, that players have

access to the individual resource loads φ
(τ)
r , or to the congestion functions cr(·), which

is consistent with our initial argument that, in a realistic model, players should only
rely on the observed value of the bundle losses.

Each player x ∈ Xk is assumed to draw her bundle from a randomized strategy
π(τ)(x) ∈ ΔPk (the deterministic case is a special case in which π(τ)(x) is a vertex
on the simplex, i.e., a pure strategy). As discussed in section 2.3, players randomize
independently. At the end of iteration τ , player x updates her strategy using an
update rule or online learning algorithm, as defined below.

Definition 3.1 (online learning algorithm for the congestion game). An online
learning algorithm (or update rule) for the congestion game, applied by a player x ∈
Xk, is a sequence of functions

(
Ux (τ)

)
τ∈N

, fixed a priori, that is, before the start of
the game, such that for each τ ,

Ux (τ) :
(
R

Pk
)τ ×ΔPk → ΔPk(

(�k(μ(t)))t≤τ , π
(τ)(x)

)
�→ π(τ+1)(x)

is a function which maps, given the history of bundle losses (�k(μ(t)))t≤τ , the strategy
on the current day π(τ)(x) to the strategy on the next day π(τ+1)(x). The online
learning framework is summarized in Algorithm 1.

Algorithm 1. Online learning framework for the congestion game.

1: For every player x ∈ Pk, an initial mixed strategy π(0)(x) ∈ ΔPk and an online
learning algorithm ( Ux (τ))τ∈N

2: for each iteration τ ∈ N do
3: Every player x independently draws a bundle according to her strategy π(τ)(x),

i.e., A(τ)(x) ∼ π(τ)(x).
4: The vector of bundle losses �k(μ(τ)) is revealed to all players in Pk. Each

player incurs the loss of the bundle she chose.
5: Players update their mixed strategies: π(τ+1)(x) =

Ux (τ)((�kp(μ
(t)))t≤τ , π

(τ)(x)).
6: end for
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We will focus our attention on algorithms which have vanishing upper bounds on
the average discounted regret, defined in the next section.

3.2. Discounted regret. Since the game is played for infinitely many iterations,
we assume that the losses of players are discounted over time. This is a common tech-
nique in infinite-horizon optimal control, for example, and can be motivated from an
economic perspective by considering that losses are devalued over time. We also give
an interpretation of discounting in terms of learning rates, as discussed in section 3.4.

Let (γτ )τ∈N denote the sequence of discount factors. We make the following
assumption.

Assumption 3.2. The sequence of discount factors (γτ )τ∈N is assumed to be

positive decreasing with limτ→∞ γτ = 0 and limT→∞
∑T

τ=0 γτ = ∞.
On iteration τ , a player x ∈ Xk who draws an action A(τ)(x) ∼ π(τ)(x) incurs

a discounted loss given by γτ �
k
A(τ)(x)

(μ(τ)), where μ(τ) is the distribution induced by

the profile A(τ). The cumulative discounted loss for player x, up to iteration T , is
then defined to be

(3.1) L(T )(x) =

T∑
τ=0

γτ �
k
A(τ)(x)(μ

(τ)).

We observe that this is a random variable, since the action A(τ)(x) of player x is ran-
dom, drawn from a distribution π(τ)(x). The expectation of the cumulative discounted

loss is then E[L(T )(x)] =
∑T

τ=0 γτ E[�
k
A(τ)(x)

(μ(τ))] =
∑T

τ=0 γτ
〈
π(τ)(x), �k(μ(τ))

〉
,

where 〈·, ·〉 denotes the Euclidean inner product on R
Pk . Similarly, we define the

cumulative discounted loss for a fixed bundle p ∈ Pk,

(3.2) L k
p

(T )
=

T∑
τ=0

γτ �
k
p(μ

(τ)).

We can now define the discounted regret.
Definition 3.3 (discounted regret). Let x ∈ Xk, and consider an online learning

algorithm for the congestion game, given by the sequence of functions
(
Ux (τ)

)
τ∈N

. Let

(μ(τ))τ∈N be the sequence of distributions, determined by the mixed strategy profile of
all players. Then the discounted regret up to iteration T , for player x, under algorithm
U , is the random variable

(3.3) R(T )(x) = L(T )(x) − min
p∈Pk

L k
p

(T )
.

The algorithm U is said to have sublinear discounted regret if for any sequence of
distributions (μ(τ))τ∈N, and any initial strategy π(0),

(3.4)
1∑T

τ=0 γτ

[
R(T )(x)

]+
→ 0 almost surely as T → ∞.

If we have convergence in the L1-norm, 1∑
T
τ=0 γτ

[
E
[
R(T )(x)

]]+ → 0, we say that the

algorithm has sublinear discounted regret in expectation.
We observe that in the definition of the regret, one can replace the minimum over

the set Pk by a minimum over the simplex ΔPk , minp∈Pk
L
(T )
p = minπ∈ΔPk

〈
π, L(T )

〉
,

since the minimizers of a bounded linear function lie on the set of extremal points
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of the feasible set. Therefore, the discounted regret compares the performance of
the online learning algorithm to the best stationary strategy in hindsight. Indeed,〈
π, L(T )

〉
is the cumulative discounted loss of a stationary strategy π, and minimizing

this expression over π ∈ ΔPk yields the best stationary strategy in hindsight: one
cannot know a priori which strategy will minimize the expression until all losses up
to T are revealed. If the algorithm has sublinear regret, its average performance is,
asymptotically, as good as the performance of any stationary strategy, regardless of
the sequence of distributions (μ(τ))τ∈N.

A note on monotonicity of the discount factors. A similar definition of discounted
regret is used, for example, by Cesa-Bianchi and Lugosi in section 3.2 of [10]. How-
ever, in their definition, the sequence of discount factors is increasing. This can be
motivated by the following argument: present observations may provide better in-
formation than past, stale observations. While this argument is accurate in many
applications, it does not serve our purpose of convergence of population strategies. In
our discussion, the standing assumption is that discount factors are decreasing.

Finally, we observe that the cumulative discounted loss and regret are bounded,
uniformly in x, since the congestion functions are continuous on a compact set.

Proposition 3.4. There exists ρ ≥ 0 such that for all k, all p ∈ Pk, and all μ ∈
Δ, �kp(μ) ∈ [0, ρ]; and for all x ∈ Xk,

1∑T
τ=0 γτ

L(T )(x) ∈ [0, ρ] and 1∑T
τ=0 γτ

[
R(T )(x)

]+ ∈
[0, ρ].

3.3. Populationwide regret. We have defined the discounted regret R(T )(x)
for a single player x. In order to analyze the population dynamics, we define a popu-

lationwide cumulative discounted loss Lk(T )
and discounted regret Rk(T )

as follows:

Lk(T )
=

1

m(Xk)

∫
Xk

L(T )(x)dm(x),(3.5)

Rk(T )
=

1

m(Xk)

∫
Xk

R(T )(x)dm(x) = Lk(T ) − min
p∈Pk

L k
p

(T )
.(3.6)

Since L(T )(x) is random for all x, Lk(T )
is also a random variable. However, it is,

in fact, almost surely equal to its expectation. Indeed, recalling that μk
p
(τ)

is the
proportion of players who chose bundle p at iteration τ (also a random variable), we
can write

Lk(T )
=

T∑
τ=0

γτ
1

m(Xk)

∑
p∈Pk

∫
{x∈Xk:A(τ)(x)=p}

�kp(μ
(τ))dm(x) =

T∑
τ=0

γτ
∑
p∈Pk

μk
p

(τ)
�kp(μ

(τ)),

thus assuming players randomize independently, μ(τ) is almost surely deterministic

by Proposition 2.4, and so is Lk(T )
. The same holds for Rk(T )

.

Proposition 3.5. If almost every player x ∈ Xk applies an online learning
algorithm with sublinear regret in expectation, then the populationwide regret is also
sublinear.

Proof. By the previous observation, we have, almost surely,

Rk(T )
= E

[
Rk(T )

]
=

1

m(Xk)

∫
Xk

E

[
R(T )(x)

]
dm(x),
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where the second equality follows from Tonelli’s theorem. Taking the positive part
and using Jensen’s inequality, we have

1∑T
τ=0 γτ

[
Rk(T )

]+
≤ 1

m(Xk)

∫
Xk

1∑T
τ=0 γτ

[
E

[
R(T )(x)

]]+
dm(x).

By assumption, 1∑
T
τ=0 γτ

[
E
[
R(T )(x)

]]+
converges to 0 for all x, and by Proposi-

tion 3.4, it is bounded uniformly in x. Thus the result follows by applying the domi-
nated convergence theorem.

3.4. Hedge algorithm with vanishing learning rates. We now present one
particular online learning algorithm with sublinear regret. Consider a congestion
game, and let ρ be an upper bound on the losses. The existence of such an upper
bound was established in Proposition 3.4.

Definition 3.6 (Hedge algorithm). The Hedge algorithm, applied by player
x ∈ Xk, with initial distribution π(0) ∈ ΔPk and learning rates (ητ )τ∈N, is an online
learning algorithm ( Ux (τ))τ∈N such that the τ th update function is given by

(3.7)

Ux (τ)((�k(μ(t)))t≤τ , π
(τ)(x)) = π(τ+1)(x) ∝

(
π(τ)
p (x) exp

(
−ητ

�kp(μ
(τ))

ρ

))
p∈Pk

Intuitively, the Hedge algorithm updates the distribution by computing, at each
iteration, a set of bundle weights, then normalizing the vector of weights. The weight
of a bundle p is obtained by multiplying the probability at the previous iteration,

π
(τ)
p , by a term which is exponentially decreasing in the bundle loss �kp(μ

(τ)); thus the
higher the loss of bundle p at iteration τ , the lower the probability of selecting p at
the next iteration. The parameter ητ can be interpreted as a learning rate, as the
Hedge update rule (3.7) is the solution to the following optimization problem:

(3.8) π(τ+1) ∈ arg min
π∈ΔPk

〈
π,

�k(μ(τ))

ρ

〉
+

1

ητ
DKL(π‖π(τ)),

whereDKL(π‖ν) =
∑

p∈Pk
πp log

πp

νp
is the Kullback–Leibler divergence of distribution

π with respect to ν (see, for example, [18]).

The objective function in (3.8) is the sum of an instantaneous loss term 〈π, �k(μ(τ))
ρ 〉

and a regularization term 1
ητ
DKL(π‖π(τ)) which penalizes deviations from the previ-

ous distribution π(τ), with a regularization coefficient 1
ητ
. The greedy problem (with

no regularization term) would yield a pure strategy which concentrates all the mass on
the bundle which had minimal loss on the previous iteration. With the regularization
term, the player “hedges her bet” by penalizing too much deviation from the previous
distribution. The coefficient ητ determines the relative importance of the two terms
in the objective function. In particular, as ητ → 0, the solution to the problem (3.8)
converges to π(τ) since the regularization term dominates the instantaneous loss term.
In other words, as ητ converges to 0, the player stops learning from new observations,
which justifies calling ητ a learning rate.D
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Remark 3.7. The sequence of distributions given by the Hedge algorithm also
satisfies

(3.9) π(τ+1) ∝
(
π(0)
p exp

(
−

τ∑
t=0

ηt
�kp(μ

(t))

ρ

))
p∈Pk

.

This follows from the update equation (3.7) and a simple induction on τ . In
particular, when ητ = γτ , the term

∑τ
t=0 ηt�

k
p(μ

(t)) coincides with the cumulative

discounted loss L k
p
(τ)

defined in (3.2). This motivates using the discount factors γτ
as learning rates. We discuss this in the next proposition.

Proposition 3.8. Consider a congestion game with a sequence of discount fac-
tors (γτ )τ∈N satisfying Assumption 3.2. Then the Hedge algorithm with learning rates
(γτ ) satisfies the following regret bound: for any sequence of distributions (μ(τ))τ and
any initial strategy π(0),

E[R(T )(x)] ≤ −ρ logπ
(0)
min +

ρ

8

T∑
τ=0

γ2
τ ,

where π
(0)
min = minp∈Pk

π
(0)
p .

Proof. Given an initial strategy π(0), define ξ: u∈RPk �→ log(
∑

p∈Pk
π
(0)
p exp(−up

ρ )).

Recalling the expression of the cumulative bundle loss L k
p
(τ)

=
∑τ

t=0 γt�
k
p(μ

(t)), we
have for all τ ≥ 0

ξ(L k(τ+1)
)− ξ(L k(τ)) = log

⎛
⎜⎜⎝∑
p∈Pk

π
(0)
p exp

(
−Lk

p
(τ)

ρ

)
∑

p′∈Pk
exp

(
−

Lk
p′

(τ)

ρ

) exp

(
−γτ+1

�kp(μ
(τ+1))

ρ

)⎞⎟⎟⎠

= log

⎛
⎝∑

p∈Pk

π(τ+1)
p exp

(
−γτ+1

�kp(μ
(τ+1))

ρ

)⎞⎠

≤ −γτ+1

∑
p∈Pk

π(τ+1)
p

�kp(μ
(τ+1))

ρ
+

γ2
τ+1

8
.

The last inequality follows from Hoeffding’s lemma, since 0 ≤ �kp(μ
(τ))

ρ ≤ 1. Summing

over τ ∈ {−1, . . . , T − 1}, we have for all p

ξ(L k(T )
)− ξ(L k(−1)

) ≤ −
T∑

τ=0

γτ
∑
p∈Pk

π(τ)
p

�kp(μ
(τ))

ρ
+

1

8

T∑
τ=0

γ2
τ ,

where ξ(L (−1)) = ξ(0) = 0. By monotonicity of the log function, we have for all

p0 ∈ Pk, log(π
(0)
p0 exp(−Lk

p0

(T )

ρ )) ≤ ξ(L k(T )
); thus

−
L k

p0

(τ)

ρ
+ log π(0)

p0
≤ ξ(L k(T )

) ≤ −
T∑

τ=0

γτ
∑
p∈Pk

π(τ)
p

�kp(μ
(τ))

ρ
+

1

8

T∑
τ=0

γ2
τ .
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Rearranging, we have for all p ∈ Pk

T∑
τ=0

γτ
∑
p∈Pk

π(τ)
p �kp(μ

(τ))− L k
p0

(T ) ≤ −ρ

8
log π(0)

p0
+ ρ

T∑
τ=0

γ2
τ ,

and we obtain the desired inequality by maximizing both sides over p0 ∈ Pk.
The previous proposition provides an upper bound on the expected regret of the

Hedge algorithm, of the form

E
[
R(T )(x)

]∑
τ≤T γτ

≤ −ρπ
(0)
min

1∑
τ≤T γτ

+
ρ

8

∑
τ≤T γ2

τ∑
τ≤T γτ

.

Given Assumption 3.2 on the discount factors, we have limT→∞

∑
τ≤T γ2

τ∑
τ≤T γτ

= 0, which

proves that the discounted regret is sub-linear. This also provides a bound on the
convergence rate. For example, if γτ ∼ 1

τ , then the upper bound is equivalent to c
log T ,

which converges to zero as T → ∞, albeit slowly. A better bound can be obtained
for sequences of discount factors which are not square-summable, for example, taking
γτ ∼ 1√

τ
, the upper bound is equivalent to c log T√

T
.

We now have one example of an online learning algorithm with sublinear dis-
counted regret. Furthermore, we have an interpretation of the sequence (γτ ) as learn-
ing rates, which provides additional intuition on Assumption 3.2 on (γτ ): decreasing
the learning rates will help the system converge.

In the next section, we start our analysis of the population dynamics when all
players apply a learning algorithm with sublinear discounted regret.

4. Convergence in the Cesàro sense. As discussed in Proposition 3.5, if
almost every player applies an algorithm with sublinear discounted regret in expecta-
tion, then the populationwide discounted regret is sublinear (almost surely). We now
show that whenever the population has sublinear discounted regret, the sequence of
distributions (μ(τ))τ converges in the sense of Cesàro. That is,

∑
τ≤T γτμ

(τ)/
∑

τ≤T γτ
converges to the set of Nash equilibria. We also show that we have convergence of a
dense subsequence. First, we give some definitions.

Definition 4.1 (convergence in the sense of Cesàro). Fix a sequence of pos-
itive weights (γτ )τ∈N. A sequence (u(τ))τ∈N of elements of a normed vector space
(F, ‖ · ‖) converges to u ∈ F in the sense of Cesàro means with respect to (γτ )τ if

limT→∞

∑
τ∈N:τ≤T γτu

(τ)

∑
τ∈N:τ≤T γτ

= u. We write u(τ) (γτ )−−−→ u.

The Stolz–Cesàro theorem states that if (u(τ))τ converges to u, then it converges
in the sense of Cesàro means with respect to any nonsummable sequence (γτ )τ ; see,
for example, [22]. The converse is not true in general. However, if a sequence con-

verges absolutely in the sense of Cesàro means, i.e., ‖u(τ) − u‖ (γτ )−−−→ 0, then a dense
subsequence of (u(τ))τ converges to u. To show this, we first show that absolute
Cesàro convergence implies statistical convergence, as defined below.

Definition 4.2 (statistical convergence). Fix a sequence of positive weights
(γτ )τ . A sequence (u(τ))τ∈N of elements of a normed vector space (F, ‖ · ‖) converges
to u ∈ F statistically with respect to (γτ ) if for all ε > 0, the set of indexes Iε = {τ ∈
N : ‖u(τ) − u‖ ≥ ε} has zero density with respect to (γτ ). The density of a subset of
integers I ⊂ N, with respect to the sequence of positive weights (γτ ), is defined to be

the limit, if it exists, limT→∞

∑
τ∈I:τ≤T γτ

∑
τ∈N:τ≤T γτ

.
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Lemma 4.3. If (u(τ))τ converges to u absolutely in the sense of Cesàro means
with respect to (γτ ), then it converges to u statistically with respect to (γτ ).

Proof. Let ε > 0. We have for all T ∈ N,

0 ≤
∑

τ∈Iε : τ≤T γτ ε∑
τ∈N : τ≤T γτ

≤
∑

τ∈N:τ≤T γτ‖u(τ) − u‖∑
τ∈N:τ≤T γτ

,

which converges to 0 since (u(τ))τ converges to u absolutely in the sense of Cesàro
means. Therefore Iε has zero density for all ε.

We can now show convergence of a dense subsequence.
Proposition 4.4. If (u(τ))τ∈N converges to u absolutely in the sense of Cesàro

means with respect to (γτ ), then there exists a subset of indexes T ⊂ N of density one,
such that the subsequence (u(τ))τ∈T converges to u.

Proof. By Lemma 4.3, for all ε > 0, the set Iε = {τ ∈ N : ‖u(τ) − u‖ ≥ ε}
has zero density. We will construct a set I ⊂ N of zero density, such that the
subsequence (uτ )τ∈N\I converges. For all k ∈ N

∗, let pk(T ) =
∑

τ∈I 1
k
: τ≤T γτ . Since

pk(T )∑
τ∈N : τ≤T γτ

converges to 0 as T → ∞, there exists Tk > 0 such that for all T ≥

Tk,
pk(T )∑

τ∈N : τ≤T γτ
≤ 1

k . Without loss of generality, we can assume that (Tk)k∈N∗ is

increasing. Now, let I =
⋃

k∈N∗(I 1
k
∩{Tk, . . . , Tk+1−1}). Then we have for all k ∈ N

∗,

I ∩{0, . . . , Tk+1− 1} =
(
∪k
j=1I 1

j

)
∩{0, . . . , Tk+1− 1}. But since I1 ⊂ I 1

2
⊂ · · · ⊂ I 1

k
,

we have I ∩ {0, . . . , Tk+1 − 1} ⊂ I 1
k
∩ {0, . . . , Tk+1 − 1}; thus for all T such that

Tk ≤ T < Tk+1, we have

∑
τ∈I : τ≤T γτ∑
τ∈N : τ≤T γτ

≤

∑
τ∈I 1

k
: τ≤T γτ∑

τ∈N : τ≤T γτ
=

pk(T )∑
τ∈N : τ≤T γτ

≤ 1

k
,

which proves that I has zero density.
Let T = N \ I. We have that T has density one, and it remains to prove that

the subsequence (u(τ))τ∈T converges to u. Since T has density one, it has infinitely
many elements, and for all k, there exists Sk ∈ T such that Sk ≥ Tk. For all τ ∈ T
with τ ≥ Sk, there exists k′ ≥ k such that Tk′ ≤ τ < Tk′+1. Since τ /∈ I and
Tk′ ≤ τ < Tk′+1, we must have τ /∈ I 1

k′ ; therefore ‖u(τ) − u‖ < 1
k′ ≤ 1

k . This proves

that (u(τ))τ∈T converges to u.
We now present the main result of this section, which concerns the convergence of

a subsequence of population distributions (μ(τ)) to the set N of Nash equilibria. We
say that (μ(τ)) converges to N if d(μ(τ),N ) → 0, where d(μ,N ) = infν∈N ‖μ− ν‖.

Theorem 4.5. Consider a congestion game with discount factors (γτ )τ satisfying
Assumption 3.2. Assume that for all k ∈ {1, . . . ,K}, population k has sublinear
discounted regret. Then the sequence of distributions (μ(τ))τ converges to the set of
Nash equilibria in the sense of Cesàro means with respect to (γτ ). Furthermore, there
exists a dense subsequence (μτ )τ∈T which converges to N .

Proof. First, we observe the following fact.
Lemma 4.6. A sequence (ν(τ)) in Δ converges to N only if (V (ν(τ))) converges

to VN , the value of V on N .
Indeed, suppose by contradiction that V (ν(τ)) → VN but ν(τ) �→ N . Then there

would exist ε > 0 and a subsequence (ν(τ))τ∈T , T ⊂ N, such that d(ν(τ),N ) ≥ ε
for all τ ∈ T . Since Δ is compact, we can extract a further subsequence (ν(τ))τ∈T ′ ,
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1070 W. KRICHENE, B. DRIGHÈS, AND A. M. BAYEN

which converges to some ν /∈ N . But by continuity of V , (V (ν(τ)))τ∈T ′ converges to
V (ν) > VN , a contradiction.

Consider the potential function V defined in (2.5). By convexity of V and the
expression (2.6) of its gradient, we have for all τ and for all μ ∈ Δ,

V (μ(τ))− V (μ) ≤
〈
∇V (μ(τ)), μ(τ) − μ

〉
=

K∑
k=1

m(Xk)
〈
�k(μ(τ)), μk

p

(τ) − μk
p

〉
,

then taking the weighted sum up to iteration T ,

T∑
τ=0

γτ (V (μ(τ))− V (μ)) ≤
K∑

k=1

m(Xk)

[
T∑

τ=0

γτ

〈
μk(τ), �k(μ(τ))

〉
−
〈
μk,

T∑
τ=0

γτ �
k(μ(τ))

〉]

=

K∑
k=1

m(Xk)
[
Lk(T ) −

〈
μk,L k(T )

〉]
≤

K∑
k=1

m(Xk)R
k(T )

,

where for the last inequality, we use the fact that
〈
μk,L k(T )

〉
≥ minp∈Pk

L k
p
(T )

. In

particular, when μ is a Nash equilibrium, by Theorem 2.5, V (μ) = minμ∈Δ V (μ) =
VN , and thus

∑T
τ=0 γτ |V (μ(τ))− VN |∑T

τ=0 γτ
≤

K∑
k=1

m(Xk)
Rk(T )∑T
τ=0 γτ

.

Since the populationwide regret Rk(T )
is assumed to be sublinear for all k, we have

|V (μ(τ)) − VN | (γτ )−−−→ 0. By Proposition 4.4, there exists T ⊂ N of density one, such
that (V (μ(τ)))τ∈T converges to VN . And it follows that (μ(τ))τ∈T converges to N .
This proves the second part of the theorem. To prove the first part, we observe that,
by convexity of V ,

VN ≤ V

(∑T
τ=0 γτμ

(τ)∑T
τ=0 γτ

)
≤
∑T

τ=0 γτV (μ(τ))∑T
τ=0 γτ

= VN +

∑T
τ=0 γτ (V (μ(τ))− VN )∑T

τ=0 γτ
,

and the upper bound converges to VN . Therefore
(∑

τ≤T γτμ
(τ)

∑
τ≤T γτ

)
T

converges

to N .
To conclude this section, we observe that the Cesàro convergence result of Theo-

rem 4.5 can be generalized to any game with a convex potential function.

5. Continuous-time dynamics. We now turn to the harder question of con-
vergence of (μ(τ))τ : we seek to derive sufficient conditions under which the sequence
(μ(τ)) converges to N . In this section, we study a continuous-time limit of the update
equation given by the Hedge algorithm. The resulting ODE, known as the replicator
equation, will be useful in proving strong convergence results in the next section.

5.1. The replicator dynamics. To motivate the study of the replicator dy-
namics from an online learning point of view, we first derive the continuous-time
replicator dynamics as a limit of the discrete Hedge dynamics, as discussed below.
Assume that in each population Xk, all players start from the same initial distri-

bution πk(0) ∈ ΔPk , and apply the Hedge algorithm with learning rates (γτ ). As a
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result, the sequence of distributions (μk(τ)) satisfies the Hedge update rule (3.7). Now
suppose the existence of an underlying continuous time t ∈ R+ and write µ(t) the
distribution at time t. Suppose that the updates occur at discrete times Tτ , τ ∈ N,
such that the time steps are given by a decreasing, vanishing sequence ετ . That is,
Tτ+1 − Tτ = ετ . Then we have for all k and all p ∈ Pk, using Landau notation,

µk
p(Tτ+1) = μk

p

(τ+1)
= μk

p

(τ) e−γτ

�kp(μ(τ))

ρ

∑
p′∈Pk

μk
p′

(τ)
e−γτ

�k
p′ (μ

(τ))

ρ

= μk
p

(τ) 1− γτ
�kp(μ

(τ))

ρ + o(γτ )

1− γτ
∑

p′∈Pk
μk
p′

(τ) �
k
p′(μ

(τ))

ρ + o(γτ )

= µk
p(Tτ )

[
1 + γτ

�̄k(μ(τ))− �kp(μ
(τ))

ρ

]
+ o(γτ ).

Thus,

µk
p(Tτ+1)− µk

p(Tτ )

Tτ+1 − Tτ

ετ
γτ

= µk
p(Tτ )

�̄k(μ(τ)) − �kp(μ(τ))

ρ
+ o(1).

In particular, if we take the discretization time steps ετ to be equal to the sequence
of learning rate γτ , the expression simplifies, and taking the limit as γτ → 0, we obtain
the following ODE system:

(5.1)

{
µ(0) ∈ Δ̊

∀k, ∀p ∈ Pk,
dµk

p(t)

dt = µk
p(t)

�̄k(µ(t))−�kp(µ(t))

ρ ,

where Δ̊ = {μ ∈ Δ: ∀k, ∀p ∈ Pk, μ
k
p > 0} is the relative interior of Δ. Here,

we require that the initial distribution have positive weights on all bundles for the
following reason: whenever µk

p(0) = 0, any solution trajectory will have µk
p(t) ≡ 0. It

is impossible for such trajectories to converge to the set of Nash equilibria N if the
support of equilibria in N contains p. In other words, the replicator dynamics cannot
expand the support of the initial distribution; therefore we require that the initial
distribution be supported everywhere.

Equation (5.1) defines a vector field F : Δ → H, where H is the product H =
HP1×· · ·×HPK and HPk = {v ∈ R

Pk :
∑

p∈P vp = 0} is the linear hyperplane parallel
to the simplex ΔPk . Indeed, we have for all μ ∈ Δ and for all k,

∑
p∈Pk

F k
p (μ) =∑

p∈Pk
�kp(μ)μ

k
p − �̄k(μ)

∑
p∈Pk

μk
p = 0.

The following proposition ensures that the solutions remain in the relative interior
and are defined on all times.

Proposition 5.1. The ODE (5.1) has a unique solution μ(t) which remains in
Δ̊ and is defined on R+.

Proof. First, since the congestion functions cr are assumed to be Lipschitz con-
tinuous, so is the vector field F . We thus have existence and uniqueness of a solution
by the Cauchy–Lipschitz theorem.

To show that the solution remains in the relative interior of Δ, we observe that for
all k, d

dt

∑
p∈Pk

µk
p(t) =

∑
p∈Pk

F k
p (µ(t)) = 0 by the previous observation. Therefore,
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1072 W. KRICHENE, B. DRIGHÈS, AND A. M. BAYEN

∑
p∈Pk

µk
p(t) is constant and equal to 1. To show that µk

p(t) > 0 for all t in the
solution domain, assume by contradiction that there exists t0 > 0 and p0 ∈ Pk such
that µk

p0
(t0) = 0. Since the solution trajectories are continuous, we can assume,

without loss of generality, that t0 is the infimum of all such times (thus for all t < t0,
µp0

(t) > 0). Now consider the new system given by

˙̃µp =
1

ρ
(�̄(µ̃)− �p(µ̃))µ̃p ∀p �= p0,

µ̃p(t0) = µp(t0) ∀p �= p0,

and µ̃p0
(t) is identically equal to 0. Any solution of the new system, defined on

(t0 − δ, t0], is also a solution of (5.1). Since µ(t0) = µ̃(t0), we have µ ≡ µ̃ by
uniqueness of the solution. This leads to a contradiction since by assumption, for all
t < t0, µp(t) > 0 but µ̃p(t) = 0.

This proves that µ remains in Δ̊. Furthermore, since Δ is compact, we have by
Theorem 2.4 in [17] that the solution is defined on R+ (otherwise it would eventually
leave any compact set).

5.2. Stationary points of the replicator dynamics. We first give a charac-
terization of stationary points of the replicator dynamics applied to the congestion
game.

Proposition 5.2. A product distribution μ is a stationary point for the replicator
dynamics (5.1) if and only if the bundle losses �kp(μ) are equal on the support of μk.

This follows immediately from (5.1). We observe in particular that all Nash equi-
libria are stationary points, but a stationary point may not be a Nash equilibrium in
general: one may have a stationary point μ such that μk

p = 0 but �kp(μ) is strictly lower
than losses of bundles in the support, which violates the condition in Definition 2.2
of a Nash equilibrium.

A stationary point μ with support P ′
1 × · · · × P ′

K can be viewed as a Nash equi-
librium of a modified congestion game, in which the bundle set of each population Xk

is restricted to P ′
k. For this reason, stationary points have been called restricted Nash

equilibria by Fischer and Vöcking in [11]. We will denote the set of stationary points
by RN , in reference to the aforementioned paper.

Remark 5.3. By the previous observation, a stationary point with support P ′
1 ×

· · · ×P ′
K is a minimizer of the potential function V on the product ΔP′

1 × · · · ×ΔP′
K .

As the number of support sets is finite, the set of potential values of stationary points
V (RN ) is also finite.

5.3. Convergence of the replicator dynamics. In [11], Fischer and Vöcking
prove, using a Lyapunov argument, that all solution trajectories of the replicator
system asymptotically approach the set of stationary points RN . Unfortunately, this
result only guarantees convergence to a superset of Nash equilibria. However, this
will be useful in the next section.

Proposition 5.4 (Fischer and Vöcking [11]). Every solution of the system (5.1)
converges to the set of stationary points RN .

5.4. A discrete-time replicator equation: The REP update rule. In-
spired by the continuous-time replicator dynamics, we propose a discrete-time mul-
tiplicative update rule by discretizing the ODE (5.1). The resulting algorithm has
many desirable properties, such as sublinear discounted regret and simplicity of im-
plementation. We call it the REP algorithm in reference to the replicator ODE.
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The vector field F can be written in the following form: for all k, F k(µ) =
Gk(µ, �(µ)), where for all p,

Gk
p(µ, �) = µk

p

〈
µk, �k

〉
− �kp

ρ
.

This motivates the following update rule for a player x ∈ Xk with distribution π(τ)(x):

π(τ+1)(x) = π(τ)(x) + ητG
k(π(τ)(x), �(μ(τ))).

Definition 5.5 (discrete replicator algorithm). The REP algorithm, applied by
player x ∈ Xk, with initial distribution π(0) ∈ ΔPk and learning rates (ητ )τ∈N with
ητ ≤ 1, is an online learning algorithm ( Ux (τ))τ∈N such that the τ th update function
is given by Ux (τ)((�k(μ(t)))t≤τ , π

(τ)) = π(τ+1), such that

(5.2) π(τ+1)
p − π(τ)

p = ητπ
(τ)
p

〈
π(τ), �k(μ(τ))

〉
− �kp(μ

(τ))

ρ
.

Here,
〈
π(τ), �k(μ(τ))

〉
−�kp(μ

(τ)) is the expected instantaneous regret of the player,
with respect to bundle p. Thus the REP update can also be expressed in terms of the
previous distribution and the expected instantaneous regret.

Under the REP update, the sequence of strategy profiles π(τ) remains in the
product of simplexes Δ, provided ητ ≤ 1 for all τ . Indeed, for all τ ∈ N, we have∑

p∈Pk
π
(τ+1)
p =

∑
p∈Pk

π
(τ)
p + ητ

ρ [�̄k(μ(τ)) −
∑

p∈Pk
μ
(τ)
p �kp(μ

(τ))] =
∑

p∈Pk
π
(τ)
p and

1+ητ
�̄k(μ(τ))−�kp(μ

(τ))

ρ ≥ 1−ητ ≥ 0 if ητ ≤ 1, which guarantees that π(τ) remains in Δ.

We now show that the REP update rule with learning rates (γτ ) has sublinear
discounted regret. First, we prove the following lemma for general online learning
problems with signed losses.

Lemma 5.6. Consider a discounted online learning problem, with sequence of
discount factors (γτ ), with γτ ≤ 1

2 for all τ . Let Pk be the finite decision set, and

assume that the losses are signed and bounded, m
(τ)
p ∈ [−1, 1] for all τ and p ∈ P.

Then the multiplicative-weights algorithm defined by the update rule

(5.3) π(τ+1) ∝
(
π(τ)
p (1− γτm

(τ)
p )

)
p∈Pk

has the following regret bound: for all T and all p ∈ Pk,∑
0≤τ≤T

γτ

〈
m(τ), π(τ)

〉
≤ − logπ

(0)
min +

∑
0≤τ≤T

γτm
(τ)
p +

∑
0≤τ≤T

γ2
τ |m(τ)

p |,

where π
(0)
min = minp∈Pk

π
(0)
p .

Proof. We extend the proof of Theorem 2.1 in [1] to the discounted case. By a
simple induction, we have for all T , π(T ) is proportional to the vector w(T ) defined by

w(T )
p = π(0)

p

∏
0≤τ<T

(1− γτm
(τ)
p ).

Define the function ξ(T ) =
∑

p w
(T )
p . Then π

(T )
p =

w(T )
p

ξ(T ) , and we have for all T

ξ(T+1) =
∑
p

w(T+1)
p =

∑
p

w(T )
p (1 − γTm

(T )
p ) = ξ(T ) − γT

∑
p

m(T )
p π(T )

p ξ(T )

= ξ(T )
(
1− γT

〈
m(T ), π(T )

〉)
≤ ξ(T )e−γT 〈m(T ),π(T )〉.
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Thus, by induction on T , ξ(T+1) ≤ exp(−
∑

0≤τ≤T γτ
〈
m(τ), π(τ)

〉
). We also have for

all p, ξ(T+1) ≥ w
(T+1)
p ≥ π

(0)
min

∏
0≤τ≤T (1 − γtm

(τ)
p ). Combining the bounds on ξ(τ)

and taking logarithms, we have∑
0≤τ≤T

γτ

〈
m(τ), π(τ)

〉
≤ − logπ

(0)
min −

∑
0≤τ≤T

log(1− γτm
(τ)
p ).

To obtain the desired bound, it suffices to observe that for all m ∈ [−1, 1] and γ ∈
[0, 12 ], − log(1− γm) ≤ γm+ γ2|m|.

Proposition 5.7. If the sequence of discounts (γτ ) satisfies Assumption 3.2
and is bounded by 1

2 , then the REP algorithm with learning rates γτ has sublinear
discounted regret.

Proof. Let

r(τ)p =
〈
π(τ), �k(μ(τ))

〉
− �kp(μ

(τ)) ∈ [−ρ, ρ]

be the instantaneous regret of the player. Then the REP update can be viewed as a
multiplicative-weights algorithm with update rule (5.3), in which the vector of signed

losses is given by m
(τ)
p = − rp

(τ)

ρ ∈ [−1, 1], and discount factors (γτ ). Observing that〈
r(τ), π(τ)

〉
= 0, we have by Lemma 5.6, for all p ∈ Pk,

1

ρ

∑
0≤τ≤T

γτr
(τ)
p ≤ − logπ

(0)
min +

∑
0≤τ≤T

γ2
τ .

Rearranging and taking the maximum over p ∈ Pk, we obtain the bound on the
discounted regret,

R(T )(x) ≤ −ρ logπ
(0)
min + ρ

∑
0≤τ≤T

γ2
τ ,

which shows lim supT→∞
1∑

τ≤T γτ
R(T )(x) ≤ 0.

Interestingly, the REP update can also be obtained as the solution to a regularized

version of the greedy update minπ∈ΔPk 〈π, �k(μ(τ))
ρ 〉, similarly to the Hedge update, but

with a different regularization function.
Proposition 5.8. The REP update rule is solution to the following problem:

{π(τ+1)} = argmin
π∈Δ

〈
π,

�k(μ(τ))

ρ

〉
+

1

ητ
R(π‖π(τ)),

where R(π‖ν) = 1
2

∑
p∈Pk

πp

(
πp

νp
− 1

)2

.

Proof. Define the partial Lagrangian function

L(π;λ) =
∑
p∈P

πp
�k(μ(τ))

ρ
+

1

2γτ

∑
p∈Pk

π(τ)
p

(
πp

π
(τ)
p

− 1

)2

− λ

⎛
⎝∑

p∈Pk

πp − 1

⎞
⎠,

where λ ∈ R is the dual variable for the constraint
∑

p∈Pk
πp = 1. Its gradient is

∂

∂πp
L(π;λ) =

�kp(μ
(τ))

ρ
+

1

γτ

(
πp

π
(τ)
p

− 1

)
− λ ∀p ∈ Pk,

∂

∂λ
L(π;λ) = −

∑
p∈Pk

πp + 1,
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and (π�, λ�) are primal-dual optimal if and only if

π�
p

π
(τ)
p

= 1 + γτ

(
λ−

�kp(μ
(τ))

ρ

)
and

∑
p∈Pk

π�
p = 1.

Multiplying by π
(τ)
p and taking the sum over p ∈ Pk, we have 1 = 1 + γτλ

� −
γτ 〈π(τ), �k(μ(τ))

ρ 〉, i.e. λ� = 〈π(τ), �k(μ(τ))
ρ 〉; thus the solution π� satisfies the REP

update rule (5.2).

6. Strong convergence of discounted no-regret learning. In this section,
we give sufficient conditions which guarantee convergence of the sequence of popula-
tion strategies. The idea is to show that, under these conditions, the discrete process
(μ(τ))τ∈N approaches, in a certain sense, the trajectories of the continuous-time repli-
cator dynamics. Then one can show, using a Lyapunov function, that any limit point
of the discrete process must lie in the set of stationary points RN . With an additional
argument, we show that, in fact, limit points lie in the set N of Nash equilibria.

We start by reviewing results from the theory of stochastic approximation, which
we use in the proof of Theorem 6.10.

6.1. Results from the theory of stochastic approximation. We summarize
results from [4] due to Benäım. Let D ⊂ R

n, and consider a dynamical system given
by the ODE

(6.1) μ̇ = F (μ),

where F : D → R
n is a continuous globally integrable vector field, with unique

integral curves which remain in D. Let Φ be the associated flow function such that
t �→ Φt(μ

(0)) is the solution trajectory of (6.1) with initial condition μ(0) = μ(0).

6.1.1. Discrete-time approximation. We now define what it means for a
discrete process to approach the trajectories of the system (6.1).

Let (μ(τ))τ be a discrete-time process with values in D. (μ(τ))τ is said to be a
discrete-time approximation of the dynamical system (6.1) if there exists a sequence
(γτ )τ∈N of nonnegative real numbers such that

∑
τ∈N

γτ = ∞ and limτ→∞ γτ = 0, and

a sequence of deterministic or random perturbations U (τ) ∈ R
n such that for all τ ,

(6.2) μ(τ+1) − μ(τ) = γτ

(
F (μ(τ)) + U (τ+1)

)
.

Given such a discrete-time approximation, we can define the affine interpolated
process of (μ(τ)): let Tτ =

∑τ
t=0 γt as in section 5.1.

Definition 6.1 (affine interpolated process). The continuous time affine in-
terpolated process of the discrete process (μ(τ))τ∈N is the function M : R+ → R

n

defined as

M(Tτ + s) = μ(τ) + s
μ(τ+1) − μ(τ)

γτ
∀τ ∈ N and ∀s ∈ [0, γτ ).

The next proposition gives sufficient conditions for an affine interpolated process
to be an asymptotic pseudotrajectory (APT).

Proposition 6.2 (Proposition 4.1 in [4]). Let M be the affine interpolated process
of the discrete-time approximation (μ(τ)), and assume the following:
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1. For all T > 0,

(6.3) lim
τ1→∞

max
τ2:

τ2∑

τ=τ1

γτ<T

∥∥∥∥∥
τ2∑

τ=τ1

γτU
(τ+1)

∥∥∥∥∥ = 0.

2. supτ∈N
‖μ(τ)‖ < ∞.

Then M is an APT of the flow Φ induced by the vector field F .
Furthermore, we have the following sufficient condition for property (6.3) to hold.
Proposition 6.3. Let (μ(τ))τ∈N be a discrete time approximation of the sys-

tem (6.1). Let (Ω,F ,P) be a probability space and (Fτ )τ∈N a filtration of F . Suppose
that the perturbations satisfy the Robbins–Monro conditions: for all τ ∈ N,

(i) U (τ) is measurable with respect to Fτ ,
(ii) E[U (τ+1)|Fτ ] = 0.
Furthermore, suppose that there exists q ≥ 2 such that

sup
τ∈N

E[‖U (τ)‖q] < ∞ and
∑
τ∈N

γ1+q/2
τ < ∞.

Then, condition 1 of Proposition 6.2 holds with probability one.

6.1.2. Chain transitivity. We next give an important property of limit points
of bounded APTs, given in Theorem 6.6.

Definition 6.4 (pseudoorbit and chain transitivity). A (δ, T )-pseudoorbit from
a ∈ D to b ∈ D is a finite sequence of partial trajectories. It is given by a sequence of
points (ti, yi), i ∈ {0, . . . , k− 1} (with ti ≥ T for all i) and the corresponding sequence
of partial trajectories

{Φt(yi) : 0 ≤ t ≤ ti}; i = 0, . . . , k − 1,

such that d(y0, a) < δ, d(Φti(yi), yi+1) < δ for all i, and yk = b.
The conditions are illustrated in Figure 2. We write Φ: a ↪→δ,T b if there exists a

(δ, T )-pesudoorbit from a to b. We write a ↪→ b if a ↪→δ,T b for all δ, T > 0. The flow
Φ is said to be chain transitive if a ↪→ b for all a, b ∈ D.

a
δ

y0

Φt0(y0)

y1 Φtk−1
(yk−1)

yk = b

Fig. 2. A (δ, T )-pesudoorbit from a to b.

In the remainder of this section, let Γ ⊂ D be a compact invariant set for Φ, that
is, Φt(Γ) ⊆ Γ for all t ∈ R

+.
Definition 6.5 (internally chain transitive set). The compact invariant set Γ is

internally chain transitive if the restriction of Φ to Γ is chain transitive.
Theorem 6.6 (Theorem 5.7 in [4]). Let X be a bounded APT of (6.1). Then

the limit set L(X) =
⋂

t≥0 {X(s) : s ≥ t} is internally chain transitive.
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Finally, we give the following property of internally chain transitive sets.
Proposition 6.7 (Proposition 6.4 in [4]). Let Γ ⊂ D be a compact invariant set

and suppose that there exists a Lyapunov function V : D → R for Γ (that is, V is
continuous and d

dtV (x(t)) = 〈∇V (x(t)), F (x(t))〉 < 0 for all x /∈ Γ) such that V (Γ)
has empty interior. Then every internally chain transitive set L is contained in Γ and
V is constant on L.

6.2. The AREP class. Now, we are ready to define a class of online learning
algorithms which we call AREP. An AREP online algorithm can be viewed as a
perturbed version of the replicator algorithm.

Definition 6.8 (AREP algorithm). An online learning algorithm, applied by
player x ∈ Xk, with output sequence (π(τ))τ∈N, is said to be an AREP algorithm if its
update equation can be written as

(6.4) π(τ+1)
p − π(τ)

p = γτ

(
π(τ)
p

〈
π(τ), �k(μ(τ))

〉
− �kp(μ

(τ))

ρ
+ U (τ)

p

)
,

where (U (τ))τ∈N is a bounded sequence of stochastic perturbations with values in R
Pk ,

and which satisfies condition (6.3).
In particular, the REP algorithm given in Definition 5.5 is an AREP algorithm

with zero perturbations. It turns out that the Hedge algorithm also belongs to the
AREP class.

Proposition 6.9. The Hedge algorithm with learning rates (γτ )τ satisfying
Assumption 3.2 is an AREP algorithm.

Proof. Let (π(τ))τ∈N be the sequence of strategies, and let (μ(τ))τ be any sequence
of population distributions. By definition of the Hedge algorithm, we have

π(τ+1)
p = π(τ)

p exp

(
−γτ

�kp(μ
(τ))

ρ

)/ ∑
p′∈Pk

π
(τ)
p′ exp

(
−γτ

�kp′(μ(τ))

ρ

)
,

which we can write in the form of (6.4) with perturbation terms

U (τ+1)
p =

π
(τ)
p

γτ

[
exp

(
−γτ

�kp(μ
(τ))− �̃k(τ)

ρ

)
+ γτ

�kp(μ
(τ))− �̃k(τ)

ρ
− 1

]
+ π(τ)

p
�̃k(τ) − �̄k(τ)

ρ
,

where

�̃k(τ) = − ρ

γτ
log

∑
p′∈Pk

π
(τ)
p′ exp

(
−γτ

�kp′(μ(τ))

ρ

)
,

�̄k(τ) =
〈
π(τ), �k(μ(τ))

〉
.

Letting θ(x) = ex − x− 1, we have for all p ∈ Pk

U (τ+1)
p =

π
(τ)
p

γτ
θ

(
−γτ

�kp(μ
(τ))− �̃k(τ)

ρ

)
+

π
(τ)
p

ρ
(�̃k(τ) − �̄k(τ)).

The first term is a O(γτ ) as θ(x) ∼0 x2/2. To bound the second term, we have by
concavity of the logarithm

�̃k(τ) = − ρ

γτ
log

∑
p′∈Pk

π
(τ)
p′ exp

(
−γτ

�p′(μ(τ))

ρ

)
≤

∑
p′∈Pk

π
(τ)
p′ �kp′(μ(τ)) = �̄k(τ).
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And by Hoeffding’s lemma,

log
∑

p′∈Pk

πp′ exp

(
−γτ

�p′(μ(τ))

ρ

)
≤ −γτ

∑
p′∈Pk

π
(τ)
p′

�p′(μ(τ))

ρ
+

γ2
τ

8
.

Rearranging, we have 0 ≤ �̄k(τ) − �̃k(τ) ≤ ργτ

8 , therefore Up(τ + 1) = O(γτ ), and∥∥∥∥∥
τ2∑

τ=τ1

γτU(τ + 1)

∥∥∥∥∥ = O

(
τ2∑

τ=τ1

γ2
t

)
.

Finally, since γτ ↓ 0, for any fixed T , maxτ2:
∑τ2

τ=τ1
γτ≤T

∑τ2
τ1
γ2
τ converges to 0 as

τ1 → ∞; therefore condition (6.3) is verified.

6.3. Convergence of AREP algorithms with sublinear discounted
regret. We now give the main convergence result.

Theorem 6.10. Suppose that the population strategies (μ(τ))τ obey an AREP
update rule with sublinear discounted regret. Then (μ(τ)) converges to the set of Nash
equilibria N .

Proof. By assumption, we have

μ(τ+1)
p − μ(τ)

p = γτ

(
Gk

p

(
μ(τ), �(μ(τ))

)
+ U (τ+1)

p

)
= γτ

(
F k
p (μ

(τ)) + U (τ+1)
p

)
,

where, by definition of the AREP class, the perturbations U (τ) satisfy condition 1
of Proposition 6.2. Condition 2 is also satisfied since the sequence (μ(τ))τ lies in the
compact set Δ. Thus by Proposition 6.2, the affine interpolated process M of (μ(τ))τ
is an APT of the continuous-time replicator system µ̇ = F (µ). Thus by Theorem 6.6,
the limit set L(M) is internally chain transitive.

Consider the set of restricted Nash equilibria RN . This set is invariant (RN is
the set of stationary points of the vector field) and compact (RN is the finite union
of compact sets by Remark 5.3). The Rosenthal potential function V is a Lyapunov
function for RN (see the proof of Theorem 4.5), and V (RN ) has an empty interior
since it is a finite set by Remark 5.3. Therefore we can apply Proposition 6.7 to
conclude that the set of limit points L(M) is contained in RN and V is constant over
L(M). Let v be this constant value.

Next, we show that the sequence of potentials V (μ(τ)) converges. Let v̂ be a limit
point of V (μ(τ)). Then by Lemma 4.6, v̂ = V (μ̂), where μ̂ is a limit point of (μ(τ)).
In particular, μ̂ ∈ L(M), thus v̂ = V (μ̂) = v. This shows that the bounded sequence
(V (μ(τ))) has a unique limit point v; therefore it converges to v, and it remains to
show that v = VN to conclude (by Lemma 4.6).

To show that v = VN , we first observe that since V (μ(τ)) → v, we also have

V (μ(τ))
(γτ )−−−→ v. But the population dynamics is also assumed to have sublinear

discounted regret; thus by Theorem 4.5, V (μ(τ))
(γτ )−−−→ VN . By uniqueness of the

limit, we must have v = VN .
Note that Theorem 6.10 assumes that the AREP update rule is applied to the

population dynamics (μ(τ)), not to individual strategies π(τ)(x). One sufficient con-
dition for μ(τ) to satisfy an AREP update is that for each k, all players in Xk start

from a common initial distribution πk(0) = μk(0), and apply the same update rule.
This guarantees that for all τ and for all x, μ(τ) = π(τ)(x).
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Fig. 3. Simulation of the population dynamics under the discounted Hedge algorithm, initialized

at the uniform distribution. The trajectories of the population strategies μk(τ)
are given in the 2-

simplex for each population (bottom). The path losses �kp(μ
(τ)) for both populations (top) converge

to a common value on the support on the Nash equilibrium. The sequences of discounted regrets

(middle) confirm that the population regret is sublinear, i.e., lim supt→∞
Rk(t)

∑
τ≤t γτ

≤ 0.

6.4. Convergence of the REP and Hedge algorithms. We apply Theo-
rem 6.10 to show convergence of the REP and Hedge algorithms.

Corollary 6.11. If (μ(τ)) obeys the REP update rule with learning rates γτ
satisfying Assumption 3.2 and such that γτ ≤ 1

2 , then μ(τ) → N .

Proof. The REP update rule is a discounted no-regret algorithm by Proposi-
tion 5.7, and it is an AREP algorithm with zero perturbations, so we can apply
Theorem 6.10.

Corollary 6.12. If (μ(τ)) obeys the discounted Hedge update rule with learning
rates γτ satisfying Assumption 3.2, then μ(τ) → N .

Proof. By Propositions 3.8 and 6.9, the discounted Hedge algorithm with rates γτ
is an AREP algorithm with sublinear discounted regret, and we can apply
Theorem 6.10.

We illustrate this convergence result with a routing game on the example network
introduced in section 2.5. We simulate the population dynamics under the discounted
Hedge algorithm with a harmonic sequence of learning rates, γτ = 20

10+τ . The results
are shown in Figure 3.
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7. Conclusion. We studied the convergence of online learning dynamics in the
nonatomic congestion game. We showed that dynamics with sublinear discounted
population regret guarantee the convergence of (μ̄(τ)), the sequence of Cesàro means
of population strategies. To obtain convergence of the actual sequence of strategies
(μ(τ)), we introduced the AREP class of approximate replicator dynamics, inspired
by the replicator ODE. We showed that whenever the population strategies obey an
AREP dynamics and have sublinear discounted regret, the sequence converges. These
results assume that the sequence of discount factors (γτ ) is identical for all players.
One question is whether this assumption can be relaxed, so that different players can
use different learning rates.

Acknowledgments. We thank the anonymous reviewers and the editor for many
insightful comments and suggestions.
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