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Online Homotopy Algorithm for
a Generalization of the LASSO

A. Hofleitner, T. Rabbani, L. El Ghaoui, and A. Bayen

Abstract—The LASSO is a widely used shrinkage method for linear re-
gression. We propose an online homotopy algorithm to solve a generaliza-
tion of the LASSO in which the regularization is applied on a linear
transformation of the solution, allowing to input prior information on the
structure of the problem and to improve interpretability of the results. The
algorithm takes advantage of the sparsity of the solution for computational
efficiency and is promising for mining large datasets.

Index Terms— LASSO.

I. INTRODUCTION AND RELATED WORK

Least-Squares regression with -norm regularization is known
as the LASSO algorithm [1]. It has generated significant interest in
the statistics [1], [2], signal processing [3]–[5] and machine learning
[6], [7] communities, in particular for estimation problems. Adding a
-penalty usually leads to sparse solutions, which is a desirable prop-

erty used to achieve model selection, data compression, or to obtain
interpretable results. The LASSO can be solved using interior-point
methods [8], iterative thresholding algorithms [9], [10], feature-sign
search [11], bound optimization methods [12], incremental methods
[13] or gradient projection algorithms [14]. Homotopy algorithms
compute the regularization path [15], [16] or perform online updates
[17]–[19]. They are particularly efficient when the solution is very
sparse [20], [21].
The article extends the results of [18], [19] with the following con-

tributions: (i) the algorithm updates the solution as a new batch of
observations is received (previous work only considered updates with
one measurement at a time), (ii) the online algorithm solves the LASSO
when an affine transformation of the estimate is sparse.
Problem Statement: At estimation step , we are given a set of

training examples or observations . We
wish to fit a linear model to estimate the response as a function of

. A linear function of the solution, , with is
expected to be sparse, representing inherent structure of the problem or
trend filtering [22], [23]. To achieve this property, we add an penalty
on and solve the following optimization problem:
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The regularization parameter may depend on the number of mea-
surements . For example, we can choose as in [18]
or as in [24]. Both the dependency of on and
the parameter are chosen using a validation metric, computed on a
dataset which is not used to train the model. The validation procedure is
described in more details in the result section (Section IV). It chooses
a trade-off between the structure imposed by the regularization, and
the fit to the data. After receiving new observations, the algorithm
updates the solution of (1) without having to completely re-solve the
problem. As done in the Elastic Net [25], we investigate the addition
of an regularization term to (1) to improve estimation capabilities by
leveraging prior information on the value of the solution.
Organization of the Article: Section II reviews an existing homo-

topy algorithm which solves the LASSO recursively [18], [19]. Sec-
tion III presents the extension of the algorithm to update the solution
with observations and a penalization on a linear function of the
solution. We apply the algorithm on a traffic estimation problem from
streaming probe data in Section IV and discuss possible extensions of
this work in Section V.

II. THE LASSO PROBLEM

The LASSO problem [1] is defined as follows:

(2)

There is a global minimum at if and only if the sub differential of
the objective function at contains the 0-vector. The sub differential
of the -norm at is the following set:

where is the sign function. Let be the matrix
whose row is equal to , and let be the vector
of response variables. The optimality conditions for (2) are given by

, .
We define the active set (resp. non active set ) as the set of in-

dices representing non-zero (resp. zero) elements of . The matrix
(resp. ) is a selection of the columns of in (resp. in ). The
non-zero coordinates of are in and is the 0-vector. The index
(resp. ) references the coordinate of the active (resp. non ac-

tive) set. Since , and .
If the solution is unique, is non-singular;1 we rewrite the opti-
mality conditions as and

. If we know the active set and the signs of the coeffi-
cients of the solution, thus the vector , we can compute the solution
in closed form. When observations come sequentially, a homotopy

algorithm [18], [19] solves the LASSO problem recursively by consid-
ering the following problem:

Adding (resp. removing) a point is equivalent to computing the path
from to (resp. from to ). Varying the regular-
ization parameter is equivalent to computing the path from to

.

1The Elastic Net [25] ensures the uniqueness of the solution without requiring
to be non-singular.
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III. RECURSIVE LASSO WITH NEW OBSERVATIONS,
AND LINEAR REGULARIZATIONS

We consider a least square estimation problem, for which we
want a linear transform of the solution, for , to be
sparse. We update the estimation as we receive new observations

. We assume a priori information (e.g.
historical estimate) on the solution, which is used as addi-
tional regularization when the matrix is not full column rank or
is ill conditioned (see [25] for details). We assume that the matrix

is full row rank, which is the case for numerous applications
including total variation regularization. Each row of corresponds
to an information on the sparsity structure of the solution. We define

such that is non singular. For
example, is such that the columns of form a basis for the
null-space of . We define a change of variable , new data
matrices , and . We propose
an algorithm that updates the solution of

(3)

as we (i) vary to add or remove observations and (ii) vary to change
the weight of the regularization. The penalization is on the first
coordinates of , denoted regularized indices. The last indices
are in the active set and are referred to as the non-regularized indices.

A. Add Observations

At , we know the solution and thus the active set and
signs of the regularized indices of . Let be the sign of for the
regularized indices and define for the non-regularized indices.
The data matrices with the new observations are indicated with a tilde:

and . The optimality conditions
of (3) read

(4)

(5)

where is a vector with coordinates in [ 1,1]. We notice that,
at , and are continuous in . Let to be the largest

such that: (i) for all , for all in the regularized
indices, and (ii) for all , for all
in the non-active set, . On this interval, is the sign of

and Equations (4)–(5) are valid.
We compute from its previous value

without the new observations using the Woodbury matrix iden-
tity ( rank update). We define and

. We consider the singular value decomposition of
and define the rotated data

and , the rotated error and

.
Proposition 1 (Solution Path as We Add Observations): For
, is continuous in and given by

(6)

Let be the smallest2 such that a coordinate of equals
zero, (resp. ) the smallest2 which sets a coordinate of

2If no such exists, we set (resp. and ) to 1.

to 1 (resp. to 1). The transition point is defined as
and can be computed by solving -degree polynomial

equations on a bounded interval.
Proof: For , we use (4) and the Woodbury ma-

trix identity to write as
. It follows that:

which proves (6). The computation of , and is given by Lemma
1 and 2.
We denote by the element of on line and column and by
the line of , is the singular value in and is the

coordinate of .
Lemma 1 (Computation of ): Let be the smallest value of
which sets the coordinate of (in the regularized indices)

to zero. It is given by where is the smallest
real valued solution in the interval [ 1, 0] of the degree polynomial
equation in , which can be solved numerically

If the polynomial equation does not have real valued solutions in [ 1,
0], we set . It follows that is the smallest value of in the
interval [0, 1].

Proof: Setting the coordinate of to zero in (6), we have

We denote by the column of , is the row of
and the element of on the row and column. We also
denote by the element of and .
Lemma 2 (Computation of and ): The smallest value of that

sets the coordinate of to 1 (resp. to 1) is denoted (resp.
). It is given by (resp. )

where (resp. ) is the smallest real valued solution in the in-
terval [ 1, 0] of the degree polynomial equation in (resp. in )

If the polynomial equation does not have real valued solutions in [ 1,
0], we set (resp. ). It follows that (resp. ) is
the smallest value of (resp. ) in the interval [0, 1].
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Proof: From (6), we notice that

We also have We rewrite
(5) as

We obtain the values of (resp. ) by solving the degree
polynomial equation in (resp. ) on the interval [ 1, 0]

Lemma 3 (Update of the Active Set): When we reach a transition
point, the active set and signs of the regularized indices are updated as
follows: (i) if , we remove the corresponding coordinate from
the active set, (ii) if (resp. ), we add the coordinate to
the active set and set its sign to positive (resp. to negative).

Proof: If , let be such that . The subgra-
dient of with respect to the coordinate is in the
interval [ 1, 1], hence we remove the coordinate from the active set.
If , let be such that . For , the

optimality condition for the coordinate cannot be satisfied with the
current active set because is bounded by 1. If we let the coordinate

of the solution take non-zero values, we can rewrite the optimality
condition as , where and is a
positive term which depends on the norm of the column of and

and on . This proves that takes positive value and adding
the index to the active set provides a solution, thus the solution (strict
concavity).
Algorithm 1 updates the solution when varies from to .

The same algorithm is relevant to remove observations by finding the
transition points as decreases from 1 to 0.

Algorithm 1 Update of the solution as we add observations

Initialize the active set , non active set and signs of the
regularized indices .

while do

Compute , and as the smallest value of , and
in (Lemma 1–2).

if then

break;

else

Update the active set and sign of the regularized indices
according to the transition point.

end if

Update the matrix to account for the updated active set (rank
1 update).

end while

B. Update the Regularization Parameter

The computation of the regularization path is detailed in [16] and in
[25] for the Elastic Net. To solve the problem of interest 3, it is neces-
sary to define the non-regularized indices, as done in Section III-A and
set for these indices. With this convention, we refer the reader
to [16] and [25] to compute the solution of (3).
Remark 1 (Leveraging the Sparsity Structure): We efficiently up-

date when the active or non active set change or whenwe add/remove
observations with low rank updates. We actually update the Cholesky
factorization of which provides better numerical stability to the al-
gorithm than updating directly [26].
Remark 2 (Complexity): The complexity of the algorithm depends

on the number of transitions and the size of the active set. The theoret-
ical bound on the number of transitions is , where is the number
of rows of . In practice, it is much smaller because successive esti-
mates are expected to have a similar support.

IV. LARGE SCALE TRAFFIC ESTIMATION ON AN ARTERIAL NETWORK

A. Experimental Setting

We apply the algorithm to arterial traffic estimation on a sub network
of San Francisco, CA totalling more than 800 links (12.6 kilometers of
roadway). Dedicated sensing infrastructure is rarely available on ar-
terial networks and we use data collected by the Mobile Millennium
system [27] from a fleet of 500 vehicles which report their location
every minute. The duration between two successive location reports
and is an observation of the travel time on the path from to
. We use a conditional random field algorithm [28] to reconstruct the

trajectory between and . Each trajectory (path) is converted in a
vector , where is the number of links in the network.
The coordinate of , denoted , is the fraction of the link trav-
eled by the probe vehicle. It is computed as the distance traveled on the
link divided by the length of the link.3 In particular, if the ve-
hicle did not travel on link and if the vehicle fully traversed
link .
The solution represents the average travel time on each link of

the network at time . We add an regularization on the spatial vari-
ations of the travel times for several reasons. First, it improves esti-
mation capabilities by exploiting a-priori information on the structure
of the solution. Traffic signals cause important variation on the travel
time experienced on a link and regularization is important to prevent
overfitting. Second, it exhibits the inherent spatial structure of traffic
by noticing the area where traffic conditions actually change. Finally,
the sparse structure of the solution enables an efficient update of the
estimate as new measurements are received.

3The coefficients can account for the fact that travel time on a fraction of
the link does not vary proportionally with the distance traveled as vehicles are
more likely to experience delays close to signalized intersections [29].



3178 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 12, DECEMBER 2013

(a) (b)

Fig. 1. Variation of the error in function of the parameters (a) and (b) . The figures indicate the importance of the additional regularization to improve
the accuracy of the estimation.

Fig. 2. Geographical representation of the traffic estimation results. The color
of each link varies with the pace (green for small paces, red for large paces).
The pins indicate the intersections for which not all outgoing links have the
same estimated pace (inverse of the speed).

We estimate the average travel times by solving (3). We
use historical mean travel times for the regularization . For each
new travel time observation, we increase the regularization parameter
from to and add the new observation

. The parameters of the and regularizations (respectively
and ) are chosen via cross-validation as described in the following

Section. Observations remain relevant only for a limited period of time
.4 When observations become obsolete, the algorithm updates the
regularization parameter and removes the old observations (decrease
from 1 to 0).
We investigate two potential choices for the full row rank matrix
, which represents the prior information on the spatial structure of

the estimate. The first one encourages all the incoming links of an in-
tersection to have the same pace (inverse of velocity), the second one
encourages the outgoing links to have the same pace. To each junctions
with incoming links (resp. outgoing links), corresponds

rows in . The such row encourages the and incoming

4Typically, is in the order of five to fifteen minutes

(resp. outgoing) links of the junction to have the same pace (travel time
on the link divided by the length of link).

B. Validation Framework

At time we compute the estimate corresponding to the obser-
vations in . We compute the prediction error
and analyze the effect of the choice of the parameters and as well
as the choice of matrix in Fig. 1. The numerical results indicate that
both the and regularization improve the results for a wide range
of and . As the error is not very sensitive to the choice of these pa-
rameters, they can be calibrated off-line using cross-validation. Fig. 1
(right) also indicate that the choice of the regularization matrix in-
fluences the accuracy. The regularization on the outgoing links always
provide better results than the choice of regularization on the incoming
links. The algorithm does not provide an automated way to choose the
optimal matrix even though this is part of current research interest.
The results can also be represented as a traffic map (see Fig. 2) with

colors representing the pace of the vehicles: green for smallest pace,
i.e., fastest speed, red for largest pace. We indicate the intersections
for which we detect spatial variation of the pace by a pin. The pins
tend to cluster in a few regions of the network, indicating regions with
important spatial variations in the traffic conditions.
Imposing and exploiting a sparsity structure on the solution limits

the computational cost of traffic estimation on large networks as the
algorithm leverages the sparsity of the solution in the algorithm. The
number of transition points and active indices remain small throughout
the algorithm with an average of 0.5 transition points per estimate up-
date (addition of new data points and variation of the regularization
parameter) and 20 active regularized indices for a network with 815
links.

V. CONCLUSION

The article presents an online-algorithm to update the solution of
linear regression problems with a large class of and regulariza-
tions. The -norm improves the accuracy and computational efficiency
of the estimation as well as the interpretability of the results by ex-
hibiting and exploiting the underlying sparsity structure of the problem.
The -norm increases the robustness of the estimator and limits numer-
ical issues. The algorithm provides the ability to i) impose sparsity on a
linear function of the state, ii) update the solution online by computing
a homotopy as new measurements are available (or old ones become
obsolete). The potential of the algorithm is demonstrated on real-time
traffic estimation problem from streaming probe vehicle data in large
urban networks. It provides accurate estimation capabilities and a better
understanding of the spatial variations of traffic across the network.
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On the Controllability Properties of Circulant Networks

Marzieh Nabi-Abdolyousefi and Mehran Mesbahi

Abstract—This paper examines the controllability of a group of first
order agents, adopting a weighted consensus-type coordination protocol
over a circulant network. Specifically, it is shown that a circulant net-
work with Laplacian eigenvalues of maximum algebraic multiplicity is
controllable from nodes. Our approach leverages on the Cauchy–Binet
formula, which in conjunction with the Popov–Belevitch–Hautus test,
leads to new insights on structural aspects of network controllability.

Index Terms—Circulant graphs, coordination algorithms, network con-
trollability.

I. INTRODUCTION

Recently, controllability and observability of networked dynamic
systems adopting consensus-type coordination algorithm has attracted
the attention of researchers in distinct disciplines [1]–[5]. Network con-
trollability arises in situations where a networked system is influenced
or observed by an external entity, a scenario that is of importance in
networked robotic systems, human-swarm interaction, and network se-
curity [6]–[8], as well as in areas such as quantum networks [9], [10].
In this direction, an intriguing conjecture by Godsil [1], [9] states that
the ratio of graphs that are uncontrollable from any set of nodes to the
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