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Abstract. We introduce the combinatorial optimization problem Time
Disjoint Walks. This problem takes as input a digraph G with positive
integer arc lengths, and k pairs of vertices that each represent a trip
demand from a source to a destination. The goal is to find a path and
delay for each demand so that no two trips occupy the same vertex at the
same time, and so that the sum of trip times is minimized. We show that
even for DAGs with max degree Δ ≤ 3, Time Disjoint Walks is APX-
hard. We also present a natural approximation algorithm, and provide a
tight analysis. In particular, we prove that it achieves an approximation
ratio of Θ(k/ log k) on bounded-degree DAGs, and Θ(k) on DAGs and
bounded-degree digraphs.
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1 Introduction

1.1 Related Work

Disjoint Paths is a classic problem in combinatorial optimization that asks: given
an undirected graph G, and k pairs of vertices, do there exist vertex-disjoint
paths that connect each pair? This problem captures the general notion of con-
nection without interference, and has subsequently received much attention due
to its applicability in areas like VLSI design [9,12] and communication net-
works [14,15].

These applications have motivated many variants of this basic problem. For
example, one may choose the underlying graph to be undirected or directed,
and the disjointness constraint to be over vertices or edges. As an optimization
problem, one may consider the maximum number of pairs that can be connected
with disjoint paths, the minimum number of rounds necessary to connect all pairs
(where all paths in a round must be disjoint) [7], or the shortest set of disjoint
paths to connect all pairs (if all pairs can, in fact, be disjointly connected) [8].

A few flavors of Disjoint Paths are tractable: for example, if k is fixed or
G has bounded tree-width, then there exists a poly-time algorithm for finding
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vertex-disjoint paths on undirected graphs [10,11]. Many interesting variants of
Disjoint Paths are, however, extremely difficult. Indeed, finding vertex-disjoint
paths on undirected graphs is one of Karp’s NP-complete problems [6]. Further-
more, nearly-tight hardness results are known for finding the maximum set of
edge-disjoint paths in a directed graph with m edges: there exists an O(

√
m)-

approximation algorithm [7], and it is NP-hard to approximate within a factor
of m1/2−ε, for any ε > 0 [5]. For detailed surveys on the complexity landscape
of Disjoint Paths variants, see [7,8].

1.2 Contributions

Despite the great variety of Disjoint Paths problems that have been considered in
the literature, it appears that little attention has been given to variants that relax
the disjointness constraint, even though many natural applications do not always
require paths to be completely disjoint. Consider, for example, the application of
safely routing a collection of fully autonomous (and obedient) vehicles through
an otherwise empty road network. In such a situation, we can certainly prevent
collisions by routing all vehicles on disjoint paths. However, it is not difficult to
see that if we have full control over the vehicles, using disjoint paths is rarely
necessary (and, in fact, can be highly suboptimal).

Applications of this flavor motivate a new variant of Disjoint Paths, which
roughly asks: given a graph G and k pairs of vertices that each represent a trip
demand, how should we assign a delay and a path to each trip so that (1) trips
are completed as quickly as possible, and (2) no two trips collide (i.e., occupy the
same location at the same time). While there are problems in the literature (that
do not wield the name “Disjoint Paths”) that seemingly come close to capturing
this goal, they exhibit some key differences. In particular, multicommodity flows
over time [4,13] and job shop scheduling [3] seem, at first glance, very related
to our problem. However, the former does not enforce unsplittable flows (as
we require), and the latter does not capture the flexibility of scheduling job
operations over any appropriate walk in a network.

As such, we are motivated to formalize and study this new variant of Disjoint
Paths that relaxes the classical disjointness constraint to a “time disjointness”
constraint. In particular, our contributions are threefold:

• We introduce a natural variant of Disjoint Paths, which we call Time Disjoint
Walks (TDW). To the best of our knowledge, this is the first simple model that
captures the notion of collision-free routing of discrete objects (i.e., instead of
flows) over a shared network.

• We prove that Time Disjoint Walks is APX-hard, by providing an L-reduction
from a variant of SAT. In fact, our reduction shows that this result holds even
for directed acyclic graphs (DAGs) of max degree three (Δ ≤ 3).

• We describe an intuitive approximation algorithm for our problem, and pro-
vide a tight analysis: we show that it achieves an approximation ratio of
Θ(k/ log k) on bounded-degree DAGs, and Θ(k) on DAGs and bounded-
degree digraphs.
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We formally introduce Time Disjoint Walks in Sect. 2. In Sect. 3 we provide
some useful definitions regarding approximation. In Sect. 4 we prove our APX-
hardness result. In Sect. 5 we describe our approximation algorithm, and provide
bounds on its performance for the input classes mentioned above. In Sect. 6 we
state our conclusions and present some open problems.
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Fig. 1. (Unlabeled arcs have length 1): (i) A TDW instance with an optimal solution
that contains cycles and intersecting walks, even though disjoint paths exist. (ii) A
TDW instance with an obvious optimal solution, or a Shortest Disjoint Paths instance
with no solution.

2 Time Disjoint Walks

We must first mention a few preliminaries: given a, b ∈ Z, define [a, b] := {x ∈
Z | a ≤ x ≤ b}, and for b ∈ Z, we write [b] := [1, b]. Note that for b < 1, [b] = ∅.
Given a directed graph (digraph) G := (V,E), and u, v ∈ V , we define a walk W
from u to v in G as a tuple (w1, w2, . . . , wl) of vertices such that w1 = u,wl = v,
and (wi, wi+1) ∈ E for each i ∈ [l − 1]. Note that a vertex can be repeated.

Given a digraph G with arc lengths λ : E → Z≥1, and a walk W =
(w1, w2, . . . , wl) in G, we let |W | := l denote the cardinality of the walk, and we
define for every j ∈ [l] the length of the walk up to its jth vertex as

λ(W, j) :=
∑

i∈[j−1]

λ(wi, wi+1).

For convenience, we let λ(W ) := λ(W, l) denote the total length of the walk.
Finally, given delays d1, d2 ∈ Z≥0 and walks W1,W2 in G, we say that (d1,W1)
and (d2,W2) are time disjoint if, intuitively, a small object traversing W1 at
constant speed after waiting d1 units of time does not collide/interfere with a
small object traversing W2 at the same speed after waiting d2 units of time. We
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consider walks that have not departed, and walks that have already ended, to
no longer exist on the network (and thereby not occupy any vertices). Formally,
we have: for every j1 ∈ [|W1|], j2 ∈ [|W2|] such that the jth1 vertex of W1 is equal
to the jth2 vertex of W2,

d1 + λ(W1, j1) �= d2 + λ(W2, j2).

We are now ready to formally define the problem examined in this paper:

Definition 1 (Time Disjoint Walks). Let G := (V,E) be a digraph, let λ :
E → Z≥1 define arc lengths, and let T := {(s1, t1), (s2, t2), . . . , (sk, tk)} ⊆ V 2

define a set of demands across unique vertices. For each i ∈ [k], find a delay
di ∈ Z≥0 and walk Wi from si to ti such that the tuples in {(di,Wi) | i ∈ [k]}
are pairwise time disjoint, and

∑
i∈[k](di + λ(Wi)) is minimized.

We note that one can construct analogous problems by considering undirected
graphs as input, edge lengths and delays that are real-valued, or a definition of
time disjoint that requires large gaps between arrival times at common vertices
(whereas the definition above simply requires a nonzero gap). Additionally, one
may wish to consider a min-max objective instead of our min-sum objective.

We leave these variants to future work, noting that our primary goal in this
paper is to study a basic flavor of this new combinatorial problem. Further-
more, our selection of this variant is well-motivated by our original application
of routing a collection of identical autonomous vehicles over an empty road net-
work (which, for the sake of this futuristic application, we may assume was built
specifically for these vehicles). In particular, we may (1) model the road network
as a directed graph, (2) assume that all routed vehicles traverse their walk at the
same constant velocity, (3) measure road lengths as the time necessary to tra-
verse it at that velocity, and (4) assume that road lengths are integer multiples
of the time length of each vehicle. Additionally, we may motivate our min-sum
objective by the desire to find a socially optimal solution.

Finally, we emphasize the novelty of our time disjoint constraint by compar-
ing it to the standard disjoint constraint used in classical variants of Disjoint
Paths. In particular, observe that if we modify the definition of Time Disjoint
Walks to use the latter constraint instead of the former, we arrive at the (Min-
Sum) Shortest Disjoint Paths problem [8]. However, this constraint makes all
the difference: given an instance of Time Disjoint Walks, it is often the case
that a solution under the standard disjoint constraint is suboptimal if examined
under the time disjoint constraint. Indeed, the optimal solution under the latter
constraint may even include paths that repeat vertices - hence the name Time
Disjoint Walks; see (i) in Fig. (1). On the other hand, it is easy to construct
an instance of Shortest Disjoint Paths that admits an obvious optimal solution
under the time disjoint constraint, but does not yield any solution at all under
the classical disjoint constraint; see (ii) in Fig. (1).

These observations strongly suggest that there is no simple reduction, in
either direction, between Time Disjoint Walks and Disjoint Paths. Furthermore,
using time-expanded networks [13] to reduce Time Disjoint Walks into Disjoint
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Paths appears to offer little hope: such reductions will approximately square
the size of the original graph, and many variants of Disjoint Paths are hard to
approximate within m1/2−ε, for any ε > 0 [5]. Thus, an approximation algorithm
for Disjoint Paths, applied to a transformed Time Disjoint Walks instance, would
likely fail to perform better than a trivial approximation algorithm for Time
Disjoint Walks. These observations highlight the novelty of our problem and
(in)approximability results.

3 Approximation Preliminaries

Given an optimization problem P, we let IP denote the instances of P, SOLP
map each x ∈ IP to a set of feasible solutions, and let cP assign a real
cost to each pair (x, y) where x ∈ IP and y ∈ SOLP(x). For x ∈ IP , we
let OPTP(x) := miny∗∈SOLP(x) cP(x, y∗) if P is a minimization problem, and
OPTP(x) :=maxy∗∈SOLP(x) cP(x, y∗) otherwise.

If A is a polynomial time algorithm with input x ∈ IP and output y ∈
SOLP(x), we say that A is a ρ-approximation algorithm, or has approximation
ratio ρ, if P is a minimization problem and cP(x,A(x))/OPTP(x) ≤ ρ, or P is
a maximization problem and OPTP(x)/cP(x,A(x)) ≤ ρ, for all x ∈ IP . Note
that ρ ≥ 1.

The class APX contains all optimization problems that admit a
ρ-approximation algorithm, for some constant ρ > 1. An optimization prob-
lem is said to be APX-hard if every problem in APX can be reduced to it
through an approximation-preserving reduction. One reduction of this type is the
L-reduction:

Definition 2 (L-Reduction). An L-reduction from an optimization problem
P to an optimization problem Q, denoted P ≤L Q, is a tuple (f, g, α, β), where:

• For each x ∈ IP , f(x) ∈ IQ and can be computed in polynomial time.
• For each y ∈ SOLQ(f(x)), g(x, y) ∈ SOLP(x) and can be computed in poly-
nomial time.

• α is a positive real constant such that for each x ∈ IP ,

OPTQ(f(x)) ≤ α · OPTP(x).

• β is a positive real constant such that for each x ∈ IP , y ∈ SOLQ(f(x)),
∣∣OPTP(x) − cP(x, g(x, y))

∣∣ ≤ β ·
∣∣OPTQ(f(x)) − cQ(f(x), y)

∣∣.

If a problem is APX-hard, it is NP-hard to ρ-approximate for some constant ρ >
1; thus, showing APX-hardness is strictly stronger than showing NP-hardness. To
show APX-hardness, one can simply L-reduce from a known APX-hard problem.
We refer the reader to [1] for a good reference on approximation.
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4 Hardness of Approximation

To show the hardness of our problem, we show an L-reduction from MAX-
E2SAT(3), which is known to be APX-hard [2]. We remind the reader of the
definition, below, and then proceed with our proof.

Definition 3 (MAX-E2SAT(3)). Let φ be a CNF formula in which (i) each
clause contains exactly two literals on distinct variables, and (ii) each variable
appears in at most three clauses. Find a truth assignment to the variables in φ
that maximizes the number of satisfied clauses.

Theorem 1. Time Disjoint Walks is APX-hard, even for DAGs with Δ ≤ 3.

Proof. We let P := MAX-E2SAT(3), Q := TDW with instances restricted to
those containing DAGs with Δ ≤ 3, and show that P ≤L Q. Below, we describe
our L-reduction (f, g, α, β).

Description of f : Given an instance φ ∈ IP with n variables and m clauses,
we let X := {x1, . . . , xn} refer to its variables and C := {C1, . . . , Cm} refer to its
clauses. We let L := {x1, . . . , xn, x1, . . . , xn} refer to its literals. For convenience,
we define e : L → X that extracts the variable from a given literal; i.e., e(xi) =
e(xi) = xi. We label the literals in clause Cj as l1j , l

2
j . For each l ∈ L, we let

Sl := {laj | a ∈ [2], j ∈ [m], laj = l} capture all occurrences of literal l in φ.
Finally, for each l ∈ L, we define an arbitrary bijection πl : Sl → [|Sl|] to induce
an ordering on Sl. We will let π−1

l denote its inverse: i.e., π−1
l (1) is the first

element in Sl in the order induced by πl.
We may now describe f , which constructs an instance (G,λ, T ) ∈ IQ from

φ. We start with the construction of G (see Fig. (2)), which closely follows the
standard proof of NP-hardness for Disjoint Paths: for each clause Cj = (l1j ∨ l2j )
in φ, we create a new clause gadget and add it to G. That is, for each clause Cj ,
we add the following vertex and arc set to our construction:

VCj
:= {cs

j , l
1
j , l

2
j , l

1′
j , l2

′
j , ct

j}
ECj

:= {(cs
j , l

1
j ), (c

s
j , l

2
j ), (l

1
j , l

1′
j ), (l2j , l

2′
j ), (l1

′
j , ct

j), (l
2′
j , ct

j)}

Next, for each xi ∈ X, we add an interleaving variable gadget as follows:
first, we add two vertices xs

i , x
t
i to V (G). Then, we wish to create exactly two

directed paths (walks), W+
xi

,W−
xi

, from xs
i to xt

i: we want W+
xi

to travel through
all vertices corresponding to positive literals of xi, and W−

xi
to travel through all

vertices corresponding to negative literals of xi. Formally, for each l ∈ {xi, xi},
we create a path from xs

i to xt
i as follows. First, if |Sl| = 0, we add arc (xs

i , x
t
i) to

E(G). Otherwise, we add arcs (xs
i , π

−1
l (1)) and ((π−1

l (|Sl|))′, xt
i) to E(G), and

then for each j ∈ [|Sl| − 1], we add arc ((π−1
l (j))′, π−1

l (j + 1)). Note that the
prime symbols are merely labels, and are used in our construction to ensure that
the max degree of G remains at most three. This completes our construction of
G. We now define a set of n+m demands, where each corresponds to a variable
or a clause:
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Fig. 2. An interleaving variable gadget (and its affiliated clause gadgets) corresponding
to a variable with one negative occurrence (red path) and two positive occurrences
(green path). (Color figure online)

T := {(xs
i , x

t
i) | i ∈ [n]} ∪ {(cs

j , c
t
j) | j ∈ [m]}

Finally, we must define arc lengths λ : E → Z≥1. We will do this in a way
that for each j ∈ [m], a ∈ [2], we have λ(Wcsj

, laj ) = λ(Wxs
i
, laj ), where Wcsj

is the
unique walk in G from cs

j to laj , and Wxs
i

is the unique walk in G from xs
i = e(laj )s

to laj . Call this property (∗). To facilitate our analysis, we will also want every
demand-satisfying path in G to have the same length.

Since φ is an instance of MAX-E2SAT(3), we know that for each i ∈ [n], each
of the two paths between xs

i and xt
i passes through at most 3 clause gadgets.

Thus, by our construction, each such path includes at most 7 arcs, and any path
from a variable xs

i to some literal laj with xi = e(laj ) can use at most 5 arcs.
Thus, we can successfully force each demand-satisfying path in G to have length
7 while maintaining property (∗) by defining λ : E → Z≥1 as follows, completing
our construction of (G,λ, T ) ∈ IQ:

λ(u, v) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if (u, v) = (laj , la
′

j ), j ∈ [m], a ∈ [2]; or
if (u, v) = (xs

i , l
a
j ), i ∈ [n], j ∈ [m], a ∈ [2]; or

if (u, v) = (la
′

h , lbj), h, j ∈ [m], a, b ∈ [2];
7, if (u, v) = (xs

i , x
t
i), i ∈ [n]

7 − 2|Sl|, if (u, v) = (la
′

j , xt
i), j ∈ [m], a ∈ [2], i ∈ [n], laj = l

2πl(laj ) − 1, if (u, v) = (cs
j , l

a
j ), j ∈ [m], a ∈ [2], laj = l

7 − 1 − λ(cs
j , l

a
j ), if (u, v) = (la

′
j , ct

j), j ∈ [m], a ∈ [2]

Description of g: Given a solution y ∈ SOLQ(f(φ)), we construct a solution
g(φ, y) ∈ SOLP(φ) through two consecutive transformations: z, followed by q.
That is, we will define transformations z and q such that g is the composition
g(φ, y) := q(φ, z(y)).

We define z to transform solution y into another solution y′ ∈ SOLQ(f(φ))
such that cQ(f(φ), y′) ≤ cQ(f(φ), y) and such that y′ assigns 0 delay to demands
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associated with interleaving variable gadgets. To accomplish this, recall that
y = {(d1,W1), . . . , (dn+m,Wn+m)}, by definition of SOLQ. Without loss of gen-
erality, we may assume tuples indexed with [n] correspond to demands on inter-
leaving variable gadgets, and tuples indexed with [n + m]\ [n] correspond to
demands on clause gadgets.

Now, while there exists some i ∈ [n] such that di > 0 (and thus di ≥ 1),
we perform the following modification on y: first, we reset Wi to be the path
traveling through at most one clause gadget - the positive or negative path must
have this property, because each variable appears in φ at most three times, by
definition of MAX-E2SAT(3). Now, reset di to 0. If Wi shares a vertex with
another walk Wj , we know j ∈ [n + m]\[n], by construction of G. In this case,
reset dj to 1 if and only if dj is currently 0. By construction of λ, the walks
remain time disjoint and the cost of the solution does not increase.

In the second transformation, q, we transform modified solution y′ into an
assignment (A : X → {T, F}) ∈ SOLP(φ) as follows: for each i ∈ [n], set
A(xi) = T if and only if Wxi

, the walk from xs
i to xt

i, takes the negative literal
path.

Valid value for α: We will show that for α = 29, OPTQ(f(φ)) ≤ α ·OPTP(φ).
To see this, we make two observations. First observation: if A : X → {T, F} is a
truth assignment for φ, then we can construct a solution to f(φ) as follows: for
each i ∈ [n], connect demand (xs

i , x
t
i) using the negative literal path if A(xi) = T ,

and the positive literal path if A(xi) = F . Either way, assign a delay of 0. Then,
for each j ∈ [m] where clause Cj is satisfied by assignment A, connect demand
(cs

j , c
t
j) using a walk that goes through a literal that evaluates to true under A.

Assign a delay of 0 to this demand. For each clause Cj that isn’t satisfied by A,
select an arbitrary walk to complete the corresponding demand (cs

j , c
t
j). Assign

a delay of 1 to this demand. It is clear that this is a valid solution to f(φ).
Furthermore, the cost of our solution is 7(n + m) + U(A,φ), where U(A,φ) is
the number of clauses in φ unsatisfied by A. Second observation: by linearity
of expectation, if φ is an instance of MAX-E2SAT(3), then there must exist an
assignment A : X(φ) → {T, F} that satisfies at least 3/4 of the clauses.

We may now prove the desired inequality for α = 29. From our first obser-
vation and the fact that n ≤ 2m (since each of the m clauses has 2 literals),

OPTQ(f(φ)) ≤ 7(n + m) + (m − OPTP(φ)) ≤ 22m − OPTP(φ). (1)

Now, by our second observation, we know OPTP(φ) ≥ 3m/4. Thus, we have:

OPTQ(f(φ)) ≤ 22 · (4/3) · OPTP(φ) − OPTP(φ) ≤ 29 · OPTP(φ).

Valid value for β: We will show that for β = 1 and any y ∈ SOLQ(f(φ)),(
OPTP(φ) − cP(φ, g(φ, y))

)
≤ β ·

(
cQ(f(φ), y) − OPTQ(f(φ))

)
, as required. As

a first step, we recall that transformations z, q define g, and let γ denote the
number of clause gadget demands assigned a delay of 0 by solution z(y) to f(φ).
We make the following crucial claim:

cP(φ, g(φ, y)) := cP(φ, q(φ, z(y))) ≥ γ. (2)
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To see this, note the following: by construction, z(y) is a valid solution to f(φ).
Thus, if z(y) assigns clause gadget demand (cs

j , c
t
j) a delay dj = 0 and walk Wj

that passes through literal l, then l is a positive literal if and only if the walk
selected for the interleaving variable gadget demand (xs

i , x
t
i) (where xi = e(l))

does not travel through the positive literals of xi. By definition of q, this occurs
if and only if g(φ, y) assigns true to xi. Thus, a clause gadget demand given 0
delay by z(y) corresponds to a clause in φ satisfied by g(φ, y), thus proving (2).

Next, by definition of γ and z, we have:

7(n + m) + (m − γ) ≤ cQ(f(φ), z(y)) ≤ cQ(f(φ), y). (3)

Combining inequalities (2) and (3), we get:

cP(φ, g(φ, y)) ≥ γ ≥ 7n + 8m − cQ(f(φ), y). (4)

Finally, using the leftmost inequality in (1) along with inequality (4) gives us:

OPTP(φ) − cP(φ, g(φ, y)) ≤
(
7n + 8m − OPTQ(f(φ))

)
−

(
7n + 8m − cQ(f(φ), y)

)

= β ·
(
cQ(f(φ), y) − OPTQ(f(φ))

)
,

for β = 1, as desired. This completes the proof that (f, g, α, β) is a valid
L-reduction, and subsequently that TDW on DAGs with Δ ≤ 3 is APX-hard.

�

5 Approximation Algorithm

5.1 Algorithm

We present Algorithm 1, which approximates TDW by finding shortest paths
to satisfy each demand, and then greedily assigning delays to each trip (with
priority given to shorter trips). To simplify notation, we assume that the inputted
terminal pairs are ordered by nondecreasing shortest path length (if not, we may
simply sort the indices after finding the shortest demand-satisfying paths). The
algorithm clearly runs in poly(|V |, |E|, k) time, and the bad delay variables ensure
its correctness. Next, we briefly note the following easy bound:

Proposition 1. Algorithm 1 has an approximation ratio of O(k) on general
digraphs.

Proof. Let x := (G,λ, T ) ∈ ITDW , and let A(x) ∈ SOLTDW be the output of
Algorithm 1 on x. First, we show by induction that for each i ∈ [k],

di ≤ 2
∑

h∈[i−1]

λ(Wh).
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Algorithm 1. Shortest paths & greedy delays, with priority to shorter paths.
Input: x := (G := (V, E), λ : E → Z≥1, T := {(s1, t1), . . . , (sk, tk)}) ∈ ITDW

Output: y ∈ SOLTDW (x)
1: y ← {}
2: � Get shortest paths and dummy delays:
3: for i ∈ [k] do
4: Wi ← Dijkstra(G, λ, si, ti)
5: di ← 0
6: y ← y ∪ (di, Wi)
7: end for
8: � Greedily assign delays, with priority given to shorter paths:
9: for i ∈ [k] do

10: bad delaysi ← {}
11: for h ∈ [i − 1] do
12: bad delaysi,h ← {}
13: for v ∈ Wh ∩ Wi do
14: bad delay ← (dh + λ(Wh, v) − λ(Wi, v))
15: bad delaysi,h ← bad delaysi,h ∪ {bad delay}
16: end for
17: bad delaysi ← bad delaysi ∪ bad delaysi,h
18: end for
19: di ← min(Z≥0 \ bad delaysi)
20: end for
21: return y

For the base case i = 1, note that bad delays1 = ∅ and so d1 = 0. For i > 1, first
observe that by definition of bad delay, we have di ≤ 1+maxh∈[i−1](dh+λ(Wh)).
Thus,

di ≤ 1 + max
h∈[i−1]

(
2

∑

h′∈[h−1]

λ(Wh′) + λ(Wh)
)

(induction hypothesis)

≤ 1 + 2
∑

h′∈[i−2]

λ(Wh′) + λ(Wi−1) (pick h = i − 1)

≤ 2
∑

h′∈[i−1]

λ(Wh′), (trips have length ≥ 1)

completing the induction. Now, recallling that our algorithm uses the shortest
paths to satisfy each demand, and that it assigns delays to shorter paths first,
we can bound the approximation ratio as follows:

ρ ≤ cTDW (x,A(x))
OPTTDW (x)

≤
∑

i∈[k](di + λ(Wi))∑
i∈[k] λ(Wi)

≤ 1 +
2
∑

i∈[k]

∑
h∈[i−1] λ(Wh)

∑
i∈[k] λ(Wi)

≤ 1 +
2k

∑
i∈[k] λ(Wi)∑

i∈[k] λ(Wi)
= O(k). �
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5.2 Analysis on Bounded-Degree DAGs

We now show that our algorithm is able to achieve a better approximation ratio
on bounded-degree DAGs. In what follows, we call a directed graph a “(2, l)-in-
tree” if it is a perfect binary tree of depth l, in which every arc points toward
the root. Analogously, a “(2, l)-out-tree” is a perfect binary tree of depth l, in
which every arc points away from the root.

Theorem 2. Algorithm 1 achieves an approximation ratio of Θ(k/ log k) on
bounded-degree DAGs.

Proof. Upper bound: Let x := (G,λ, T ) ∈ ITDW such that G is a DAG. Let
A(x) ∈ SOLTDW be the output of Algorithm 1 on x. In what follows, we will
justify the following string of inequalities that proves the upper bound:

ρ ≤ cTDW (x,A(x))
OPTTDW (x)

≤(1)

∑
i∈[k]

(
di + λ(Wi)

)
∑

i∈[k] λ(Wi)

≤(2) 1 +
di∗

λ(Wi∗)
, i∗ := max

i∈[k]

(
di

λ(Wi)

)

≤(3) 1 + O(1) · di∗

log di∗

≤(4) 1 + O(1) · k

log k
= O(k/ log k).

Inequality (1) is clear, because our algorithm takes the shortest path to satisfy
each demand. Inequality (2) follows (by induction) from the following general
observation: given d1, d2 ∈ Z≥0 and λ1, λ2 ∈ Z≥1, observe d1/λ1 ≤ d2/λ2 =⇒
(d1 + d2)/(λ1 +λ2) ≤ d2/λ2, and thus (d1 + d2)/(λ1 +λ2) ≤ max(d1/λ1, d2/λ2).

To show inequality (3), we need two observations. We first observe that for
each i ∈ [k]:

di ≤ |bad delaysi| ≤ |{h ∈ [i − 1] | Wh ∩ Wi �= ∅}| =: μi

To see this, suppose for contradiction that there exists some h ∈ [i − 1] with
Wh ∩ Wi �= ∅ and |bad delaysi,h| > 1. Then, by definition of bad delay, there
exist vertices u, v ∈ Wh ∩ Wi and delays δu �= δv ∈ Z≥0 such that:

δu + λ(Wi, u) = dh + λ(Wh, u),
δv + λ(Wi, v) = dh + λ(Wh, v),

λ(Wh, u) − λ(Wh, v) = λ(Wi, u) − λ(Wi, v) + (δu − δv),

where the last equality follows from the first two. But because δu �= δv, this
implies that the length of the path that Wh and Wi use to travel between u
and v is not the same. Because G is a DAG, Wh and Wi must visit u and v
in the same order, implying that one of these walks is not taking the shortest
path from u to v, which contradicts the definition of the algorithm. Because
|bad delaysi,h| = 0 if Wh ∩ Wi = ∅, we have di ≤ μi.
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Next, we observe that:

μi ≤ min(Δ4λ(Wi), k).

Showing μi ≤ k is trivial, by definition of μi and because i ∈ [k]. To show
μi ≤ Δ4λ(Wi), first note that in a digraph with max degree Δ, the number of
paths that (i) have z arcs, (ii) start at distinct vertices, and (iii) all end at a
common vertex, is upper bounded by Δz (this is easy to show by induction on
z). Thus, the number of paths with ≤ z arcs, in addition to properties (ii) and
(iii), is upper bounded by

∑z
l=0 Δl ≤ Δz+1, for Δ > 1. Call this lemma (∗).

Now, note that for each h ∈ [i−1] we may consider each Wh to terminate once
it first hits a vertex in Wi (i.e., cut off all vertices that are hit afterwards) without
changing the value of μi. Now, recall the following facts about our problem and
algorithm: (I) each inputted demand has a unique source; (II) each edge in our
digraph has length ≥ 1; (III) for all h ∈ [i − 1], λ(Wh) ≤ λ(Wi). Thus, by (III)
and lemma (∗), each vertex in Wi can be hit by at most Δλ(Wi)+1 walks in
{W1, . . . ,Wi−1}. Furthermore, (II) tells us that the number of vertices in Wi is
no more than λ(Wi) + 1. Thus, recalling that our problem statement ensures
Δ > 1, no demands have the same source and destination, and (II), we see that

μi ≤ (λ(Wi) + 1)Δλ(Wi)+1 ≤ Δ2(λ(Wi)+1) ≤ Δ4λ(Wi),

as desired. We now note that we may assume di is greater than any constant
(otherwise, inequality (2) automatically proves a constant approximation ratio,
completing the proof). Thus, from this and the above observations, we have
log(di) ≤ 4λ(Wi) log(Δ). This proves inequality (3), because our graph has
bounded degree.

Inequality (4) is not difficult: as stated above, we will always have di ≤ k,
and we may always assume di ≥ 3. Basic calculus shows the function x/ log x
increases over x ≥ 3.

Lower bound: We show ∀l ∈ N≥1, k := 2l, ∃(Gk, λk, Tk) ∈ ITDW such that
Gk is a bounded-degree DAG and Algorithm 1 achieves an approximation ratio
of Ω(k/ log k). Construct Gk by taking a (2, l)-in-tree AS and a (2, l)-out-tree
AT . Draw an arc from the root of the former to the root of the latter. Then,
arbitrarily pair each leaf (source) in AS with a unique leaf (destination) in AT .
For each such pair, draw an arc from source to destination (called a “bypass
arc”), and add a demand to Tk. Finally, define λk to assign length 1+2l to each
“bypass” arc, and length 1 to all other arcs. We refer the reader to Fig. (3)(i).

We may assume our algorithm does not satisfy demands using the bypass arcs
(as all demand-satisfying paths have length 2l+1, and no tie-breaking scheme is
specified). Thus, each demand-satisfying path uses the root of AS , which incurs
a total delay of 0+1+ . . .+(k − 1) = Ω(k2) and total path length of k · (1+2l).
Had the bypass arcs been used, no delay would have been required, and the total
path length would have still been k · (1 + 2l). Thus, our algorithm achieves an
approximation ratio of (Ω(k2) + k · (1 + 2l))/(k · (1 + 2l)) = Ω(k/ log k). �
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5.3 Analysis on DAGs

We show that if we no longer require the graph family in Theorem (2) to have
bounded degree, our algorithm loses its improved approximation ratio.

Theorem 3. Algorithm 1 has an approximation ratio of Θ(k) on DAGs.

Proof. By Proposition (1), it suffices to construct a family of TDW instances on
DAGs, defined over all k ∈ N≥1, for which our algorithm achieves an approxima-
tion ratio of Ω(k). Construct Gk by fixing a “root” vertex and directly attaching
2k leaves. Orient half of these arcs towards the root, and half of the arcs away
from the root. Call each vertex with out-degree 1 a source, and each vertex with
in-degree 1 a destination. Then, arbitrarily pair each source with a unique des-
tination. For each pair, add an arc from the source to the destination (called a

..
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. . .
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.

. . .

. . .

AT

(i)

..
.

..
.

(ii)

. . .
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. . . . .

. AT

. . .

. . . . .
.
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. . .

. . .. .
.
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. . .

. . .. .
.

(iii)

Fig. 3. (i): A bounded-degree DAG Gk upon which Algorithm 1 achieves an approx-
imation ratio of Ω(k/ log k); (ii): A DAG Gk upon which Algorithm 1 achieves an
approximation ratio of Ω(k); (iii): A bounded-degree digraph Gk upon which Algo-
rithm 1 achieves an approximation ratio of Ω(k).
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“bypass arc”), and add a demand to Tk. Finally, let λk assign length 2 to each
bypass arc, and length 1 to all other arcs. We refer the reader to Figure (3)(ii).

We may assume our algorithm does not satisfy demands using the bypass
arcs (as all demand-satisfying paths have length 2, and no tie-breaking scheme
is specified). Thus, each demand-satisfying path uses the root vertex, which
incurs a total delay of 0 + 1 + . . . + (k − 1) = Ω(k2) and total path length of
2k. Had the bypass arcs been used, no delay would have been required, and
the total path length would have still been 2k. Thus, our algorithm achieves an
approximation ratio of (Ω(k2) + 2k)/(2k) = Ω(k). �

5.4 Analysis on Bounded-Degree Digraphs

In this section, we show that if we no longer require the graph family in Theorem
(2) to be acyclic, our algorithm loses its improved approximation ratio.

Theorem 4. Algorithm 1 has an approximation ratio of Θ(k) on bounded-degree
digraphs.

Proof. By Proposition (1), it suffices to construct a family of TDW instances
on bounded-degree digraphs, defined over all l ∈ N≥2 with k̂ := 2l, k := 2k̂, for
which our algorithm achieves an approximation ratio of Ω(k). Construct Gk by
taking two (2, l)-in-trees AS and BS , and two (2, l)-out-trees AT and BT . Call
their roots rAS

, rBS
, rAT

, and rBT
, respectively. Then, add a “central path” C

consisting of vertices {c1, c2, . . . , ck̂}, “forward” arcs {(ci, ci+1) | i ∈ [k̂−1]}, and
“backward” arcs {(cj , cj−3) | j ∈ [4, k̂], j mod 2 = 0}. Attach the directed trees
to the central path with arcs {(rAS

, c1), (rBS
, ck̂−1), (ck̂, rAT

), (c2, rBT
)}. Next,

pair each leaf (source) in AS with an arbitrary, but unique, leaf (destination) in
AT . Do the same for BS and BT . For each such pair, add an arc from the source
to destination (called a “bypass arc”), and add a demand to Tk. Finally, let λk

assign length 2k̂ +2l − 1 to each bypass arc, length k̂ − 1 to arcs (rBS
, ck̂−1) and

(ck̂, rAT
), and length 1 to all other arcs. We refer the reader to Figure (3)(iii).

Observe that for each demand, there exist two shortest demand-satisfying
paths, each of length 2k̂ + 2l − 1. In particular, observe that a demand between
leaves of AS and AT may be satisfied by a bypass arc, or by a path that travels
from the source in AS , towards the root of AS , onto the central path vertex c1,
along all forward arcs of C, onto the root of AT , and towards the destination
in AT . Similarly, a demand between leaves of BS and BT may be satisfied by a
bypass arc, or by a path that travels from the source in BS , towards the root
of BS , onto the central vertex ck̂−1, across C by alternating between forward
and backward arcs (until arriving at c2), onto the root of BT , and towards
the destination in BT . We call the paths that do not use the bypass arcs the
“meandering paths.”

Because our algorithm specifies no tie-breaking scheme, we may assume that
it satisfies demands using the meandering paths, and that it alternates between
assigning delays to demands from AS and assigning delays to demands from BS

every four iterations. In other words, out of the 2k̂ demands created above and
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fed as input to our algorithm, we may assume that those from AS to AT are
labeled with indices IA := {i ∈ [2k̂] | �(i−1)/4� ≡ 0 (mod 2)}, while those from
BS to BT are labeled with IB := {i ∈ [2k̂] | �(i − 1)/4� ≡ 1 (mod 2)}.

To understand the suboptimality of this situation, we make several observa-
tions that help us determine the values our algorithm assigns to each di. First,
note that for each i ∈ [2k̂], z ∈ [k̂], the length of walk Wi up to vertex cz on the
central path is:

λk(Wi, cz) =

{
l + z, if i ∈ IA

l + 2k̂ − z − 2 · (z mod 2), if i ∈ IB

Using this, we see that the details of Algorithm 1 give us the following relation,
which is defined over i ∈ [k], h ∈ [i − 1]:

bad delaysi,h =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{dh}, if i, h ∈ IA or
if i, h ∈ IB

{dh − 2k̂ + 2z + 2 · (z mod 2) | z ∈ [k̂]}, if i ∈ IB , h ∈ IA

{dh + 2k̂ − 2z − 2 · (z mod 2) | z ∈ [k̂]}, if i ∈ IA, h ∈ IB

Because our algorithm defines bad delaysi :=
⋃

h∈[i−1] bad delaysi,h and di :=
min(Z≥0 \bad delaysi), observe that the above relation is in fact a recurrence
relation. As such, after noting that d1 = 0, it is straightforward to use the above
relation to show by induction that for all i ∈ [2k̂],

di = i − 1 + � i − 1
8

�(2k̂ − 4).

Thus, our algorithm incurs a total delay of
∑

i∈[2k̂](i − 1 + �(i − 1)/8�(2k̂ −
4)) = Ω(k̂3) = Ω(k3) and total walk length of 2k̂ · (2k̂ + 2l − 1)) = Θ(k̂2) =
Θ(k2). Had the algorithm opted to use the bypass arcs, no delay would have
been required, and the total walk length would have been the same. Thus, our
algorithm achieves an approximation ratio of Ω(k). �

6 Conclusions

In this paper, we introduce Time Disjoint Walks, a new variant of (shortest)
Disjoint Paths that also seeks to connect k demands in a network, but relaxes
the disjointness constraint by permitting vertices to be shared across multiple
walks, as long as no two walks arrive at the same vertex at the same time. We
show that Time Disjoint Walks is APX-hard, even for DAGs of max degree three.
On the other hand, we provide a natural Θ(k/ log k)-approximation algorithm
for directed acyclic graphs of bounded degree. Interestingly, we also show that
for general digraphs with just one of these two properties, the approximation
ratio of our algorithm is bumped up to Θ(k).
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An interesting future work is to tighten the gap between these inapprox-
imability and approximability results for TDW on bounded-degree DAGs. We
conjecture that our approximation algorithm is almost optimal, but that our
hardness of approximation result can be strengthened to nearly match our algo-
rithm’s approximation ratio of Θ(k/ log k). This belief is based on the observa-
tion that TDW is a complex problem that involves both routing and scheduling,
and many problems of the latter variety (of size n) are NP-hard to approximate
within a factor of n1−ε, for any ε > 0 [16]. One may also wish to explore similar
complexity questions for the many variants of Time Disjoint Walks discussed in
Sect. 2.
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