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6
The routing game models congestion in transportation networks, communication networks, and other cyber- 7
physical systems in which agents compete for shared resources. We consider an online learning model of 8
player dynamics: at each iteration, every player chooses a route (or a probability distribution over routes, 9
which corresponds to a flow allocation over the physical network), then the joint decision of all players 10
determines the costs of each path, which are then revealed to the players. 11

We pose the following estimation problem: given a sequence of player decisions and the corresponding 12
costs, we would like to estimate the parameters of the learning model. We consider, in particular, entropic 13
mirror descent dynamics and reduce the problem to estimating the learning rates of each player. 14

In order to demonstrate our methods, we developed a web application that allows players to participate 15
in a distributed, online routing game, and we deployed the application on Amazon Mechanical Turk. When 16
players log in, they are assigned an origin and destination on a shared network. They can choose, at each 17
iteration, a distribution over their available routes, and each player seeks to minimize her own cost. We collect 18
a dataset using this platform, then apply the proposed method to estimate the learning rates of each player. We 19
observe, in particular, that after an exploration phase, the joint decision of the players remains within a small 20
distance of the set of equilibria. We also use the estimated model parameters to predict the flow distribution 21
over routes, and compare our predictions to the actual distributions, showing that the online learning model 22
can be used as a predictive model over short horizons. Finally, we discuss some of the qualitative insights 23
from the experiments, and give directions for future research. 24
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1 INTRODUCTION34

The routing game is a non-cooperative game that models congestion in many cyber-physical sys-35
tems (CPSs) in which non-cooperative agents compete for shared resources, such as transportation36
networks (the resources being roads) and communication networks (the resources being commu-37
nication links) (Beckmann et al. 1955; Roughgarden 2007; Ozdaglar and Srikant 2007). The game38
is played on a directed graph that represents the network, and each player has a source node and39
destination node, and seeks to send traffic (either packets in a communication setting, or cars in a40
transportation setting) while minimizing the total delay of that traffic. The delay is determined by41
the joint decision of all players, such that whenever an edge has high load, it becomes congested42
and any traffic using that edge incurs additional delay. This delay is given by a congestion function43
that models the underlying physical process. This model of congestion is simple yet powerful, and44
routing games have been studied extensively since the seminal work of Beckman (Beckmann et al.45
1955).46

1.1 Learning Models and Convergence to Nash Equilibria47

The Nash equilibria of the game (also called Wardrop equilibria in the case of routing games,48
in reference to Wardrop (1952)) are simple to characterize, and have been used to quantify the49
inefficiency of the network (Roughgarden 2007), using the price of anarchy definition due to50
Koutsoupias and Papadimitriou (1999). However, the Nash equilibrium concept may not offer a51
good descriptive model of the actual behavior of players. Besides the assumption of rationality,52
which can be questioned (Simon 1955), the Nash equilibrium assumes that players have a complete53
description of the structure of the game, their own cost functions, and those of other players. This54
model is arguably not very realistic for the routing game, as one does not expect users of a network55
to have an accurate representation of the cost function on every edge, or of the other users of the56
network. One alternative model of players is a model of repeated play (Marden and Shamma 2013;57
Fox and Shamma 2013; Marden et al. 2013), sometimes called learning models (Cesa-Bianchi and58
Lugosi 2006) or adjustment models (Fudenberg and Levine 1998). In such models, one assumes59
that each player makes decisions iteratively (instead of playing a one-shot game), and uses the60

outcome of each iteration to adjust their next decision. Formally, if x (t )
k

is the decision of player k61

at iteration t (in this case, a flow distribution over available routes), and �
(t )
k

is the vector of costs62
(in this case, delays), then player k faces a sequential decision problem in which she iteratively63

chooses x (t )
k

, then observes �
(t )
k

. These sequential decision problems are coupled through the cost64

functions, since �
(t )
k

depends not only on x (t )
k

but also on x (t )
k ′

for k ′ � k . Such models have a65
long history in game theory, and date back to the work of Hannan (1957) and Blackwell (1956).66
In recent years, there has been a resurgence of research on the topic of learning in games using67
sequential decision problems (see e.g., Cesa-Bianchi and Lugosi (2006), and references therein.68

When designing a model of player decisions, many properties are desirable. Perhaps the most69
important property is that the dynamics should be consistent with the equilibrium of the game,70
in the following sense: Asymptotically, the learning dynamics should converge to the equilibrium71
of the one-shot game (be it Nash equilibrium or other equilibrium concepts). In this sense, players72
“learn” the equilibrium asymptotically. Much progress has been made in recent years in character-73
izing classes of learning dynamics which are guaranteed to converge to an equilibrium set (Freund74
and Schapire 1999; Hart and Mas-Colell 2001; Hart 2005; Fox and Shamma 2013; Marden et al. 2013;75
Arslan and Shamma 2004). In particular, for the routing game, different models of learning have76
been studied, for example, in Fischer and Vöcking (2004), Blum et al. (2006), Kleinberg et al. (2009),77
Krichene et al. (2015a), and Krichene et al. (2015b), with different convergence guarantees.78
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1.2 A Mirror Descent Model of Learning 79

We will focus, in particular, on the mirror descent model used in Krichene et al. (2015b), since it 80
offers a large family of models that have strong convergence guarantees to Nash equilibria. This 81
model describes the learning dynamics as solving, at each step, a simple minimization problem 82
parameterized by a learning rate. It is described in detail in Section 2.2, but at a high level, the 83

learning model can be thought of as an update algorithm that specifies x (t+1)
k

as a function of x (t )
k

, 84

�
(t )
k

and a learning rateη (t )
k

(a positive scalar parameter). The learning rate intuitively trades off two 85
terms: The first term encourages allocating the flow to the best routes of the previous iteration, and 86

the second term penalizes large deviations between x (t )
k

and x (t+1)
k

(thus encourages stationarity 87
of the sequence of decisions). Therefore, the learning rate describes how aggressive the update is: 88
A small learning rate results in a small change in strategy, while a large learning rate results in a 89
significant change. 90

1.3 Estimating the Learning Rates 91

Motivated by this interpretation of the learning dynamics, we propose the following estimation 92

problem: Given a sequence of observed player decisions (x̄ (t )
k

), and the sequence of corresponding 93

costs (�̄ (t )
k

), can we estimate the parameters of the learning model to fit these observations? These 94
quantities are effectively measured in our experimental setting using the routing game web appli- 95
cation, and can be measured on transportation networks using many existing traffic monitoring 96
and forecasting systems, such as the Mobile Millennium system (Bayen et al. 2011) or the Grenoble 97
Traffic Lab (Canudas De Wit et al. 2015). 98

More precisely, we assume that the player is using a given learning algorithm with an unknown 99

sequence of learning rates (η (t )
k

), and we estimate the learning rates given the observations (x̄ (t )
k

), 100

(�̄ (t )
k

). One way to pose the estimation problem is to minimize, at each iteration, the distance be- 101

tween the prediction of the model x (t+1)
k

(η), and the actual decision x̄ (t+1)
k

. We show, in particular, 102
that for a careful choice of the distance function, this problem is convex in η and can be solved 103

efficiently. This method allows us to estimate one parameter η (t )
k

per iteration t and per player k . 104
When we have a sequence of observations available, it can be desirable to control the complexity 105
of the model by assuming a parameterized sequence of learning rates, instead of estimating each 106
term separately. Thus, we propose a second method which assumes that the learning rate is of 107

the form η (t )
k
= η (0)

k
t−αk , with parameters η (0)

k
> 0 and αk ∈ (0, 1). The resulting estimation prob- 108

lem is non-convex in general, but since it is a two-dimensional problem (only two parameters to 109
estimate), it can be minimized efficiently. 110

To the best of our knowledge, this is the first problem formulation for learning rate estimation 111
in a sequential decision problem. A related estimation problem is that of inverse reinforcement 112
learning in Markov Decision Processes, in which one seeks to estimate elements of the model 113
(such as the reward function (Ng and Russell 2000), or the transition dynamics (Herman et al. 114
2016)), given observations on a sequence of decisions. 115

1.4 Summary of Contributions and Organization of the Article 116

Our main contributions are as follows: 117

(1) Pose the learning rate estimation problem, and show that it is convex for an appropriate 118
choice of the distance function. We also give an example application of the estimated 119
model: It can be used to predict the decision of the players over the next few iterations, 120
by propagating the model forward with the estimated values of the learning rates. 121
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(2) Give the first online implementation at scale of a routing game and deploy it on the Ama-122
zon Mechanical Turk platform in order to collect data on routing decisions. We developed123
a web application in which a master user can create an instance of the routing game by124
defining a graph and cost functions on edges of the graph. Then other users can connect to125
the interface as players. The game then proceeds similarly to our learning model: At each126
iteration, every player chooses a flow distribution on their available routes (using a graph-127
ical user interface with sliders), then their decisions are sent to a backend server, which128
computes the total cost of each route, and sends this information back to the players. We129
discuss and propose solutions to some technical and experimental challenges associated130
with such experiments, such as player synchronization, and handling attrition (players131
losing connection or dropping out of the game). This system can be used as a framework132
to test and validate other theoretical models of sequential decision.133

(3) Apply the proposed methods to the data collected from the routing game system, and134
give quantitative and qualitative insights into the decision dynamics of human players.135
In particular, we observed that in the first few iterations, the flow distributions tend to136
oscillate, which typically corresponds to a high value of estimated learning rates. For later137
iterations, the flow distributions remain close to equilibrium, and the learning rates are138
lower, although some players may occasionally move the system away from equilibrium139
by performing aggressive updates.140

(4) Comment on advantages and limits of using the mirror descent dynamics as a model for141
player behavior: We show that we can achieve good average prediction performance over142
a short time horizon, which indicates that, in this limited set of experiments, mirror de-143
scent dynamics can be a good model of decision dynamics. However, we also show that144
in some rare cases, the best fit is obtained for a negative learning rate, which means that145
the player updated her strategy by assigning more traffic to routes with higher cost, a146
counter-intuitive behavior which cannot be modeled using mirror descent.147

The remainder of the article is organized as follows: In Section 2, we formally define the routing148
game and the mirror descent dynamics and review its convergence guarantees. In Section 3, we149
pose the learning rate estimation problem in the entropy case, then extend it to the generalized150
entropy case. We also briefly discuss the flow prediction problem. In Section 4, we describe the151
experimental setting and the nature of the collected data. We also give some implementation details152
of the web application and how it can be interfaced with the Amazon Mechanical Turk platform.153
In Section 5, we use the data collected from the experiment to solve the estimation and prediction154
tasks. We comment on the quality of the prediction, and give some qualitative and quantitative155
insights into the decision dynamics. We conclude in Section 6 by summarizing our results and156
giving directions for future research.157

2 THE ROUTING GAME AND THE LEARNING MODEL158

In this section, we give the definition of the (one-shot) routing game, and the model of learning159
dynamics.160

2.1 The Routing Game161

The routing game is played on a directed graph G = (V ,E), whereV is a vertex set and E ⊂ V ×V162
is an edge set. The players will be indexed by k ∈ {1, . . . ,K }, and each player is associated with an163
origin vertexok ∈ V , a destination vertexdk ∈ V , and a traffic massmk > 0 that represents the total164
traffic that the player needs to send fromok todk . The set of available paths connectingok todk will165
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be denoted by Pk , and the action set of player k is how to allocate the total massmk along paths in 166
Pk . This action set can be described by the probability simplex over Pk , which we denote by ΔPk = 167

{xk ∈ R |Pk |
+ :

∑
p∈Pk

xk,p = 1}. In other words, each player k chooses a distribution xk ∈ ΔPk over 168
her available paths, such that xk,p is the proportion of mass allocated to path p ∈ Pk , so her total 169
flow contribution to p is mkxk,p . The joint decision of all players is denoted by x = (x1, . . . ,xK ). 170
The costs of the players are then determined as follows: 171

(a) The cost on an edge e is ce (ϕe (x )), where ce (·) is a given, non-negative increasing function 172
(this models the actual cost due to the physical process; e.g., delay on a road segment 173
due to accumulation of cars), and ϕe (x ) is the total traffic flow on edge e induced by x , 174
obtained simply by summing all the path flows that go through that edge, i.e., ϕe (x ) = 175∑K

k=1

∑
{p∈Pk :e ∈p }mkxk,p . 176

(b) The cost on a path p ∈ Pk is denoted by �k,p (x ), and is the sum of edge costs along the 177
path, i.e., �k,p (x ) =

∑
e ∈p ce (ϕe (x )). 178

(c) The cost for player k is the total path cost for all the traffic sent by player k , i.e., 179∑
p∈Pk

mkxk,p�k,p (x ). This is simply the inner product between the flow vectormkxk and 180
the cost vector �k (x ), which we denote by 〈�k (x ),mkxk 〉. 181

Remark 2.1 (A Note on the Player Model). Some formulations of the routing game (e.g., Sandholm 182
(2001) and Krichene et al. (2015a)) define the game in terms of populations of players, such that 183
each population is an infinite set of players with the same origin and destination. This assumes that 184
each player contributes an infinitesimal amount of flow, so each player can play a single path. In 185
our model, each player is macroscopic, and can split its traffic across multiple routes. Both models 186
are equivalent in terms of analysis, but the interpretation is different. We choose the finite player 187
interpretation because it is more consistent with our experimental setting, since we run the game 188
with a small, finite number of players. 189

Definition 2.2 (Wardrop Equilibrium). A distribution x� = (x�1 , . . . ,x
�
K

) is a Wardrop equilib- 190
rium (Wardrop 1952) if it satisfies the following condition: For all other feasible distributions 191
x = (x1, . . . ,xK ) and for all k ,mk 〈�k (x�),xk − x�k 〉 ≥ 0. 192

This is equivalent to the following condition: x� is a Wardrop equilibrium if for every player 193
k , �k,p (x�) is minimal for p in the support of x�

k
. It is worth noting that the Wardrop equilibrium 194

concept is, in general, different from the Nash equilibrium: If a macroscopic player unilaterally 195
changes her strategy from x�

k
to xk , then the expected loss of the player would be 〈�k (x̃ ),xk 〉, 196

where x̃ = (xk ,x
�
−k

) is the resulting mass distribution after the unilateral change. The Wardrop 197

condition requires that 〈�k (x�),x�
k
〉 ≤ 〈�k (x�),xk 〉 for all feasible xk , whereas the Nash condition 198

would require 〈�k (x�),x�
k
〉 ≤ 〈�k (x̃ ),xk 〉. In the non-atomic routing game (where each population 199

is an infinite set of players, endowed with a non-atomic measure), the mass of each player is infin- 200
itesimal, thus when a player unilaterally changes strategy, the mass distribution of the population 201
is unchanged, and the Wardrop condition is equivalent to an almost everywhere Nash condition 202
(see Proposition 2.2 in Krichene et al. (2015a)). 203

If we let x denote the vector of distributions x = (x1, . . . ,xK ) ∈ Δ = ΔP1 × · · · × ΔPK , � de- 204
note the vector of weighted delays � = (m1�1, . . . ,mK �K ), and define the inner product 〈x , �〉 = 205∑

k mk 〈xk , �k 〉, then the definition is equivalent to the following: x� is an equilibrium if and only 206
if
〈
�(x�),x − x�〉 ≥ 0 for all feasible x . This variational inequality is, in fact, equivalent to the 207

first-order optimality condition of the following potential function, referred to as the Rosenthal 208
potential, in reference to Rosenthal (1973). 209
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Proposition 2.3 (Existence of a Convex Potential). Consider a routing game with increasing210
edge costs ce (·), and define the following function for x ∈ Δ:211

f (x ) =
∑
e ∈E

∫ ϕe (x )

0

ce (u)du .

Then f is convex, differentiable, and its gradient ∇f (x ) coincides with the scaled delay functions: for212
all k and all x , ∇xk

f (x ) =mk�k (x ).213

This result can be found, for example, in Roughgarden (2007). Due to the fact that the delay214
functions coincide with the gradient field of the Rosenthal potential, the equilibrium condition can215
be rewritten as

〈∇f (x�),x − x�〉 ≥ 0 for all feasible x , and since f is convex, this is a necessary and216
sufficient condition for optimality of x� (see, e.g., Section 4.2.3 in Boyd and Vandenberghe (2010)).217
Therefore, the set of Wardrop equilibria is exactly the set of minimizers of the convex potential f .218
This is important both for computation (computing an equilibrium can be done by minimizing a219
convex function), and for modeling: One can model player dynamics as performing a distributed220
minimization of the potential function. More precisely, if we adopt the point of view presented221

in the Introduction, in which each player faces a sequential decision problem, and plays x (t )
k

then222

observes �k (x (t ) ), then this corresponds to a first-order distributed optimization of the function f ,223

where each player is responsible for updating the variables x (t )
k

, and observes, at each iteration,224

the gradient �k (x (t ) ) = ∇xk
f (x (t ) ). Using this connection to distributed optimization, a model of225

player dynamics was proposed in Krichene et al. (2015b). We review the model in the next section.226
Note that

Q2
227

2.2 The Learning Model: Mirror Descent Dynamics228

Each player is assumed to perform a mirror descent update given by the following algorithm:229

ALGORITHM 1: Distributed Mirror Descent Dynamics with DGFψk and Learning Rates (η (t )
k

).

1: for each iteration t ∈ {1, 2, . . . } do

2: for each player k ∈ {1, . . . ,K } do

3: Play x (t )
k

,

4: Observe �
(t )
k
= ∇xk

f (x (t ) ),
5: Update distribution by solving the problem

x (t+1)
k

= arg min
xk ∈ΔPk

[
η (t )

k

〈
�k (x (t ) ),xk

〉
+ Dψk

(xk ,x
(t )
k

)
]
. (1)

In the update equation (1), Dψk
(xk ,x

(t )
k

) is the Bregman divergence between the distributions230

xk and x (t )
k

, defined as Dψ (x ,y) = ψ (x ) −ψ (y) − 〈∇ψ (y),x − y〉, for a strongly convex functionψ ,231
called the distance generating function (DGF). In particular, Dψ (x ,y) is non-negative, and it is zero232
if and only if x = y (by strong convexity ofψ ). For a review of Bregman divergences and their uses233
in optimization, see, e.g., Censor and Zenios (1997) and Banerjee et al. (2005). Some special cases234
include the following:235

(a) The Euclidean case: If ψ (x ) =
‖x ‖22

2 , then Dψ (x ,y) =
‖x−y ‖22

2 . In this case, mirror descent236
reduces to the projected gradient descent algorithm.237
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(b) The entropy case: If ψ (x ) = −H (x ) where H (x ) = −∑p xp lnxp is the entropy, then 238

Dψ (x ,y) =
∑

p xp ln
xp

yp
is the Kullback-Leibler (KL) divergence from x to y. In this case, 239

the mirror descent algorithm is sometimes called the entropic descent (Beck and Teboulle 240
2003), or exponentiated gradient descent (Kivinen and Warmuth 1997). 241

Mirror descent is a general method for convex optimization proposed in Nemirovsky and Yudin 242
(1983). The model in Algorithm 1 is a distributed version of mirror descent, applied to the Rosenthal 243
potential function f (defined in Proposition 2.2). To give some intuition of the method, the first 244

term in the minimization problem (1), 〈� (t )
k
,xk 〉, can be thought of as a linear approximation of 245

the potential function (since �(x ) = ∇f (x )), and the second term Dψ (xk ,x
(t )
k

) penalizes deviations 246

from the previous iterate x (t )
k

. This algorithm minimizes a linear combination of the two terms, and 247

the learning rate η (t )
k

determines the tradeoff between them, and can be thought of as a generalized 248

step size: A smaller η (t )
k

results in a distribution which is closer to the current x (t )
k

. Thus, from 249
the potential function point of view, the player minimizes a linearization of the potential plus 250

a Bregman divergence term that keeps xk close to x (t )
k

. From the routing game point of view, 251

minimizing the first term 〈� (t )
k
,xk 〉 encourages putting weight on the paths that have smaller cost 252

during the previous iteration, and the second term keeps the distribution close to its current value; 253

the learning rate parameter η (t )
k

determines how aggressive the player is in shifting traffic to the 254
paths which had a lower cost during the previous iteration. 255

The convergence of this distributed learning model is discussed in Krichene et al. (2015b). 256
The learning dynamics given in Algorithm 1 is guaranteed to converge under the following 257
assumptions. 258

Theorem 2.4 (Theorem 3 in Krichene et al. (2015b)). Consider the routing game with mirror 259
descent dynamics defined in Algorithm 1; let x� be a minimizer of the potential function f , and 260

suppose that for all k , η (t )
k

is decreasing to 0. Then, f (x (t ) ) − f (x�) = O (
∑

k ( 1

tη
(t )
k

+

∑t
τ=1 η

(τ )
k

t
)). 261

In particular, if the learning rates are polynomially decreasing, η (t )
k
= η (0)

k
t−αk , with αk ∈ (0, 1), 262

then one can bound the sum 263

t∑
τ=1

η (τ )
k
= η (0)

k

t∑
τ=1

τ−αk ≤ η (0)
k

∫ t

0

τ−αkdτ =
η (0)

k

1 − αk
t1−αk ,

and, as a consequence, 264

f (x (t ) ) − f (x�) = O �
�
∑

k

tαk−1�
� + O

�
�
∑

k

t−αk �
� = O

�
�
∑

k

t−min(αk ,1−αk )�
� ,

which converges to 0. While this specific convergence rate does not matter for the purposes of the 265
estimation problem, this convergence guarantee motivates the modeling assumptions we make 266
in the next section: In particular, we will assume that the players use a polynomially decaying 267

sequence of learning rates of the form η (t )
k
= η (0)

k
t−αk . 268

3 LEARNING MODEL ESTIMATION 269

In this section, we assume that we have access to a sequence of observations of traffic distributions 270

(x̄ (t )
k

), and a sequence of delay vectors (�̄ (t )
k

), for a given player k . The overbar is used to make a 271
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clear distinction between quantities which are observed (e.g., x̄ (t )
k

) and quantities which are esti-272

mated or predicted by the model (e.g., x (t )
k

). Given this sequence of observations, we would like to273
fit a model of learning dynamics. From the previous section, the learning model in Algorithm 1 is274

naturally parameterized by the DGFψk and the learning rate sequence (η (t )
k

). We will assume that275
the DGF is given, and discuss how one can estimate the learning rates.276

3.1 Estimating a Single Term of the Learning Rates Sequence277

Given the current flow distribution x̄ (t )
k

and the current delay vector �̄
(t )
k
= �k (x̄ (t ) ), the mirror278

descent model of Algorithm 1 prescribes that the next distribution is given by279

x (t+1)
k

(η) := arg min
xk ∈ΔPk

η
〈
�̄

(t )
k
,xk

〉
+ Dψk

(
xk , x̄

(t )
k

)
, (2)

whereψk is given. Therefore, x (t+1)
k

can be viewed as a function of η (hence, the notation x (t+1)
k

(η))280
and to estimate η, one can minimize the deviation between what the model predicts and what is281
observed, as measured by the Bregman divergence; i.e., minimize282

d (t )
k

(η) := Dψk
(x̄ (t+1)

k
,x (t+1)

k
(η)). (3)

The estimate of the learning rate is then283

η (t )
k
= arg min

η≥0
d (t )

k
(η). (4)

Note that we impose the constraint that η ≥ 0. This is an assumption of the model, and in our ex-284

periments, this turns out to be an important constraint, as we will see that d (t )
k

(η) can, in some rare285
cases, be minimal for negative values of η if the problem were solved without the non-negativity286
constraint. This is further discussed in Section 5.287

In the next theorem, we show that Problem (4) is convex when the DGF is the negative entropy.288
In fact, one can explicitly compute the gradient of dk (η) in this case, which makes it possible289
to solve Problem (4) efficiently using gradient descent, for example. The negative entropy is a290
natural choice of DGF for many reasons, both theoretical (it yields an optimal dependence of the291
convergence rate on the dimension of the problem) and practical (it yields a closed form solution of292
the update Equation (1)); see Ben-Tal et al. (2001) and Beck and Teboulle (2003) for a more detailed293
discussion.294

Theorem 3.1. Ifψk is the negative entropy, then d (t )
k

(η) := Dψk
(x̄ (t+1)

k
,x (t+1)

k
(η)) is a convex func-295

tion of η, and its gradient with respect to η is given by296

d

dη
d (t )

k
(η) =

〈
�̄

(t )
k
, x̄ (t+1)

k
− x (t+1)

k
(η)
〉
.

Proof. Whenψk is the negative entropy, the solution of the mirror descent update Equation (1)297
is given by298

x (t+1)
k,p

(η) =
x̄ (t )

k,p
e
−η �̄

(t )
k,p

Z (t )
k

(η)
, (5)

whereZ (t )
k

(η) is a normalization constant, given byZ (t )
k

(η) =
∑

p x̄
(t )
k,p

e
−η �̄

(t )
k,p ; see, for example, Beck299

and Teboulle (2003). Given this expression of x (t+1)
k

(η), we can explicitly compute the Bregman300
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divergence (which, in this case, is the Kullback-Leibler divergence): 301

dk (η) = DKL

(
x̄ (t+1)

k
,x (t+1)

k
(η)
)

=
∑

p∈Pk

x̄ (t+1)
k,p

ln
x̄ (t+1)

k,p

x (t+1)
k,p

(η)

=
∑

p∈Pk

x̄ (t+1)
k,p

��
�ln

x̄ (t+1)
k,p

x̄ (t )
k,p

+ η�̄ (t )
k,p
+ lnZ (t )

k
(η)�	�

= DKL

(
x̄ (t+1)

k
, x̄ (t )

k

)
+ η
〈
�̄

(t )
k
, x̄ (t+1)

k

〉
+ lnZ (t )

k
(η), (6)

where we used the explicit form (5) of x (t+1)
k

(η) in the third equality, and the fact that
∑

p x̄
(t+1)
k,p

= 1 302

in the last equality. In this expression, the first term does not depend on η, the second term is 303

linear in η, and the last term is the function η �→ lnZ (t )
k

(η) = ln
∑

p x̄
(t )
k,p

e
−η �̄

(t )
k,p , which is known 304

to be convex in η (see, e.g., Section 3.1.5 in Boyd and Vandenberghe (2010)). Therefore, d (t )
k

(η) is 305
convex, and its gradient can be obtained by differentiating each term 306

d

dη
d (t )

k
(η) =

〈
�̄

(t )
k
, x̄ (t+1)

k

〉
+

d
dη
Z (t )

k
(η)

Z (t )
k

(η)

=
〈
�̄

(t )
k
, x̄ (t+1)

k

〉
+

∑
p −�̄

(t )
k,p

x̄ (t )
k,p

e
−η �̄

(t )
k,p

Z (t )
k

(η)

=
〈
�̄

(t )
k
, x̄ (t+1)

k

〉
−
〈
�̄

(t )
k
,x (t+1)

k
(η)
〉
,

which proves the claim. � 307

3.2 Generalized Negative Entropy 308

In this section, we propose to use a generalization of the entropy DGF, motivated by the following 309

observation: according to the entropy update and its explicit solution (5), the support of x (t+1)
k

(η) 310
(the support is the set of paths that have a strictly positive flow, i.e., support(xk ) = {p ∈ Pk : xk,p > 311

0) always coincides with the support of x̄ (t )
k

(due to the multiplicative form of the solution). As a 312

consequence, if we observe two consecutive terms x̄ (t )
k
, x̄ (t+1)

k
such that some p is in the support 313

of x̄ (t+1)
k

but not in the support of x̄ (t )
k

, the KL divergence DKL (x̄ (t+1)
k
,x (t+1)

k
(η)) is infinite for all 314

η, since support(x̄ (t+1) ) � support(x (t+1)
k

(η)) (in measure theoretic terms, x̄ (t+1) is not absolutely 315

continuous with respect to x (t+1)
k

(η)). This is problematic, as the estimation problem is ill-posed 316
in such cases (which do occur in the dataset used in Section 5). To solve this problem, we propose 317
two possible approaches: 318

(1) First, we observe that from Equation (6), the KL divergence can be decomposed into two 319
terms as follows: 320

d (t )
k

(η) = DKL

(
x̄ (t+1)

k
, x̄ (t )

k

)
+ η
〈
�̄

(t )
k
, x̄ (t+1)

k

〉
+ lnZ (t )

k
(η),

where the first term, DKL (x̄ (t+1)
k
, x̄ (t )

k
) may be infinite (if support(x̄ (t+1) ) � support(x̄ (t )

k
)), 321

but does not depend on η, while the second term, η〈�̄ (t )
k
, x̄ (t+1)

k
〉 + lnZ (t )

k
(η) is finite for all 322

values ofη ≥ 0, regardless of the supports of the observations. Thus, instead of minimizing 323
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d (t )
k

(η), we can minimize d (t )
k

(η) − DKL (x̄ (t+1)
k
, x̄ (t )

k
) and the problem becomes a well-posed324

function regardless of the supports.325
(2) Second, instead of using the negative entropy as a DGF, we can consider the following326

DGF introduced in Krichene et al. (2015c): Fix ϵ > 0, and let327

ψϵ (xk ) = −H (x + ϵ ) =
∑

p

(xk,p + ϵ ) ln(xk,p + ϵ ).

The corresponding Bregman divergence is328

Dψϵ
(xk ,yk ) =

∑
p

(xk,p + ϵ ) ln
xk,p + ϵ

yk,p + ϵ
,

and can be interpreted as a generalized KL divergence: it measures the KL divergence329
between the vectors xk + ϵ and yk + ϵ . In particular, for any ϵ > 0, this Bregman diver-330
gence is finite for any xk ,yk ∈ ΔPk , regardless of their supports, unlike the KL divergence.331
Finally, it is worth observing that when ϵ > 0, the update equation (1) does not have a332
closed-form expression as in Equation (5); however, the solution can be computed effi-333
ciently using the algorithm of Krichene et al. (2015c). In our numerical simulations in334
Section 5, we use the generalized entropy DGF proposed here.335

3.3 Estimating the Decay of the Learning Rate Sequence336

In the previous section, we proposed a method to estimate a single term of the learning rate se-337
quence. One can of course repeat this procedure at every iteration, thus generating a sequence338
of estimated learning rates. However, the resulting sequence may not be decreasing. In order to339
be consistent with the assumptions of the model in Section 2.2, we can assume a parameterized340
sequence of learning rates (which is by construction decreasing), then estimate the parameters of341
the sequence, given the observations. Motivated by Theorem 2.4, we will assume, in this section,342

that η (t )
k
= η (0)

k
t−αk with parameters η (0)

k
> 0 and αk ∈ (0, 1).343

Given the observations (x̄ (t )
k

) and (�̄ (t )
k

), we can define a cumulative cost, D (t )
k

(αk ,η
(0)
k

) :=344 ∑t
τ=1 d

(τ )
k

(η (0)
k
τ−αk ), where each term of the sum is as defined in Equation (3), then estimate345

(αk ,η
(0)
k

) by solving the problem346 (
αk ,η

(0)
k

)
= arg min

αk ∈(0,1),η
(0)
k
≥0

D (t )
k

(
αk ,η

(0)
k

)
. (7)

Note that this problem is non-convex in general, however, since it is low-dimensional (two param-347
eters to estimate), it can also be solved efficiently using non-convex optimization techniques.348

3.4 Traffic Flow Prediction349

We discuss one important application of the proposed estimation problem. Once we have estimated350
the learning rates, we can propagate the model forward in order to predict the distributions of the351

players for the next timestep. More precisely, given the current flow distribution x̄ (t ) and a current352

estimate of the learning rate η (t )
k

, according to the learning model in Algorithm 1, the next flow353
distribution is given by354

x (t+1)
k

= дk

(
x̄ (t ),η (t )

k

)
:= arg min

xk ∈ΔPk

η (t )
k

〈
xk , �k (x̄ (t ) )

〉
+ Dψk

(
xk , x̄

(t )
k

)
,

where we defined the function д, which takes the current distribution x̄ (t ) and a learning rate η (t )
k

355
and propagates the model forward one step.356
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We can inductively estimate the next terms by propagating the model further over a horizon h: 357

let x (t )
k
= x̄ (t )

k
and for i ∈ {0, . . . ,h − 1}, 358

x (t+i+1)
k

= дk

(
x (t+i ),η (t+i )

k

)
. (8)

Here, we assume that we can extrapolate the learning rate sequence to estimate the terms η (t+i )
k

. 359

If we assume that the learning rate sequence is of the form η (t )
k
= η (0)

k
t−αk , then once we have an 360

estimate of η (0)
k

and αk , we obtain an estimate of the entire sequence. However, if each term of the 361
sequence is estimated separately, we can simply set the future learning rates to be constant, using 362
one of the following simple methods (which we evaluate in Section 5): 363

(1) As a baseline method, we simply set η (t+i )
k
= η (t−1)

k
for all i (we use the last estimated 364

value). 365

(2) Second, we set η (t+i )
k
= 1

N

∑N
n=1 η

(t−n)
k

for all i (we use the average of the last N estimates, 366
for a fixed parameter N ). 367

We conclude this section by observing that while we chose to apply the model to a simple 368
prediction task, the estimated model can be used, more generally, in any receding-horizon optimal 369
control problem, by using the current estimate of the model as a plant in the control problem. 370

4 THE ROUTING GAME WEB APPLICATION 371

In order to conduct the experiment, we have implemented a web application based on the routing 372
game, using the Python Django Framework. The code for the web application is available on Github 373
at the following url: www.github.com/walidk/routing. The application has been deployed on the 374
Heroku service at the following url: routing-game.herokuapp.com. We have then interfaced the 375
web application with the Amazon Mechanical Turk platform www.mturk.com which allows for 376
easy recruiting of players. In this section, we will describe the architecture of the web application 377
along with how the experiment is conducted on Amazon Mechanical Turk. 378

4.1 Web Application Architecture 379

The web application implements the repeated routing game described in Section 2. The general 380
architecture of the system is summarized in Figure 1. It consists of two different client interfaces 381
that are used respectively by the administrator of the game and the players, shown in Figures 2 382
and 3, and a backend server that is responsible for collecting inputs from the clients, updating the 383
state of the game, then broadcasting current information to each player. 384

4.1.1 Admin Interface. The administrator can set up the game using the admin interface shown 385
in Figure 2 by 386

(1) creating a graph and defining the cost functions on each edge; 387
(2) creating player models. A player model is defined by its origin, destination, and total mass. 388

When a player connects to the game, she is randomly assigned to one of the player models; 389
(3) Setting additional parameters of the game, such as the total number of iterations and the 390

duration of each iteration. 391

During the game, the administrator can monitor, for each player, her expected cost, learning rate 392
estimates, as well as the flow prediction, computed as described in Section 3.4. The administrator 393
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Fig. 1. General architecture of the system. The administrator sets up the game. During iteration t , the clients

input the current values of the distributions x̄
(t )
k

and send them to the server. At the end of the iteration, the

server uses these values to compute the cost functions �̄
(t )
k

and sends them back to the clients.

can also use the interface to update some of the parameters of the game (such as the duration of394
each turn), even after the game has started.395

4.1.2 Player Interface. Figure 3 shows a screenshot of the client interface for the players. The396
table is the main element of the graphical user interface, and can be used by the player to set397

weights on the different paths, using the sliders. The weights determine the flow distribution x̄ (t+1)
k

.398

The table also shows the previous flow distribution (x̄ (t )
k

), and the previous costs (�̄ (t )
k

). Clicking a399
path on the table will also highlight that path on the graph. The bottom charts show the full history400

of flows x̄ (τ )
k

, costs �̄
(τ )
k

, and expected costs given by the inner product 〈x̄ (τ )
k
, �̄

(τ )
k
〉, for τ ≤ t . The401

origin and destination of the player are displayed on the client interface, underneath the input402
table. The top navigation bar also shows the time left until the end of the current iteration, and403
the number of iterations left until the end of the game.404

4.1.3 Game Progress. Once a game is set up by the administrator (i.e., the graph of the game is405
created, the edge costs are set, and the population models are defined), players can log in to the406
client interface, and each player is assigned to an arbitrary player model (note that several players407
can share the same model). Once the game starts, it is played in iterations, such that each iteration408
lasts a specified period of time shown by the timer on top of the client interface (each iteration lasts409

30s in our experiments). Each player k can use the sliders to set her flow distribution x (t )
k

during410

iteration t . At the end of the iteration, the server uses the values of x (t )
k

for all playersk ∈ {1, . . . ,K }411

to compute the costs �
(t )
k

, then sends this information to the client side, which then updates the412
charts and the table with the last value of the cost. Note that each player only has access to the413
information about her own paths, so in this sense, the learning is completely distributed, as players414

do not observe the decision or the costs of other players. The decisions of the players (x̄ (t )
k

) and415

the costs (�̄ (t )
k

) are logged by the server, with no identifiable information about the players.416
Finally, the application can be set up to run several games consecutively. After the maximum417

number of iterations is reached, all the players are notified that they will transition to the next418
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Fig. 2. Admin interface.
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Fig. 3. User interface.

game, and they are redirected to a page with a 30- countdown, at the end of which the next game419
starts.420

4.2 Conducting The Experiment on Amazon Mechanical Turk421

Amazon Mechanical Turk (AMT) is a marketplace for work where it is possible to access an on-422
demand, scalable and cheap workforce. It has been successfully used to perform game theoretic423
experiments (see Mason and Suri (2011), and references within). Workers on AMT are paid to per-424
form tasks called Human Intelligence Tasks (HITs). Each HIT has a number of assignments. This425
number defines how many different workers can work on the HIT. By design, HITs are asynchro-426
nous tasks. Since the routing game experiment requires simultaneous participation of all players,427
the corresponding tasks are inherently synchronous. Thus, we followed Mason and Suri’s recom-428
mendations (Mason and Suri 2011) on how to run a synchronous task on AMT. In particular, the429
following steps must be achieved:430

—Build a panel of potential participants.431
—Notify workers.432
—Create an online waiting room.433
—Handle attrition.434
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4.2.1 Panel Building and Worker Notification. In order to build a panel of potential participants, 435
a preliminary experiment has been run on AMT, which consisted in a simple, two-player version 436
of the Routing Game. In this version, the first player is controlled by the worker, while the second 437
player is controlled by an algorithm, based on an implementation of the mirror descent model 438

described in Algorithm 1, with a vanishing learning rate η (t ) = 1√
t
, where t is the iteration number. 439

We refer to this version of the game as the “Worker Vs. AI” Routing Game. It is designed not 440
only to build the panel but also to select players that perform well during the game, i.e., that 441
manage to arrive at a distribution that is close to equilibrium. To measure how close the player is 442

to equilibrium, we simply compute the expected cost of the player 〈�k (x (t ) ),x (t )
k
〉, normalized by 443

the cost at equilibrium 〈�k (x�),x�
k
〉. If this value is no more than 1 + ϵ for a predefined threshold ϵ 444

(taken to be 0.05 in our experiments), we consider that the player is close to equilibrium. Workers 445
who successfully complete the “Worker Vs. AI” game are then notified by email about the full 446
game, which involves all players simultaneously. 447

4.2.2 The Waiting Room. During the full game, workers who have been notified may log in and 448
accept the HIT at different times. Thus, to ensure that the game starts when a majority of players 449
are present, one needs to implement a waiting room, which allows workers to accept HITs within 450
an interval of a few minutes, then wait for the start of the game. The first worker to arrive to 451
the waiting room triggers a countdown. Once the countdown reaches zero, the game starts with 452
the players that are currently connected. Any player that logs in after the game has started is 453
redirected to a second waiting room, and is allowed to participate in the next game. 454

4.2.3 Attrition Handling. Despite being synchronous, the game should not stop if one or sev- 455
eral players drop out of the game (either by actively abandoning the game, or simply due to a 456
connection loss). This phenomenon is referred to as “attrition” in Mason and Suri (2011). To detect 457
a connection loss, we designed the client interface to periodically ping the server, and whenever 458
the server does not receive a ping for more than a given threshold, the player is considered dis- 459
connected. To handle attrition, we considered several options for handling a connection loss: 460

(1) The player is entirely removed from the game (i.e., the mass of the player is set to zero). 461
This has the negative effect of disrupting the game, since changing the total mass of play- 462
ers will result in a sudden change in path losses. This also results in changing the set of 463
Wardrop equilibria of the game. 464

(2) The player is kept in the game but the flow distribution of the player is not updated. While 465
this preserves the total mass and the set of Wardrop equilibria, it makes it unlikely for the 466
game to converge to a Wardrop equilibrium (since the disconnected player may have a 467
suboptimal flow allocation). 468

(3) The player is kept in the game, and the flow distributions are updated by an A.I. that 469
continues to play in lieu of the player. The A.I. updates implements the mirror descent 470
model of Algorithm 1. If the player reconnects at a later iteration (i.e., the client interface 471
pings the server again), the A.I. is suspended and the player can resume the game. This has 472
the advantage of preserving the total mass and the set of equilibria, and makes it possible 473
for the system to converge to equilibrium even after one or several players have dropped 474
out of the game. 475

We decided to implement the third solution. This method may affect the conclusions that can 476
be drawn from the experiment, since the experiment does not purely involve human decisions 477
anymore in case of attrition. However, we believe that the advantages of this method outweigh 478
its shortcomings, and allows for a smooth transition of players in and out of the game in case of 479
temporary connection loss. 480
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Fig. 4. Mechanical Turk interface.

4.3 Deploying the Routing Game Application on Heroku481

For simple tasks, AMT provides a set of templates that can be used to build HITs. For more compli-482
cated tasks such as the routing game (in particular, tasks that require synchronization of different483
workers), AMT offers the possibility of creating external HITs. The requester simply provides a484
link to the external url of the HIT, and AMT displays this url in a frame as shown in Figure 4.485

Heroku is a cloud platform to deploy web applications. It supports different frameworks such as486
Python-Django or Java-Play. Heroku also offers different add-ons which we have used in our im-487
plementation. For running the experiment with 10 players, we have used the following resources:488

—15 Professional Dynos Standard 1X/2X: Dynos are processes which are used to handle re-489
quests. More dynos are required for handling an increased volume of traffic. The number490
of Dynos should be scaled linearly with the number of players.491
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Fig. 5. Graphs used in the two games of the experiment.

—Heroku Postgres Database Hobby Basic Plan. 492
—Redis Cloud 2.5Gb Plan: Redis is a caching service that we used to cache the values of flow 493

distributions and path costs, in order to minimize database calls. 494

5 EXPERIMENTAL RESULTS 495

To illustrate the methods proposed in this article, we ran the experiment on two different networks 496
(shown in Figure 5), with 10 anonymous players. The first game is played over a horizon of 17 497
iterations, while the second one is played over a horizon of 25 iterations. In both games, the edge 498
cost functions are taken to be linear increasing. The experiment was conducted according to the 499
protocol described in Section 4.2. We use the dataset collected by the experiment to illustrate the 500
estimation and prediction problems proposed in Section 3, and comment on some qualitative and 501
quantitative aspects of the decision dynamics of the players. 502

In addition to the two experiments presented here, we ran several iterations of the game over 503
time, incrementally improving the general quality and features of the user interface, with a total 504
of a dozen games at a scale of five to ten players. We have observed the same general qualitative 505
behavior as the two final experiments reported in this section. However, one should not draw 506
generalized behavioral conclusions from such a small set of experiments; we present these results 507
mainly to illustrate the proposed methodology. 508

5.1 Exploration and Convergence to Equilibrium 509

First, we evaluate whether the (distributed) decisions of the players converge to the equilibrium of 510
the game. The distance to equilibrium can be measured simply by the Rosenthal potential defined 511

in Proposition 2.3. Figure 6 shows, for the first game, the potential f (x (t ) ) − f (x�) as a function of 512

iteration t , as well as the corresponding costs 〈x (t )
k
, �

(t )
k
〉 of the players, normalized by the equilib- 513

rium costs 〈x�
k
, ��

k
〉 (so that, close to equilibrium, the normalized costs are close to one). Figure 7 514

shows the flow distributions x (t )
k

for two different players in the first game. We can observe that 515
at the beginning of the game, there is a clear exploration phase in which players tend to make 516
aggressive adjustments in their distributions (observe the oscillations in the early iterations on 517
Figure 7), while during later turns, the adjustments become, in general, less aggressive and the 518

joint distribution x (t ) remains close to equilibrium (as measured by the potential function f on 519
Figure 6). The system does move away from equilibrium on iteration 9 (due to a player performing 520
an aggressive update), which results in a sharp increase in the potential value, and we can observe 521
that the players react to this sudden change by significantly changing their distribution. Note that 522
this only occurred in the first game, while in the second game no such perturbation was observed. 523
The system quickly recovers after this perturbation, and remains close to equilibrium during the 524
later iterations. 525
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Fig. 6. Exploration and convergence to equilibrium in the first game (top) and the second game (bottom).

The left figures show the distance to equilibrium, measured by the Rosenthal potential f (x (t ) ) − f (x�) as a

function of iteration t , where x (t ) = (x
(t )
1 , . . . ,x

(t )
K

) is the joint decision of all players. The right figures show

the costs of each player, normalized by the equilibrium costs 〈x (t )
k
, �

(t )
k
〉/〈x�

k
, ��

k
〉 (so that their values are

comparable).

Fig. 7. Sample flow distributions x
(t )
k

as a function of the iteration t for two different players in the first

game.

5.2 Estimation and Prediction526

We now apply the methods proposed in Section 3 to estimate the learning rates of each player,527
then use the estimated rates to predict the decision of the players over a short horizon. In this528
section, we take the Bregman divergence to be the generalized entropy defined in Section 3.2,529
with ϵ = 10−3. We use the data collected during the second game, since it was played over a longer530
horizon.531
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Fig. 8. Comparison of the distributions x
(t )
k

of the estimated model to the actual distributions x̄
(t )
k

, for player

k = 2. Each subplot corresponds to a path.

Fig. 9. Estimated sequences of learning rates in semi-logarithmic scale. In the first method, we estimate one

term of the sequence at a time, and display a moving average of the single-term estimates (over a window of

five iterations). In the second method, we use the parameterized form of the estimates, η
(t )
k
= η

(0)
k

t−αk . We

start the estimated sequence at t = 5 in order to have enough data points to have a good initial estimate.

First, we solve problem (4) to estimate the learning rate sequence one term at a time. Figure 8 532
compares the estimated distributions by the model, to the actual distributions, for one of the play- 533
ers in the second game. The figure shows that the estimated distributions closely fit the actual 534
distributions, which indicates that the mirror descent model proposed in Section 2 is expressive 535
enough to describe the observed behavior of the players. 536

In addition to estimating one term of the learning rate sequence at a time, we also use the 537

parameterized form η (t )
k
= η (0)

k
t−αk , and estimate η (0)

k
and αk by solving problem (7). The results of 538

these methods are shown in Figure 9. 539

Predicting Future Distributions. Next, we use the estimated learning rates to predict the distri- 540
butions of the players over a short horizon h ∈ {1, . . . , 7}. More precisely, given a horizon h, we 541
compute, at each iteration t , the estimated learning rates up to t , then propagate the model forward 542

ACM Transactions on Cyber-Physical Systems, Vol. 2, No. 1, Article 6. Publication date: November 2017.



TCPS0201-06 ACMJATS Trim: 6.75 X 10 in November 22, 2017 17:9

6:20 W. Krichene et al.

Fig. 10. Average Bregman divergence per player and per iteration, between the predicted distributions and

the actual distributions, as a function of the prediction horizon.

from t to t + h, by iteratively applying the function д defined in Equation (8). We evaluate each543
method by computing the average Bregman divergence (per player and per iteration) between the544

predicted distribution x (t+h)
k

and the actual distribution x̄ (t+h)
k

, i.e.,545

1

K

K∑
k=1

1

tmax − tmin

tmax−1∑
t=tmin

Dψk

(
x̄ (t+h)

k
,x (t+h)

k

)
,

where tmin is taken to be equal to 5 (so that there is always a minimal history of observations to546
estimate the parameters). The results are given in Figure 10. One can observe that for all methods,547
as the horizon h increases, the average divergence tends to increase, since the modeling errors548
propagate, and the quality of the predictions degrade. The best overall performance is obtained549

with the parameterized model η (t )
k
= η (0)

k
t−αk , although for h = 1, the best prediction is achieved550

using the per-iteration estimate of η (t )
k

(since this model has as many parameters as timesteps, it551
allows for a much better fit of the observed data, but has poor generalization performance, i.e., its552
prediction quickly degrades beyond the first iteration).553

Limits of the Mirror Descent Model. It was interesting and perhaps surprising to observe that554

when estimating learning rates one term at a time, in some rare instances, the objective d (t )
k

(η (t )
k

),555

as defined in Equation (4), is minimal at a negative η (t )
k

(if we ignore the constraint η ≥ 0), which556
means that the player shifted the probability mass toward paths with higher costs. Figure 11 shows557
the histogram of the number of such updates for the second game. In particular, 40% of the players558
performed at least one update with negative learning rate, and a total of 10 such updates were559
observed across all players (corresponding to 4.17% of the total number of updates for this game).560
In the first game, the proportion of updates with negative learning rates was 6.25%.561

Such behavior is hard to interpret or justify within the mirror descent model of dynamics. It562
could indicate that players do not follow a greedy first-order behavior, and may, for example, try563
to anticipate congestion.564

In our model, given the minimization problem (1) which defines the mirror descent update, a565
negative learning rate would encourage shifting mass toward paths with higher cost. Thus, we566
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Fig. 11. Histogram of updates with negative learning rates (left), corresponding to iterations t such that the

inner product 〈�̄(t )
k
, x̄

(t+1)
k

− x̄ (t )
k
〉 > 0, which means that the player shifts probability mass to paths with

higher costs, which is hard to predict by the model. Example of such an update (right), corresponding to

iteration t = 2 for player P6. In particular, this player decreased the flow on path p2 even though this is the

best path).

add the constraint η ≥ 0 when solving the estimation problem (4). Note that this problem does not 567
occur when we estimate the entire sequence in its parameterized form, as discussed in Section 3.3. 568

6 CONCLUSION 569

We proposed a problem of model estimation in the routing game, to fit the parameters of a dis- 570
tributed learning model to observations of player decisions. The estimated model can then be used 571
to predict the decisions at future iterations, or, more generally, as a plant model in an optimal con- 572
trol problem. 573

We considered, in particular, a model based on the mirror descent algorithm, parameterized by 574

a sequence of learning rates (η (t )
k

), and gave an intuitive interpretation of how this model can 575
describe player behavior. We showed that the problem of estimating one term of the learning 576
rate sequence is convex in the case of the KL divergence (it remains open to prove this result 577
for other Bregman or f-divergences). To control the complexity of the model and to make the 578
estimation consistent with the theoretical assumptions (decreasing learning rates), we proposed 579

to parameterize the sequence with an initial term η (0)
k

and a decay rate αk ∈ (0, 1). 580
This estimation problem can be extended to estimate the DGF in addition to the learning rates. 581

One way to pose the problem is to consider a finite collection of distance generating functions 582
{ψi }i ∈I , then to assume that each player k uses a DGF that is a linear combination ψ =

∑
i θk,iψi , 583

then estimate the parameter vector θk . This would increase the expressive power of the model. 584
We developed a scalable web application which we deployed on Amazon Mechanical Turk, and 585

while we used the mirror descent model in our experiments, the system can be used as a general 586
testbed to validate other theoretical models of sequential decision. 587

When we tested these methods on data collected from the experiments, the parameterized se- 588
quence estimation outperformed the other methods on the prediction task. Our test results suggest 589
that the mirror descent model can be a good descriptive model of player behavior, although in some 590
rare cases, a player decision can be hard to model (e.g., when a player increases flows on previously 591
bad routes). 592
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