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a b s t r a c t

This article presents a novel algorithm for the estimation of open boundary conditions in river systems
where tidal forcing is present. This algorithm uses a linearisation of the model equations. With the help
of a linear discretisation scheme, the article presents a quadratic programming formulation of the estima-
tion problem in which the control variables are the coefficients of the dominant tidal modes. This method
is implemented for a scenario in which only Lagrangian observations from drifters are available to mea-
sure flow quantities. The performance of the algorithm is evaluated using numerical experiments and
comparing estimation results with boundary conditions from a river located in the Sacramento Delta.
The sensitivity of the algorithm to the number of modes estimated and its predictive capabilities are also
assessed.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The study of tidal forcing in bays and estuaries is crucial to the
monitoring of water quality issues in these areas (Fischer et al.,
1979; Yi et al., 1989). Numerically, these flows can be simulated
using a full three-dimensional approach, or the one- or two-dimen-
sional shallow water equations (Chadwick et al., 2004). In any case,
the numerical model needs to be thoroughly calibrated with
parameters depending on geometry and flow features. In addition,
a knowledge of open boundary conditions is required for the model
to perform adequately. Such boundary conditions can be inferred
from measurements made with fixed sensors placed at the bound-
aries of the domain of interest or as is developed in this article,
using drifters that are circulating in the system under consider-
ation; it is also possible to extend the computational domain be-
yond the boundaries of interest but knowledge of the flow
properties at a boundary is still required. Data assimilation tech-
niques can be used to incorporate these observations into the mod-
el; they originated several decades ago in meteorology and
oceanography (Anthes, 1974; Le Dimet and Talagrand, 1986; Sasaki
et al., 1955). A number of different methods have been introduced
over the years, which include variational methods (Navon, 1998,
1985), ensemble Kalman filtering (Evensen, 2007; Kuznetsov
et al., 2003), optimal statistical interpolation (Molcard et al.,
2003), or the nudging method (Ishikawa et al., 1996; Paniconi
et al., 2003). The topic of inverse estimation of boundary conditions
ll rights reserved.
in meteorology and oceanography has been studied over the past
few decades starting with the pioneering work (Sasaki et al.,
1955) and more recently (Navon, 1985; Shulman et al., 1998; Yang
and Hamrick, 2005; Yi et al., 1989; Zhang et al., 2003). In this article,
a novel quadratic programming based variational data assimilation
algorithm will be applied to the estimation of open boundary con-
ditions for tidal channel flows.

The need for boundary condition estimation is driven in our
case by operational requirements: we are interested in deploying
drifter fleets in specific areas of the Sacramento-San Joaquin Delta
for which current sensing infrastructure and modelling capabilities
are insufficient. The Sacramento-San Joaquin Delta is at risk of
extensive levee failures, which could be caused by earthquakes,
flood or human activities. In such an event, the water quality of
the Delta will be negatively affected, due to sediment suspension,
salinity intrusion, and potentially agricultural contaminants. It is
critical that transport models be available for use following such
an event, even in the case where the entire geometry of the system
has been altered. Unfortunately, existing models of the Sacra-
mento-San Joaquin Delta rely heavily on historical data sets for cal-
ibration. These models would be of limited utility if the system
were radically altered, as would occur in the case of extensive levee
failures. The use of rapidly deployed Lagrangian drifters and the
estimation of boundary conditions is motivated by this need: we
aim to develop a sensing-modelling system that is capable of pre-
dicting regional flows and transport in the Delta in real-time with-
out dependence on historical data. The timescale of interest for this
analysis is on the timescale of days: we would like to be able to
project transport patterns forwards in time by a few days based
on only a few days of data.
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The immediate objective is to estimate open boundary condi-
tions for a model of flows in tidal channels of the Sacramento-
San Joaquin Delta. To this end, we develop variational data
assimilation techniques in which a cost function measuring the
norm of the difference between observations gathered by drifters
and model predictions is minimised, subject to constraints given
by the discretised model equations; the control variables are the
coefficients of the dominant tidal modes present in the upstream
boundary condition. A similar variational approach for Lagrangian
data assimilation in rivers applied to bottom topography estimation
was presented in (Honnorat et al., 2009). The estimation of bound-
ary conditions in the Sacramento-San Joaquin Delta using fixed sen-
sors and data reconciliation techniques was presented in (Wu et al.,
2009) which presents some similarities with our work, but specifi-
cally tackles the problem of Eulerian measurements. While a two-
dimensional model could be chosen for the identification of the
boundary conditions, its computational cost is high and can be
avoided by using simpler models such as a one-dimensional model.
The choice we make here is motivated by the desire to have a rapid,
robust estimate of boundary conditions that can be used in real-
time flow simulations. A somewhat similar approach was used in
(Gejadze and Monnier, 2007) as a one-dimensional shallow water
model was combined with a local two-dimensional model through
optimal control methods. In (Gejadze and Copeland, 2006; Gejadze
et al., 2006), a method for the estimation of open boundary condi-
tions for the Navier–Stokes equations with a free surface from fixed
depth and velocity measurements is developed. All the articles
mentioned above use the adjoint method combined with a quasi
Newton solver to solve a variational problem. The adjoint method
has the main drawback of a high computational cost as 50–100 iter-
ations are usually required which corresponds to 100– 200 numer-
ical resolutions of the direct and adjoint equations. Additionally, the
nonlinearity of the problem means that convergence to a global
minimum is not guaranteed. In this article, we use a quadratic pro-
gramming approach which eliminates both issues. Indeed, since the
cost function is quadratic, this problem can be solved as a quadratic
program provided the constraints are linear. Another novelty in this
article is the use of drifters for the estimation of boundary condi-
tions while the other articles previously mentioned rely on fixed
measurement stations. Note also that unlike adjoint based optimi-
sation, the quadratic programming technique used in the present
article does not require the definition and resolution of an adjoint
(backward) problem.

This article is organised as follows: we start by presenting the
basics of tidal channels and we state the problem solved in the arti-
cle; we then use standard data assimilation terminology to develop
the estimation algorithm; numerical experiment settings are then
described before the results for estimation and prediction of tidal
flow are presented and analysed.
2. Model

2.1. Tidal channels

Tidal channels are bodies of water in which periodic changes in
the water level and velocity field occur under the influence of tides,
along the dominant tidal frequencies such as the K1 tide generated
by the Sun, the M2 tide generated by the Moon or the MK3 shallow
water tide created by the nonlinear interaction between the K1 and
M2 tides resulting from the bottom friction. In channel networks,
tidal trapping (Fischer et al., 1979) can occur due to phase effects,
with the flow directions changing at different times in the deeper
and shallower branches; for example, the flow may be ebbing in
a shallow channel while a nearby channel is already flooding.
The implications for transport and dispersion are profound and
tidal trapping is likely the dominant dispersion observed in such
systems.

The flow in such a channel can be modelled using two-dimen-
sional depth-averaged shallow water equations such as (Vreugden-
hil, 1994):
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where ðu; v; hÞ represent the velocity components and water depth,
with u!¼ ðu; vÞ, b the bottom elevation, g the acceleration of gravity
and ðfx; fyÞ the viscous forces term.

For the simulations presented in this article, we will use a spe-
cific realisation of (1)–(3) incorporating friction forces and a spe-
cific turbulence model:
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The friction forces are given by the following Manning law:
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where h is the total depth of water, u!¼ ðu; vÞ is the velocity field, g
is the acceleration of gravity, b is the bottom elevation, mt is the
coefficient of turbulence diffusion obeying the so-called k-epsilon
model (see (Rastogi and Rodi, 1978) for more details), a ¼ aðx; yÞ
is the slope of the bottom, and m is the Manning coefficient (usually
denoted by n). In the present case, the Manning coefficient is chosen
to be constant in time and space and equal to 0.02, corresponding to
a highly frictional bottom. Finally, t is time and x; y are horizontal
space coordinates.

2.2. Problem description

An accurate simulation of tidal trapping relies on a prediction of
the phase differences which is usually estimated according to histor-
ical data sets. In this article, our goal is to estimate open boundary
conditions, more precisely the amplitudes and phases correspond-
ing to the main four to eight tidal modes using velocity and position
measurements provided by a number of drifters which are released
on a portion of the Sacramento River located in the Sacramento-San
Joaquin Delta in California. While the model used for the data assim-
ilation problem is two-dimensional, the estimation of the boundary
conditions is performed on a one-dimensional model which yields
substantial benefits with respect to the size of the problem solved
and therefore the computational time. The use of a one-dimensional
estimation of the open boundary conditions is justified by the rapid
lateral adjustment time of the free surface (< 1 min); further, the
velocity profile can be reconstructed using interpolation from the
average velocity in the cross-section. For example, in the case of
the software package TELEMAC used in the article, the velocity pro-
file is reconstructed with the assumption that the velocity is propor-
tional to the square root of the depth along the cross-section
(Hervouet and Haren, 2002).

The algorithm proposed by this article consists in minimising
the difference between measured velocity at the location of the
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drifter, and velocity estimated by the model. The constraints are
the constitutive equations for the water, discretised in a linear
manner. The decision variables, i.e. the variables with respect to
which the optimisation is run are the upstream boundary condi-
tions in the form of the coefficients of the dominant tidal modes.
The problem thus consists in identifying the proper forcing at the
upstream boundary of the domain, using Lagrangian sensing only.

In the next section, we present the cost function to be mini-
mised using the standard formulation of variational data assimila-
tion, the one-dimensional shallow water equations and linearised
numerical scheme used as constraints.

3. Estimation algorithm

3.1. Notations

We start this section by defining the variables which will ap-
pear in the following. We employ the traditional notations of var-
iational data assimilation, set forth in (Ide et al., 1997).

Xi : vector of discretised state variables, namely the velocity
component u and the water height h for each mesh point
at a time instant ti,

Yi : vector of observed variables, namely the velocity compo-
nents u and (potentially) the water height h for some mesh
points at a time instant ti,

Ri : covariance matrix of the observation error (difference
between the value of the state variables and observed vari-
ables at each mesh point), taken equal to the identity in this
article,

Hi : Hi ¼ ho
i � hI is the observation operator; the operator ho

i pro-
jects the space into the observation subspace. The operator
hI is the interpolation function. In general Hi is nonlinear
although we manage to use a linear operator in our case
by using the a posteriori knowledge of the position of the
measurements, therefore encoded as a time dependent
observation matrix.

We minimise the following cost function:

JoðUupÞ ¼
Xn

i¼0

ðYo
i � Hi½Xi�ÞT R�1

i ðY
o
i � Hi½Xi�Þ ð9Þ

with respect to the boundary conditions Uup upstream, using as
constraints the one-dimensional linear discretised shallow water
equations presented next.
3.2. One-dimensional numerical scheme

We choose to use a one-dimensional linearised shallow water
model to estimate the upstream boundary condition, and then
use this as input in a nonlinear two-dimensional solver which will
generate a simulation of the flow taking into account the full
geometry of the river. Compared to implementing a two-dimen-
sional shallow water model, this method presents the added
advantage of greatly reducing the size of the quadratic program
(by a factor at least 20 in our case) therefore allowing us to run
the algorithm over extended time horizons (50 h in the present
case) for an acceptable computational cost.

The nonlinear one-dimensional shallow water equations can be
written as:
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where H is the water depth, b the one-dimensionally averaged bot-
tom elevation, U the velocity, and C the Chézy friction coefficient
related to the Manning coefficient (presented earlier for the

two-dimensional model) by: C ¼ H
2
3

m .
We replace the friction term from Eq. (11) by an empirical drag

coefficient r ¼ g jU0 j
C2H0

and linearise Eqs. (10) and (11) in the case of

small perturbations around a nominal flow ðU0;H0Þ, with
U ¼ uþ U0, H ¼ hþ H0. We then neglect the derivatives of the
nominal variables (see, for example, Wesseling, 2001) to obtain:
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The Preissmann scheme (see Preissmann, 1961; Venutelli,
2002) is applied to these equations yielding:
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where j denotes the space step and i the time step. This is an impli-
cit scheme which allows us to choose fewer time steps than in the
explicit case. This scheme was used as constraints in a quadratic
program minimising the L2 norm (defined by jjxjj2 ¼ ð

PN
i¼1x2

i Þ
1
2

where x ¼ ðx1; . . . ; xNÞ is a vector with N components) of the differ-
ence between the observed velocity and water height and the vari-
ables obtained through the Preissmann scheme. This algorithm will
be used in the following to estimate boundary conditions for tidal
flows, running a simulation for 50 h and attempting to obtain up
to eight modes.

3.3. Modelling assumptions

We can now pose the estimation problem as a quadratic optimi-
sation problem. Using simulated drifter trajectories, we estimate
the amplitude and phase associated with four to eight dominant
frequencies and the signal thus obtained is compared to the origi-
nal flow. The coefficients representing the amplitudes of the main
modes are estimated using a data assimilation algorithm which
consists in minimising the cost function (9) with respect to the
constraints given by the Preissmann scheme detailed earlier. The
boundary condition is specified as:

uupðtÞ ¼ a0 þ
XNmodes

k¼1

ak cosðxktÞ þ bk sinðxktÞ ð14Þ

where a0 is the mean flow and xk ¼ 2p
Tk

is the frequency associated
to one of the periods identified in the spectral analysis of the data.
The coefficients ðakÞ;0 6 k 6 Nmodes and ðbkÞ;1 6 k 6 Nmodes, fully
characterise the boundary conditions and the data assimilation
problem is posed in a way which makes them decision variables.
3.4. Optimisation program

As mentioned above, the control variables are the coefficients
a0; a1; . . . ; aNmodes

and b1; . . . ; bNmodes
in Eq. (14). The discretised
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dynamics of the flow are encoded in the form of linear constraints
through the Preissmann scheme developed above. While the
numerical scheme is implicit, i.e. it can be written in the form
EZiþ1 ¼ AZi þ Bui (where Bui comes from the bottom elevation term
in the one-dimensional shallow water equations), the quadratic
program can incorporate them at no further cost or complication.
Note that this is a major advantage of the quadratic programming
approach over techniques such as Kalman filtering, which would
require an explicit inversion of the Preissmann scheme, so it can
be expressed as a linear time invariant system Ziþ1 ¼ AZi þ Bui. Im-
plicit constraints of the present form can be incorporated in qua-
dratic programs at no further cost. In addition, no initial guess is
required, which is an advantage of our method over some other
method (in particular specific implementations of adjoint based
formulation of data assimilation problems).

We concatenate the vectors Zi for all i into a single vector
called X, and abbreviate the dynamics constraints by CX ¼ b,
where this equation encodes the discretised flow equations. The
search space fðak; bkÞ;1 6 k 6 Nmodesg from which all other quan-
tities depend is allowed to evolve in a set of feasible initial con-
ditions dictated by flow physics. Because the ðui

j;h
i
jÞ cannot take

arbitrary values, the space in which X evolves can also be re-
stricted to increase the speed of convergence of the method.
These two constraints are encoded in the form of an inequality,
GX 6 h. Finally, using the previous variable definitions, Eq. (9)
can be written as:

minimise JðXupÞ ¼ 1
2 XT PX þ qT X þ r

subject to GX 6 h

AX ¼ b

The constraints are thus as follows:

� ðui
j;h

i
jÞ must verify the Preissmann scheme at all space and time

steps.
� State variables have to satisfy boundary and initial conditions

(Xup represents the boundary conditions upstream and is related
to the state of the system X through the linearised Preissmann
scheme), encoded by the linear equality constraint.

� Inequality constraints need to keep ðui
j; h

i
jÞ in a realistic set (in

our case positivity of the water height and bound on the abso-
lute value of the velocity juj < 10 m/s).

Note that the computational cost of solving the quadratic pro-
gram above is very reasonable, because the vector X is a concate-
nated vector of ui

j and hi
j resulting from the discretisation of Eqs.

(12) and (13), which is a contribution of this article. The approach
consisting in linearising Eqs. (4)–(6) and performing the identifica-
tion with these linearised discrete constraints can also be encoded
as a quadratic program, but by nature of the grid, would not neces-
sarily result in a tractable approach.
4. Numerical experiment setting

A standard benchmark for the validation of data assimilation
algorithms is a numerical experiment which consist in comparing
the state of the system with and without data assimilation. For
this, a forward simulation is run from time t0 to time T using a
two-dimensional nonlinear shallow water model and, yielding
the so-called true state at every time instant between t0 and T . At
a chosen time t1, drifters are released from the upstream end and
their trajectories are simulated using a Runge–Kutta method and
the vector field provided by the nonlinear shallow water forward
simulation; then, a data assimilation process is started and the
estimated boundary conditions are computed and compared with
the true boundary conditions. In the present case, the true state
of the river and the position of the drifters are generated using
the two-dimensional nonlinear shallow water solver TELEMAC
(Hervouet and Haren, 2002) and we realise several experiments
with and without tidal flow reversal in order to test the influence
of the number of modes estimated on the accuracy of the algo-
rithm. The boundary conditions for the two-dimensional forward
simulation are computed using the Delta Simulation Model II
(DSM2) (Anderson and Mierzwa, 2002) (Fig. 3), a one-dimensional
model of the Sacramento-San Joaquin Delta that provides dis-
charge and surface elevation at various locations every hour.
4.1. Description of the experimental protocol

While the algorithm described in this article can be applied to
any river, access to data such as an accurate bathymetry and
boundary conditions is required. This led to the implementation
of these algorithms on a body of water located in the Sacra-
mento-San Joaquin Delta (Fig. 1) near the town of Walnut Grove;
the geographical proximity of this area is also helpful in the per-
spective of conducting field experiments such as releasing drift-
ers or installing sensors to measure boundary conditions. The
Delta is a web of channels and reclaimed islands formed by
the confluence of the Sacramento River, itself fed by the north-
ern Sierra Nevada runoff, and the San Joaquin River, which min-
gle with smaller tributaries to create a 700 mile labyrinth of
sloughs and waterways surrounding 57 reclaimed islands (see,
for example, Lund et al., 2007; McClurg, 2000, for a detailed pre-
sentation of the Delta). The Delta is of great importance to the
state of California for a number of reasons; in particular, it rep-
resents a source of drinking water for more than 20 million Cal-
ifornians and most of California’s farmland relies on water
tributary to the Delta for irrigation. Water quality, including
concentrations of salt, suspended sediment and contaminants,
is a major concern as it affects directly the potability of drinking
water supplies, the productivity of farmland and the viability of
organisms in the aquatic ecosystems. While there are Delta-scale
transport models that have been calibrated with historical data,
these models are unlikely to be valid if the Delta is radically al-
tered by an extreme event (earthquake or flood). Instead, we
seek a modelling solution that relies only on real-time data col-
lected from rapidly deployable drifters integrated into a regional
model of flows and transport that can predict conditions over
the coming days. Performing this analysis on a subregion in
the Delta allows us to focus on regions of interest for Delta man-
agement, but creates a technical challenge through the presence
of tidal open boundaries. Our goal here is to establish a fast, ro-
bust method for estimating open boundary conditions in a tidal
channel network.

In the map in Fig. 1, the area influenced by tidal forcing goes be-
yond the deployment area in Walnut Grove and affects channels
within several miles of the portion of the Sacramento River where
the study is conducted. In this article, we will consider a section of
the Sacramento River, located between the Delta Cross Channel
and the Georgiana Slough. The bathymetry is provided by United
States Geological Survey (USGS) as shown in Fig. 2.
4.2. Tidal flow in the Sacramento River

Eight years of hourly data coming from a DSM2 simulation of
the Delta were available for the study. The spectral analysis of
the DSM2 data for the month of October 2006 shows eight domi-
nant frequencies (see Fig. 4). A similar work is done with DSM2
data from March 2006, a situation in which there is no tidal rever-
sal (see bottom Fig. 3). The spectral analysis of the flow during the
month of March 2006 shows a highly dominant nominal flow with



Fig. 1. The Sacramento-San Joaquin Delta (from Lund et al., 2007). The portion of the Sacramento River considered for the experiment is located near the town of Walnut
Grove, in the centre of the figure.
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minimal amplitudes for the other modes. These results are summa-
rised in Table 1.
Fig. 2. Bathymetry in the Sacramento River (m) in NGVD (National Geodetic Vertical
Datum) datum used for the present study. The bathymetry on this 930 m section of
the Sacramento River goes from �14 m in the deepest part to +4 m on the river
banks. The boundaries of the domain are delimited by solid black lines.
4.3. Initial and boundary conditions

The boundary and initial conditions of Eqs. (4)–(6) are given by

uðx; y; tÞj@Xland
¼ 0; vðx; y; tÞj@Xland

¼ 0 ð15Þ
ðuðx; y; tÞ; vðx; y; tÞÞj@Xupstream

¼ f ðx; y; tÞ ð16Þ
gðx; y; tÞj@Xdownstream

¼ gðx; y; tÞ ð17Þ
uðx; y; 0Þ ¼ u0; vðx; y;0Þ ¼ v0; hðx; y;0Þ ¼ h0 ð18Þ

where @X represents the boundaries of our computational domain
and f ; g are known functions (in the present case obtained through
a DSM2 simulation as explained earlier).

4.4. Lagrangian drifters

In addition to the Eqs. (4)–(6) describing the flow dynamics, we
model the deployed drifters as passive Lagrangian tracers. Hence,
the drifters move with the local fluid velocity, obeying the follow-
ing equations:

dxDðtÞ
dt

¼ u½xDðtÞ; yDðtÞ; t�; ð19Þ

dyDðtÞ
dt

¼ v½xDðtÞ; yDðtÞ; t�; ð20Þ
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Table 1
Amplitudes of the main tidal modes in October 2006 (tidal inversion) and March 2006
(no inversion).

Tide Amplitude (m3/s) (October 2006) Amplitude (m3/s) (March 2006)

Mean flow 68 714
O1 56.2 23.2
K1 74.9 171
N2 72.9 21.2
M2 196 88.1
MK3 56.7 70.1
M4 25.7 42.7
M6 13.3 3.26
M8 14.9 2.46
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Fig. 5. Velocity of the drifter during the simulation in the case of tidal inversion
(October 2006). The red dots indicate the release of a new drifter.
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with the initial conditions

xDð0Þ ¼ xD;0; yDð0Þ ¼ yD;0: ð21Þ

Eqs. (19) and (20) have to be understood for each xD and yD cor-
responding to a specific drifter.

The simulation runs for two and a half hours before the drifters’
release so that a stable state is reached. The experiment is then run
during 50 h with drifters being released.

A simulation is run using the two-dimensional nonlinear shal-
low water solver TELEMAC during a 50 h period in October 2006
during which tidal flow reversal occurs and during another 50 h
period in March 2006 in which flow is unidirectional (due to fresh-
water flow). The release of drifters is simulated during this period
(see Fig. 5) with a drifter being released from one boundary or the
other depending on the direction of the flow since a tidal reversal
occurs eight times during the simulation (drifter releases are indi-
cated by red dots on the graph). The nearly vertical lines at the top
of each sinusoid correspond to the velocity of the drifter along the
river, the velocity decreasing as the drifter floats down the channel.
The positions and velocities of the drifters are recorded every
10 min and used in the data assimilation algorithm. Note that for
these numerical experiments, the only observations from the chan-
nel flow are those given by the drifters. A drifter is released from
the upstream boundary whenever the previous drifter exits the do-
main so that there is one drifter in the model domain at all time
during the simulation. The run time for a 50 h numerical experi-
ment is approximately 1h:30.

5. Results and analysis

5.1. Estimation of flow

Either four or eight modes are estimated using the data assim-
ilation algorithm from which the flow is reconstructed and com-
pared to the original DSM2 data. The relative Root Mean Square
error (RMS) given by

E ¼
P50

i¼1jut
upðiÞ � ua

upðiÞj
2P50

i¼1jut
upðiÞj

2

 !1
2

where ut
upðiÞ and ua

upðiÞ represent, respectively, the true one-dimen-
sional boundary conditions (DSM2 data) and the assimilated
one-dimensional boundary conditions at time step i. The quadratic
program is coded via the modelling language AMPL (Fourer et al.,
2003) and solved with CPLEX (Ilog, 2008), a large scale quadratic
programming solver, using eight iterations of a barrier method in
less than 5 s on a desktop computer (Fig. 6). A one-dimensional grid



0 10 20 30 40 50
600

650

700

750

Time (hours)

Fl
ow

 (m
3 /s

)

True flow
Assimilated flow

0 10 20 30 40 50
600

650

700

750

Time (hours)

Fl
ow

 (m
3 /s

)
True flow
Assimilated flow

Fig. 8. Hourly evolution of the true and assimilated flow using four modes (top) or
eight modes (bottom) over a 50 h period with no tidal inversion (March 2006).
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Fig. 6. Evolution of the cost function with respect to the number of iterations of the
barrier method.
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with 37 cells is used for the implementation of the one-dimensional
shallow water equations as constraints and a 10 min time step is
chosen. Depending on whether four or eight modes are used, the
relative RMS error of the flow obtained is, respectively, 15.6% and
7.2%. The comparative plots of the reconstructed flow and the true
flow are given in Fig. 7.

A numerical experiment similar to the one presented above rea-
lised in March 2006 yields a relative RMS error of 7.2% and 4.6% for
four and eight modes, respectively (see Fig. 8). The errors are smal-
ler than in the October 2006 case which may be explained by the
fact that the linear model used in the data assimilation algorithm
is a better fit when there is no flow reversal. Indeed, during the
flow reversal around slack water, nonlinear effects are likely to
be more pronounced given that the overall flow is very low.
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Fig. 7. Hourly evolution of the true and assimilated flow using four modes (top) or
eight modes (bottom) over a 50 h period with tidal inversion (October 2006).
5.2. Prediction of flow evolution

The next experiment aims to evaluate the predictive capabilities
of this data assimilation algorithm. Our goal is to be able to make
projections forwards in time based on limited drifter data. Because
of lower frequency variability, most notably the spring-neap cycle
and variations in freshwater flow here, the projections will neces-
sarily deteriorate with time. Here, we aim to evaluate the window
of time over which realistic projections can be made. Specifically,
we will use 50 h of drifter data to estimate the amplitudes corre-
sponding to the dominant frequencies. Then, we try to reconstruct
the signal for a 1 week period and compare it with the DSM2 data
(Table 2).

For the first data set from October 2006 which presents a flow
reversal, the relative RMS error is 39.7% and 37.3% for four and
eight modes, respectively (see Fig. 9). The increase of the flow in
the last few days of the week considered is not predicted by either
reconstructed flow hence the similar relative RMS error.

In the case from March 2006, the relative RMS error is 30.6% and
28.4% for four and eight modes, respectively (see Fig. 10). Once
again, the decrease of the flow in the second half of the period con-
sidered is not predicted by either of the reconstructed flows which
explains the almost identical error for four and eight modes
signals.
Table 2
Relative RMS error of the estimated flow for four and eight modes in October 2006
(tidal inversion) and March 2006 (no inversion).

Modes Error (%) (October 2006) Error (%) (March 2006)

Mean, K1, M2, MK3, M4 15.6 7.8
Mean, K1, M2, MK3, M4,

M6, M8, O1, N2 7.2 4.6
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Fig. 9. Hourly evolution of the true and assimilated flow using four modes (top) or
eight modes (bottom) over a 1 week period with tidal inversion (October 2006).
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Fig. 10. Hourly evolution of the true and assimilated flow using four modes (top) or
eight modes (bottom) over a 1 week hour period with no tidal inversion (March
2006).
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When the eight modes are considered, the results presented in
Fig. 11 show that adding the larger lunar elliptic semidiurnal tide
N2 does however reduce the error at the beginning of the predic-
tion period (Fig. 11) but the prediction error remains above 30%
over a 1 week period. It would appear that events other than tidal
forcing (such as reservoir release or local precipitation) influence
the flow in the Sacramento Delta; this is confirmed by the compar-
ison between the spectra of the flow weeks before and 3 weeks
after the experiment period (Fig. 12) which shows significant dif-
ferences in the amplitude of the mean flow (238 m3=s before and
160 m3=s after the experiment) and the M2 tide (176 m3=s before
and 215 m3=s after) thereby limiting the predictive capability of an
algorithm based on identifying tidal components over a short per-
iod of time. In the case without tidal reversal, the amplitudes of the
O1, M6, M8, and N2 tides are too small compared to the mean flow
and other dominant tides for their inclusion to have a significant
effect on the estimation error. The preceding results are summa-
rised in Table 3.
Table 3
Relative RMS error of the estimated flow for four and eight modes in October 2006
(tidal inversion) and March 2006 (no inversion) after 50 h, 4 days, and 1 week.

Modes 50 h 4 days 1 week

(03/06) (10/06) (03/06) (10/06) (03/06)

Four modes 15.6% 7.8% 22.6% 15.1% 39.7% 30.6%
Eight modes 7.2% 4.6% 17.9% 11.2% 37.3% 28.4%
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Fig. 12. Comparison of the spectra of the flow in the Sacramento River 3 weeks
before the October 2006 experiment and 3 weeks after. Note the significant
difference of amplitude in the mean flow and M2 tide.
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6. Conclusion

In this article, a novel data assimilation algorithm was applied
to estimate open boundary conditions for a tidal channel in the
Sacramento-San Joaquin Delta. Its performance was assessed using
numerical experiments. Given that tidal forcing is dominant, the
focus was placed on identifying the main frequencies and then
estimating the corresponding amplitudes. Using 50 h of DSM2
data, the flow in the Sacramento River was simulated using two-
dimensional nonlinear shallow water solver TELEMAC and drifter
trajectories were simulated both in a reversing tidal flow and when
the flow does not reverse. The velocities of the drifters along the
trajectories were used to estimate the amplitude of the main four
to eight modes and enabled us to generate a reconstructed flow
which is compared to the original DSM2 data. The relative root
mean square error varies from 15.6% to 4.6% depending on whether
a flow reversal occurs and on the number of modes estimated. This
shows that during the period of time that observations are avail-
able, the inverse model is able to effectively estimate the harmonic
constants and reproduce the flows. It is important to note that we
have not constrained the tidal amplitudes or phases in any way:
the only tidal information added are the frequencies of the domi-
nant modes. For them, the case we consider here is a stringent
one on which there is only one drifter available; most Lagrangian
measurements include a number of drifters which would improve
the ability to estimate boundary conditions.

Considering projections in time beyond the observation period,
the ability of the harmonics to track the true values is somewhat
limited. An attempt was made to evaluate the predictive capabili-
ties of the algorithm by comparing the reconstructed flow and
DSM2 data over a period of 1 week. The prediction error was found
to be between 22.6% and 11.2% after 4 days and 39.7% and 28.4%
after 1 week. The relatively high value of the RMS error after
1 week appears to be due to the fact that tidal harmonics are
limited in their ability to predict flows in this reach of the Sacra-
mento-San Joaquin Delta, where, in addition to low frequency tidal
components, unsteady freshwater flows influence the evolution.
Indeed, a comparison of the tidal spectra 3 weeks before and after
the experiment reveals significant differences in the amplitudes of
the main tidal modes which limit the predictive capability of an
algorithm based on identifying tidal components over a short per-
iod of time (50 h). Future research directions include studying the
optimal placement of the drifters and the optimal release points in
order to maximise the accuracy of the estimation.
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