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Occupancy Detection via Environmental Sensing
Ming Jin, Nikolaos Bekiaris-Liberis, Kevin Weekly, Costas J. Spanos, and Alexandre M. Bayen

Abstract— Sensing by proxy (SbP) is proposed in this paper
as a sensing paradigm for occupancy detection, where the
inference is based on “proxy” measurements such as temperature
and CO2 concentrations. The effects of occupants on indoor
environments are captured by constitutive models comprising a
coupled partial differential equation–ordinary differential equa-
tion system that exploits the spatial and physical features.
Sensor fusion of multiple environmental parameters is enabled in
the proposed framework. We report on experiments conducted
under simulated conditions and real-life circumstances, when
the variation of occupancy follows a schedule as the ground
truth. The inference of the number of occupants in the room
based on CO2 concentration at the air return and air supply
vents by our approach achieves an overall mean squared error
of 0.6044 (fractional person), while the best alternative by Bayes
net is 1.2061 (fractional person). Results from the projected
ventilation analysis show that SbP can potentially save 55% of
total ventilation compared with the traditional fixed schedule
ventilation strategy, while at the same time maintain a reasonably
comfort profile for the occupants.

Note to Practitioners—Building indoor occupancy is essential
to facilitate heating, ventilation, and air conditioning (HVAC)
control, lighting adjustment, and geofencing to achieve occupancy
comfort and energy efficiency. The significance of this paper
is the proposal of a paradigm of sensing that results in a
parsimonious and accurate occupancy inference model, which
holds considerable potential for energy saving and improvement
of HVAC operations. Parameters of the model are data-driven,
which exhibit long-term stability and robustness across all the
occupants’ experiments. The proposed framework can also be
applied to other tasks, such as indoor pollutants source
identification, while requiring minimal infrastructure expenses.
The data set and algorithm code are available to assist the
comparison study.

Index Terms— Building energy efficiency, differential
equations, occupancy detection, sensing by proxy (SbP).
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I. INTRODUCTION

THE thorough understanding of the interaction of
occupants and the indoor environment has been the key

component toward occupancy comforts and energy efficiency
of buildings, which account for 40% of the total energy usage
in the U.S. [1]. Intelligent buildings are conscious of both their
occupancy and environment, in order to take control over their
physical systems, such as heating, ventilation, and air condi-
tioning (HVAC) and lighting, to optimize user comforts and
energy consumption. The knowledge of zone-based occupancy
coupled with adaptive building services offers considerable
potential for energy reduction [2]–[7].

Existing approaches to indoor occupancy estimation rely
on diverse sources of information, which can be broadly
categorized into direct and indirect methods. For the direct
methods, which prioritize detection accuracy over occupant
privacy [8], vision- [2], [5], [9]–[13], tag- and smart-phone [3],
[14]-based systems are typically employed. Erickson et al. [2]
employed a wireless camera sensor network to count the
number of occupants for real-time climate control, which
is shown to achieve 42% annual energy savings while still
maintaining American Society of Heating, Refrigerating, and
Air-Conditioning Engineers (ASHRAE) comfort standards.
Meyn et al. [10] formulated a convex optimization-based
estimator with the fusion of digital video cameras, passive
infrared (PIR) detection, and CO2 sensors. Information from
thermal cameras and PIR sensors were used by k-nearest
neighbor, linear regression, and artificial neural networks
in the system of [11]. A framework depending on only
depth image was demonstrated to mitigate privacy issues
and scale well with the number of people [5]. The task
has also been conducted by patrol robots with vision capa-
bility in a separate [12] or collaborative manner [13].
Radio frequency identification tags [3] and iBeacon on
smart phones [14] have also been established as a reliable
approach.

Indirect methods, in comparison, make use of less intrusive
sensors, such as PIR [4], [15], pressure sensors [16], [17],
electricity meters [18], [19], and environmental measurements
such as acoustics, carbon monoxide (CO), total volatile organic
compounds, small particulates (PM2.5), CO2, illumination,
temperature, and humidity [10], [20]–[26], as a privacy-
performance tradeoff. PIR is able to give binary occupancy
estimation [15], and can operate in conjunction with other
sensors, such as magnetic reed switches [4], telephone hook
sensors [27], and acoustic sensors [23] in a multisensor
fusion model. Labeodan et al. [16] evaluated the use of
chair sensors in an office building, and reported 0% error
in the 8-h detection period. Nag and Mukhopadhyay [17]
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developed a real-time dynamic thresholding scheme for
flexiforce sensor in a residential house. Electricity usage
often reflects indoor activities, and can be exploited for
occupancy detection [18], [19], where [19] proposed a “zero
training” algorithm without the need of collecting ground
truth. Occupancy estimation using real (motion, door closure)
and virtual (personal computer activity detector) sensors was
presented in a small office based on the decision tree and
artificial neural network models [28]. Several works have
investigated the use of occupancy profiles for prediction [7],
[15], [29]–[31]; in particular, Adamopoulou et al. [15]
included contextual information to rapidly adjust to current
conditions and capture unexpected events, and Jia et al. [31]
introduced a decentralized stay-time-based occupant
distribution estimation method facilitated by infrared beam
systems.

Occupancy estimation through environmental monitoring is
a promising approach, as parameters such as indoor CO2
concentration are indicative of the presence of humans,
which are the main source of variations; in addition, it can
leverage existing sensing infrastructures without introducing
significant privacy risks. A complex sensor network was estab-
lished [20], [21] comprising ambient-sensing (lighting, tem-
perature, relative humidity, motion detection, and acoustics),
CO2 sensing, and air quality sensing systems, which were
incorporated into a hidden Markov model. Calì et al. [22]
presented a CO2-based binary output detection system,
evaluated in office and residential buildings. Algorithms like
conditional random field (CRF) [23], linear discriminant
analysis (LDA), classification and regression trees, and
random forest (RF) models [32] have been trained
with humidity, temperature, light, and CO2 measurements.
Ebadat et al. [24] posed the estimation task as a deconvolution
problem solved by the fused-lasso estimator using observations
of CO2 concentration, temperature, fresh air inflow, and door
opening/closing events. Existing approaches, nevertheless,
often require an extended training phase when data of ground
truth occupancy are collected through surveys or camera
recordings, which tends to limit its deployment. Another major
drawback, especially for CO2-based systems, is the delay of
detection as a result of the relatively long time (10–15 min)
it takes for the effect of human presence to build up to the
detection threshold [10].

It is, therefore, the object of this paper to develop
sensing by proxy (SbP), a sensing paradigm based on con-
stitutive models that can promptly respond to occupancy
changes, which makes it suitable for real-time indoor
environment control [33]. The key contributions are as
follows.

1) We develop a model based on partial differential
equation (PDE) coupled with ordinary differential
equation (ODE) that captures the spatial and temporal
features of the system to uncover latent occupancy from
environmental observations (Section II).

2) Our most significant contribution is the design,
implementation, and evaluation of occupancy detection
algorithm based on the SbP methodology in controlled
and field experiments (Sections III and IV).

3) We examine the projected ventilation saving based on
the ASHRAE standards [34], showing that our method
can potentially save 55% of total ventilation com-
pared with the traditional fixed schedule strategy, while
maintaining similar comfort profile (Section V).

II. SENSING BY PROXY: METHODOLOGY

A. Proxy Design and Modeling

We model the dynamics of the environmental parameters
in the room using convection PDE with a source term that
models the effect of human presence.

The source term, X(t) ∈ R
m , comprises m environmental

measurements (e.g., temperature, CO2 concentration) in their
respective units (e.g., Celsius, part per million, or ppm). The
state X(t) is the output of a linear, time-invariant, stable
ODE system whose input V(t) ∈ R

m represents the unknown
humans’ effect inside the room (within the vicinity of human
bodies). For instance, V(t) can incorporate the occupants’ rates
of heat generation and CO2 emission.

The relation is characterized by the following ODE:
Ẋ(t) = −AX(t)+ V(t) (1)

where we assume that the unmeasured environmental change
rates due to the occupancy V(t) have the form of a piecewise
constant signal

V̇(t) = 0 (2)

which is based on our experimental observation that the
response of the environmental parameters in the room due
to changes in the human’s presence has some similarities with
the step response of a low-pass filter. The matrix A ∈ R

m×m

characterizes the inertia of environments.
The ODE is coupled with a PDE that models the evolution

of the environmental variables in the room, which is given as

ut (x, t) = −Bux(x, t)+ BX X(t) (3)

u(0, t) = U(t) (4)

where u(x, t) ∈ R
m denotes the environment at a time t ≥ 0

and for 0 ≤ x ≤ 1, ut (x, t), ux (x, t) are standard notations
for partial derivatives with respect to t and x , the steady-state
environmental condition of the fresh incoming air is Ue ∈ R

m ,
and that of the fresh incoming air at the air supply vent is the
input U ∈ R

m , which can be measured by sensors placed
on the air supply vent. Parameter B = diag(b1, . . . , bm) is a
diagonal matrix representing the speed of air convection in
the room. The rate of dispersion from the local vicinity of the
human to the room is reflected in BX . We scale and center the
dimension along the supply-return path so that the air supply
is located at x = 0 and the air return is at x = 1; therefore,
the spatial variable x is unitless and represents a normalized
distance along the path. The environmental condition inside
the room at the location of the air supply is represented by
u(0, t), and that inside the room at the location of the air return
is given as u(1, t).

The evolution of the environmental parameters in the room
is thus modeled as a linear PDE–ODE system, one of whose
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Fig. 1. Physical representation of the model. Fresh air with environmental
condition U(t) enters the room from the supply vent, and exits the room after
convection and mixing with human breath V(t), which rises to the ceilings,
and the condition of the air at the return vent is u(1, t).

inputs is the environmental condition in the fresh incoming
air at the location of the air supply, and the other input is
the occupancy effects, if any. The output of the system can
be viewed as the environmental condition of the air at the
return vent, which is a mixture of air that convects from the
air supply toward the air return and the local air influenced
by humans. The environmental condition at the ceiling in a
(nonratiometric) normalized distance along an axis from the
supply to the return vent is indicated by the value of the PDE
on the corresponding interior point of its spatial domain.

The physical representation of our model is illustrated in
Fig. 1. The convection of air from air supply to the air return
vent near the ceiling is represented by the PDE part. The
diffusive term is intentionally omitted as it plays a relatively
minor role in dispersing indoor pollutants as suggested in [35].
The model is applicable to environmental parameters that are
transported mainly through the convection of air, such as
temperature and CO2. Those parameters are treated as the
“proxy” for indoor occupancy.

Another design consideration involved is the modeling of
the environmental condition near the ceiling, as this is where
we see most effect from occupancy. One explanation is that the
warm breath from a human occupant acts as a “bubble” of gas
that rises to the ceiling, as it is more buoyant than the ambient,
cooler air [36]. Thus, the air coming from lower in the room
is modeled as a source term on the PDE across its entire path.
The fact that this bubble of air does not immediately rise to
the ceiling but is only gradually captured by the ODE part
of the model behaves as a filter between the unknown human
effects and the environmental conditions in the room.

B. Proxy Inference

The latent factors that are not directly observable are sensed
by proxy based on the constitutive model that describes the
evolution of proxy under the effects of latent factors. The tem-
poral and spatial dynamics captured by the PDE–ODE model
effectively regularizes the inference output. The approach
is clearly different from discriminative models, e.g., LDA,
support vector regression, and RF [32], [37], which assume
that samples are independent and identically distributed.
It shares some similarities with dynamic Bayesian models such

as particle filters (PFs) and CRF [23], which account for time
evolution of the underlying phenomenon. Nevertheless, proxy
inference is directly derived from physical modeling and is
thus more accurate and reliable with provable behavior as we
show next.

The central task in this chapter is to derive an estimation
strategy for latent factors, namely, the human effect on the
environment V(t), based on proxy measurements at the supply
vent U(t), and return vent u(1, t). For compactness, we define

Z(t) =
(

X(t)
V(t)

)
∈ R

2m×1, so (1) and (2) can be written as

Ż(t) = ĀZ(t) (5)

where Ā =
( −A Im×m

0m×m 0m×m

)
is defined using A from (1).

Similarly, (3) can be recast as

ut (x, t) = −Bux(x, t)+ BZ Z(t) (6)

where BZ = (BX 0m×m) is the augmented matrix of BX .
We use [B̂X ]i,: to denote the i th row of B̂X , and hat to indicate
the estimated quantities.

We consider the following observer:
ût (x, t) = −Bûx(x, t)+ BZ Ẑ(t)+ r(x) · L(u(1, t)− û(1, t

)
(7)

û(0, t) = U(t) (8)

˙̂Z(t) = AẐ(t)+ L(u(1, t)− û(1, t)) (9)

where r(x) ∈ R
m×2m and L ∈ R2m×m are yet to be

determined, whereas U(t) ∈ R
m×1 and u(1, t) ∈ R

m×1 are
the measurements of environmental parameters at the supply
and return vents, respectively. The observer design for our
PDE–ODE model is based on the design in [38], specifically
Theorem 2. We refer the interested reader to [38] for the proof
of the following corollary.

Corollary 1: Consider the system (7)–(9), where

r(x) = (r1 · · · rm)� (10)

ri (x) =
(

Ci −
∫ (1−x)/bi

0
[BZ ]i,:e− Āydy

)
eĀ(1−x)/bi (11)

Ci =
∫ 1/bi

0
[BZ ]i,:e− Āσ dσ, i = 1, . . . , m. (12)

Let the pair ( Ā, C̄), where

C̄ =
⎛
⎜⎝

C1
...

Cm

⎞
⎟⎠ ∈ R

m×2m

be observable, and choose L such that the matrix Ā − LC̄
is Hurwitz. Then, for any Z(0) ∈ R

2m , ui (x, t), ûi (x, t) ∈
L2(0, 1), i = 1, . . . , m, where ui is the i th component of u,
there exist positive constants λ and κ such that the following
holds for all t ≥ 0:

�(t) ≤ κ�(0)e−λt (13)

where

�(t) =
∫ 1

0
‖u(x, t)− û(x, t)‖2dx + ‖Z(t) − Ẑ(t)‖2. (14)
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C. Study Case: CO2 Concentrations

We consider the case when there is only one key
parameter, e.g., CO2 concentration that is measured, in which
case, (1)–(4) are reduced to the PDE–ODE systems

Ẋ(t) = −a X (t)+ V (t) (15)

V̇ (t) = 0 (16)

ut (x, t) = −bux(x, t)+ bX X (t) (17)

u(0, t) = U(t) (18)

where both X (t) and V (t) are scalars, and the measure of
how fast changes to the CO2 emission rate by the humans
affect the CO2 concentration in the room is specified by the
time constant (1/a) in units of 100s. Positive parameter, b,
in (1/(100 s)), represents the speed of air convection in the
room. The rate of dispersion of CO2 from the local vicinity
of the human to the room is measured by bX in (1/(100 s)),
which is a positive number.

The corresponding observer can be obtained by the general
result from the previous section

ût (x, t) = −bûx(x, t)+ (
bX 0

) (
X̂(t)
V̂ (t)

)

+ r(x)

(
L1
L2

)
(u(1, t)− û(1, t)) (19)

ût (0, t) = U(t) (20)( ˙̂X (t)
˙̂V (t)

)
=

(−a 1
0 0

)(
X̂(t)
V̂ (t)

)
+

(
L1
L2

)
(u(1, t)− û(1, t))

(21)

where r(x) = (
π1(x) π2(x)

)
, and

π1(x) = bX

a

(
e

a
b x − 1

)
(22)

π2(x) = bX

ba
x + bX

a2

(
1− e

a
b x). (23)

Note that the conditions of Corollary 1 are satisfied in this
case when bX �= 0. The corresponding occupancy detection
algorithm is shown in Algorithm 1.1 As CO2 is one of the
most important indoor air parameters for occupants’ health,
and the installment of CO2 sensors can be found in many
HVAC systems, while our framework is expandable to incor-
porate several sensors in a fusion paradigm, we will base our
experiments and analysis using CO2 alone [36].

III. EXPERIMENTAL DESIGN

A. Hardwares

As our approach is not particularly demanding of the
accuracy of the proxy measurements, we employ the
low-cost K30 CO2 sensor [39], shown in Fig. 2, as the main
module in our sensor platform. We implemented a local data
storage solution with SD card, and plan to integrate a wireless
transmission module in the long run to directly deposit data
in our database. The sensor is capable of measuring CO2
concentrations from 0 to 5000 ppm at a frequency of 1 Hz
with an accuracy of ±30 ppm, or ±3% of measured value,

1The code can be accessed at: http://people.eecs.berkeley.edu/∼jinming/

Algorithm 1 : SbP for Occupancy Detection

1: function SENSINGBYPROXY(X R ,X S , Param)
2: Inputs: X R : measurements at air return of size 1× T
3: X S : measurements at air supply of size 1× T
4: Param: hyperparameters

1) Model specification as in Table III: convection
coefficient b, source term coefficient bX , time
constant of human effect a, human emission rate
V H , equilibrium concentration in air Ue

2) Control parameters: L1, L2 as in (21) and (19).
3) Spatial resolution ds , temporal resolution dt

4) Smoothing window for median filter: w

5: Initialization:
6: û, X̂ , V̂ ← Ue1(ds, T dt), 0(1, T dt), 0(1, T dt )
7: x R, x S, τ ← kron(X R, 1(1, dt)), kron(X S, 1(1, dt )),

1
dt

8: r(n)← L1
bX
a (ea/b − 1)+ L2

( bX
ba + bX

a2 (1− ea/b)
)

9: Main program:
10: for t ∈ {1, . . . , T dt } do
11: û(0, t)← x S(t) 
 Eq.(20)
12: for n ∈ {1, . . . , ds} do 
 PDE updates
13: ûx(n, t)← (

û(n, t)− û(n − 1, t)
)
ds 
 spatial

14: û(n, t+1)← û(n, t)+τ

(
−bûx(n, t)+bX X̂(t)+

r(n)
(
x R(t)− û(ds, t)

)) 
 Eq.(19) updates

15: end for

16: X̂(t+1)← X̂(t)+ τ

(
−a X̂(t)+ V̂ (t)+ L1

(
x R(t)−

û(ds, t)
)) 
 updates by (21)

17: V̂ (t + 1)← V̂ (t)+ τ L2
(
x R(t)− û(ds, t)

)
18: end for
19: Outputs: yOccupants← �median(V̂ ,w)

V H + 1
2� 
 round of

signal after median filter with window size w
20: end function

which is considered sufficient for the purpose of occupancy
detection.

Sensor calibration is performed by the baseline method.
We leave the sensors in a well-ventilated room with outdoor
supply air for a few hours. The systematic offset ξi is given as

ξi = 1

Tcal

Tcal∑
t=1

yt − xoutdoor (24)

where Tcal is the length of the calibration period, yt is the
sensor reading at time t , and xoutdoor is the outdoor CO2
concentration, usually at 400 ppm. The offset ξi is subtracted
from sensor i under the well mixed assumption, which states
that “at steady state, the air in the room is well mixed, with
the CO2 concentration the same as the fresh air from the air
supply vent.”

B. Testbed Deployment

We implemented the experiments in a typical conference
room, shown in Fig. 2, located in the Cory Hall on the Univer-
sity of California, Berkeley campus, whose occupancy is on-
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Fig. 2. (a) CO2 sensor up close. (b) Testbed is a conference room of size 14 × 10 × 9 ft3, equipped with a full ventilation system including an air return
vent and air supply vent, as illustrated in Fig. 1.

demand and not regular. The room bears close resemblance to
other typical indoor spaces, with a ventilation system including
air supply and air return vents on the ceiling. The sensors are
placed on both the vents, in addition to the blackboard on the
sidewall.

C. Experiments

Two types of experiments are performed, namely,
CO2 pump and occupants experiments, with different focuses.

For the CO2 pump experiments, an outlet placed ∼20 cm
above the desk injects beverage-grade CO2 through a 200 W
personal heater to emulate warm human breaths. The exper-
iment is designed with two purposes. First, we want to
examine the spatial dependence of the CO2 concentration
in the room. Second, we can collect data to identify the
parameters of the model whose output matches the measured
data, under different frequencies of excitation. Hence, we
conducted experiments with the pump alternating between
ON and OFF states, with the length of a full period of
30 min (A), 1 h (B), 3 h (C), and 10 h (D), whose results
are detailed in Section IV.

For the occupants’ experiments, the purpose is to validate
SbP in a real setting. Hence, we performed both the controlled
experiments (E) and field measurements (F, G). Our excitation
procedure for the controlled experiments consists of adding
or removing one of two participants of the experiment, and
noting the time that the occupancy changes. The subjects are
graduate students with a similar physique. The door is closed
during the experiment, while the participants are engaged in
normal activity such as working on their computers and talking
to each other. The field measurements require much less
commitment from the occupants, who are using the conference
room for meetings or group study. The occupancy schedules
for E, F, and G are demonstrated in Figs. 5 and 8.

IV. RESULTS AND DISCUSSION

A. Experimental Results and Data Analysis

As described in the section of experimental design, we
performed two groups of experiments, namely, one with

Fig. 3. CO2 pump experiment D. The measured CO2 concentration from
different locations inside the room for a 5-h CO2 release from a pump are
shown.

CO2 pump and the other with varying number of occupants.
Based on the measurements, we make qualitative and
quantitative analysis as a preparation.

1) CO2 Pump Experiments (Hypothesis): When the CO2 is
injected for a long time with constant emission rate, the system
reaches steady state.

The steady-state characterization experiment is conducted,
when the pump is turned ON for five consecutive hours. Fig. 3
illustrates the measurements from the supply vent, return vent,
and blackboard.

The rate of CO2 concentration starts to decrease after a few
hours, and reaches a plateau in the last hour. The steady-state
concentration settles at around 1200 ppm as a result of mixing
of fresh incoming air and CO2 release.

Hypotheses: When the CO2 is released periodically, the
measurement exhibits periodic patterns according to the
PDE–ODE system. Further, besides the transient behavior due
to changes in the ventilation rate, the CO2 concentrations from
different points in the room react the same, albeit with different
magnitudes.

Both the short period and long period excitation experiments
are performed, with the periods of 30 min (15 min ON,
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Fig. 4. CO2 pump experiment B. Short-term excitation with period of 1 h.
Measurements at return (red), supply (green) vents, and blackboard (blue) are
shown.

TABLE I

CROSS-CORRELATION VALUE OF CO2 MEASUREMENTS AT DIFFERENT

LOCATIONS FOR EXPERIMENTS A, B, AND C. THE MEAN AND
STANDARD DEVIATION (IN PARENTHESIS) ARE SHOWN

15 min OFF, same for the following), 1 h, and 3 h, as shown
in Figs. 4 and 7.

As can be seen the CO2 concentrations at all the sensed
locations are responsive to the periodic injection, though the
measurement at the air supply vent has a smaller magnitude
compared with the blackboard and the air return vent. While
the CO2 accumulates from the start of the injection, the
first-order derivative decreases as the room reaches a higher
CO2 concentration.

To quantitatively evaluate the spatial dependencies of
sensors in the room, we now derive the cross correlation
between measurements from three different locations for the
CO2 pump experiments. The definition of the cross correlation
ry1 y2 between two signals y1, y2 that is employed here is
given as

ry1 y2 =
∑T

k=1(y1(k)− ȳ1)(y2(k)− ȳ2)√∑T
k=1(y1(k)− ȳ1)2(y2(k)− ȳ2)2

(25)

where ȳ1 and ȳ2 are the sample mean of y1 and y2,
respectively. The cross correlation is a measure of the degree
of linear dependence between two signals, and hence, it is
a meaningful measure for comparing the measurements from
different locations inside the room. The values of the cross
correlations are shown in Table I. One can observe that the
cross correlation between return and blackboard measurements
is high, whereas the cross correlations that involve supply
measurements are lower. This implies that the signals have
a high degree of linear dependence [note that when y1(k) =
c1 y2(k) + c2, for all k, the cross correlation is one] on each
other, although the correlation with the supply measurements
is lower due to the ventilation operation. Note that the cross

Fig. 5. Occupants experiment F. Field measurements during project discus-
sion. Top: Proxy measurements. Bottom: Corresponding occupancy.

correlation between any two locations is derived as the average
cross correlation obtained from the measurements of the
experiments.

2) Occupants Experiments: As SbP aims at accurately
infer occupancy through proxy, in addition to CO2 pump
experiments, occupants experiments are necessary for
validation.

As described in the experimental design, we perform strictly
controlled and field experiments. The former implements a
designed schedule of occupancy, and requires the occupants
to sit in designated chairs and remain in the room during
the experiment, while allowing them to be engaged in normal
activities such as using computers and chatting. The latter is
taken during daily events and requires much less commitment
from the occupants.

The following shows results from several such experiments,
which substantially cover the usage of the conference room,
and can be easily extended to other areas in the building. The
field measurements are shown in Figs. 5 and 8 (right), and
the strictly controlled experiment is illustrated in Fig. 8 (left).
Note that to avoid a significant overlap between the graphs of
this section and those of the simulation section, we arbitrarily
decide which graphs show the blackboard measurement and
the others show the simulated return, as long as the evidence
is sufficient for the argument.

Similar to the pump experiment, CO2 concentration
increases almost immediately at the start of occupancy, and
the concentration level and rate have a clear correspondence
to the number of occupants in the room. The possibility of
relating proxy measurements, namely, CO2 concentration, to
latent factors, namely, occupancy, lays the foundation for SbP.

Although the system is responsive to the change of
occupancy, the time it takes to accumulate or deplete CO2
to the corresponding stationary value is fairly long. From
vacancy to a high-level occupancy, the measurement slowly
sweeps across several intermediate levels. The difficulty of
most distribution-based classification methods is illustrated
in Fig. 6, where the significant overlapping of regions and
misplacement of modes corresponding to different levels
of occupancy will lead to confusion for standard machine
learning algorithms. By modeling the temporal and spatial



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIN et al.: OCCUPANCY DETECTION VIA ENVIRONMENTAL SENSING 7

Fig. 6. Empirical distribution of CO2 concentration for all occupants
experiments corresponding to different occupancy.

TABLE II

PHYSICAL PARAMETERS OF PROXY MODEL USED IN ALL

THE CO2 PUMP EXPERIMENTS (A, B, C, D)

dynamics of the system, as we demonstrate in the subsequent
sections, we can develop an inference method that is both
robust to noise and responsive to change of occupancy.

B. Simulation With Proxy Model

This section applies the model as described by (15)–(18)
which links the location-specific proxy measurements to latent
CO2 emission factors to the CO2 pump experiments and occu-
pants measurements. In particular, we are concerned with the
reproduction of the return vent measurements u(1, t), i.e., the
output of the system, given the supply vent measurements U(t)
and emission rate V (t).

The results are illustrated in Fig. 7, where two experiments
from CO2 pump measurements are arbitrarily shown as the
results are very similar. The set of parameters for the group
of CO2 pump experiments is determined by visual evaluation
of the matching of simulation to the air return measurements,
which is listed in Table II. The process of parameter evalu-
ation is actually very simple, given the derived equation for
stationary distribution

ustationary = Ustationary + bX V

ab
(26)

according to the model (15)–(18), where V is the fixed
emission rate.

The stability of the CO2 system can be seen in the good
matching of all the air return vent measurements. There are,
nevertheless, occasionally overmatching and undermatching,
especially around the peak and valleys, which might be caused
by the fluctuation of ventilation rates. The mismatch, even
though not frequent, might introduce bias in our emission
rate and occupancy estimations as we show in the following
section. It is, therefore, recommended to examine the cause
of the mismatch in actual building operations and periodically
calibrate the model in order for sensing SbP to make the most

Fig. 7. Proxy model simulation with CO2 pump experiment A with 30 min
(top) and experiment B with 1 h (bottom) periodic excitation. Measurements
at supply (green), return (blue), and simulated return (red) vents are shown.

reliable inference. It is also possible to design an automatic
calibrator for each distributed sensor system.

Based on our experiences in the CO2 pump experiments, we
designed occupants controlled and field experiments to collect
occupancy ground truth and validate our model in practice, as
shown in Fig. 8.

In actual building usage, especially conference rooms and
common areas, the occupancy is often irregular, as exempli-
fied by the experimental profiles. The simulation of proxy
measurements, therefore, is direct estimation of the effects
of the irregular change of latent factors. The closeness of
simulation matching to actual proxy measurements, as can be
seen, is a clear indication of the accuracy of the model, and
also ensures reliable inference of latent factors. The spatial
and temporal simulation is illustrated in Fig. 9.

As a general remark, our proxy model is extremely simple
and parsimonious with parameters. The set of parameters,
including the convection coefficient b, the source coeffi-
cient bX , time constant of human effects (1/a), in addition to
the human emission rate V and CO2 concentration of fresh air
Ue which are standard fixed parameters, are shared among all
the experiments in the same group of CO2 pump and occupants
experiments, with relatively small difference between different
groups due to the extent of emulation by the pump to human
breathing. This makes our model extremely easy to train and
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Fig. 8. Proxy model simulation with occupants experiments E (top) and
G (bottom). The proxy measurements at return (blue), supply (green), and
simulated return (red) vents are demonstrated.

Fig. 9. Spatial and temporal dynamics of CO2 concentration as represented
as the states in the proxy model.

employ in practice. The additional advantage of parsimonious
model relies on its stability and robustness by avoiding the
potential overfitting problem. As we demonstrate next, the SbP
approach substantially outperforms other popular methods and
yet remains physically meaningful.

C. Proxy Inference of Occupancy

The observer model as described by (19)–(21) and
Algorithm 1 are applied in this section to infer the CO2

Fig. 10. Sensing the latent CO2 emission rate by proxy for CO2 pump
experiments A (top) and C (bottom). The estimated emission rate (blue),
median filtered rate (green), and ground truth (red) are given.

emission rate and occupancy based on proxy at return and
supply vents.

SbP distinguishes from other machine learning methods that
assume independence of samples by implicitly considering
time-autocorrelation of the latent emission rate. The advantage
as a result is to have smooth state trajectory after simple
signal processing, where we employed median filter directly
on the estimated emission rate, V̂ , with a window of 8 min
for experiment A, 20 min for B and C, and 25 min for all the
occupant experiments. The median filter is a useful denoising
method in signal processing, which is often preferred to mean
filter to preserve relevant details and sharp transitions in the
trace, as we will demonstrate next. Fig. 10 is plotted for
the CO2 pump experiment with periods of 30 min and 3 h,
respectively.

Contrary to the common belief that CO2-based methods are
slow in response, SbP exhibits fast response to the change of
occupancy. The previous argument is based on the fact that it
takes time to accumulate CO2 to a level that can be detected,
and this accumulation time is fairly long as we observed in
the experiments. During the accumulation, the concentration
value sweeps across the stationary values for lower occupancy
when several people enter the room, which accounts for the
significant overlap in Fig. 6.

SbP, however, tackles this issue by modeling the dynamics
of the measurements based on our model, which implicitly
considers the increasing rate and stationary values to infer the
actual occupancy. As a result, SbP is immediately responsive
to changes of occupancy even when the transition is fairly
frequent in the case of Fig. 10 (left), which is not possible with
other methods since the concentration remains at a relatively
high level even when the pump is turned OFF. The parameters
chosen for the estimation are L1 = 2, L2 = 0.02, and the
other physical parameters of the model are shown in Table II.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIN et al.: OCCUPANCY DETECTION VIA ENVIRONMENTAL SENSING 9

TABLE III

PHYSICAL PARAMETERS OF PROXY MODEL USED IN ALL
THE OCCUPANTS EXPERIMENTS (E, F, G)

Fig. 11. Occupancy detection by SbP for experiments E (top) and G (bottom).
The response times from vacancy to occupancy and vice versa are about 10 s
and 5–10 min, respectively.

In the case of occupants estimation, the task is more difficult
due to the following reasons. First, humans are not uniform
in physique, so the emission rate must vary for different
occupants. Second, the positions of the people sitting in the
room are arbitrary, which might question our assumption that
the human emission has a uniform effect on measurements
on the ceiling regardless of positions of sources. Also, the
ventilation rate, opening and closing of doors, and different
activities might all introduce additional noise to the mea-
surements. Nevertheless, regardless of these factors, Fig. 11
shows that SbP is reasonably robust to these influences, where
we plot the estimated number of occupants together with the
ground truth.

The fast transition behavior exhibited in the CO2 pump
experiments is also observed for the occupants experiments,
even without any sensors to explicitly sense the exits or entry
of people as in other methods such as PFs [40] or Markov
models [2], [21]. The occupancy inference is accurate without
explicitly specifying the transition rates of the occupancy
model. For all these inferences, the parameters chosen are the
same, namely, L1 = 2, L2 = 0.02, and physical parameters
from Table III.

To compare with other models, we employ the root
mean-squared-error (RMSE) with units of fractional people,

TABLE IV

COMPARISON OF RMSE OF ESTIMATION WITH OTHER
MODELS IN OCCUPANTS EXPERIMENTS

given as

RMSE =
√√√√ 1

T

T∑
k=1

(φ(k)− φ̂(k))2 (27)

where φ(k) is the ground truth occupancy at time k and φ̂(k)
is the estimated occupancy at time k given as

φ̂(k) =
⌊ ¯̂V (k)

ρhuman
+ 1

2

⌋
(28)

where ¯̂V (k) is the median-filtered estimated emission rate at
time k, ρhuman = 0.183 ppm/s is the average sedentary person
emission rate, and �x� is the floor operation to obtain the
largest integer smaller than x .

The comparison of SbP with other methods is shown
in Table IV. As all the other models require substantial
training phase, the data are split into training and testing sets
and the RMSE is computed by tenfold cross-validation. The
algorithms take the measurements from the air supply and air
return vents as features, where the corresponding labels are
the number of occupants. The outputs for each testing point
are the number of occupants obtained by classification, which
are compared against the ground truth. For standardization
purposes, we employ the Weka Machine Learning Toolkit [41]
for the implementation of these algorithms. No time dynamic
models such as PFs are learned for comparison, as it requires
additional sensors to measure transitions and extra knowledge
of transitional probabilities, which require substantial learning
data and might not be reliable for the case of nonstationary
activities in practice.

Although the parameters of our proxy model are shared
across all the cases, the training for other models might be
significantly different for each experiment, which differ by
scale and time. Therefore, we decide to separate the RMSE
for each experiment, as shown in the first three columns
of Table IV, which might make it obvious which model is
consistently better even with different data sets. In the last
column, we combine all the occupants’ experiments data and
test each model. Note that as it is possible for other models
to yield different outputs due to different training, SbP will
output the same value given the chosen parameters, which is
desirable as it is less susceptible to training noise.

SbP, as can be seen, delivers standout performance in all
the testings, while the second best (underlined) positions are
shared between multilayer perception (MLP) and Bayes Net,
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Fig. 12. Visualization of confusion matrix for Bayes Net (top) and
SbP (bottom), where the position of circles represents the true number of
occupants (x-axis) and estimated number of occupants (y-axis), and the size
indicates the percentage normalized for each column. Bayes Net introduces
nonnegligible misclassification with large deviation (red rectangle), whereas
SbP makes inference within the ±1 occupant region.

whole error metric almost doubles that of SbP in the mixed
data set case. By ignoring the dynamics of CO2 concentration,
these algorithms are confused by the overlapping concentration
region as shown in Fig. 6, especially during CO2 accumulation
and depletion period.

Close examination of the confusion matrix for our model
and the second best model, in the mixed data set case, the
Bayes Net, as visualized in Fig. 12, reveals an additional
advantage of SbP. In the illustration, the size of the bubble
represents the percentage of data classified as φ̂ (y-axis)
for ground truth φ (x-axis), normalized for the sample size
corresponding to φ. Bayes Net has a straight diagonal pattern,
but it is undermined by the nonnegligible points far off
the diagonal, representing misclassification error with large
magnitude. On the contrary, SbP, though not possessing the
straight diagonal pattern as in Bayes Net, is fairly clean of
points far off the diagonal region. The point mass is also
concentrated in the narrowband of subdiagonals, which indi-
cate that the estimation is within an error of one person. This
is clearly preferred in practice, as large estimation deviation
might defeat the purpose of energy saving.

V. PROJECTED VENTILATION IMPACT

A. Experiments

The impact on ventilation saving and occupants comforts
is analyzed based on the ASHRAE 62.1 standards for
office buildings. As energy saving may vary among different
buildings [34], which differ in materials, ventilation, heating
and cooling efficiency, as well as outside temperature and
humidity, we choose to focus on the minimum required

TABLE V

SIMULATION PARAMETERS ACCORDING TO ASHRAE FOR
MINIMUM VENTILATION RATES IN OFFICE BUILDINGS

ventilation, Vbz , to provide indoor air quality that is acceptable
to occupants and minimizes adverse heal effects, given as

Vbz = Rp · Pz + Ra · Az (29)

where Rp and Ra are the outdoor airflow rate required per
person and per unit area, respectively, Az is the zone floor
area, and Pz is the zone occupancy, whose values are listed
in Table V.

For comparison, we include two conventional strategies
recommended by ASHRAE 62.1, namely, conservative control
that assumes maximum occupancy from 8 A.M. to 11 P.M.
and 0 occupancy otherwise, and a fixed control that assumes
maximum occupancy from 8 A.M. to 8 P.M. and 0 occupancy
otherwise [34]. We also implemented the demand-control
ventilation based on Bayes Net, SbP, MLP, and Logistic
Regression, where Rp is replaced by R̂p in (29) estimated
according to the corresponding confusion matrices as visual-
ized in Fig. 12, given the simulated number of occupants in
each hour.

The simulation is based on two typical schedules, namely,
under light usage and heavy usage, where the number of occu-
pants in each hour is distributed according to a multinomial
distribution. The top plot in Fig. 13 is the distribution of hourly
occupancy (we omit the plots from the heavy schedule due
to similarity and page limitation). The daily total ventilation,
in cubic feet, is shown as the cyan boxplots in the middle
plot. To ensure occupancy comforts, we want the estimated
ventilation to be no lower than the required ventilation for the
true occupancy less one (1), we also count the daily number
of violations of this rule for each method, as shown in the
cyan boxplots of the bottom plot. As the daily number of
violations is worrisome for all the demand-control schemes
except for SbP, we manually adjust the estimated occupancy
for these methods by offsetting it with a margin of occupancy
until we can keep the violations in an acceptable range, and
redo the simulations, as shown in the magenta bars in these
plots. Table VI is a summary of the simulation in the light
usage case, where Sims A and B correspond to the methods
without and with adjustments to meet the acceptable violation
range.

Although conventional methods have negligible daily viola-
tions, they consume double the size of ventilation air compared
to demand-control schemes. However, the saving of ventilation
for demand-control, except for SbP, is at the expense of more
violations, which deteriorates occupants’ comforts. This is
ameliorated by manual adjustments (Sim B), though it brings
up the ventilation almost at the level of conventional strategies.
SbP, nevertheless, represents 55% for the daily ventilation
usage, respectively, compared with the fixed strategy, with a
similar violation profile.
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Fig. 13. Top: daily occupancy distribution for 1000 simulations. Middle:
outside air capacity (cubic feet) for ventilation controlled by different schemes,
without (Sim A, cyan) and with (Sim B, magenta) manual adjustments.
Bottom: daily violation profiles for different methods in Sims A and B. The
main body of the each box represents the first and third quartiles. The whiskers
extend to the most extreme data points not considered outliers, and the outliers
are plotted individually using the “+” symbol.

TABLE VI

PROJECTED DAILY VENTILATION AND NUMBER OF VIOLATIONS FOR
DIFFERENT STRATEGIES, WITHOUT (SIM A) AND WITH (SIM B)

MANUAL ADJUSTMENTS FOR ACCEPTABLE VIOLATION PROFILES

B. Limitation of Study

Although SbP demonstrates improved performance in both
field and simulation experiments, a clear limitation of the study
is that only the ceiling supply and return ventilation have been
examined, and it remains to see how SbP applies to other types
of air circulation, like the underfloor air distribution system.
A viable mitigation strategy is to place sensors on the walls,
as is shown in Figs. 3 and 5, where the blackboard CO2
exhibited similar trends as the return vent in response to human
presence.

The projected savings of 55% in the energy impact
study are derived in simplified simulation studies based on
ASHRAE 62.1 for only ventilation; if the combined heat-
ing/cooling and ventilation system is used in the building, both
thermal and air quality performance need to be investigated
to make sure the indoor environment meets the requirement

of both ASHRAE 55 and 62.1. The numbers are subject to
change for different locations and seasons in the undergoing
field test.

VI. CONCLUSION

This paper describes an occupancy detection algorithm
using environmental parameters based on the SbP method-
ology, which explores the spatial and temporal features of the
system with constitutive models. Controlled field experiments
are conducted in a typical indoor space to show that the
proposed model can reproduce the CO2 measurements given
the latent emission rates. It is demonstrated that SbP can
reliably detect the number of occupants based on “proxy”
observations with RMSE of 0.6044 (factional person),
compared with 1.2061 (factional person) of the best alternative
machine learning algorithm. Investigation of the confusion
matrices reveals that the estimation by SbP is within one
occupant of the ground truth with high probability, while
the estimation by Bayes Net sometimes has large deviations.
Results from the projected ventilation analysis show that SbP
can potentially save 55% of total ventilation compared with
the traditional fixed schedule ventilation strategy, while at
the same time maintain a reasonably comfort profile for the
occupants. By successfully identifying the proxy candidates
in the problem, SbP can also be applied to other tasks,
such as indoor pollutants source identification, while requiring
minimal capital investments.
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