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Abstract— We consider the boundary stabilization problem
for the non-uniform equilibrium profiles of a viscous Hamilton-
Jacobi (HJ) Partial Differential Equation (PDE) with parabolic
concave Hamiltonian. We design a nonlinear full-state feedback
control law, assuming Neumann actuation, which achieves an
arbitrary rate of convergence to the equilibrium. Our design is
based on a feedback linearizing transformation which is locally
invertible. We prove local exponential stability of the closed-loop
system in the H1 norm, by constructing a Lyapunov functional,
and provide an estimate of the region of attraction.

I. INTRODUCTION

Boundary control of nonlinear parabolic PDEs is an impor-
tant research problem because such systems are common in
applications such as, for example, fluids [12], plasma systems
[9], [10], and chemical reactors [13]. Viscous Hamilton-
Jacobi PDEs, a particular class of semilinear parabolic PDEs,
appear in optimal control of stochastic systems [4], and,
more importantly, constitute approximations of traffic flow
dynamics, commonly modeled by (inviscid) Hamilton-Jacobi
PDEs [14], [15]. The Hamilton-Jacobi formulation (for traf-
fic or other systems) is obtained from conservation laws
(describing traffic or other physical systems), such as, for
example, the (inviscid) Burgers PDE, after applying a change
of variables [14]. Yet, the latter formulation is different
from the former and requires the development of different
tools for control [1], [6]. Few results exist dealing with the
boundary control [28], and estimation [14], [15], [16], [17],
of Hamilton-Jacobi PDEs, which is a different problem than
the one considered here.

In the present article we consider the problem of non-
linear boundary control of a specific viscous Hamilton-
Jacobi PDE, which can be viewed as the counterpart of
the boundary control problem of the viscous Burgers PDE,
for which explicit design approaches exist in the literature
[3], [11], [12], [23], [25], [26], [29], [33]. Results dealing
with the nonlinear boundary stabilization of more general
classes of nonlinear parabolic PDE systems also exist [8],
[27], [30], [31], [35], [36], [37]. In particular, the control
design methodologies introduced in [25], [26], [36], [37]
are inspired from techniques originally developed for control
of finite-dimensional nonlinear systems, namely, feedback
linearization [21] and backstepping [24].

We design a nonlinear full-state feedback control law
for the boundary stabilization of the non-uniform stationary
profiles of a viscous Hamilton-Jacobi PDE with parabolic
concave Hamiltonian (a.k.a. Greenshields Hamiltonian [7],
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[19]) and Neumann actuation, which we show that are not
asymptotically stable in open-loop. Our design is based
on a linearizing change of variables, inspired from the
Hopf-Cole transformation [18], [20], which, together with
the choice of the control laws, transform the system to a
linear diffusion-advection system (see also [25], [26] for the
design of feedback linearizing control laws in the case of
the viscous Burgers equation). We stabilize the linearized
system using backstepping [32], achieving an arbitrary decay
rate. We prove local exponential stability of the closed-
loop nonlinear system in the H1 norm, by constructing a
Lyapunov functional, with the aid of which we provide an
estimate of the region of attraction. A nonlinear collocated
static output-feedback control design, as in the case with
nonlinear “radiation boundary conditions” ([3], [23], [29] for
the case of Burgers equation), is also possible, yet, without
achieving an arbitrary decay rate of the closed-loop solutions.

In Section II we introduce the problem of stabilization of
a viscous Hamilton-Jacobi PDE system with Neumann actu-
ation and explain its relation to traffic modeling. In Section
III we prove that the open-loop system is not asymptotically
stable. We design a full-state feedback linearizing controller
in Section IV and prove local exponential stability of the
closed-loop system in Section V.

Notation: We use the common definition of class K,
K∞ and KL functions from [21]. For a function u ∈
L2(0, 1) we denote by ‖u(t)‖L2 the norm ‖u(t)‖L2 =(∫ 1

0
u(x, t)2dx

) 1
2

. For a function u ∈ H1(0, 1) we denote

by ‖u(t)‖H1 the norm ‖u(t)‖H1 =
(∫ 1

0
u(x, t)2dx

) 1
2

+(∫ 1

0
ux(x, t)

2dx
) 1

2

. For a function u ∈ H2(0, 1) we denote

by ‖u(t)‖H2 the norm ‖u(t)‖H2 =
(∫ 1

0
u(x, t)2dx

) 1
2

+(∫ 1

0
ux(x, t)

2dx
) 1

2

+
(∫ 1

0
uxx(x, t)

2dx
) 1

2

. Norms in time

and space are given by ‖u‖H2,0
T

=
(∫ T

0
‖u(t)‖2H2dt

) 1
2

,
‖u‖H2,1

T
= ‖u‖H2,0

T
+‖ut‖H2,0

T
, and we denote H2,0 = H2,0

∞
and H2,1 = H2,1

∞ . We denote by Cj(A) the space of
functions that have continuous derivatives of order j on A.

II. HAMILTON-JACOBI PDE WITH GREENSHIELDS
HAMILTONIAN AND ITS RELATION TO TRAFFIC

We consider the following system

ut(x, t) = εuxx(x, t)− ux(x, t) (1 + ux(x, t)) (1)
ux(0, t) = U0(t) (2)
ux(1, t) = U1(t), (3)
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where x ∈ [0, 1] is the spatial domain, ε > 0 is a viscosity
coefficient, and U0, U1 are control variables.

System (1)–(3) is the viscous version of a macroscopic
description of the dynamics of traffic flow on a highway,
in which u represents the so-called Moskowitz function [2],
[14]. The value of the Moskowitz function M = u(x, t) is
interpreted as the “label” of a given vehicle x and t along
a road segment [34]. The inviscid version of system (1)–(3)
is a Hamilton-Jacobi PDE which is originated from a first-
order hyperbolic PDE describing a conservation law, with a
Greenshields flux function (which becomes a Greenshields
Hamiltonian in the Hamilton-Jacobi description), for the
traffic density [5], and is obtained after applying a change of
variables on the density [14]. The problem of stabilization of
the inviscid version of system (1)–(3) is a different problem
which we do not consider in the present article, but it is
investigated in [28], and in [1], [6] in conservation law form.

We find next the equilibrium profile of system (1)–(3). The
equilibrium y of system (1)–(3) satisfy the following ODE

εy(x)′′ − y′(x) (1 + y′(x)) = 0, (4)

which gives

y′(x) = − 1

1 + c∗e−
x
ε
, (5)

where c∗ ∈ R is arbitrary, and hence,

y(x) = y(0)− x− ε log
∣∣∣∣1 + c∗e−

x
ε

1 + c∗

∣∣∣∣ . (6)

We stabilize the equilibrium profile (6) for any y(0) ∈ R and
for c∗ such that −1 < c∗ or c∗ < −e 1

ε , which guarantees
that y′ is continuous for all x ∈ [0, 1] (and hence, so is y′′

according to (4)). Setting c∗ = σe
1
2ε we write (6) as

y(x) = y(0)− x− ε log

1 + σe−
x− 1

2
ε

1 + σe
1
2ε

 . (7)

Although c∗ can take negative values, the choice c∗ ≥ 0 in
(6) has an interesting interpretation. Relation (5) for c∗ ≥ 0
guarantees that −1 ≤ y′(x) ≤ 0, ∀x ∈ [0, 1]. This implies
that the traffic density at equilibrium, which is equal to minus
the spatial derivative of the Moskowitz function u [14], [34],
is bounded below from zero and above by one. This is
consistent with the fact that in traffic models the density
varies on the interval between the roots of the Hamiltonian
which in the present case are 0 and −1 [14].

The equilibrium profile (7) for y(0) = 1 and σ = 1, as well
as its derivative, for several values of the viscosity coefficient
ε are shown in Fig. 1. One can observe that as ε converges to
zero, the equilibrium profile of u becomes non-differentiable,
with the singularity located at x = 1

2 (one could change
the location of this singularity by choosing a different c∗).
The non-differentiable profile is the equilibrium profile of the
inviscid version of (1)–(3) which we do not consider here.
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Fig. 1. The equilibrium profile (7) (top) and its derivative (bottom), for three
different values of the viscosity coefficient ε. As ε → 0, the equilibrium
profile becomes non-differentiable.
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III. STABILITY PROPERTIES OF THE OPEN-LOOP SYSTEM

We shift the equilibrium of system (1)–(3) to the origin.
Defining ũ = u− y we get that ũ satisfies

ũt(x, t) = εũxx(x, t)− ũx(x, t) (1 + ũx(x, t))

−2y′(x)ũx(x, t) (8)
ũx(0, t) = Ũ0(t) (9)
ũx(1, t) = Ũ1(t), (10)

where

Ũ0(t) = U0(t)− y′(0) (11)
Ũ1(t) = U1(t)− y′(1). (12)

One can observe from (8)–(10) that any constant could be an
equilibrium, and hence, the zero solution of (8)–(10) is not
asymptotically stable. Therefore, a control design is needed,
which asymptotically stabilizes system (8)–(10) to the origin.
In fact, we show next that the linearized system has one
eigenvalue at zero independently of the values of y(0), ε, and
σ. For σ ≥ 0 we also show that all the rest of the eigenvalues
are negative. The same tools can be applied for studying the
behavior of the nonzero eigenvalues for 0 > σ > −e− 1

2ε or
σ < −e 1

2ε . Linearizing system (8)–(10) around zero we get

θt(x, t) = εθxx(x, t)− (1 + 2y′(x)) θx(x, t) (13)
θx(0, t) = 0 (14)
θx(1, t) = 0. (15)
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Eliminating the advection term with the change of variables
ζ = θe−

1
2ε

∫ x
0 (1+2y′(s))ds we get that

ζt(x, t) = εζxx(x, t)−
1

4ε
ζ(x, t) (16)

ζx(0, t) = r1ζ(0, t) (17)
ζx(1, t) = r2ζ(1, t), (18)

where

r1 = −1 + 2y′(0)
2ε

=
1− σe 1

2ε

2ε
(
1 + σe

1
2ε

) (19)

r2 = −1 + 2y′(1)
2ε

=
1− σe− 1

2ε

2ε
(
1 + σe−

1
2ε

) , (20)

with ε > 0, σ ≥ 0. With system (16)–(18) we associate the
following Sturm-Liouville system (assuming a solution for
ζ as ζ(x, t) = e−λtφ(x)) which is well-known to have only
real and simple eigenvalues [22]

φ′′(x) =

(
1

4ε2
− λ

ε

)
φ(x) (21)

φ′(0) = r1φ(0) (22)
φ′(1) = r2φ(1). (23)

If λ ≤ 0 is an eigenvalue of (21)–(23), system (21)–(23)
must have a nontrivial solution of the form

φ(x) = c1e
µx + c2e

−µx, (24)

where µ =
√

1
4ε2 −

λ
ε , with µ ≥ 1

2ε . Substituting (24) into
the boundary conditions (22), (23) one can conclude that
the equation (µ+ r1)(µ− r2) = e−2µ(µ − r1)(µ + r2) for
µ ≥ 1

2ε , must hold. For µ = 1
2ε this equation is satisfied, and

hence, λ = 0 is an eigenvalue of (16)–(18). We show next
that λ < 0 can not be an eigenvalue of (16)–(18) for σ ≥
0. It holds that h′(µ) =

2(r2−r1)(µ2+r1r2)
(µ−r1)2(µ+r2)2 + 2e−2µ, where

h(µ) = (µ+r1)(µ−r2)
(µ−r1)(µ+r2) − e

−2µ, and hence, since r2 − r1 =

σ

ε
(
1+σe−

1
2ε

)(
1+σe

1
2ε

) (e 1
2ε − e− 1

2ε

)
≥ 0 and µ2 + r1r2 >

1
4ε2 + r1r2 = 1+σ2

2ε2
(
1+σe−

1
2ε

)(
1+σe

1
2ε

) > 0, for all µ > 1
2ε

(and also µ − r1 > 1
2ε − r1 = σe

1
2ε

ε
(
1+σe

1
2ε

) ≥ 0, µ + r2 >

1
2ε + r2 = 2

ε
(
1+σe−

1
2ε

) > 0), one can conclude that h is a

strictly increasing function of µ, for all µ > 1
2ε , i.e., for all

λ < 0. Therefore, µ = 1
2ε , i.e., λ = 0 is the unique solution

to (µ+r1)(µ−r2)
(µ−r1)(µ+r2) = e−2µ, for all µ ≥ 1

2ε .

IV. CONTROLLER DESIGN

A. Feedback linearizing transformation

We design in this section the controllers Ũ0, Ũ1 in order
to asymptotically stabilize the nonlinear system (8)–(10).

We linearize system (8)–(10) by introducing the following
locally invertible transformation

ṽ(x, t) = e−
1
ε ũ(x,t) − 1, (25)

and choosing the control laws as

Ũ0(t) = −εe 1
ε ũ(0,t)Ṽ0(t) (26)

Ũ1(t) = −εe 1
ε ũ(1,t)Ṽ1(t), (27)

where Ṽ0, Ṽ1 are the new control variables yet to be chosen.
Transformation (25) and the control laws (26), (27) transform
system (8)–(10) to

ṽt(x, t) = εṽxx(x, t)− (1 + 2y′(x)) ṽx(x, t) (28)
ṽx(0, t) = Ṽ0(t) (29)
ṽx(1, t) = Ṽ1(t), (30)

Note that transformation (25) is inspired from the Hopf-Cole
transformation [18], [20] and the fact that the variable h =

2ux satisfies ht = εhxx−
(
h2

2 + h
)
x

. A feedback linearizing
transformation for the case of the viscous Burgers equation
introduced in [25] and further used in [26].

The inverse transformation of (25) is given by

ũ(x, t) = −ε log (ṽ(x, t) + 1) , (31)

which is well-defined whenever the initial condition and the
solutions of the system satisfy the following condition

sup
x∈[0,1]

|ṽ(x, t)| < c, for all t ≥ 0, (32)

for some c ∈ (0, 1].

B. Full-state feedback controller

Our next step is to choose the control variables Ṽ0 and
Ṽ1 in order to achieve stabilization of the linear diffusion-
advection PDE (28)–(30) with an arbitrary decay rate of
convergence. We first define the transformation

v(x, t) = ṽ(x, t)e−
1
2ε

∫ x
0 (1+2y′(s))ds, (33)

in order to eliminate the advection term in (28), and we
choose the control variables Ṽ0, Ṽ1 as

Ṽ0(t) = −r1ṽ(0, t) (34)

Ṽ1(t) = e
1
2ε

∫ 1
0 (1+2y′(x))dxV1(t)− r2ṽ(1, t), (35)

where r1, r2 are given in (19) and (20) respectively, and V1
is a new control variable yet to be designed, in order to get

vt(x, t) = εvxx(x, t)−
1

4ε
v(x, t) (36)

vx(0, t) = 0 (37)
vx(1, t) = V1(t). (38)

We employ next backstepping for stabilization of system
(36)–(38) [32]. Introducing the following backstepping trans-
formation

w(x, t) = v(x, t)−
∫ x

0

k(x, y)v(y, t)dy, (39)
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we transform system (36)–(38) to the “target system”

wt(x, t) = εwxx(x, t)−
(

1

4ε
+ c1

)
w(x, t) (40)

wx(0, t) = 0 (41)
wx(1, t) = 0, (42)

where c1 > 0 is arbitrary, when the gain kernel k satisfies

kxx(x, y)− kyy(x, y) =
c1
ε
k(x, y) (43)

dk(x, x)

dx
= − c1

2ε
(44)

ky(x, 0) = 0, (45)

with k(0, 0) = 0, such that (41) is satisfied given (37), and
the control law V1 is chosen as

V1(t) = k(1, 1)v(1, t) +

∫ 1

0

kx(1, y)v(y, t)dy. (46)

It is shown in [32] that k ∈ C2(E), where E =
{(x, y) : 0 ≤ y ≤ x ≤ 1}. In fact, (43)–(45) can be solved
explicitly as [32]

k(x, y) = −c1
ε
x
I1
(√

c1
ε (x2 − y2)

)√
c1
ε (x2 − y2)

, (47)

where I1 is a modified Bessel function of order one. Com-
bining relations (25), (33)–(35), (46), the control laws (26),
(27) are expressed in terms of the original variable ũ

Ũ0(t) = −εr1
(
e

1
ε ũ(0,t) − 1

)
(48)

Ũ1(t) = ε (−r2 + k(1, 1))
(
e

1
ε ũ(1,t) − 1

)
+

εe
1
ε ũ(1,t)

1 + σe−
1
2ε

∫ 1

0

kx(1, y)
(
e
y−1
2ε + σe−

y
2ε

)
×
(
1− e− 1

ε ũ(y,t)
)
dy. (49)

where r1 and r2 are given in (19) and (20) respectively. The
inverse transformation of (39) is well-defined and is given
by [32]

v(x, t) = w(x, t) +

∫ x

0

l(x, y)w(y, t)dy, (50)

where l satisfies a well-posed hyperbolic linear partial dif-
ferential equation like (43)–(45) and l ∈ C2(E), where
E = {(x, y) : 0 ≤ y ≤ x ≤ 1}. In Fig. 2 we show the in-
terconnections between the variables ũ, ṽ, v, and w involved
in transformations (25), (31), (33), (39), and (50).

C. Static collocated output-feedback controller

Note that if one does not intent to achieve an arbitrary
decay rate c1 for the closed-loop system then one could set
k ≡ 0 obtaining the following simpler control laws

Ũ0(t) = −εr1
(
e

1
ε ũ(0,t) − 1

)
(51)

Ũ1(t) = −εr2
(
e

1
ε ũ(1,t) − 1

)
. (52)

In this case the closed-loop system v satisfies (36)–(38) with
V1 = 0 which is exponentially stable. An interesting feature

e−
1
ε (·) − 1 e−

1
2ε

∫ x
0 (1+2y′(s))ds

e
1
2ε

∫ x
0 (1+2y′(s))ds−ε log (·+ 1)

K {·}

L {·}

ũ ṽ v w

Fig. 2. The interconnections between the variables ũ, ṽ, v, and w involved
in transformations (25), (31), (33), (39), and (50). The operators K {·}
and L {·} are defined as K {v}(x) = v(x) −

∫ x
0 k(x, y)v(y)dy and

L {w}(x) = w(x) +
∫ x
0 l(x, y)w(y)dy respectively.

of the control laws (51)–(52) is that the controllers Ũ0 and Ũ1

are given only in terms of the boundary values of ũ at x = 0
and x = 1. This enables one to design an output-feedback
control law assuming that the only available measurements
are the boundary values ũ(0, t) and ũ(1, t), in contrast to
the control law (49) which requires measurement of the full
state ũ(x, t), for all x ∈ [0, 1].

V. STABILITY ANALYSIS

Theorem 1: Consider system (8)–(10) together with the
control laws (48), (49), (47). There exist positive constants R
and µ1 such that for all initial conditions ũ(·, 0) ∈ H2(0, 1)
which are compatible with the feedback laws (48), (49) and
satisfy

‖ũ(0)‖H1 < R, (53)

the following holds for all t ≥ 0,

‖ũ(t)‖H1 ≤ α (‖ũ(0)‖H1) e−(c1+
1
4ε )t, (54)

where c1 ≥ 0 is arbitrary, and

α (s) =
3µ1

1− c
e

2s
ε s, (55)

with 0 < c < 1. Moreover, the closed-loop system has a
unique solution ũ ∈ H2,1 ((0, 1)× (0,∞)).

The proof of Theorem 1 is based on a series of technical
lemmas which are presented next.

Lemma 1: If ũ ∈ H1(0, 1) then ṽ ∈ H1(0, 1) and the
following holds

‖ṽ(t)‖H1 ≤ α1 (‖ũ(t)‖H1) , (56)

where the class K∞ function α1 is given by

α1(s) =
3s

ε
e

2s
ε . (57)

Moreover, if ũ ∈ H2(0, 1) then ṽ ∈ H2(0, 1).
Proof: For the function f(r) = e−

1
ε r−1 the following

holds, |f(r)| ≤ |r|ε e
|r|
ε , for all r ∈ R. Hence, using (25) one

can conclude that

|ṽ(x, t)| ≤ α̂ (|ũ(x, t)|) , (58)

where the class K∞ function α̂ is defined as α̂(s) = s
ε e

s
ε ,

and hence,

|ṽ(x, t)| ≤ α̂

(
sup
x∈[0,1]

|ũ(x, t)|

)
, for all x ∈ [0, 1]. (59)
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For any u ∈ H1(0, 1) the following holds, u(x, t) =
u(0, t)+

∫ x
0
uy(y, t)dy, and hence, using Cauchy-Schwartz’s

inequality we obtain

|u(x, t)| ≤ |u(0, t)|+

√∫ 1

0

ux(x, t)2dx, x ∈ [0, 1]. (60)

Since u(0, t) = u(x, t) −
∫ x
0
uy(y, t)dy we get with the

Cauchy-Schwartz inequality that

|u(0, t)| ≤ |u(x, t)|+

√∫ 1

0

ux(x, t)2dx. (61)

Therefore, by integrating (61) and using the Cauchy-
Schwartz inequality we get

|u(0, t)| ≤ ‖u(t)‖H1 . (62)

Combining (60) and (62) we get that

sup
x∈[0,1]

|ũ(x, t)| ≤ 2‖ũ(t)‖H1 . (63)

Using (59) we get that supx∈[0,1] |ṽ(x, t)| ≤ α̂ (2‖ũ(t)‖H1).
Hence, it also holds

‖ṽ(t)‖L2 ≤ α̂ (2‖ũ(t)‖H1) . (64)

Using (25) we obtain

ṽx(x, t) = −
1

ε
ũx(x, t)e

− 1
ε ũ(x,t). (65)

Hence, using (63) we obtain by integrating (65)√∫ 1

0

ṽx(x, t)2dx ≤
1

ε
e

2
ε ‖ũ(t)‖H1

√∫ 1

0

ũx(x, t)2dx. (66)

Combining (64) and (66) we arrive at

‖ṽ(t)‖H1 ≤ α̂ (2‖ũ(t)‖H1) +
1

ε
e

2
ε ‖ũ(t)‖H1‖ũ(t)‖H1 . (67)

Which gives (56) with α1 defined in (57). Analogously,
using the fact that ṽxx(x, t) = − 1

ε ũxx(x, t)e
− 1
ε ũ(x,t) +

1
ε2 ũx(x, t)

2e−
1
ε ũ(x,t) and relations (60)–(62) for u = ũx ∈

H1(0, 1) one can prove that when ũ ∈ H2(0, 1) then

‖ṽ(t)‖H2 ≤ α2 (‖ũ(t)‖H2) , (68)

where the class α2 ∈ K∞ is α2(s) =
√
2
ε e

2
ε s
(
2
ε s+ 1

)
s.

Lemma 2: For all solutions of the system that satisfy (32)
for some 0 < c < 1, if ṽ ∈ H1(0, 1) then ũ ∈ H1(0, 1) and
the following holds

‖ũ(t)‖H1 ≤ ε

1− c
‖ṽ(t)‖H1 . (69)

Moreover, for all solutions of the system that satisfy (32) for
some 0 < c < 1, if ṽ ∈ H2(0, 1) then ũ ∈ H2(0, 1).

Proof: Using (31) and (32) one can conclude from the
simple fact that | log (r + 1) | ≤ 1

1−c |r|, for all |r| < c and
some 0 < c < 1, that |ũ(x, t)| ≤ ε

1−c |ṽ(x, t)|, and hence,

‖ũ(t)‖L2 ≤ ε

1− c
‖ṽ(t)‖L2 . (70)

Using (31) it follows that ũx(x, t) = −ε ṽx(x,t)ṽ(x,t)+1 . Therefore,
with (32) we get that√∫ 1

0

ũx(x, t)2dx ≤
ε

1− c

√∫ 1

0

ṽx(x, t)2dx, (71)

and hence, combining (70) and (71) we arrive at

‖ũ(t)‖H1 ≤ ε

1− c
‖ṽ(t)‖H1 . (72)

Analogously, using the fact that ũxx(x, t) =

−ε ṽxx(x,t)(ṽ(x,t)+1)−ṽx(x,t)2
(ṽ(x,t)+1)2

, relation (32), and relations
(60)–(62) for u = ṽx ∈ H1(0, 1) we obtain√∫ 1

0

ũxx(x, t)2dx ≤
√
2ε

1− c

√∫ 1

0

ṽxx(x, t)2dx

+
2
√
2ε

(1− c)2
‖ṽ(t)‖H1‖ṽ(t)‖H2 , (73)

and hence, combining (70), (72), and (73) we arrive at

‖ũ(t)‖H2 ≤ α4 (‖ṽ(t)‖H2) , (74)

where α4 ∈ K∞ is defined as α4(s) =
√
2ε

1−cs+
2
√
2ε

(1−c)2 s
2.

Lemma 3: There exists a positive constant µ1 such that
the following holds for all t ≥ 0 and any c1 ≥ 0,

‖ṽ(t)‖H1 ≤ µ1‖ṽ(0)‖H1e−(c1+
1
4ε )t. (75)

Proof: Taking the L2-inner product of (40) with w and
wxx, we obtain after using integration by parts and (41), (42)
that

d
∫ 1

0
w(x, t)2dx

dt
= −2ε

∫ 1

0

wx(x, t)
2dx

−2
(
c1 +

1

4ε

)∫ 1

0

w(x, t)2dx.(76)

d
∫ 1

0
wx(x, t)

2dx

dt
=−2ε

∫ 1

0

wxx(x, t)
2dx

−2
(
c1 +

1

4ε

)∫ 1

0

wx(x, t)
2dx.(77)

From (76), (77), and by using the Lyapunov functional

V1(t) =
1

2

∫ 1

0

w(x, t)2dx+
1

2

∫ 1

0

wx(x, t)
2dx, (78)

we get that V̇1(t) ≤ −2
(
c1 +

1
4ε

)
V1(t), and hence,

‖w(t)‖H1 ≤
√
2e−(c1+

1
4ε )t‖w(0)‖H1 . (79)

Using the backstepping transformation (39) and its in-
verse (50), and the fact that k, l ∈ C2(E), where E =
{(x, y) : 0 ≤ y ≤ x ≤ 1}, one can conclude that [32]

‖w(t)‖H1 ≤ 2
√
6Mk‖v(t)‖H1 (80)

‖v(t)‖H1 ≤ 2
√
6Ml‖w(t)‖H1 , (81)

where Mk = 1 + sup0≤y≤x≤1 |k(x, y)| +
sup0≤y≤x≤1 |kx(x, y)|, Ml = 1 + sup0≤y≤x≤1 |l(x, y)| +
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sup0≤y≤x≤1 |lx(x, y)|. With relation (33) we obtain that

‖v(t)‖H1 ≤ me
1+2 supx∈[0,1] |y

′(x)|
2ε ‖ṽ(t)‖H1 (82)

‖ṽ(t)‖H1 ≤ me
1+2 supx∈[0,1] |y

′(x)|
2ε ‖v(t)‖H1 (83)

m = 1 +
√
2 +
√
2
1 + 2 supx∈[0,1] |y′(x)|

2ε
. (84)

Estimate (75) then follows.
Proof of Theorem 1: Using relations (56), (75) we get

‖ṽ(t)‖H1 ≤ µ1α1 (‖ũ(0)‖H1) e−(c1+
1
4ε )t. (85)

Combining relations (60)–(62) for u = ṽ ∈ H1(0, 1) we get
that supx∈[0,1] |ṽ(x, t)| ≤ 2‖ṽ(t)‖H1 , and hence, choosing

R in (53) as R = α−11

(
c

2µ1

)
one can conclude that relation

(32) is satisfied. Therefore, using relations (69) and (57) we
arrive at (54), (55). Existence and uniqueness of a solution
ũ ∈ H2,1 ((0, 1)× (0,∞)) follows from the target system
(40)–(42), transformations (39), (50) and Lemmas 1, 2, by
using almost identical arguments to [25] (Section VII).

VI. CONCLUSIONS

We develop a full-state nonlinear control design for a
Hamilton-Jacobi PDE with Greenshields Hamiltonian. We
prove local exponential stability of the closed-loop system
using a Lyapunov functional and provide an estimate of the
region of attraction.

Although in this article we consider the case of a Green-
shields Hamiltonian, the same tools can be applied to the
stabilization of the PDE given by ut = εuxx − u2

x

2 .
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